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Abstract
Multimodal Multi-hop question answering re-001
quires integrating information from diverse002
sources, such as images and texts, to derive003
answers. Existing methods typically rely on004
sequential retrieval and reasoning, where each005
step builds on the previous output. However,006
this single-path paradigm makes them vulner-007
able to errors due to misleading intermediate008
steps. Moreover, developing multimodal mod-009
els can be computationally expensive, often re-010
quiring extensive training. To address these lim-011
itations, we propose a training-free framework012
guided by an Adaptive Planning Graph, which013
consists of planning, retrieval and reasoning014
modules. The planning module analyzes the015
current state of the Adaptive Planning Graph,016
determines the next action and where to expand017
the graph, which enables dynamic and flexi-018
ble exploration of reasoning paths. To handle019
retrieval of text to unspecified target modali-020
ties, we devise modality-specific strategies that021
dynamically adapt to distinct data types. Our022
approach preserves the characteristics of multi-023
modal information without costly task-specific024
training, enabling seamless integration with up-025
to-date models. Finally, the experiments on026
MultimodalQA and WebQA show that our ap-027
proach matches or outperforms existing models028
that rely on training.029

1 Introduction030

The field of question answering(QA) has gained031

significant attention and is increasingly applied032

across various domains, including customer sup-033

port, healthcare, and education, particularly with034

the rapid advancements driven by large language035

models (LLMs) (Su et al., 2019; Lu et al., 2022;036

Wei et al., 2022; Shao et al., 2023; He et al., 2024).037

These models have demonstrated strong perfor-038

mance in single-hop QA. However, multimodal039

multi-hop QA (Talmor et al., 2021; Chang et al.,040

2022) presents a greater challenge, as it requires in-041

tegrating diverse sources. As illustrated in Figure 1,042

Figure 1: An example of multimodal multi-hop QA. It
requires identifying relevant information (bounded by
green box) from diverse sources to generate answers.

relevant information must be identified across mul- 043

tiple sources with different modalities to generate 044

answers. In these settings, only a subset of sources 045

is relevant, while others introduce noise. Solving 046

this task requires approaches that effectively inte- 047

grate both retrieval and reasoning capabilities. 048

Current research in this area centers around two 049

main paradigms. The first approach adopts a two- 050

stage framework (Yu et al., 2023; Liu et al., 2023; 051

Lim et al., 2024). It retrieves all potentially rele- 052

vant information in a single step, followed by an- 053

swer generation based on the retrieved information. 054

The two stages are trained independently with dis- 055

tinct objectives, which can lead to a misalignment. 056

Specifically, the reasoning stage implicitly assumes 057

that the retrieved sources are complete and accu- 058

rate, introducing fragility as early retrieval failures 059

cannot be rectified during generation. For example, 060

in Figure 2, the retrieval results linked to animated 061

TV show and yellow gloves involve multiple false 062

positives, and overlook the correct poster. In the 063

next stage, the system is forced to reason from the 064

incorrect contexts, leading to inaccurate answer. 065

The second mainstream method employs an it- 066

erative approach (Trivedi et al., 2022; Yang et al., 067

2023a; Zhang et al., 2024), which offers greater 068
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Figure 2: A representative case illustrating how each framework handles deviations in the reasoning process to
reach the correct answer. We prompt the LLM to operate following the paradigm of each framework, comparing
how structural differences affect reasoning under the same conditions.

flexibility as it has no restrictions on the number069

of steps, allowing for the integration of additional070

sources as needed. The structure of these meth-071

ods follow a single-path paradigm, where actions072

proceed in a fixed pattern. This design introduces073

cascading error propagation, which relies on the074

model’s inherent reasoning ability to correctify. For075

instance, in Figure 2, if an initial retrieval incor-076

rectly identifies details about the TV show Poké-077

mon, this mistake could mislead the next subques-078

tion, ultimately leading to an incorrect result along079

a single-path with flaw. The challenge is further am-080

plified in multimodal settings, where the modality081

involved in each step is often unknown. To handle082

different types of sources, SKURG (Yang et al.,083

2023a) fuses image and text embeddings to create084

an entity-centered representation, which relies on085

extensive training of existing models. ETG (Zhang086

et al., 2024) retrieves evidences by converting im-087

ages into texts during preprocessing, which may re-088

sult in information loss. and omit relevant contexts.089

These limitations highlight the need for developing090

methods that can dynamically adapt to multimodal091

sources.092

To address these issues, we introduce a training-093

free Adaptive Planning Graph-guided approach. As094

illustrated in Figure 2, both the two-stage and it-095

erative framework rely on a single-path paradigm,096

where each step strictly depends on the previous097

one. Consequently, errors in earlier steps can prop-098

agate and affect the final answers. In our frame-099

work, we adopt a Adaptive Planning Graph, where100

each node represents a thought or a result gener-101

ated by module, and edges denote the dependencies102

between nodes. It presents a more flexible flow, al-103

lowing the new steps to be dynamically generated 104

from any relevant node in the Adaptive Planning 105

Graph. The proposed method consists of planning, 106

retrieval and reasoning modules. At each step, The 107

planning module generates a plan for one action on- 108

the-fly. It continuously analyzing the current state 109

to determine the next move. To facilitate search of 110

contexts across multiple modalities, existing works 111

either convert images into texts which may result in 112

incomplete captions, or rely on resource-intensive 113

pretraining. To address these limitations, our mod- 114

ule constructs separate knowledge bases and uses 115

modality-specific strategies to collect relevant in- 116

formation. It enables effective retrieval while pre- 117

serving modality details and avoiding additional 118

computational costs. The main contributions of our 119

paper are presented as follows: 120

1. We introduce a novel framework, MMAPG 121

(Multimodal Multi-hop Adaptive Planning 122

Graph), that offers enhanced flexibility for 123

tackling multimodal multi-hop QA. By con- 124

structing the Adaptive Planning Graph step- 125

by-step, our approach facilitates dynamic ex- 126

ploration of different sources and supports a 127

graph-based reasoning flow. To the best of our 128

knowledge, this is the first work using graph- 129

based planning for multimodal multi-hop QA. 130

2. We address multimodality with a training-free 131

framework by employing distinct off-the-shelf 132

within specialized modules. Our proposed 133

modules preserve the details of each modal- 134

ity while leveraging the generated rationale 135

to support the construction of the Adaptive 136

Planning Graph. 137
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3. We conduct experiments on MultimodalQA138

and WebQA datasets. The results demonstrate139

that our model performs comparably or better140

than trained models.141

2 Related Works142

2.1 Multimodal Multi-hop QA143

The first mainstream approach to solve multimodal144

multi-hop QA is the two-stage framework. For in-145

stance, Solar (Yu et al., 2023) and UniRAG (Lim146

et al., 2024) both unify multimodal sources into147

texts, retrieve top-k results and employ language148

models to generate the final response. To han-149

dle multimodality, AutoRouting and ImplicitDe-150

comp (Talmor et al., 2021) fine-tune models to151

answer questions depending on modality identi-152

fied by a classifier. Meanwhile, PERQA (Yang153

et al., 2023b) employs an iterative evidence selec-154

tion process and incorporates multimodal reason-155

ing during the generation phase. In contrast to the156

methods previously discussed, which all involve157

training or fine-tuning, MMHQA-ICL (Liu et al.,158

2023) represents a training-free paradigm, which159

autonomously generates prompts for in-context160

learning.161

The second approach focuses on an itera-162

tive framework, which is widely used in single-163

modality QA (Trivedi et al., 2022). However, its ap-164

plication in multimodal multi-hop QA is less com-165

mon. A notable example is SKURG (Yang et al.,166

2023a), which introduces a unified retrieval and167

generation module that iteratively integrates mul-168

timodal information. A recent work, ETG (Zhang169

et al., 2024), proposes a mixture-of-experts ap-170

proach to combine retrieval and generation, with171

reasoning represented through an entailment tree.172

2.2 Chain of thought173

The chain of thought (CoT) reasoning has signifi-174

cantly improved LLMs’ reasoning abilities. It in-175

spires approaches that prompt LLMs to generate176

full reasoning at once (Kojima et al., 2022) or in-177

crementally (Xu et al., 2023; Shen et al., 2024).178

While these methods follow a single-path paradigm,179

multi-path approaches like CoT-SC (Wang et al.,180

2022), Tree-of-Thought (ToT) (Yao et al., 2024),181

and Graph-of-Thought (GoT) (Besta et al., 2024)182

explore multiple reasoning paths and decision-183

making processes. Notably, GoT requires users to184

manually define the execution plan, making it less185

flexible for QA tasks that require adaptive plans for186

different questions. 187

2.3 Multimodal Retrieval 188

Retrieval across various modalities has been exten- 189

sively researched, usually with fixed source and 190

target modalities, such as text-to-image, image-to- 191

text, or image-text pair to image retrieval. However, 192

retrieval without predefined target modalities has 193

received less attention. Previous research (Mayil- 194

vahanan et al., 2023) has demonstrated that sim- 195

ilarity scores between intra-modalities and inter- 196

modalities exhibit different distributions, present- 197

ing inherent challenges in this area. MuRAG (Chen 198

et al., 2022) pretrains a multimodal retrieval model, 199

but requires collecting a large number of samples. 200

REVEAL (Hu et al., 2023) involves pretraining and 201

developing gating score to select dataset. These 202

approaches illustrate that facilitating multi-modal 203

retrieval often relies on costly resources. Other 204

works (Yu et al., 2023; Liu et al., 2023) attempts 205

to convert all the images into texts to address the 206

challenges of multimodal retrieval. However, ques- 207

tions can focus on various details within an image, 208

and these critical information may not be preserved 209

when converting to texts. 210

3 Methods 211

We present our motivation for graph-guided frame- 212

work in Section 3.1. Then we depict the main 213

modules in our framework MMAPG, including 214

knowledge base construction (Section 3.2), plan- 215

ning module (Section 3.3) and retrieval module 216

(Section 3.4). The overall workflow is detailed in 217

Appendix A.2. Since the reasoning module is sim- 218

ply implemented by calling an off-the-shelf model 219

to generate the answer, we omit its discussion here, 220

where its details can be found in Figure 3. 221

3.1 MMAPG Overview 222

In this section, we demonstrate how our graph- 223

guided framework alleviates the limitations of two- 224

stage and iterative framework based methods. To 225

establish the framework, we prompt the LLM to 226

analyze the current graph and generate instructions 227

for next steps, as shown in Figure 2. Each step 228

in the reasoning process is represented as a node, 229

and we explicitly allow the new nodes to be created 230

based on any existing node. This capability ensures 231

that even if one path proves ineffective, the frame- 232

work can still identify alternative paths based on the 233

current nodes. In the example, when the retrieval 234

of animated TV shows featuring two yellow gloves 235
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Figure 3: An overview of our framework MMAPG, which consists of four parts: (a) Knowledge Base Construction:
precomputes embeddings for given sources; (b) Planning Module: determines the next action in the Adaptive
Planning Graph and which module to call; (c) Retrieval Module: retrieve relevant sources and find key information;
(d) Reasoning Module: derives the answer based on the provided instruction.

is unsuccessful, the system can combine existing236

nodes to explore other paths for retrieving relevant237

TV shows within a limited range. Compared to238

previous approaches, our paradigm enhances the239

flexibility and allows for a more adaptive process.240

3.2 Knowledge Based Construction241

Given a set of sources S = {S1, · · · , Sn}. Each242

source Si may have associated text-based compo-243

nents Ti, (e.g., Ti = {T title
i , T caption

i }). We main-244

tain separate knowledge base for text and images,245

denoted as KBtext and KBimg.246

Specifically, the text knowledge space consists247

of embedding derived from textual sources and248

text-based image information, including image ti-249

tles and image captions. Since different types250

of text-based information vary in length and con-251

textual detail, which can impact the retrieval per-252

formance (Wang et al., 2024), to ensure consis-253

tent granularity, we decompose Si into relational254

triplets Ti = {τi1 · · · , τimi}. Here, we employ a255

few-shot prompting method (Zhang and Soh, 2024) 256

to extract triplets from Si, and compute the embed- 257

ding: 258

Ti =M(Ptri ⊕Ftri ⊕ Si), (1) 259

etextij = ftext(τij), (2) 260

where M represents the LLM used; Ptri is the 261

prompt; Ftri is the few-shot examples; ⊕ means 262

concatenation; ftext is the model to generate text 263

embedding; etextij is the computed embedding for 264

triplet τij . For short components, such as titles, 265

we directly compute their embeddings. Finally, 266

we construct the text knowledge base KBtext by 267

storing all the text embeddings {etext1 , · · · , etextN }. 268

To construct image knowledge base KBimg, em- 269

beddings are directly computed as follows: 270

eimg
i = fimg(Si), (3) 271

where fimg is the multimodal model to generate 272

image embedding. Similarly, KBimg stores all the 273

image embeddings {eimg
1 , · · · , eimg

M }. 274

4



3.3 Planning Module275

In this section, we introduce the planning module,276

the core component for constructing the Adaptive277

Planning Graph, denoted as G = (V,E). The278

node v ∈ V represents the action at each stage,279

and directed edges e ∈ E represent dependencies280

between nodes. Specifically, e = (vi, vj) indicates281

that node vj is built upon vi, which reflects the282

logical flow of global reasoning. The Adaptive283

Planning Graph is built by adding new nodes along284

with their corresponding edges on the fly, where the285

generation of these nodes and edges are informed286

by the planning module at each step.287

To harness the reasoning capability of LLMs for288

global planning, we design the prompt that serves289

two functions: analyzing the current state of the290

Adaptive Planning Graph as it evolves to answer291

the question and determining the next appropri-292

ate action. For the first function, we provide both293

an overall plan outlining the essential information294

needed and a summary of the current graph that295

reflects the progress made so far. Together, they296

offer the model a clear perspective of the infor-297

mation already gathered and what remains to be298

explored. For the second function, we present a299

set of options for expanding the graph. It allows300

the model to decide the most appropriate node to301

generate based on its prior analysis. To facilitate302

these processes, our prompts consists of four com-303

ponents: (1) Overall plan, denoted as Pplan. Given304

that many LLMs exhibit limitations in handling305

long-term planning, we generate a high-level guide,306

which outlines the key components and possible307

global plans. It serves as a reference for expanding308

the Adaptive Planning Graph G. (2) Graph State309

Description, presented as Pstate(G). It displays310

the current state of the Adaptive Planning Graph by311

describing the content of existing nodes and their312

dependencies. (3) Parent Node Selection Instruc-313

tion, represented as Pparent. It instructs the system314

to select parent nodes from all nodes in the graph315

G. (4) Node Type Selection Instruction, denoted316

as PC . It provides a set of node types to select.317

We concatenate these components to build prompts318

that are fed into LLMM:319

IC , Iparent, Iinstr =M(Pplan ⊕ Pstate(G)

⊕ Pparent ⊕ PC),
(4)320

where IC , Iparent, Iinstr are the type, parent321

nodes, and instruction for generating the con-322

tent of the new node. The type of new node323

Ci ∈ {Question,Answer,Retrieval, Stop} is 324

informed by IC . It signifies the system of the next 325

action to take. We present the instructions and 326

actions according to each node type as follows: 327

• Question: The instruction is a direct question. 328

Since no further processing is required, this 329

question is taken as the new node content. 330

• Answer: The instruction specifies which ques- 331

tion to be answered. The instruction and par- 332

ent nodes are passed into the reasoning mod- 333

ule to generate the corresponding answer. The 334

answer is then added as the new node content. 335

• Retrieval: The instruction outlines the infor- 336

mation to be retrieved. The instruction and 337

parent nodes are passed to the retrieval mod- 338

ule. If relevant information is found, it is 339

added as the new node content. However, if 340

no relevant information is retrieved, a node is 341

created to indicate that no results were found. 342

• Stop: The action with this node is to termi- 343

nate the process. It uses the content of the 344

last answer node as the final answer. If an 345

answer has not yet been generated, the LLM 346

will generate one based on the overall graph. 347

The graph is then expanded by adding the new node 348

along with the corresponding edges, which are de- 349

termined by Iparent. For instance, if Iparent = 350

{vj}, a directed edge eij = {vj , vi} will be added 351

to the Adaptive Planning Graph, to indicate vi is 352

derived from the thought of vj . The planning mod- 353

ule will continuously plan the next step to update 354

the graph until a stop node is generated or the max- 355

imum number of iteration is reached. 356

3.4 Retrieval Module 357

The retrieval module is responsible for extracting 358

relevant information based on the given instruction 359

and parent nodes. To eliminate training costs and 360

enhance generalizability, we leverage off-the-shelf 361

models to handle multimodality. However, retrieval 362

across different source types can exhibit inherently 363

different similarity score distributions, as we show 364

in detail in Appendix A.1. To address this, we pro- 365

pose tailored strategies for different modalities. We 366

firstly utilizes LLM to decompose the instruction 367

into text-related and image-related components: 368

Itextinstr, I
img
instr =M(Pdecomp ⊕ Iparent ⊕ Iinstr),

(5)
369
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where Pdecomp is the prompt for decomposition.370

Next, we apply different methods to extract key371

elements from text-related and image-related parts.372

For the text-related part, we employ few-shot373

examples mined from the dataset to identify key374

phrase. The queries utilized for text retrieval are375

generated as follows:376

Qtext =M(Pextract ⊕Ftext ⊕ Itextinstr), (6)377

where Pextract is the prompt for key phrase ex-378

traction, and Ftext represents the set of few-shot379

examples to identify key phrases or words.380

For the image-related part, the type of image381

retrieval is identified from Iimg
instr firstly, which de-382

termines the action to be taken next. There are383

two types of image retrieval defined. The first one384

is targeted image retrieval. It occurs when the in-385

struction Itextinstr mentions specific identifiers of a386

particular image, such as title. We expect these387

identifiers to be extracted and used to search the388

text knowledge base KBtext. The query Q′
text is389

generated by LLM as follows:390

Q′
text, I

img
tgt =M(Ptgt ⊕Ftgt ⊕ Iimg

instr), (7)391

where Ptgt and Ftarge are the prompt and few-shot392

examples for targeted image retrieval. The gen-393

erated Iimg
tgt will be used in later steps for candi-394

date examination. The final query to search in text395

knowledge base KBtext is then the combination of396

Qtext and Q′
text:397

Qtext = Qtext ⊕Q′
text. (8)398

The other type is descriptive image retrieval,399

which is utilized when a description about the im-400

age content is provided. In this case, the image-401

related part instruction Iimg
instr usually contains de-402

scriptive text to guide the system in locating images403

that best match the description in KBimg. The404

queries are generated as follows:405

Qimg, Iimg
descr =M(Pdescr ⊕Fdescr ⊕ Iimg

instr),
(9)

406

where Pdescr, Fdescr are the prompt and few-shot407

examples for descriptive image retrieval.408

Next, we generate the corresponding embed-409

dings for extracted queries. These embeddings410

are then searched in the corresponding knowledge411

base to identify matches within a defined radius rt412

and ri for KBtext and KBimg respectively. For413

example, when searching within the text knowl- 414

edge base, we first compute the embedding for the 415

extracted phrase qtexti as follows: 416

etexti = ftext(q
text
i ). (10) 417

Next, we identify the candidates from KBtext that 418

are within the defined radius rt from etexti : 419

Ctext = {ej ∈ KBtext | ∥ej − etexti ∥ ≤ rt}.
(11)

420

Then, we could derive k candidates as Ctext = 421

{ctext1 , · · · , ctextk }. 422

While retrieval based solely on similarity score 423

may introduce many outliers, a more refined ex- 424

amination is conducted using off-the-shelf models. 425

These models assist in verifying whether the con- 426

tent of the candidates is relevant to the instruction. 427

For text-related parts, we directly instruct LLM to 428

extract useful information Otext
i from ctexti : 429

Otext
i =M(Ptext

exam ⊕ Itextinstr ⊕ ctexti ), (12) 430

where Ptext
exam is the prompt used for examining tex- 431

tual candidates. For image-related part, we instruct 432

vision-language modelMvl to examine the image: 433

Oimg
j =Mvl(P img

exam ⊕ Iimg
p ⊕ cimg

j ). (13) 434

where p ∈ {descr, target}. Finally, all the exam- 435

ination results O = {Otext
1 , · · · , Oimg

1 , · · · } will 436

be collected together. These compiled information, 437

along with Iinstr, is fed into the LLM for informa- 438

tion extraction: 439

R =M(Pretr ⊕ Iinstr ⊕O). (14) 440

The final results R are then served as the content 441

of the new retrieval node. 442

4 Experiments 443

4.1 Experimental Setup 444

We utilize MultimodalQA (Talmor et al., 2021) and 445

WebQA (Chang et al., 2022) datasets for multi- 446

modal multi-hop QA evaluation. MultimodalQA is 447

a dataset designed for question answering across 448

text, tables, and images, where each question is 449

accompanied by a set of distractors. The answers 450

are evaluated using the F1 and exact match (EM) 451

scores. WebQA consists of QA pairs along with 452

images or text snippets, including distractors. The 453

evaluation metrics for WebQA involve QA-Acc, 454

keyword-based accuracy and QA-FL, which as- 455

sesses fluency using BARTScore. The implemen- 456

tation details of our framework can be found in 457

Appendix A.5. 458
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Methods Trained Models
Single-Modal Multi-Modal Overall

F1 EM F1 EM F1 EM
Fine-tuned

AutoRouting (Talmor et al., 2021) RoBERTa, ViLBERT 58.5 51.7 40.2 34.2 51.1 44.7
ImplicitDecomp (Talmor et al., 2021) RoBERTa, ViLBERT 58.8 51.1 51.7 46.5 55.9 49.3
Solar (Yu et al., 2023) BERT, T5 74.8 69.7 65.4 55.5 66.1 59.8
PERQA (Yang et al., 2023b) BERT, ViT+Llama+Lora 74.1 69.7 60.3 54.7 67.8 62.8
SKURG (Yang et al., 2023a) OFA,BART 69.7 66.1 57.2 52.5 64.0 59.8
ETG (Zhang et al., 2024) T5(MoE) 74.9 69.8 65.7 64.7 66.5 68.2

W/o fine-tuning
MMHQA-ICL (Liu et al., 2023) - 72.9 60.5 55.5 46.2 65.8 54.8
MMAPG (ours) - 75.4 65.2 65.0 51.9 70.6 59.1

Table 1: The comparison of different methods on MultimodalQA dataset. We report the F1 and EM scores for
single-modal, multi-modal and overall questions. The trained models used for each model are also presented.

Methods QA-Acc QA-FL
Fine-tuned
Solar 58.9 60.9
MuRAG 54.6 55.7
SKURG 63.4 47.8
PERQA 63.9 61.7

W/o fine-tuning
MMAPG (ours) 65.9 56.4

Table 2: The performance comparison on WebQA.
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Figure 4: The F1 scores of our method and SKURG
across different numbers of supporting documents.

4.2 Main Results459

We present our results on the MultimodalQA in460

Table 1. Compared to baseline models, our method461

achieves the highest F1 scores in the overall eval-462

uation. However, our exact match scores fall463

short of the current state-of-the-art. This disparity464

arises since our approach operates without fine-465

tuning, and thus, does not align precisely with466

the ground-truth labels provided by the dataset467

(See Appendix A.9 for more details). Our single-468

modality F1 score surpasses existing methods, al-469

though the multimodal F1 result remains slightly470

below that of fine-tuned models.471

It is likely due to the the inherent challenges472

of image reasoning. Without fine-tuning, vision-473

language models may exhibit greater variability474

in performance, affecting their ability to precisely 475

match reference answers. Despite this, our ap- 476

proach maintains comparable performance of exist- 477

ing fine-tuned model. 478

Figure 5: Case study of a multimodal multi-hop QA
where MMAPG answers correctly while SKURG fails.
The question, retrieval and answer nodes are presented
in blue, green and yellow boxes respectively. The in-
struction is displayed in red. The SKURG result is
shown in a purple box.

Table 2 presents the results of WebQA dataset. 479

We observe that our method achieves accuracy 480

comparable to that of other fine-tuned approaches. 481

However, in terms of fluency, our method yields 482

lower scores. Similar to the exact match scores, 483
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Methods Single-hop Multi-hop Overall

F1 EM F1 EM F1 EM

MMAPG 75.3 65.7 70.4 57.6 73.7 63.9
w/o graph-guided planning 72.4 61.2 58.6 45.1 65.3 53.0
w/o triplet conversion 68.1 56.1 57.6 46.3 63.9 52.2
w/o retrieval module 54.0 44.9 45.8 33.3 49.8 39.1

Table 3: The ablation studies on graph-guided planning and retrieval module. We present the F1 and EM score for
single-hop, multi-hop and overall questions.

without fine-tuning, the paraphrased answers strug-484

gle to closely match the ground truth.485

To assess our method in long-range reasoning,486

we compare its performance with an iterative frame-487

work, SKURG in Figure 4, which shows the F1488

score across varying numbers of required support-489

ing contexts in MultimodalQA. As the number of490

supporting contexts increases, requiring more steps,491

SKURG’s performance drops significantly, espe-492

cially beyond five contexts. In contrast, our model493

maintains stable performance, which shows its ro-494

bustness in complex reasoning scenarios.495

4.3 Ablation Study496

We present the ablation studies for Adaptive Plan-497

ning Graph-guided planning , triplet conversion498

and retrieval module on MultimodalQA. For single-499

hop tasks, removing graph-guided mechanism re-500

sults in minor performance decline. However, for501

multi-hop questions, it leads to a substantial drop of502

over 10 points in both F1 and exact match scores.503

It demonstrates that our planning module has a504

critical role in handling questions that require long-505

range inference steps. Eliminating triplet conver-506

sion during knowledge base construction results507

in consistent drops across all metrics, demonstrat-508

ing its role in aligning data granularity. For the509

retrieval module, we observe a more significant510

performance drop without our modality-specific511

strategies, as incorrect retrieval intensifies hallu-512

cination for both reasoning and global planning.513

It validates that our retrieval module improve the514

performance even without additional training.515

4.4 Case Study516

We show a case study in Figure 5, which presents517

how the Adaptive Planning Graph is constructed.518

At the initial few steps, appropriate nodes are gen-519

erated. For the third retrieval node, R3, the system520

attempts to retrieve information regarding common521

profession, but mistakenly returns results related to522

Britney Spears without identifying her profession,523

leading to a deviation from the intended path. As 524

Britney Spears’ profession is identified as an essen- 525

tial information in the overall plan, the planning 526

module analyzes the graph state at this point and 527

determines that the last retrieval action does not 528

capture this information. Consequently, it decides 529

to focus on retrieving Britney Spears’ profession di- 530

rectly in the next step. Ultimately, this leads to the 531

correct answer. The case study highlights that, even 532

when the graph temporarily deviates, the system 533

is capable of recovering and producing accurate 534

results. 535

5 Conclusion 536

In this paper, we introduce a Adaptive Planning 537

Graph-guided framework for multimodal multi-hop 538

QA. It comprises planning, retrieval, and reason- 539

ing modules, which leverage off-the-shelf mod- 540

els without fine-tuning. Compared to existing ap- 541

proaches, the proposed method enables flexible rea- 542

soning path exploration and plug-and-play model 543

integration. Experimental results show that our 544

method achieves competitive performance against 545

fine-tuned models even without additional training. 546

6 Limitations 547

Despite the effectiveness of MMAPG, the absence 548

of fine-tuning leads to lower exact match and flu- 549

ency scores. Additionally, frequent model calls 550

increases inference costs. The flexibility of our 551

Adaptive Planning Graph leads to longer explo- 552

ration times and additional steps. Future work will 553

focus on improving module efficiency and reducing 554

computational costs during inference. 555
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Figure 6: Comparison of similarity score distributions.
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A Appendices 692

A.1 Challenges of Modality-Agnostic 693

Retrieval 694

In this section, we examine the limitations of 695

modality-agnostic retrieval when using textual 696

queries, using 100 random selected image-caption 697

pairs from the MSCOCO dataset. Figure 7 shows a 698

3D projection of CLIP embeddings for both images 699

and their corresponding captions. The embeddings 700

exhibit a clear separation by modality, which high- 701

lights the modality gap in the shared representation 702

space. Furthermore, Figure 6 presents the similar- 703

ity distributions for text-text and text-image pairs 704

derived from same set of samples, which reveals a 705

distribution shift between text-text and text-image 706

similarity scores. 707

A.2 Overall Workflow 708

We introduce the overall workflow in Algorithm 1. 709

For simplicity, we denote the prompts used for plan- 710

ning, retrieval and reasoning modules as Pplanning, 711

Pretrieval and Preason. Initially, separate knowl- 712

edge bases are constructed for text and image 713

modalities (line 1), and a graph is initialized with 714

the given question (line 2). Following this, the 715

graph construction procedure begins (line 3-22). 716

At each step, the planning module provides several 717

instructions for the generation of new node (line 718

4). Depending on the new node type Ci, the system 719

decides which module to invoke and executes the 720

action (Line 7-17). During this step, the content of 721

the new node is determined and the edges are added 722

to update the Adaptive Planning Graph. This pro- 723

cess continues until either a stopping condition is 724

met or the maximum number of turns k is reached. 725

Once the graph construction phase is completed, if 726

the final node is not of the answer type, an answer 727

will be generated based on the current state of the 728

graph (line 24). Otherwise, the last answer node 729

will be returned as the final output (line 26). 730

A.3 Detailed Prompts 731

We include the prompts from the planning module 732

mentioned in Section 3.3 in Table 5. Since the 733

overall plan Pplan is generated based on the given 734

question, we provide the prompt for generating the 735

plan as Pplan_gen instead. The prompts from the 736

retrieval module in Section 3.4 are listed in Table 6. 737

The few-shot examples of Ftgt and Fdescr in 738

Section 3.4 are displayed in Table 8 and Table 7. 739

We provide Example 6 as a case to deal with mis- 740

10



Algorithm 1 Overall workflow of the proposed framework

Require: Question Q, Sources {S1, S2, · · · , Sn}, A set of prompt templates P , max_iteration k.
1: KBtext,KBimg ← KnowledgeBaseConstruction({S1, S2, . . . , Sn})
2: V ← {Q}, E ← {}, G← (V,E) ▷ Initialize the Adaptive Planning Graph
3: for i = 0 to k do
4: Iinstr, IC , Iparent ← PlanningModule(G,Pplanning) ▷ Invoke Planning Module
5: Ci ← Decompose(IC)
6: vp1, · · · , vpl ← Iparent
7: if Ci is Question then
8: V ← V ∪ {vi}
9: else if Ci is Answer then

10: vi ← ReasoningModule(Preason, Iinstr, Iparent) ▷ Invoke Reasoning module
11: V ← V ∪ {vi}
12: else if Ci is Retrieval then
13: vi ← RetrievalModule(Iinstr, Iparent,KBtext,KBimg, Pretrieval) ▷ Invoke Retrieval

Module
14: V ← V ∪ {vi}
15: else if Ci is Stop then
16: break ▷ Terminate the process
17: end if
18: for j = 1 to l do
19: E ← E ∪ {(vpj , vi)}
20: end for
21: Update the Adaptive Planning Graph G from (V,E)
22: end for
23: if the type of last node Ck is not Answer then
24: A← ReasoningModule(Preason, Iinstr, Iparent, G)
25: else
26: A← the content of the last answer node
27: end if
28: return A
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classification. For example, if Iimg
instr corresponds741

to descriptive image retrieval and does not contain742

a specific target, after inputting into Eq.7, its Q′
text743

should be returned as an empty list.744

A.4 Time Complexity745

In this section, we analyze the time complexity746

of our framework. Here we denote the time for a747

single LLM operation be tL, a VLM operation be748

tV , a text embedding computation be tTE , a image749

embedding computation be tIE . Assume there are750

n sources. During knowledge based construction,751

since we utilize sklearn.BallTree to establish the752

search space, the complexity will be:753

O(n · (tTE + tIE)) +O(n log n). (15)754

Assume q queries are generated, a single retrieval755

step takes756

tL +O(q · log n) +O(n · (tL + tV )). (16)757

A reasoning step includes a single LLM operation,758

therefore it takes tL.759

Let the total number of nodes be c, including760

cretr retrieval steps and creason reasoning steps.761

The planning stages would take c · tL in total. The762

overall time complexity is displayed as following:763

O(n · (tTE + tIE)) +O(n log n)

+ cretr · (tL +O(q · log n) +O(n · (tL + tV )))

+ creason · tL + c · tL.
(17)

764

A.5 Implementation765

In our training-free framework, models can be eas-766

ily incorporated as required, without the need for767

fine-tuning. Here, we utilize Llama3-70B-Instruct768

as the LLM and LLaVA-13B as the visual-language769

model. As outlined in Section 3.2, the text knowl-770

edge base supports search within a text embedding771

space, while the image knowledge base expects772

cross-modal retrieval between text queries and im-773

ages. To facilitate these retrieval processes, we em-774

ploy CLIP to generate embeddings for both texts775

and images. During knowledge base construction,776

we utilize sklearn.BallTree structure to efficiently777

store and organize the embeddings. To retrieve can-778

didates, we employ query_radius method, which779

returns all neighbors within a predefined distance780

threshold. We choose this method over top-k re-781

trieval as top-k assumes a fixed number of relevant782

Figure 8: Comparison of similarity score distributions
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Figure 9: The error analysis of cases where the EM
score is zero.

items, which is unsuitable for multimodal multi-783

hop question answering tasks, where the number784

of relevant sources can vary depending on the ques-785

tion.786

For datasets that include the table modality, we787

preprocess tables by converting the structured data788

from each row into a sentence. They are then789

treated similarly to text modality for subsequent790

processing.791

A.6 Dataset Statistics792

In this section, we present the statistics of the793

datasets used. WebQA dataset comprises 34K train-794

ing samples, 5K development samples and 7.5K795

test samples. MultimodalQA dataset includes 23K796

training samples, 2.4K development samples and797

3.6K test samples.798

A.7 Ablation Study Setup799

Firstly, to evaluate the performance without plan-800

ning module, we modify the framework by omit-801

ting the Adaptive Planning Graph construction. In802

this setting, the actions are planned in a sequen-803

tial manner, where each step is built directly upon804

previous one, similar to an iterative framework.805

Consequently, the system is constrained to a single-806

path approach, alternating between retrieval and807

reasoning without the flexibility to explore other808

paths. Secondly, we evaluated the performance809

without our retrieval module by replacing it with a810

simplified version. It retrieves information based811

solely on similarity score between the embeddings812

of instruction queries and sources. The key com-813

ponents of our retrieval design, including query814

construction and candidate examination, are elimi-815

nated.816

A.8 Case Study 817

We demonstrate an example for failure cases in 818

Figure 8. The potential failure points arise because 819

nodes continue providing seemingly relevant in- 820

formation at starting point, leading the system to 821

follow this path even though it does not capture 822

the truely relevant sources. It repeatedly extracts 823

the same context, mistakenly believing it may con- 824

tain the necessary details. Additionally, the graph 825

state summary gradually becomes too long, mak- 826

ing it harder for the LLM to produce the correct 827

action, as handling long contexts remains a chal- 828

lenge for LLMs. The complexity of such questions 829

also applies to the baseline method (Yang et al., 830

2023a), highlighting the inherent challenges posed 831

by indistinguishable distractors. 832

A.9 Error analysis 833

To gain a deeper understanding of the causes of 834

errors, we conduct an error analysis by randomly 835

sampling instances from the results where the ex- 836

act match (EM) score is zero. We categorize the 837

reasons for these errors into six distinct categories, 838

with detailed descriptions provided in Table 4. As 839

depicted in Figure 9, we observe that 27% of the 840

results, despite being mostly correct, were classi- 841

fied as inaccurate due to the strict criteria of the 842

exact match metric. Another significant source of 843

error was the presence of redundant results, which 844

generate more outputs than expected. 845
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Category Description

Incorrect The prediction does not match with ground truth answer at all.

Mostly Correct The prediction has the same meaning as the ground truth answer but receives a zero
EM score due to minor discrepancies such as number formatting, date representation,
or the use of symbols.

Incomplete The prediction provides a partial response, failing to fully capture the complete
content of the ground truth answer.

Abbreviation The prediction reflects the same meaning as the ground truth answer but is presented
in an abbreviated form.

Overlap The prediction partially aligns with the ground truth, sharing some overlapping
content but lacking a complete match.

Redundant The prediction includes the complete ground truth answer but is characterized by the
presence of extraneous or redundant components.

Table 4: Descriptions of the categories in error analysis.

Notation Prompt Template

Pplan_gen Given a multi-hop question, break the question into key components to identify all
necessary information.

Pparent Specify which existing node(s) will be used as the foundation for generating a new
node, ensuring a clear and logical progression in the reasoning process.

PC Please analyze the content of existing nodes step by step, and then decide what new
node to generate. Here are some options:

1. Stop: when the answer to question Q is already found given the current nodes.

2. Retrieval: to retrieve candidates and extract useful information from candidates
based on existing nodes.

3. Answer: to produce the instruction to generate an answer based on an existing
question and other nodes.

Pstate(G) Here is the graph: ...
Your task is to determine the next step in deriving the final answer of Q based on
provided input. Please think step by step and consider the current reasoning graph
and overall plan.

Table 5: Prompts for Planning Module.
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Notation Prompt Template

Pdecomp Given the following instruction, your task is to identify and extract the text-related
part and the image-related part for retrieval. The instruction may contain references
to both textual and visual content. For image-related parts, determine if the task is
Targeted Image Retrieval (specific images named) or Descriptive Image Retrieval
(search based on description).

Pextract Given the following text, your task is to extract the keywords. The keywords should
be specific and helpful for retrieval.

Ptgt For targeted image retrieval, please list specific image if mentioned, and craft a
precise question based on the image-related request to guide the assistant on what to
identify or analyze in the image.

Pdescr For descriptive image retrieval, please extract descriptive phrase, and craft a precise
question based on the image-related request to guide the assistant on what to identify
or analyze in the image.

Ptext
exam Your task is to analyze the input text and check if it is related to the instruction: ...

P img
exam Given the image, provide a brief description of its content and answer the question

based on the provided instruction: ...

Pretr These are the instruction and retrieval results: ...
Please extract only the relevant information from the result and rephrase into valid
description as the corresponding answer to the instruction for later analysis.

Table 6: Prompts for Retrieval Module.

Notation Few-shot Examples

Ftext Example 1:
Instruction: Retrieve the NHL team played against the Pittsburgh Penguins in the
playoff series.
Key Phrase:["NHL team played against the Pittsburgh Penguins in the playoff series"]
Example 2:
Instruction: Retrieve the 1977 Seattle Seahawks Kingdome regular season opponent
that has the most Super Bowl losses in NFL history.
Key Phrase: ["1977 Seattle Seahawks Kingdome opponent", "Super Bowl losses in
NFL history"]
Example 3:
Instruction: Retrieve the role Peppe Lanzetta played in the 2009 film.
Key Phrase: ["role Peppe Lanzetta played in the 2009 film"]
Example 4:
Instruction: Retrieve the Magazine that had Caroline Miller as Editor in Chief and
the year it won a National Magazine Award.
Key Phrase: ["Magazine that had Caroline Miller as Editor", "year of Magazine won
a National Magazine Award"]
Example 5:
Instruction: Retrieve the song performed in episode 3 of season 1 of The Clash on
July 14.
Key Phrase: ["song performed in The Clash on July 14", "episode 3 of season 1 of
The Clash on July 14"].

Table 7: Few-shot examples for Ftext.
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Notation Few-shot Examples

Ftgt Example 1:
Instruction: Retrieve the structure at the top of the Stockport County F.C.’s logo.
Question: What is the structure at the top of logo?
Target: ["the Stockport County F.C.’s logo"]
Example 2:
Instruction: Retrieve the colors that make up the flag for Denmark.
Question: What are the colors that make up the flag?
Target: ["flag for Denmark"]
Example 3:
Instruction: Retrieve the number of leaves are on the clover of the Celtic F.C.’s logo.
Question: How many leaves are on the clover of the logo?
Target: ["Celtic F.C.’s logo"]
Example 4:
Instruction: Retrieve the hair style of the man in blue in American football.
Question: What hair style does the man in blue have in American football?
Target: ["American football"]
Example 5:
Instruction: Retrieve whether there is a fence around the outside of the Cotton Bowl
(stadium).
Question: Is there a fence around the outside of the Cotton Bowl?
Target: ["the Cotton Bowl (stadium)"]
Example 6:
Instruction: Retrieve the movie poster that has a woman with a green dress on it.
Question: Is there a woman with a green dress on it?
Target: []

Fdescr Example 1:
Instruction: Retrieve the team whose logo has a bird on it.
Question: Is there a bird in the logo?
Key Phrase: ["logo with a bird"]
Example 2:
Instruction: Retrieve the movie poster that has a woman with a green dress on it.
Question: Is there a woman with a green dress on it?
Key Phrase: ["movie poster that has a woman with a green dress"]
Example 3:
Instruction: Retrieve the television title with a car on its poster.
Question: Is there a car on the poster?
Key Phrase: ["television poster with a car on it"]
Example 4:
Instruction: Retrieve opponent that has a football helmet on its logo.
Question: Is there a football helmet on the logo?
Key Phrase: ["logo with a football helmet"]
Example 5:
Instruction: Retrieve the poster that has a man reaching out with his hand.
Question: Is there a man reaching out with his hand?
Key Phrase: ["poster with a man reaching out with his hand."]
Example 6:
Instruction: Retrieve the number of leaves are on the clover of the Celtic F.C.’s logo.
Question: How many leaves are on the clover of the logo?
Key Phrase: []

Table 8: Few-shot examples for Ftgt and Fdescr.
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