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ABSTRACT

Bilevel optimization is pivotal in machine learning applications such as hyperpa-
rameter tuning and adversarial training. While existing methods for nonconvex-
strongly-convex bilevel optimization can find an ǫ-stationary point under Lips-
chitz continuity assumptions, two critical gaps persist: improving algorithmic
complexity and generalizing smoothness conditions. This paper addresses these
challenges by introducing an accelerated framework under Hölder continuity—a
broader class of smoothness that subsumes Lipschitz continuity. We propose a
restarted accelerated gradient method that leverages inexact hypergradient estima-
tors and establishes theoretical oracle complexity for finding ǫ-stationary points.
Empirically, experiments on data hypercleaning and hyperparameter optimization
demonstrate superior convergence rates compared to state-of-the-art baselines.

1 INTRODUCTION

Bilevel optimization is a powerful paradigm with applications in various machine learning tasks,
such as hyperparameter tuning [1; 2; 3], adversarial training [4; 5; 6; 7], and reinforcement learning
[8; 9; 10]. It involves two levels of optimization, where the objective at the upper level depends on
the solution to a lower-level optimization problem. The general bilevel problem can be expressed
as:

min
x∈Rdx ,y∈Y ∗(x)

f (x, y) , where Y ∗(x) = argmin
y∈R

dy

g(x, y). (1)

In this formulation, f(x, y) denotes the upper-level objective, while g(x, y) denotes the lower-level
objective.

This study examines the nonconvex-strongly-convex framework, wherein the lower-level function
g(x, y) exhibits strong convexity with respect to y, while the upper-level function f(x) is possibly
nonconvex. In this case, the lower-level objective admits a unique solution Y ∗(x) = {y∗(x)}. Then
Problem equation 1 is equivalent to minimizing the hyper-objective function

ϕ(x) := f (x, y∗(x)) , where y∗(x) = argmin
y∈R

dy

g(x, y).

As shown in [11; 12], the hyper-gradient ∇ϕ(x) is given by:

∇ϕ(x) = ∇xf (x, y) +∇y∗(x)∇yf (x, y∗(x))

= ∇xf (x, y∗(x))−∇2
xyg (x, y

∗(x))
[
∇2

yyg (x, y
∗(x))

]−1∇yf (x, y∗(x)) .
(2)

The goal of this paper is to find the point x such that ϕ(x) is an ǫ-stationary point, i.e., ‖∇ϕ(x)‖ ≤ ǫ.
For nonconvex-strongly-convex bilevel optimization, previous work [13; 14; 15] primarily focuses
on assuming Lipschitz continuity of ∇f , ∇g, ∇2g, and ∇3g, and either approximates the hyper-
gradient∇ϕ(x) or minimizes a penalty function. Approximating the hyper-gradient∇ϕ(x) requires
first-order oracle access to f and second-order oracle access to g, whereas minimizing the penalty
function only requires first-order oracle access to both f and g.
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Two key open questions remain: (i) For first-order methods, it remains open whether the existing al-
gorithmic complexities for finding approximate first-order stationary points in nonconvex–strongly-
convex bilevel optimization can be further improved under high order smoothness, and (ii) whether
the Lipschitz continuity assumptions can be generalized to the Hölder continuity.

1.1 RELATED WORK

Nonconvex optimization: For unconstrained nonconvex objectives with Lipschtiz continuous gra-
dient, the classical gradient descent (GD) is known to find an ǫ-stationary point within O(ǫ−2)
gradient computations [16]. This rate is optimal among the first-order methods [17; 18]. Under
the additional assumption of Lipschitz continuous Hessians, accelerated gradient descent (AGD)

[19; 20; 21] finds an ǫ-stationary point in Õ(ǫ−7/4) evaluations. [22] and [23] further show that

AGD with restarts achieves O(ǫ−7/4) complexity for finding ǫ-stationary points, without additional
log factors. Under the more general assumption of Hölder continuity of the Hessian, [24] proposed
a universal, parameter-free heavy-ball method equipped with two restart mechanisms, achieving a

complexity bound of O(H1/(2+2ν)
ν ǫ−(4+3ν)/(2+2ν)) in terms of function and gradient evaluations,

where ν ∈ [0, 1] and Hν denote the Hölder exponent and constant, respectively.

Bilevel Optimization Methods: To approximate the hyper-gradient, gradient-based methods con-
tain approximate implicit differentiation (AID) [25; 11; 26; 27; 11] and iterative differentiation (ITD)
[25; 11; 26; 11; 28]. Using the hyper-gradient equation 2, one can find an ǫ-stationary point of ϕ(x)

within Õ(ǫ−2) first-order oracle calls from f and Õ(ǫ−2) second-order oracle calls from g [29; 26].
In practical implementations, these methods typically rely on access to Jacobian or Hessian-vector
product oracles. [14] proposed a fully first-order method that does not require Jacobian or Hessian-
vector product oracles, and finds an ǫ-stationary point using only first-order gradients of f and g.

Concurrently, [13] proposed a method that achieves a near-optimal convergence rate of Õ(ǫ−2).
Moreover, under high-order smoothness assumptions, they established an accelerated convergence

rate of Õ(ǫ−7/4).

Table 1: Complexity bounds for finding ǫ-stationary points under Lipschitz continuity assumptions.

Algorithm Gc(f , ǫ) Gc(g, ǫ) JV(g, ǫ) HV(g, ǫ)

AID-BiO ([26]) O(κ3ǫ−2) O(κ3ǫ−2) O(κ3ǫ−2) Õ(κ3ǫ−2)

ITD-BiO ([26]) O(κ3ǫ−2) O(κ4ǫ−2) Õ(κ4ǫ−2) Õ(κ4ǫ−2)

RAHGD ([15]) Õ(ℓ3/4κ11/4ǫ−7/4) Õ(ℓ3/4κ13/4ǫ−7/4) Õ(ℓ3/4κ11/4ǫ−7/4) Õ(ℓ3/4κ13/4ǫ−7/4)

F2BA([13]) Õ(ℓκ4ǫ−2) Õ(ℓκ4ǫ−2) \ \

AccF2BA([13]) Õ(ℓ3/4κ13/4ǫ−7/4) Õ(ℓ3/4κ13/4ǫ−7/4) \ \

Proposed method (this work) Õ(ℓ3/4κ13/4ǫ−7/4) Õ(ℓ3/4κ13/4ǫ−7/4) \ \

1.2 OUR CONTRIBUTION

In this paper, we propose an accelerated first-order algorithm for solving nonconvex–strongly convex
bilevel optimization problems. Our main contributions are summarized as follows:

1. We introduce an accelerated first-order method framework—originally developed for non-
convex optimization—into the setting of nonconvex–strongly convex bilevel optimization,
and consider more general Hölder continuity assumptions on f and g.

2. We prove that, with a carefully designed restart condition, the iterates generated by our
proposed method remain uniformly bounded within each epoch. Based on this, we demon-
strate that the algorithm is convergent with accelerated performance.

3. Even under the standard Lipschitz continuity setting, our method improves the first-order

oracle complexity for finding an ǫ-stationary point of ϕ(x) to Õ(ℓ3/4κ13/4ǫ−7/4), with-
out requiring access to second-order oracles, where ℓ and κ denote the problem’s largest
smoothness and condition number. This bound improves upon previously known results,
as summarized in Table 1, and is consistent with the concurrent findings of [13], who es-

tablished a similar Õ(ǫ−7/4) rate under a different restarting scheme.

4. Our experimental results further support the theoretical convergence guarantees.
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Organization. The rest of this work is organized as follows. Section 2 delineates the assumptions
and specific algorithmic subroutines. Section 3 formally presents our proposed algorithm along
with some basic lemmas. Section 4 provides a complexity bound for finding approximate first-order
stationary points. In Section 5, we provide some numerical experiments to show the outstanding
performance of our proposed method. Section 6 concludes the paper and discusses future directions.
Technical analyses are deferred to the appendix.

Notation. Let a, b ∈ R
d be vectors, where 〈a, b〉 represents their inner product and ‖a‖ denotes

the Euclidean norm. For a matrix A ∈ R
m×n, ‖A‖ is used to denote the operator norm, which is

equivalent to the largest singular value of the matrix. Let Gc(f, ǫ) and Gc(g, ǫ) denote the number
of gradient evaluations with respect to f and g, respectively. Let JV (g, ǫ) denote the number of
Jacobian-vector products∇2

xyg(x, y)v, and HV (g, ǫ) denote the number of Hessian-vector products

∇2
yyg(x, y)v. The diameterR of a compact set C is defined asR := maxx1,x2∈C ‖x1 − x2‖.

2 PRELIMINARIES

In this section, we present the key definitions and assumptions used throughout the paper.

Definition 1 (Restricted Hölder Continuity). Let h be a twice differentiable function. We say that
∇2h is restrictively (ν,Hν)-Hölder continuous with diameterR > 0 if

Hν := sup
‖x−y‖≤R

‖∇2h(x)−∇2h(y)‖
‖x− y‖ν < +∞, ν ∈ [0, 1].

WhenR = +∞, we call ∇2h is (ν,Hν)-Hölder continuous if ν ∈ [0, 1] and Hν < +∞.

We make the following assumptions on the upper-level function f and lower-level function g:

Assumption 1. We make the following assumptions:

i. The function ϕ(x) is lower bounded.

ii. The function g(x, y) is µ-strongly convex in y, and has Lg-Lipschitz continuous gradients.

iii. The function g(x, y) has ρg-Lipschitz continuous Hessians and is (νg,Mg)-Hölder continuous
in its third-order derivatives.

iv. The function f(x, y) is Cf -Lipschitz continuous in y and has Lf -Lipschitz continuous gradients.

v. The Hessian ∇2
xxf(x, y) is (νf , Hf )-Hölder continuous.

vi. The mixed and second-order partial derivatives ∇2
xyf(x, y), ∇2

yxf(x, y), and ∇2
yyf(x, y) are

ρf -Lipschitz continuous.

The assumptions employed in this study are consistent with those commonly adopted in prior litera-
ture [13; 27; 14; 15]. To introduce Hölder continuity, we extend the Lipschitz continuity assumptions
about the Hessian of f , and the third-order derivative of g to our assumptions equation iii, equation v,
equation vi.

Definition 2. Under Assumption 1, we define the largest smoothness constant as

ℓ := max {Cf , Lf , Hf , ρf , Lg, ρg,Mg} ,
and the condition number as κ := ℓ/µ.

Observe that problem equation 1 can be reformulated as:

min
x∈Rdx , y∈R

dy

f (x, y∗(x)) , s.t. g(x, y)− g∗(x) ≤ 0, (3)

where g∗(x) = g(x, y∗(x)) is the value function. A nature penalty problem associated with prob-
lem equation 3 is

min
x∈Rdx , y∈R

dy

Lλ(x, y) := f(x, y) + λ (g(x, y)− g∗(x)) ,

3
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where λ > 0 is a penalty parameter. This problem is equivalent to minimizing the following auxiliary
function:

L∗
λ(x) := Lλ (x, y

∗
λ(x)) , where y∗λ(x) = arg min

y∈Rd
Lλ(x, y). (4)

It has been proven in [13] that L∗
λ(x) and ∇L∗

λ(x) asymptotically approximate ϕ(x) and ∇ϕ(x),
respectively, as λ is sufficiently large. Moreover, ∇L∗

λ(x) is Lipschitz continuous and its Lipschitz
constant does not involve λ. We restate their result below for completeness.

Lemma 1 ([13, Lemma 4.1]). Under Assumption 1, for λ ≥ 2Lf/µ, we have

i. |L∗
λ(x)− ϕ(x)| ≤ O(ℓκ2/λ),

ii. ‖∇L⋆
λ(x)−∇ϕ(x)‖ ≤ O(ℓκ3/λ),

iii. ∇L⋆
λ(x) is O(ℓκ3)-Lipschitz continuous.

In the remainder of the article, we denote the Lipshitz continuous constant of ∇L∗
λ(x) in Lemma 1

by L = O(ℓκ3) for convenience. Then we introduce a lemma showing that∇2L∗
λ(x) is restrictively

(νf , Hν)-Hölder continuous with diameterR, where the detailed expression of Hν , depending on λ
and D, can be found in equation 16 of Appendix C.1.

Lemma 2. Under Assumption 1, for λ ≥ 2Lf/µ, ∇2L⋆
λ(x) is restrictly (νf , Hν(λ,R))-Hölder

continuous with diameterR > 0, where

Hν(λ,R) = O(ℓκνf ) +O(λ1−νgℓκ4+νg )R1−νf .

3 RESTARTED ACCELERATED GRADIENT DESCENT UNDER GENERAL

SMOOTHNESS

In this section, we present our algorithm in Algorithm 1 and discuss several of its key properties. The
algorithm has a nested loop structure. The outer loop uses the accelerated gradient descent (AGD)
method with a restart schemes, inspired from the recently works in [22; 23]. The iteration counter k
is reset to 0 when AGD restarts, whereas the total iteration counter K is not. We refer to the period
between a reset of k and the next reset as an epoch. We introduce a subscript t to denote the number
of restarts. It is important to note that the subscript t in Algorithm 1 is primarily included to facilitate
a simpler convergence analysis. Provided that no ambiguity occurs, we omit the subscript t, which
means that the iterates are within the same epoch.

In Lines 4 and 5, we invoke AGD, which is summarized in Algorithm 2, to find estimators of
y∗(wt,k) and y∗λ(wt,k), respectively. AGD achieves linear convergence when applied to the mini-
mization of smooth and strongly convex functions g(x, ·) and f(x, ·) + λg(x, ·). We note that the
iteration number of inner AGD steps plays an important role in the complexity analysis. We will
provide the parameters setting for AGD subroutines in Section 4. In the following, we describe some
operations involved in the algorithm.

Restart Condition. Here, we focus on the iterates within a single epoch and omit the subscript t,

which indexes different epochs. Then we define Sk =
∑k

i=1 ‖xi−xi−1‖2, and the restart condition

(k + 1)4+νfH2
νS

νf

k > L2, (5)

where the constant Hν will be defined in equation 6 below. If equation 5 holds, the epoch terminates;
otherwise, it continues. We say that an epoch ends at iteration k, if Sk triggers the restart condition
equation 5. It is worth noting that, unlike the restart conditions in [22; 15] and the concurrent work
by [13], our restart condition is independent of ǫ.

Hölder Constant Hν . From Lemma 2, ∇2L⋆
λ(x) is restrictively (νf , Hν(λ,R))-Hölder continu-

ous with diameter R > 0. Here we choose a specific R and the corresponding Hν(λ,R), denoted
by D and Hν , satisfying

D = O
(

λ−(1−νg)κ−(1+νg)
)

, Hν = O
(

λνf (1−νg)ℓκ3+(1+νg)νf

)

. (6)

The derivation of Hν andD is provided in equation 18 of Appendix D. Then∇2L∗
λ(x) is restrictively

(νf , Hν)-Hölder continuous with diameter D. In the case of Lipschitz continuity, i.e., νf = νg = 1,

equation 6 implies Hν = O(ℓκ5) and D = O(κ−2).

4
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Algorithm 1 Restarted Accelerated gradient descent under General Smoothness (RAGD-GS)

1: Input: initial point x0,0; gradient Lipschitz constant L > 0; Hessian Hölder constant Hν > 0
and νf ∈ [0, 1]; penalty parameter λ > 0; momentum parameter θk ∈ (0, 1); parameters

α, α′ > 0, β, β′ ∈ (0, 1), {Tt,k},
{

T ′
t,k

}

of AGD

2: k ← 0, K ← 0, t← 0, w0,0 ← x0,0, y0,−1 ← 0, z0,−1 ← 0
3: repeat
4: zt,k ← AGD(g (wt,k, ·) , zt,k−1, Tt,k, α, β)

5: yt,k ← AGD
(

f (wt,k, ·) + λg (wt,k, ·) , yt,k−1, T
′
t,k, α

′, β′
)

6: ∇̂L∗
λ(wt,k)← ∇xf (wt,k, yt,k) + λ (∇xg (wt,k, yt,k)−∇xg (wt,k, zt,k))

7: xt,k+1 ← wt,k − 1
L∇̂L∗

λ(wt,k)
8: wt,k+1 ← xt,k+1 + θk+1 (xt,k+1 − xt,k)
9: k ← k + 1, K ← K + 1

10: if (k + 1)4+νfH2
νS

νf

k > L2 then
11: xt+1,0 ← xt,k

12: yt+1,−1 ← 0, zt+1,−1 ← 0, wt+1,0 ← xt+1,0

13: k ← 0, t← t+ 1
14: end if
15: until ‖∇Lλ(w̄t,k)‖ ≤ ǫ
16: Output: averaged solution w̄t,k defined by (7)

Averaged Solution. Inspired by [23], we set θk = k
k+1 and define

w̄k =

k−1∑

i=0

pk,iwi, (7)

where pk,i =
2(i+1)
k(k+1) . We can update w̄k in the following manner: w̄k = k−1

k+1 w̄k−1 +
2

k+1wk−1.

The following lemma shows that {xi}k−1
i=0 and {wi}k−1

i=0 are bounded within any epoch ending at
iteration k.

Lemma 3. Let Assumption 1 holds, Hν and D = R be given in equation 6, and w̄k be defined in
equation 7. For any epoch ending at iteration k, the following holds:

max
0≤i≤j≤k−1

‖xi − xj‖ ≤ D, max
0≤i≤k−1

‖wi − w̄k‖ ≤ max
0≤i≤j≤k−1

‖wi − wj‖ ≤ D.

Condition 1 (Inexact gradients). Under Assumption 1 and given σ > 0, we assume that the estima-
tors yt,i and zt,i satisfy the conditions

‖zt,i − y∗(wt,i)‖ ≤
σ

2λLg
, ‖yt,i − y∗λ(wt,i)‖ ≤

σ

4λLg
, (8)

for any t-th epoch ending at iteration k, where i = 0, . . . , k − 1.

Remark 1. It is noteworthy that Condition 1 holds in Algorithm 1 as long as the inner loop iteration
number Tt,k and T ′

t,k are large enough. This will be formally addressed in our convergence analysis
later, in Theorem 2.

Under Condition 1, the bias of ∇L∗
λ(wt,k) and its estimator ∇̂L∗

λ(wt,k) can be bounded as shown
below:

Lemma 4 (Inexact gradients). Under Assumption 1 and supposing that Condition 1 holds, we have

‖∇L∗
λ(wt,i)− ∇̂L∗

λ(wt,i)‖ ≤ σ

for any t-th epoch ending at iteration k, where i = 0, . . . , k − 1.

4 COMPLEXITY ANALYSIS

In this section, we analyze the performance of Algorithm 1. We begin in Section 4.1 by presenting
several useful lemmas that rely on the boundedness of the iterates generated within a single epoch.
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These results serve as key tools for our subsequent analysis. We then establish the descent property
of the objective function and derive an upper bound for ‖∇L∗

λ(w̄i)‖. Finally, in Section 4.2, we
present the main complexity results for Algorithm 1.

4.1 TOOLS FOR ANALYSIS

We use the following two Hessian-free inequalities to analyze the complexity of Algorithm 1.

Lemma 5. Under Assumption 1 and with λ ≥ 2Lf/µ, the following holds for any x1, . . . , xn

satisfying max1≤i≤j≤n ‖xi − xj‖ ≤ D and q1, . . . , qn ≥ 0 such that
∑n

q=1 qi = 1:

∥
∥
∥
∥
∥
∇L∗

λ(

n∑

i=1

qixi)−
n∑

i=1

qi∇L∗
λ(xi)

∥
∥
∥
∥
∥
≤ Hν

1 + νf




∑

1≤i<j≤n

qiqj‖xi − xj‖2




1+νf
2

,

where Hν and D are defined in (6).

Lemma 6. Under Assumption 1 and with λ ≥ 2Lf/µ, the following holds for any x and x′ satisfying
‖x− x′‖ ≤ D:

L∗
λ(x)− L∗

λ(x
′) ≤ 1

2
〈∇L∗

λ(x) +∇L∗
λ(x

′), x− x′〉+ 2Hν

(1 + νf )(2 + νf )(3 + νf )
‖x− x′‖2+νf ,

where Hν and D are defined in (6).

Lemma 5 bounds the discrepancy between the average gradient over an epoch and the true gradient
at the averaged iterate w̄k defined in (7), while Lemma 6 establishes a quadratic surrogate inequality
for the function difference, which serves as a key ingredient for showing descent of the potential
function. In light of these lemmas and following [23], we define the potential function Φk as

Φk := L∗
λ (xk) +

θ2k
2

(
1

2L
‖∇L∗

λ (xk−1) + L(xk − xk−1)‖2 +
L

2
‖xk − xk−1‖2

)

. (9)

The following lemma shows that Φk is a decreasing sequence if ‖xk − xk−1‖ and σ are sufficiently
small.

Lemma 7. Suppose that Assumption 1, Condition 1, and λ ≥ 2Lf/µ hold. Then we have

Φk+1 − Φk ≤‖xk − xk−1‖2+νf

(
2Hν

(1 + νf )(2 + νf )(3 + νf )
θ
2+νf

k +
Hν

1 + νf
θ

3+νf
2

k

)

+ ‖xk − xk−1‖2+2νf
2H2

ν

(1 + νf )2
θ
2+νf

k

L
+

θ2k+1 + θk − 2

4
L‖xk+1 − xk‖2

− θ2k
4L
‖∇L∗

λ(xk)‖2 +
σ2

2L
+ σ‖xk+1 − xk‖. (10)

Moreover, we can leverage this potential decrease to quantify the reduction of L∗
λ(·) over an entire

epoch. The following lemma shows that L∗
λ(x) decreases whenever Sk > 0 and σ is sufficiently

small.

Lemma 8. Suppose that Assumption 1, Condition 1, and λ ≥ 2Lf/µ hold. Then the decrease value
of L∗

λ(·) in one epoch satisfies:

L∗
λ(xk)− L∗

λ(x0) ≤−
LSk

32k
+

kσ2

2L
+ σ

k−1∑

i=0

‖xi+1 − xi‖. (11)

The following lemma provides an upper bound on the minimum gradient norm of the penalized

objective L∗
λ evaluated at the averaged iterates {w̄i}k−1

i=1 .

Lemma 9. Suppose that Assumption 1, Condition 1, and λ ≥ 2Lf/µ hold. The following is true
when k ≥ 2:

min
1≤i<k

‖∇L∗
λ(w̄i)‖ ≤ σ + cL

√

Sk−1/k3,

where c = 2
√
6 + 27.

6
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4.2 MAIN RESULTS

In the following proposition, we show that the iteration complexity of the outer loop is bounded.

Proposition 1. Suppose that Assumption 1, Condition 1, and λ ≥ 2Lf/µ hold. Let c = 2
√
6 + 27

as defined in Lemma 9, and define ∆λ = L∗
λ(x0,0)−minx∈Rdx L∗

λ(x). Let

(α, β) = (
1

Lg
,

√
Lg −

√
µ

√
Lg +

√
µ
), (α′, β′) = (

1

2λLg
,

√
4Lg −

√
µ

√
4Lg +

√
µ
),

θk =
k

k + 1
and σ =

1

64c+ 1
ǫ.

(12)

Algorithm 1 terminates within

O
(

∆λλ
νf (1−νg)

(2+2νf ) ℓ
2+νf
2+2νf κ

6+4νf+νf νg

(2+2νf ) ǫ
− 4+3νf

2+2νf

)

total iterations, outputting w̄t,k satisfying ‖∇L∗
λ(w̄t,k)‖ ≤ ǫ. Moreover, Algorithm 1 terminates

within

O
(

∆λλ
1−νg

(2−νf )(1+νf ) ℓ
1

1+νf κ
8−3νf

(2−νf )(1+νf ) ǫ
− 2+νf

2+2νf

)

epochs.

We present the complexity analysis of our algorithm, aiming to establish its guarantee for finding an
O(ǫ)-stationary point of problem (1).

Theorem 1. Suppose that both Assumption 1 and Condition 1 hold. Define ∆ = ϕ(x0,0) −
minx∈Rdx ϕ(x). Let λ = max(O(κ),O(ℓκ3)/ǫ,O(ℓκ2)/∆) and set the other parameters as speci-
fied in equation 12, Algorithm 1 terminates within

O
(

∆ℓ
2+2νf−νf νg

2+2νf κ
6+7νf−2νf νg

2+2νf ǫ
− 4+4νf−νf νg

2+2νf

)

iterates, outputting w̄t,k satisfying ‖∇ϕ(w̄k)‖ ≤ 2ǫ. Moreover, Algorithm 1 terminates within

O
(

∆ℓ
1+νf−νf νg

1+νf κ
3+4νf−2νf νg

1+νf ǫ
− 2+2νf−νf νg

1+νf

)

epochs.

When νf = νg = 1, Theorem 1 shows that within O
(
∆ℓ3/4κ11/4ǫ−7/4

)
outer iterations and

O(∆ℓ1/2κ5/2ǫ−3/2) epochs, the algorithm will find an O(ǫ)-stationary point.

Remark 2. Throughout the proof, we only use the restricted Hölder and Lipschitz properties, where
restricted Lipschitz continuity can be defined analogously to Definition 1. Therefore, the assumption
on global Lipschitz and Hölder smoothness in Assumption 1 can be relaxed to restricted smoothness.

To make Condition 1 hold, it suffices to run AGD for a sufficiently large number of iterations, which
only introduces a logarithmic factor to the total complexity. This gives the following result.

Theorem 2. Suppose that Assumption 1 holds. In the t-th epoch, we set the inner-loop iteration
numbers Tt,k and T ′

t,k according to equation 44, equation 45, equation 46, and equation 47 in
Appendix E. We then run Algorithm 1 with the parameters specified in Theorem 1. Under these
settings, all yt,k and zt,k satisfy Condition 1. Moreover, the total first-order oracle complexity is

Õ
(

∆ℓ
2+2νf−νf νg

2+2νf κ
7+8νf−2νf νg

2+2νf ǫ
− 4+4νf−νf νg

2+2νf

)

.

When νf = νg = 1, the first-order oracle complexity is Õ
(
∆ℓ3/4κ13/4ǫ−7/4

)
. This matches the

Õ(ǫ−7/4) rate obtained independently and concurrently by [13], and also improves upon the earlier
result of [15], as shown in Table 1. We defer the proof to Appendix E. Under the Hölder continuity
assumption, to the best of our knowledge, we are the first to propose a method that finds an ǫ-
stationary point. Furthermore, under the Lipschitz continuity assumption, our approach outperforms
all existing methods in the literature, as the proposed method RAGD-GS relies solely on first-order
oracle information, which is in line with the concurrent work [13].
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5 NUMERICAL EXPERIMENT

This section compares the performance of the proposed method with several existing methods, in-
cluding RAHGD [15], BA [29], AID [26], ITD [26], F2BA [13] and AccF2BA [13]. For the bilevel
approximation (BA) method introduced in [29], we implement a conjugate gradient approach to
compute Hessian-vector products since the original work doesn’t specify this computational detail.
We refer to this modified version as BA-CG to distinguish it from other algorithm. To quantify
variability, each experiment is repeated over 5 independent trials, and we report the average perfor-
mance. Our experiments were conducted on a PC with Intel Core i7-13650HX CPU (2.60GHz, 20
cores), 24GB RAM, and the platform is 64-bit Windows 11 Home Edition (version 26100).

5.1 DATA HYPERCLEANING

Data hypercleaning ([30]; [28]) is a bilevel optimization problem aimed at cleaning noisy labels in
datasets. The cleaned data forms the validation set, while the rest serves as the training set. The
problem is formulated as:

min
λ∈RNtr

f(W ∗(λ), λ) =
1

|Dval|
∑

(xi,yi)∈Dval

− log(y⊤i W
∗(λ)xi)

s.t. W ∗(λ) = argmin
W∈R

dy×dx

1

|Dtr|
∑

(xi,yi)∈Dtr

−σ(λi) log(y
⊤
i Wxi) + Cr‖W‖2,

where Dtr and Dval are the training and validation sets, respectively, W is the weight matrix of the
classifier, σ(·) is the sigmoid function, and Cr is a regularization parameter. In our experiments, we
follow [30] and set Cr = 0.001.

For MNIST [31], we use |Dtr| = 20,000 training samples (partially noisy) and |Dval| = 5,000 clean
validation samples, with corruption rate p indicating the ratio of noisy labels in the training set. In
Figures 1 and 2, inner and outer learning rates are searched over {0.001, 0.01, 0.1, 1, 10, 100}. For
all methods except BA, inner GD/AGD steps are from {50, 100, 200, 500}; for BA, we choose GD

steps from {
⌈
c(k + 1)1/4

⌉
: c ∈ {0.5, 1, 2, 4}} as in [29]. For F2BA, AccF2BA and our method, λ

is selected from {100, 300, 500, 700}. The results, shown in Figures 1 and 2, demonstrate that our
proposed method achieves acceleration effects comparable to those in [13; 15], and outperforms all
other methods.
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Figure 1: Corruption rate p = 0.2
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Figure 2: Corruption rate p = 0.4

5.2 HYPERPARAMETER OPTIMIZATION

Hyperparameter optimization is a bilevel optimization task aimed at minimizing the validation loss.
We compare our proposed algorithms with baseline algorithms on the 20 Newsgroups dataset [11],
which consists of 18,846 news articles divided into 20 topics, with 130,170 sparse tf-idf features.
The dataset is split into training, validation, and test sets with sizes |Dtr| = 5,657, |Dval| = 5,657,
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and |Dtest| = 7,532, respectively. The optimization problem is formulated as:

min
λ∈Rp

1

|Dval|
∑

(xi,yi)∈Dval

L(w∗(λ);xi, yi)

s.t. w∗(λ) = argmin
w∈Rc×p

1

|Dtr|
∑

(xi,yi)∈Dtr

L(w;xi, yi) +
1

2cp

c∑

j=1

p
∑

k=1

exp(λk)w
2
jk.

For the evaluation in Figure 3, inner and outer learning rates are selected from {0.001, 0.01, 0.1,
1, 10, 100}, and GD/AGD steps from {5, 10, 30, 50}. For BA, we choose GD steps from

{
⌈
c(k + 1)1/4

⌉
: c ∈ {0.5, 1, 2, 4}} as in [29]. For F2BA, AccF2BA and our method, λ is cho-

sen from {100, 300, 500, 700}. As shown in Figure 3, our proposed method exhibits performance
comparable to that of [13; 15], while significantly outperforming other competing algorithms by
converging faster and reaching a lower test loss.
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(a) Test loss v.s. running time
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(b) Test accuracy v.s. running time
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(c) Test loss v.s. oracle calls
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(d) Test accuracy v.s. oracle calls

Figure 3: Results of test loss and test accuracy evaluated on the test set.

6 CONCLUSION

This work introduces an accelerated first-order framework for solving nonconvex–strongly convex
bilevel optimization problems, extending nonconvex optimization techniques to a broader setting
under generalized Hölder continuity. With a carefully designed restart condition, the iterates re-
main uniformly bounded within each epoch, ensuring stability and convergence. We further provide
oracle complexity bounds with rigorous error analysis and convergence guarantees. Our theory is
supported by empirical evidence, demonstrating the effectiveness and robustness of the algorithm.
While recent advances in the stochastic setting [14; 32; 13] mainly focus on the first-order oracle
complexity, it remains unclear whether acceleration with an appropriate restart scheme is attainable
under higher-order smoothness assumptions (∇2f and ∇3g). Challenges such as noisy restart trig-
gers and precise hyper-gradient estimation make this nontrivial. We leave this challenging direction
for future work.
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APPENDIX

This appendix provides additional theoretical results and technical proofs that support the main text.
For clarity, we organize the appendix to follow the structure of the main paper: each subsection
presents the detailed derivations and omitted proofs of the corresponding lemmas and theorems.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

No large language models (LLMs) were used in the development of the research ideas, theoretical
results, experiments, or writing of this paper. All contents are solely the work of the authors.

B NOTATIONS FOR TENSORS

We adopt the tensor notation from [33]. For a three-way tensor X ∈ R
d1×d2×d3 , the entry at

(i1, i2, i3) is denoted by [X ]i1,i2,i3 . The inner product between X and Y is defined as

〈X ,Y〉 :=
∑

i1,i2,i3

[X ]i1,i2,i3 [Y]i1,i2,i3 .

The operator norm is

‖X‖ := sup
‖x1‖=‖x2‖=‖x3‖=1

〈X , x1 ◦ x2 ◦ x3〉,

where [x1 ◦x2 ◦x3]i1,i2,i3 := [x1]i1 [x2]i2 [x3]i3 . This definition generalizes the matrix spectral norm

and the Euclidean norm for vectors to three-way tensors. Let X ∈ R
d1×d2×d3 be a three-way tensor,

and let A ∈ R
d′

1×d1 be a matrix. The mode-1 product of X and A, denoted by X ×1A ∈ R
d′

1×d2×d3 ,
is defined component-wise as

[X ×1 A]i′1,i2,i3 :=

d1∑

i1=1

Ai′1,i1
Xi1,i2,i3 .

Mode-2 and mode-3 products, denoted by X ×2B and X ×3C, are defined analogously for matrices

B ∈ R
d′

2×d2 and C ∈ R
d′

3×d3 , respectively. Moreover, the operator norm satisfies the submultiplica-
tive property under mode-i multiplication:

‖X ×i A‖ ≤ ‖A‖ · ‖X‖, for i = 1, 2, 3.

C PROOF OF LEMMAS IN SECTION 2

Lemma C.1 (Lemma B.2 by [13]). Under Assumption 1, for λ ≥ 2Lf/µ, it holds that ‖y⋆λ(x) −
y⋆(x)‖ ≤ Cf

λµ .

Lemma C.2 (Lemma B.5 by [13]). Under Assumption 1, for λ ≥ 2Lf/µ, it holds that ‖∇y⋆(x)−
∇y⋆λ(x)‖ ≤ D2/λ, where

D2 :=

(
1

µ
+

2Lg

µ2

)(

Lf +
Cfρg
µ

)

= O
(
κ3
)
.

Lemma C.3 (Lemma B.6 by [13]). Under Assumption 1, for λ ≥ 2Lf/µ, it holds that ‖∇y∗(x)‖ ≤
Lg/µ, ‖∇y⋆λ(x)‖ ≤ 4Lg/µ.

This implies that y∗(x) is (Lg/µ)-Lipschitz continuous, y∗λ(x) is (4Lg/µ)-Lipschitz continuous.

Lemma C.4. Under Assumption 1, for λ ≥ 2Lf/µ, we have

‖∇2y⋆(x)−∇2y⋆λ(x)‖ ≤
D4

λνg
,
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where

D4 :=
2ρg
µ2

(
µ

2Lf
)1−νg

(

1 +
Lg

µ

)2(

Lf +
Cfρg
µ

)

+
14LgρgD2

µ2
(

µ

2Lf
)1−νg

+
50L2

g

µ3

(

ρf (
µ

2Lf
)1−νg +Mg(

Cf

µ
)νg

)

=O(κ4+νg ).

Proof. We begin by differentiating the identity

∇2
xyg (x, y

∗(x)) +∇y∗(x)∇2
yyg (x, y

∗(x)) = 0

with respect to x. This yields

∇3
xxyg (x, y

∗(x)) +∇3
yxyg (x, y

∗(x))×1 ∇y∗(x) +∇2y∗(x)×3 ∇2
yyg (x, y

∗(x))

+∇3
xyyg (x, y

∗(x))×2 ∇y∗(x) +∇3
yyyg (x, y

∗(x))×1 ∇y∗(x)×2 ∇y∗(x) = 0.

Rearranging terms to isolate∇2y∗(x), we obtain

∇2y∗(x)

=−
(
∇3

xxyg (x, y
∗(x)) +∇3

yxyg (x, y
∗(x))×1 ∇y∗(x)

)
×3

[
∇2

yyg (x, y
∗(x))

]−1

−∇3
xyyg (x, y

∗(x))×2 ∇y∗(x)×3

[
∇2

yyg (x, y
∗(x))

]−1

−∇3
yyyg (x, y

∗(x))×1 ∇y∗(x)×2 ∇y∗(x)×3

[
∇2

yyg (x, y
∗(x))

]−1
.

(13)

Analogously, we have

∇2y∗λ(x)

=−
(
∇3

xxyLλ (x, y
∗
λ(x)) +∇3

yxyLλ (x, y
∗
λ(x))×1 ∇y∗λ(x)

)
×3

[
∇2

yyLλ (x, y
∗
λ(x))

]−1

−∇3
xyyLλ (x, y

∗
λ(x))×2 ∇y∗λ(x)×3

[
∇2

yyLλ (x, y
∗
λ(x))

]−1

−∇3
yyyLλ (x, y

∗
λ(x))×1 ∇y∗λ(x)×2 ∇y∗λ(x)×3

[
∇2

yyLλ (x, y
∗
λ(x))

]−1
.

(14)

Next, we estimate the difference between the corresponding third-order derivatives in the original
and penalized problems. To begin with, we observe that

∥
∥
∥
∥
∥
∇3

xxyg (x, y
∗(x))−

∇3
xxyLλ (x, y

∗
λ(x))

λ

∥
∥
∥
∥
∥
≤Mg ‖y∗λ(x)− y∗(x)‖νg +

ρf
λ

=
ρf
λ

+Mg

(
Cf

λµ

)νg

.

Similarly, for the mixed partial derivative and its contraction with∇y∗(x), we have

∥
∥
∥
∥
∥
∇3

yxyg (x, y
∗(x))×1 ∇y∗(x)−

∇3
yxyLλ (x, y

∗
λ(x))×1 ∇y∗λ(x)
λ

∥
∥
∥
∥
∥

≤‖∇y∗(x)−∇y∗λ(x)‖
∥
∥∇3

yxyg (x, y
∗(x))

∥
∥+ ‖∇y∗λ(x)‖

∥
∥
∥
∥
∥
∇3

yxyg (x, y
∗(x))−

∇3
yxyLλ (x, y

∗
λ(x))

λ

∥
∥
∥
∥
∥

≤ρgD2

λ
+

4Lg

µ

(
ρf
λ

+Mg

(
Cf

λµ

)νg
)

.
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Furthermore, we control the error in the third-order term involving two contractions:

∥
∥
∥
∥
∥
∇3

yyyg (x, y
∗(x))×1 ∇y∗(x)×2 ∇y∗(x)−

∇3
yyyLλ (x, y

∗
λ(x))×1 ∇y∗λ(x)×2 ∇y∗λ(x)

λ

∥
∥
∥
∥
∥

≤ ‖∇y∗(x)‖
∥
∥∇3

yyyg (x, y
∗(x))

∥
∥ ‖∇y∗(x)−∇y∗λ(x)‖

+ ‖∇y∗λ(x)‖
∥
∥∇3

yyyg (x, y
∗(x))

∥
∥ ‖∇y∗(x)−∇y∗λ(x)‖

+ ‖∇y∗λ(x)‖
2

∥
∥
∥
∥
∥
∇3

xxyg (x, y
∗(x))−

∇3
xxyLλ (x, y

∗
λ(x))

λ

∥
∥
∥
∥
∥

≤ 5LgρgD2

λµ
+

16L2
g

µ2

(
ρf
λ

+Mg

(
Cf

λµ

)νg
)

.

Combining the above inequalities, we are now ready to bound the difference between the second
derivatives:

∥
∥∇2y∗(x)−∇2y∗λ(x)

∥
∥

≤ρg
(

1 +
Lg

µ

)2
∥
∥
∥
∥
∥
∥

[
∇2

yyg (x, y
∗(x))

]−1 −
[

∇2
yyLλ (x, y

∗
λ(x))

λ

]−1
∥
∥
∥
∥
∥
∥

+

(

7LgρgD2

λµ
+

25L2
g

µ2

(
ρf
λ

+Mg

(
Cf

λµ

)νg
))

∥
∥
∥
∥
∥
∥

[

∇2
yyLλ (x, y

∗
λ(x))

λ

]−1
∥
∥
∥
∥
∥
∥

≤ 2ρg
λµ2

(

1 +
Lg

µ

)2(

Lf +
Cfρg
µ

)

+
14LgρgD2

λµ2
+

50L2
g

µ3

(
ρf
λ

+Mg

(
Cf

λµ

)νg
)

≤D4

λνg
.

⊔⊓

Lemma C.5. Under Assumption 1, for λ ≥ 2Lf/µ, the mappings∇y∗(x) and∇y∗λ(x) are Lipschitz

continuous with constants
(

1 +
Lg

µ

)2
ρg

µ and
(

1 +
4Lg

µ

)2 (
2ρg

µ +
ρf

Lf

)

, respectively.

Proof. Recall that

∇y∗λ(x) = −∇2
xyLλ (x, y

∗
λ(x))

[
∇2

yyLλ (x, y
∗
λ(x))

]−1
,

and

∇y∗(x) = −∇2
xyg (x, y

∗(x))
[
∇2

yyg (x, y
∗(x))

]−1
.

By equation 13 and equation 14, we can obtain the Lipschitz constants of ∇y∗(x) and ∇y∗λ(x) by
directly bounding ‖∇2y∗(x)‖ and ‖∇2y∗λ(x)‖. Specifically, we have

‖∇2y∗(x)‖ ≤ 1

µ

(

ρg + ρg
Lg

µ
+ ρg

Lg

µ
+ ρg

(
Lg

µ

)2
)

=
ρg
µ

(

1 +
Lg

µ

)2

,

‖∇2y∗λ(x)‖ ≤
2

λµ
(ρf + λρg)

(

1 + 2
4Lg

µ
+

(
4Lg

µ

)2
)

≤
(

1 +
4Lg

µ

)2(
2ρg
µ

+
ρf
Lf

)

.

Here we use Lemma C.3, λ ≥ 2Lf/µ, ‖∇3
xxyg(x, y)‖ ≤ ρg , ‖∇3

xyyg(x, y)‖ ≤ ρg ,

‖∇3
yyyg(x, y)‖ ≤ ρg , ‖∇2

yyg(x, y)‖ ≥ µ, ‖∇2
yyLλ(x, y)‖ ≥ 1

2λµ, ‖∇3
xxyf(x, y)‖ ≤ ρf ,

‖∇3
xyyf(x, y)‖ ≤ ρf and ‖∇3

yyyf(x, y)‖ ≤ ρf .

⊔⊓
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C.1 PROOF OF LEMMA 2

Proof. We decompose ∇2L∗
λ(x) into two components:

∇2L∗
λ(x) = A(x) +B(x),

where

A(x) = ∇2
xxf (x, y∗λ(x)) +∇y∗λ(x)∇2

yxf (x, y∗λ(x))

and

B(x) =λ
(
∇2

xxg (x, y
∗
λ(x))−∇2

xxg (x, y
∗(x))

)

+ λ
(
∇y∗λ(x)∇2

yxg (x, y
∗
λ(x))−∇y∗(x)∇2

yxg (x, y
∗(x))

)
.

To analyze the variation of A(x), we observe:

‖A(x1)−A(x2)‖
≤‖∇2

xxf (x1, y
∗
λ(x1))−∇2

xxf (x2, y
∗
λ(x2)) ‖

+ ‖∇y∗λ(x1)∇2
yxf (x1, y

∗
λ(x1))−∇y∗λ(x2)∇2

yxf (x2, y
∗
λ(x2)) ‖

≤‖∇2
xxf (x1, y

∗
λ(x1))−∇2

xxf (x2, y
∗
λ(x2)) ‖

+ ‖∇y∗λ(x1)∇2
yxf (x1, y

∗
λ(x1))−∇y∗λ(x2)∇2

yxf (x1, y
∗
λ(x1)) ‖

+ ‖∇y∗λ(x2)∇2
yxf (x1, y

∗
λ(x1))−∇y∗λ(x2)∇2

yxf (x2, y
∗
λ(x2)) ‖

≤Hf (1 +
4Lg

µ
)νf ‖x1 − x2‖νf +

4Lg

µ
ρf (1 +

4Lg

µ
)‖x1 − x2‖

+ (1 +
4Lg

µ
)2(

2ρg
µ

+
ρf
Lf

)Lf‖x1 − x2‖

≤Hf (1 +
4Lg

µ
)νf

︸ ︷︷ ︸

C1

‖x1 − x2‖νf

+

(
4Lg

µ
ρf (1 +

4Lg

µ
) + (1 +

4Lg

µ
)2(

2ρg
µ

+
ρf
Lf

)Lf

)

︸ ︷︷ ︸

C2

D1−νf ‖x1 − x2‖νf . (15)

The first step applies the triangle inequality. The second step relies on the (νf , Hf )-Hölder continu-

ity of∇2
xxf , the bound ∇2

yxf(·, ·) � Lf , and Lemma C.2. Here, C1 = O(ℓκνf ), C2 = O(ℓκ3).

Next, we evaluate ∇B(x) by differentiating:

∇B(x) =λ
(
∇3

xxxg (x, y
∗
λ(x))−∇3

xxxg (x, y
∗(x))

)

+ λ
(
∇3

yxxg (x, y
∗
λ(x))×1 ∇y∗λ(x)−∇3

yxxg (x, y
∗(x))×1 ∇y∗(x)

)

+ λ
(
∇3

xyxg (x, y
∗
λ(x))×2 ∇y∗λ(x)−∇3

xyxg (x, y
∗(x))×2 ∇y∗(x)

)

+ λ
(
∇3

yyxg (x, y
∗
λ(x))×1 ∇y∗λ(x)×2 ∇y∗λ(x)−∇3

yyxg (x, y
∗(x))×1 ∇y∗(x)×2 ∇y∗(x)

)

+ λ
(

∇2y∗λ(x)×3

[
∇2

yxg (x, y
∗
λ(x))

]⊤ −∇2y∗(x)×3

[
∇2

yxg (x, y
∗(x))

]⊤)
.
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To bound the Lipschitz constant of B(x), we control ‖∇B(x)‖ as follows:

‖∇B(x)‖ ≤λ‖∇3
xxxg(x, y

∗(x))−∇3
xxxg(x, y

∗
λ(x))‖

+ λ‖∇y∗(x)‖‖∇3
yxxg(x, y

∗(x))−∇3
yxxg(x, y

∗
λ(x))‖

+ λ‖∇y∗λ(x)−∇y∗(x)‖‖∇3
yxxg(x, y

∗
λ(x))‖

+ λ‖∇y∗(x)‖‖∇3
xyxg(x, y

∗(x))−∇3
xyxg(x, y

∗
λ(x))‖

+ λ‖∇y∗(x)−∇y∗λ(x)‖‖∇3
xyxg(x, y

∗
λ(x))‖

+ λ‖∇y∗(x)‖‖∇3
yyxg(x, y

∗(x))‖‖∇y∗λ(x)−∇y∗(x)‖
+ λ‖∇y∗λ(x)‖‖∇3

yyxg(x, y
∗(x))‖‖∇y∗λ(x)−∇y∗(x)‖

+ λ‖∇y∗(x)‖2‖∇3
yyxg(x, y

∗(x))−∇3
yyxg(x, y

∗
λ(x))‖

+ λ‖∇2y∗(x)‖‖∇2
yxg(x, y

∗(x))−∇2
yxg(x, y

∗
λ(x))‖

+ λ‖∇2y∗(x)−∇2y∗λ(x)‖‖∇2
yxg(x, y

∗
λ(x))‖.

Using the smoothness and Hölder continuity assumptions on g, as well as bounds from Lemma C.1,
Lemma C.2, and Lemma C.4, we arrive at:

‖∇B(x)‖ ≤λMg

(
Cf

λµ

)νg
(

1 +
Lg

µ

)2

+ (2 +
5Lg

µ
)λρg

D2

λ

+ λρg

(
Cf

λµ

)(

1 +
Lg

µ

)2
ρg
µ

+ λLg
D4

λνg

=λ1−νgMg

(
Cf

µ

)νg
(

1 +
Lg

µ

)2

+ (2 +
5Lg

µ
)ρgD2

+ ρg

(
Cf

µ

)(

1 +
Lg

µ

)2
ρg
µ

+ λ1−νgLgD4.

Denote the entire right-hand side as C3 = O(λ1−νgℓκ4+νg ). Finally, we estimate the restricted
Hölder constant of ∇2L∗

λ(x):

‖∇2L∗
λ(x1)−∇2L∗

λ(x2)‖
‖x1 − x2‖νf

≤‖A(x1)−A(x2)‖
‖x1 − x2‖νf

+
‖B(x1)−B(x2)‖
‖x1 − x2‖νf

≤C1 + (C2 + C3)‖x1 − x2‖1−νf

≤C1 + (C2 + C3)R1−νf .

Define

Hν(λ,R) := C1 + (C2 + C3)R1−νf = O(ℓκνf ) +O(λ1−νgℓκ4+νg )R1−νf . (16)

Thus, ∇2L⋆
λ(x) is restrictively (νf , Hν(λ,R))-Hölder continuous with diameter R. In the case

νf = 1 and νg = 1, this implies ∇2L⋆
λ(x) is O(ℓκ5)-Lipschitz continuous. ⊔⊓

D PROOF OF LEMMAS IN SECTION 3

D.1 AGD SUBROUTINES

This method boasts an optimal convergence rate as shown below:

Lemma D.1 ([16], Section 2). Running Algorithm 2 on an ℓh-smooth and µh-strongly convex ob-
jective function h(·) with α = 1/ℓh and β =

(√
κh − 1

)
/
(√

κh + 1
)

produces an output zT
satisfying

‖zT − z∗‖2 ≤ (1 + κh)

(

1− 1√
κh

)T

‖z0 − z∗‖2,

where z∗ = argminz h(z) and κh = ℓh/µh denotes the condition number of the objective h.
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Algorithm 2 AGD(h, z0, T, α, β)

1: Input: objective function h(·); start point z0; iteration number T ≥ 1; step-size α > 0; momen-
tum parameter β ∈ (0, 1)

2: z̃0 ← z0
3: for t = 0, . . . , T − 1 do
4: zt+1 ← z̃t − α∇h (z̃t)
5: z̃t+1 ← zt+1 + β (zt+1 − zt)
6: end for
7: Output: zT

D.2 PROOF OF LEMMA 3

Proof. Consider an epoch ending at iteration k ≥ 2. By applying the Cauchy–Schwarz inequality
to the restart condition equation 5, we obtain

max
0≤i≤j≤k−1

‖xi − xj‖ ≤
k−1∑

i=1

‖xi − xi−1‖ ≤
√

kSk−1 ≤ (
L

Hν
)

1
νf . (17)

This implies that the diameter of conv({xi}k−1
i=0 ) is less than ( L

Hν
)

1
νf . By solving a system of equa-

tions: {

R = 3( L
Hν

)
1
νf ,

Hν(λ,R) = Hν ,
(18)

where Hν(λ,R) is defined in equation 16. We have

Hν = O
(

λνf (1−νg)ℓκ3+(1+νg)νf

)

, R = O
(

λ−(1−νg)κ−(1+νg)
)

. (19)

Denote this specific R by D. The boundedness of {xi}k−1
i=1 has been ensured by equation 17. From

line 8 in Algorithm 1, we have

‖wi+1 − wi‖ ≤ (1 + θi+1)‖xi+1 − xi‖+ θi‖xi − xi−1‖ ≤ 2‖xi+1 − xi‖+ ‖xi − xi−1‖.
The last inequality holds due to θk ∈ (0, 1). So

max
0≤i<k

‖wi − w̄k‖ ≤ max
0≤i≤j<k

‖wi − wj‖ ≤ 3 max
0≤i≤j<k

‖xi − xj‖ ≤ D,

where w̄k is defined in equation 7. The first inequality holds because w̄k ∈ conv({wi}k−1
i=0 ), and the

maximum diameter of the convex hull is attained by a pair of its vertices.

⊔⊓

D.3 PROOF OF LEMMA 4

Proof. Consider the exact gradient of L∗
λ(·):

∇L∗
λ(wt,k) = ∇xf (wt,k, y

∗
λ(wt,k)) + λ (∇xg (wt,k, y

∗
λ(wt,k))−∇xg (wt,k, y

∗(wt,k))) ,

and the inexact gradient estimator used by Algorithm 1:

∇̂L∗
λ(wt,k) = ∇xf (wt,k, yt,k) + λ (∇xg (wt,k, yt,k)−∇xg (wt,k, zt,k)) .

By the triangle inequality, the Lipschitz continuity assumptions in Condition 1, and the condition
Lf ≤ 1

2λµ ≤ λLg , we obtain:

‖∇L∗
λ(wt,k)− ∇̂L∗

λ(wt,k)‖
≤Lf‖yt,k − y∗λ(wt,k)‖+ λLg‖yt,k − y∗λ(wt,k)‖+ λLg‖zt,k − y∗(wt,k)‖
=(Lf + λLg)‖yt,k − y∗λ(wt,k)‖+ λLg‖zt,k − y∗(wt,k)‖
≤(Lf + λLg) ·

σ

4λLg
+ λLg ·

σ

2λLg

≤σ

2
+

σ

2
= σ.

⊔⊓
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E PROOF OF LEMMAS IN SECTION 4

Lemma E.1. Under Assumption 1 and with λ ≥ 2Lf/µ, the following holds for any x and x′:

L∗
λ(x)− L∗

λ(x
′) ≤ 〈∇L∗

λ(x
′), x− x′〉+ L

2
‖x− x′‖2.

E.1 PROOF OF LEMMA 5

Proof. Let x̄ =
∑n

i=1 qixi. Since L∗
λ is twice differentiable, we have

∇L∗
λ(xi)−∇L∗

λ(x̄) = ∇2Lλ(x̄)(xi − x̄) +

∫ 1

0

(∇2L∗
λ(x̄+ t(xi − x̄))−∇2L∗

λ(x̄))(xi − x̄) dt.

Computing the weighted average sum, we have
n∑

i=1

qi∇L∗
λ(xi)−∇L∗

λ(x̄) =
n∑

i=1

qi

∫ 1

0

(∇2L∗
λ(x̄+ t(xi − x̄))−∇2L∗

λ(x̄))(xi − x̄) dt

and
∥
∥
∥
∥
∥

n∑

i=1

qi∇L∗
λ(xi)−∇L∗

λ(x̄)

∥
∥
∥
∥
∥
≤

n∑

i=1

qi

∫ 1

0

∥
∥∇2L∗

λ(x̄+ t(xi − x̄))−∇2L∗
λ(x̄)

∥
∥ ‖xi − x̄‖ dt

≤
n∑

i=1

qi

∫ 1

0

Hν ‖t(xi − x̄)‖νf ‖xi − x̄‖ dt

=
Hν

1 + νf

n∑

i=1

qi ‖xi − x̄‖1+νf

=
Hν

1 + νf

n∑

i=1

q
1−νf

2
i

(

qi ‖xi − x̄‖2
) 1+νf

2

≤ Hν

1 + νf

(
n∑

i=1

qi

) 1−νf
2
(

n∑

i=1

qi ‖xi − x̄‖2
) 1+νf

2

=
Hν

1 + νf




∑

1≤i<j≤n

qiqj ‖xi − xj‖2




1+νf
2

.

The second inequality holds due to ‖xi−x̄‖ ≤ max1≤i≤j≤n ‖xi−xj‖ ≤ D, Lemma 2 and equation
equation 6. The last inequality uses Hölder inequality. The last equality holds due to

∑n
i=1 qi = 1

and
∑n

i=1 qi‖xi − x̄‖2 =
∑

1≤i<j≤n qiqj‖xi − xj‖2. ⊔⊓

E.2 PROOF OF LEMMA 6

Proof.

L∗
λ(x)− L∗

λ(x
′)− 1

2
〈∇L∗

λ(x) +∇L∗
λ(x

′), x− x′〉

=

∫ 1

0

〈∇L∗
λ (tx+ (1− t)x′) , x− x′〉 − 1

2
〈∇L∗

λ(x) +∇L∗
λ(x

′), x− x′〉 dt

=

∫ 1

0

〈∇L∗
λ(tx+ (1− t)x′)− t∇L∗

λ(x)− (1− t)∇L∗
λ(x

′), x− x′〉 dt

≤
∫ 1

0

‖∇L∗
λ(tx+ (1− t)x′)− t∇L∗

λ(x)− (1− t)∇L∗
λ(x

′)‖ ‖x− x′‖dt

≤ Hν

1 + νf

∫ 1

0

(
t(1− t)1+νf + (1− t)t1+νf

)
‖x− x′‖2+νf dt

=
2Hν

(1 + νf )(2 + νf )(3 + νf )
‖x− x′‖2+νf .
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The last inequality follows from Lemma 5 by setting n = 2, (x1, x2) = (x, x′), and (q1, q2) =
(t, 1− t).

⊔⊓

E.3 PROOF OF LEMMA 7

Proof. Let

Pk := 〈∇L∗
λ(xk−1), xk − xk−1〉.

From Lemma E.1, we have

L∗
λ(xk+1)− L∗

λ(wk) ≤〈∇L∗
λ(wk), xk+1 − wk〉+

L

2
‖xk+1 − wk‖2

=− 1

L
〈∇L∗

λ(wk), ∇̂L∗
λ(wk)〉+

1

2L
‖∇̂L∗

λ(wk)‖2. (20)

From Lemma 6 and Lemma 3, it follows that ‖wk − xk‖ ≤ ‖xk − xk−1‖ ≤ D and

L∗
λ(wk)− L∗

λ(xk) ≤
1

2
〈∇L∗

λ(wk) +∇L∗
λ(xk), wk − xk〉

+
2Hν

(1 + νf )(2 + νf )(3 + νf )
‖wk − xk‖2+νf . (21)

By summing inequalities equation 20 and equation 21, we evaluate the expression as follows

L∗
λ(xk+1)− L∗

λ(xk)

≤1

2
〈∇L∗

λ(wk) +∇L∗
λ(xk), wk − xk〉+

2Hνθ
2+νf

k

(1 + νf )(2 + νf )(3 + νf )
‖xk − xk−1‖2+νf

− 1

L
〈∇L∗

λ(wk), ∇̂L∗
λ(wk)〉+

1

2L
‖∇̂L∗

λ(wk)‖2. (22)

To evaluate the first term on the right-hand side, we decompose it into four terms:

〈∇L∗
λ(wk) +∇L∗

λ(xk), wk − xk〉
= 2〈∇L∗

λ(wk), wk − xk〉
︸ ︷︷ ︸

(A)

+ θk〈∇L∗
λ(xk−1), wk − xk〉

︸ ︷︷ ︸

(B)

−θk〈∇L∗
λ(xk), wk − xk〉

︸ ︷︷ ︸

(C)

−〈∇L∗
λ(wk) + θk∇L∗

λ(xk−1)− (1 + θk)∇L∗
λ(xk), wk − xk〉

︸ ︷︷ ︸

(D)

.

Let n = 2, q1 = 1/(1 + θk), q2 = θk/(1 + θk) in Lemma 5, we have

∥
∥
∥
∥
∇L∗

λ(xk)−
1

1 + θk
∇L∗

λ(wk)−
θk

1 + θk
∇L∗

λ(xk−1)

∥
∥
∥
∥

≤ Hν

1 + νf

(
θk

(1 + θk)2
‖wk − xk−1‖2

) 1+νf
2

=
Hν

1 + νf
θ

1+νf
2

k ‖xk − xk−1‖1+νf . (23)
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Now, we proceed to evaluate (A), (B), (C) and (D) respectively.

(A) =
1

L
‖∇L∗

λ(wk)‖2 + L‖wk − xk‖2 − L‖(wk − xk)−
1

L
∇L∗

λ(wk)‖2

=
1

L
‖∇L∗

λ(wk)‖2 + θ2kL‖xk − xk−1‖2 − L

∥
∥
∥
∥
(xk+1 − xk) +

(
1

L
∇̂L∗

λ(wk)−
1

L
∇L∗

λ(wk)

)∥
∥
∥
∥

2

=
1

L
‖∇L∗

λ(wk)‖2 + θ2kL‖xk − xk−1‖2 − L‖xk+1 − xk‖2

− 1

L

∥
∥
∥∇̂L∗

λ(wk)−∇L∗
λ(wk)

∥
∥
∥

2

− 2〈xk+1 − xk, ∇̂L∗
λ(wk)−∇L∗

λ(wk)〉,

(B) =θ2k〈∇L∗
λ(xk−1), xk − xk−1〉 = θ2kPk,

(C) =− θkPk+1 + θk〈∇L∗
λ(xk), xk+1 − wk〉

=− θkPk+1 −
θk
L
〈∇L∗

λ(xk), ∇̂L∗
λ(wk)〉,

(D) ≤ 2Hν

1 + νf
θ

3+νf
2

k ‖xk − xk−1‖2+νf .

Here we use equality 2〈a, b〉 = 1
L‖a‖2 + L‖b‖2 − L

∥
∥b− 1

La
∥
∥
2
, xk+1 = wk − 1

L∇̂L∗
λ(wk), wk =

xk + θk(xk − xk−1) and equation 23. Plugging the evaluations into (22), we have

L∗
λ(xk+1)− L∗

λ(xk) ≤
2Hν

(1 + νf )(2 + νf )(3 + νf )
θ
2+νf

k ‖xk − xk−1‖2+νf

+
θ2kL

2
‖xk − xk−1‖2 −

L

2
‖xk+1 − xk‖2

−〈xk+1 − xk, ∇̂L∗
λ(wk)−∇L∗

λ(wk)〉

+
θ2k
2
Pk −

θk
2
Pk+1 +

Hν

1 + νf
θ

3+νf
2

k ‖xk − xk−1‖2+νf

− θk
2L
〈∇L∗

λ(xk), ∇̂L∗
λ(wk)〉. (24)

Next, to bound the last term on the right-hand side of equation 24, by triangle inequality and equa-
tion 23, we have

∥
∥
∥(1 + θk)∇L∗

λ(xk)− ∇̂L∗
λ(wk)

∥
∥
∥

≤‖(1 + θk)∇L∗
λ(xk)−∇L∗

λ(wk)‖+
∥
∥
∥∇̂L∗

λ(wk)−∇L∗
λ(wk)

∥
∥
∥

≤σ + θk ‖∇L∗
λ(xk−1)‖+

2Hν

1 + νf
θ

1+νf
2

k ‖xk − xk−1‖1+νf .

Squaring both sides yields

‖(1 + θk)∇L∗
λ(xk)− ∇̂L∗

λ(wk)‖2

=(1 + θk)
2‖∇L∗

λ(xk)‖2 + ‖∇̂L∗
λ(wk)‖2 − 2(1 + θk)〈∇L∗

λ(xk), ∇̂L∗
λ(wk)〉

≥(1 + θk)
2‖∇L∗

λ(xk)‖2 − 2(1 + θk)〈∇L∗
λ(xk), ∇̂L∗

λ(wk)〉,
and

(

σ + θk ‖∇L∗
λ(xk−1)‖+

2Hν

1 + νf
θ

1+νf
2

k ‖xk − xk−1‖1+νf

)2

≤θk(1 + θk)‖∇L∗
λ(xk−1)‖2 + 2(1 + θk)

(

σ2 +
4H2

ν

(1 + νf )2
θ
1+νf

k ‖xk − xk−1‖2+2νf

)

.

Here we use the inequalities (a + b)2 ≤ (1 + 1
θk
)a2 + (1 + θk)b

2 and (a + b)2 ≤ 2(a2 + b2).
Rearranging the terms yields

−〈∇L∗
λ(xk), ∇̂L∗

λ(wk)〉 ≤σ2 +
θk
2
‖∇L∗

λ(xk−1)‖2 +
4H2

ν

(1 + νf )2
θ
1+νf

k ‖xk − xk−1‖2+2νf

− 1 + θk
2
‖∇L∗

λ(xk)‖2.
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By plugging this bound into (24): we obtain

L∗
λ(xk+1)− L∗

λ(xk) ≤
2Hν

(1 + νf )(2 + νf )(3 + νf )
θ
2+νf

k ‖xk − xk−1‖2+νf

+
θ2kL

2
‖xk − xk−1‖2 −

L

2
‖xk+1 − xk‖2

−〈xk+1 − xk, ∇̂L∗
λ(wk)−∇L∗

λ(wk)〉

+
θ2k
2
Pk −

θk
2
Pk+1 +

Hν

1 + νf
θ

3+νf
2

k ‖xk − xk−1‖2+νf

+
θ2k
4L
‖∇L∗

λ(xk−1)‖2 +
2H2

ν

(1 + νf )2
θ
2+νf

k

L
‖xk − xk−1‖2+2νf

− (1 + θk)θk
4L

‖∇L∗
λ(xk)‖2 +

θkσ
2

2L
. (25)

Considering equation 9, equation 25 and θk ≤ 1, we have

Φk+1 − Φk ≤L∗
λ(xk+1)− L∗

λ(xk) +
θ2k+1

2

(

Pk+1 +
1

2L
‖∇L∗

λ (xk) ‖2 + L‖xk+1 − xk‖2
)

− θ2k
2

(

Pk +
1

2L
‖∇L∗

λ (xk−1) ‖2 + L‖xk − xk−1‖2
)

≤‖xk − xk−1‖2+νf

(
2Hν

(1 + νf )(2 + νf )(3 + νf )
θ
2+νf

k +
Hν

1 + νf
θ

3+νf
2

k

)

+ ‖xk − xk−1‖2+2νf
2H2

ν

(1 + νf )2
θ
2+νf

k

L
+

θ2k+1 − θk

2
Pk+1

+
θ2k+1 − θk(1 + θk)

4L
‖∇L∗

λ(xk)‖2 +
σ2

2L
+ σ‖xk+1 − xk‖.

From Young’s inequalities and θ2k+1 − θk ≤ 0, we have

−Pk+1 = −〈∇L∗
λ(xk), xk+1 − xk〉 ≤

1

2L
‖∇L∗

λ(xk)‖2 +
L

2
‖xk+1 − xk‖2.

Finally, we derive the inequality below:

Φk+1 − Φk ≤‖xk − xk−1‖2+νf

(
2Hν

(1 + νf )(2 + νf )(3 + νf )
θ
2+νf

k +
Hν

1 + νf
θ

3+νf
2

k

)

+ ‖xk − xk−1‖2+2νf
2H2

ν

(1 + νf )2
θ
2+νf

k

L
+

θ2k+1 + θk − 2

4
L‖xk+1 − xk‖2

− θ2k
4L
‖∇L∗

λ(xk)‖2 +
σ2

2L
+ σ‖xk+1 − xk‖.

⊔⊓

22



1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Under review as a conference paper at ICLR 2026

E.4 PROOF OF LEMMA 8

Proof. Summing Lemma 7 from i = 0, . . . , k − 1 and telescoping yields

Φk − Φ0 =

k−1∑

i=0

(Φi+1 − Φi)

≤
k−1∑

i=0

(

‖xi − xi−1‖2+νf

(
2Hν

(1 + νf )(2 + νf )(3 + νf )
θ
2+νf

i +
Hν

1 + νf
θ

3+νf
2

i

)

+ ‖xi − xi−1‖2+2νf
2H2

ν

(1 + νf )2
θ
2+νf

i

L
+

θ2i+1 + θi − 2

4
L‖xi+1 − xi‖2

− θ2i
4L
‖∇L∗

λ(xi)‖2 +
σ2

2L
+ σ‖xi+1 − xi‖

)

≤
k−1∑

i=0

‖xi − xi−1‖2+νf

(
2Hν

(1 + νf )(2 + νf )(3 + νf )
θ
2+νf

k−1 +
Hν

1 + νf
θ

3+νf
2

k−1

)

+

k−1∑

i=0

‖xi − xi−1‖2+2νf
2H2

ν

(1 + νf )2
θ
2+νf

k−1

L
+

θ2k + θk−1 − 2

4
L

k−1∑

i=0

‖xi+1 − xi‖2

− θ20
4L
‖∇L∗

λ(xi)‖2 +
kσ2

2L
+ σ

k−1∑

i=0

‖xi+1 − xi‖
)

. (26)

The second inequality holds due to {θk} is non-decreasing and non-negative. Moreover, by the
definition of Φk in equation 9 , we have

Φk − L∗
λ(xk) =

θ2k
2

(
1

2L
‖∇L∗

λ (xk−1) + L(xk − xk−1)‖2 +
L

2
‖xk − xk−1‖2

)

≥ 0,

Φ0 − L∗
λ(x0) =

θ20
4L
‖L∗

λ(x0)‖2 ≥ 0.

(27)

(28)

From Power-Mean Inequality, we have

k−1∑

i=0

‖xi − xi−1‖2+νf ≤ S
2+νf

2

k−1 ,

k−1∑

i=0

‖xi − xi−1‖2+2νf ≤ S
1+νf

k−1 . (29)

Substituting equation 27, equation 28, and equation 29 into equation 26, we obtain

L∗
λ(xk)− L∗

λ(x0) ≤ S
2+νf

2

k−1

(
2Hν

(1 + νf )(2 + νf )(3 + νf )
θ
2+νf

k−1 +
Hν

1 + νf
θ

3+νf
2

k−1

)

+ S
1+νf

k−1 ·
2H2

ν

(1 + νf )2
·
θ
2+νf

k−1

L
+

θ2k + θk−1 − 2

4
LSk

+
kσ2

2L
+ σ

k−1∑

i=0

‖xi+1 − xi‖.

Applying the restart condition equation 5 and noting that Sk−1 ≤ Sk, we further obtain

L∗
λ(xk)− L∗

λ(x0) ≤
(

2

(1 + νf )(2 + νf )(3 + νf )
θ
2+νf

k−1 +
1

1 + νf
θ

3+νf
2

k−1

)

· LSk

k2+
νf
2

+
2

(1 + νf )2
θ
2+νf

k−1 ·
LSk

k4+νf
+

θ2k + θk−1 − 2

4
LSk

+
kσ2

2L
+ σ

k−1∑

i=0

‖xi+1 − xi‖.
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Since 0 ≤ νf ≤ 1, and

(
7

3
θ
2+νf

k−1 + θ
3+νf

2

k−1

)

· 1

k2+
νf
2

+
θ2k + θk−1 − 2

4
≤ − 1

32k
, ∀k ≥ 1,

we obtain

L∗
λ(xk)− L∗

λ(x0) ≤ LSk

((
7

3
θ
2+νf

k−1 + θ
3+νf

2

k−1

)

· 1

k2+
νf
2

+
θ2k + θk−1 − 2

4

)

+
kσ2

2L
+ σ

k−1∑

i=0

‖xi+1 − xi‖

≤ − LSk

32k
+

kσ2

2L
+ σ

k−1∑

i=0

‖xi+1 − xi‖.

⊔⊓

E.5 PROOF OF LEMMA 9

Proof. Define

Zk =

k−1∑

i=0

k−1∏

j=i+1

θj =
k + 1

2
,

so that pk,i =
1
Zk

∏k−1
j=i+1 θj . From definition (7), we have:

k−1∑

i=0

pk,i∇̂L∗
λ(wi) =

k−1∑

i=0

pk,iL(wi − xi+1)

=

k−1∑

i=0

pk,iL(θi(xi − xi−1)− (xi+1 − xi))

=

k−1∑

i=0

L (pk,i−1(xi − xi−1)− pk,i(xi+1 − xi))

= −Lpk,k−1(xk − xk−1).

From w̄k ∈ conv({wi}k−1
i=0 ), Lemma 3 and Lemma 5, we have

‖∇L∗
λ(w̄k)‖ ≤

∥
∥
∥
∥
∥

k−1∑

i=0

pk,i∇L∗
λ(wi)

∥
∥
∥
∥
∥
+

Hν

1 + νf




∑

0≤i<j<k

pk,ipk,j ‖wi − wj‖2




1+νf
2

≤σ + Lpk,k−1‖xk − xk−1‖+
Hν

1 + νf




∑

0≤i<j<k

pk,ipk,j‖wi − wj‖2




1+νf
2

≤σ +
L

Zk
‖xk − xk−1‖+

Hν

(1 + νf )Z
1+νf

k




∑

0≤i<j<k

‖wi − wj‖2




1+νf
2

. (30)
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Here we use inequality pk,i ≤ pk,k−1 = 1/Zk = 2/(k + 1) for all 0 ≤ i < k. Regarding the last
term in equation 30, we have

‖wi − wj‖

≤‖wi − xi‖+
j−1
∑

l=i+1

‖xl − xl−1‖+ ‖wj − xj−1‖

= ‖xi − xi−1‖+
j−1
∑

l=i+1

‖xl − xl−1‖+ 2 ‖xj − xj−1‖

≤
(

12 +

j−1
∑

l=i+1

12 + 22

)1/2( j
∑

l=i

‖xl − xl−1‖2
)1/2

=
√

j − i+ 4

(
j
∑

l=i

‖xl − xl−1‖2
)1/2

.

The above inequalities hold by the triangle inequality, 0 ≤ θk ≤ 1 and Cauchy–Schwarz inequality,
respectively. Then

∑

0≤i<j<k

‖wi − wj‖2 ≤
∑

0≤i<j<k

j
∑

l=i

(j − i+ 4) ‖xl − xl−1‖2

=

k−1∑

l=0





l∑

i=0

k−1∑

j=l

(j − i+ 4)



 ‖xl − xl−1‖2 − 4

k−1∑

l=0

‖xl − xl−1‖2

=
k + 7

2

k−1∑

l=0

(l + 1)(k − l) ‖xl − xl−1‖2 − 4

k−1∑

l=0

‖xl − xl−1‖2

≤ k + 7

2

k−1∑

l=0

(k + 1)2

4
‖xl − xl−1‖2 − 4

k−1∑

l=0

‖xl − xl−1‖2

=
(k − 1)(k + 5)2

8

k−1∑

l=0

‖xl − xl−1‖2 ≤
(k − 1)(k + 5)2

8
Sk. (31)

Plugging equation 31 into equation 30, we have

‖∇L∗
λ(w̄k)‖ ≤ σ +

L

Zk
‖xk − xk−1‖+

Hν

1 + νf
(1/Zk)

1+νf

(
(k − 1)(k + 5)2

8

) 1+νf
2

S
1+νf

2

k .

(32)

Then for k ≥ 2, combing with (32), we have
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(
k−1∑

i=1

Z2
i

)

min
1≤i<k

‖∇L∗
λ(w̄i)‖

≤
k−1∑

i=1

Z2
i ‖∇L∗

λ(w̄i)‖

≤σ
k−1∑

i=1

Z2
i +

k−1∑

i=1

(

LZi‖xi − xi−1‖+
Hν

1 + νf
(1/Zi)

νf−1(
(i− 1)(i+ 5)2

8
)

1+νf
2 S

1+νf
2

i

)

≤σ
k−1∑

i=1

Z2
i + L

√

Sk−1(
k−1∑

i=1

Z2
i )

1/2 +
Hν

1 + νf

k−1∑

i=1

(1/Zi)
νf−1(

(i− 1)(i+ 5)2

8
)

1+νf
2 S

(1+νf )/2
k−1

≤σ
k−1∑

i=1

Z2
i + L

√

Sk−1(
k−1∑

i=1

Z2
i )

1/2 +
L
√

1/k4+νf

1 + νf

∑

(
2

i+ 1
)νf−1(

(i− 1)(i+ 5)2

8
)

1+νf
2 S

1
2

k−1

=σ
k−1∑

i=1

Z2
i + L

√

Sk−1

(

(
k−1∑

i=1

Z2
i )

1/2 +

√

1/k4+νf

1 + νf

∑

(
2

i+ 1
)νf−1(

(i− 1)(i+ 5)2

8
)

1+νf
2

)

.

Notice that Zk = k+1
2 and k3

12 ≤
∑

Z2
i ≤ k3

6 , we have

min
1≤i<k

‖∇L∗
λ(w̄i)‖ ≤ σ + L

√

Sk−1

(

(
∑k−1

i=1 Z2
i )

1/2 +

√
1/k4+νf

1+νf

∑
( 2
i+1 )

νf−1( (i−1)(i+5)2

8 )(1+νf )/2

)

(
∑k−1

i=1 Z2
i

)

≤ σ + L
√

Sk−1

k
3
2√
6
+
√

1

k4+νf

∑k−1
i=1

9
2 i

5
2+

νf
2

k3/12

≤ σ + cL
√

Sk−1/k3,

where c is a constant, c = 2
√
6+27. The last inequality holds due to

∑k−1
i=1 i

5
2+

νf
2 ≤ 1

2k
7
2+

νf
2 . ⊔⊓

E.6 PROOF OF PROPOSITION 1

Proof. Consider an epoch ends at iteration k and ignore the subscript t. If w̄k is not an ǫ-first-order
stationary point and k ≥ 2, from Lemma 9, we have:

ǫ ≤ σ + cL
√

Sk−1/k3 ≤ σ + cL
√

Sk/k3.

If k = 1, σ + cL
√

Sk/k3 = σ + cL‖x1 − x0‖ = σ + c‖∇̂L∗
λ(x0)‖ ≥ ǫ. Here we set σ = 1

64c+1ǫ,
the above inequality is

Sk ≥
ǫ2k3

(
c+ 1

64

)2
L2

, ∀ k ≥ 1. (33)

From (33), We have

σ
√

kSk =
1

64c+ 1
ǫ
√

kSk ≤
LSk

64k
, (34)

kσ2

2L
≤ k

2L

1

642
L2Sk

k3
≤ LSk

2× 642k
. (35)

From restart condition equation 5, we have

Sk >

(
L2/k4+νf

H2
ν

)1/νf

. (36)
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Then we can bound Sk as:

Sk = S

4+3νf
4+4νf

k S

νf
4+4νf

k ≥ L− 3
2

(
64ǫ

64c+ 1

) 4+3νf
2+2νf

k2H
− 1

2+2νf
ν .

From Lemma 8, (34) and (35), in this epoch, decrease of L∗
λ(x) is

L∗
λ(x0)− L∗

λ(xk) ≥
LSk

32k
− kσ2

2L
− σ

√

kSk ≥
LSk

100k

≥ 1

100
L− 1

2

(
64ǫ

64c+ 1

) 4+3νf
2+2νf

kH
− 1

2+2νf
ν .

Sum above inequality over all epochs and denote the number of total iterates as K, we have

K ≤ 100∆λL
1
2H

1
2+2νf
ν

(
64c+ 1

64ǫ

) 4+3νf
2+2νf

. (37)

As a result, we can denote the expression in the right side of equation 37 as Kmax. Substitute

Hν = λνf (1−νg)O
(
ℓκ3+(1+νg)νf

)
and L = O(ℓκ3) for (37), we have

K ≤ O
(

∆λλ
νf (1−νg)

(2+2νf ) ℓ
2+νf
2+2νf κ

6+4νf+νf νg

(2+2νf ) ǫ
− 4+3νf

2+2νf

)

. (38)

We can also bound Sk as:

Sk = S

2+νf
2+2νf

k S

νf
2+2νf

k ≥ L−1

(
64ǫ

64c+ 1

) 2+νf
1+νf

kH
− 1

1+νf
ν .

From Lemma 8, (34), (35), in this epoch, decrease of L∗
λ(x) is

L∗
λ(x0)− L∗

λ(xk) ≥
LSk

32k
− kσ2

2L
− σ

√

kSk

≥ LSk

100k

≥ 1

100

(
64ǫ

64c+ 1

) 2+νf
1+νf

H
− 1

1+νf
ν . (39)

Sum above inequalities over all epochs, we have

T ≤ 100∆λ

(
64c+ 1

64ǫ

) 2+νf
1+νf

H
1

1+νf
ν . (40)

Substitute Hν = λνf (1−νg)O
(
ℓκ3+(1+νg)νf

)
and L = O(ℓκ3) for equation 40, we have

T ≤ O
(

∆λλ
νf (1−νg)

(1+νf ) ℓ
1

1+νf κ
3+(1+νg)νf

(1+νf ) ǫ
− 2+νf

1+νf

)

. (41)

⊔⊓

E.7 PROOF OF THEOREM 1

Proof. From Lemma 1, we have ‖∇L∗
λ(x) − ∇ϕ(x)‖ ≤ O(ℓκ3)/λ. From Lemma 1, we have

|L∗
λ(x) − ϕ(x)| ≤ O(κ2)/λ. Denote the number of total iterates as K, from Proposition 1, the

following holds:

‖∇ϕ(w̄k)‖ ≤ ‖∇L∗
λ(w̄k)−∇ϕ(w̄k)‖+ ‖∇L∗

λ(w̄k)‖ ≤ 2ǫ.

Substitute equation 38 and equation 41 with λ = max(O(κ),O(ℓκ3)/ǫ,O(ℓκ2)/∆), the theorem
is proved. ⊔⊓
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E.8 PROOF OF THEOREM 2

Lemma E.2. Consider the t-epoch generated by Algorithm 1 and ending at iteration k, we claim
that for any t and its corresponding k, we can find some constant C to satisfy:

‖∇Lλ (wt,k−1)‖2 ≤ C.

Proof. For the t-epoch except the last epoch, w̄t,k is not an ǫ-first-order stationary point. Since
L∗
λ(x) has L-Lipschitz continuous gradient, we have

L∗
λ (xk+1) ≤ L∗

λ (wk) + 〈∇L∗
λ (wk) , xk+1 − wk〉+

L

2
‖xk+1 − wk‖2

≤ L∗
λ (wk)−

1

L

〈

∇L∗
λ (wk) , ∇̂L∗

λ (wk)
〉

+
1

2L

∥
∥
∥∇̂L∗

λ (wk)
∥
∥
∥

2

,

where we use xk+1 = wk − 1
L∇̂L∗

λ(wk). We also have

L∗
λ (xk) ≥ L∗

λ (wk) + 〈∇L∗
λ (wk) , xk − wk〉 −

L

2
‖xk − wk‖2 .

Combining the above inequalities leads to

L∗
λ (xk+1)− L∗

λ (xk)

≤− 〈∇L∗
λ (wk) , xk − wk〉+

L

2
‖xk − wk‖2 −

1

L

〈

∇L∗
λ (wk) , ∇̂L∗

λ (wk)
〉

+
1

2L

∥
∥
∥∇̂L∗

λ (wk)
∥
∥
∥

2

=L 〈xk+1 − wk, xk − wk〉+
〈

∇̂L∗
λ (wk)−∇L∗

λ (wk) , xk − wk

〉

+
L

2
‖xk − wk‖2

− 1

L

〈

∇L∗
λ (wk) , ∇̂L∗

λ (wk)
〉

+
1

2L

∥
∥
∥∇̂L∗

λ (wk)
∥
∥
∥

2

=
L

2

(

‖xk+1 − wk‖2 + ‖xk − wk‖2 − ‖xk+1 − xk‖2
)

+
〈

∇̂L∗
λ (wk)−∇L∗

λ (wk) , xk − wk

〉

+
L

2
‖xk − wk‖2 −

1

L

(

∇L∗
λ (wk) , ∇̂L∗

λ (wk)
〉

+
1

2L

∥
∥
∥∇̂L∗

λ (wk)
∥
∥
∥

2

≤L ‖xk − wk‖2 −
L

2
‖xk+1 − xk‖2 +

〈

∇̂L∗
λ (wk)−∇L∗

λ (wk) , xk − wk

〉

+
1

L

∥
∥
∥∇̂L∗

λ (wk)
∥
∥
∥

2

− 1

L

〈

∇̂L∗
λ (wk) ,∇L∗

λ (wk)
〉

(a)

≤L ‖xk − xk−1‖2 −
L

2
‖xk+1 − xk‖2 +

∥
∥
∥∇̂L∗

λ (wk)−∇L∗
λ (wk)

∥
∥
∥ · ‖xk − xk−1‖

+
1

L

∥
∥
∥∇̂L∗

λ (wk)
∥
∥
∥

2

− 1

L

〈

∇L∗
λ (wk) , ∇̂L∗

λ (wk)
〉

=L ‖xk − xk−1‖2 −
L

2
‖xk+1 − xk‖2 +

∥
∥
∥∇̂L∗

λ (wk)−∇L∗
λ (wk)

∥
∥
∥ · ‖xk − xk−1‖

+
1

L

∥
∥
∥∇̂L∗

λ (wk)
∥
∥
∥

2

− 1

2L

(

‖∇L∗
λ (wk)‖2 +

∥
∥
∥∇̂L∗

λ (wk)
∥
∥
∥

2

−
∥
∥
∥∇L∗

λ (wk)− ∇̂L∗
λ (wk)

∥
∥
∥

2
)

(b)

≤L ‖xk − xk−1‖2 −
L

2
‖xk+1 − xk‖2 +

∥
∥
∥∇̂L∗

λ (wk)−∇L∗
λ (wk)

∥
∥
∥ · ‖xk − xk−1‖

− 1

4L
‖∇L∗

λ (wk)‖2 +
3

4L

∥
∥
∥∇L∗

λ (wk)− ∇̂L∗
λ (wk)

∥
∥
∥

2

(c)

≤L ‖xk − xk−1‖2 −
L

2
‖xk+1 − xk‖2 −

1

4L
‖∇L∗

λ (wk)‖2 + σ ‖xk − xk−1‖+
3

4L
σ2,

where we use ‖xk − wk‖ = θk ‖xk − xk−1‖ ≤ ‖xk − xk−1‖ in
(a)

≤ , the triangle inequality in
(b)

≤
and Lemma 4 in

(c)

≤ .
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Summing over the above inequality, and using x0 = x−1, we have

L∗
λ (xk)− L∗

λ (x0)

≤ L

2

k−2∑

i=0

‖xi+1 − xi‖2 −
1

4L

k−1∑

i=0

‖∇L∗
λ (wi)‖2 + σ

k−1∑

i=0

‖xi − xi−1‖+
3

4L
σ2k

(d)

≤ L

2

k−2∑

i=0

‖xi+1 − xi‖2 −
1

4L

k−1∑

i=0

‖∇L∗
λ (wi)‖2 + σ

√
k − 1

√
√
√
√

k−2∑

i=0

‖xi+1 − xi‖2 +
3

4L
σ2k

(e)

≤ L

2
Sk−1 −

1

4L
‖∇L∗

λ (wk−1)‖2 + σ
√

kSk−1 +
3

4L
σ2k

(f)

≤ L

2

(
L

Hν

) 2
νf

− 1

4L
‖∇L∗

λ (wk−1)‖2 + σ((L/Hν)
1
νf ) +

3

4L
σ2k

(g)

≤ L

2

(
L

Hν

) 2
νf

− 1

4L
‖∇L∗

λ (wk−1)‖2 + σ((L/Hν)
1
νf ) +

3LSk

4× 642k
, (42)

where we use the Cauchy–Schwarz inequality in
(d)

≤ , non-negativity of norm in
(e)

≤ , the restart condi-

tion equation 5 in
(f)

≤ and equation 35 in
(g)

≤ . For the last term in equation 42, we have

Sk

k
≤ Sk−1

k
+
‖xk − xk−1‖2

k
(a)

≤
(

L

Hν

)2/νf

+
‖xk − xk−1‖2

k

(b)

≤
(

L

Hν

)2/νf

+
1

k

∥
∥
∥
∥
wk−1 − xk−1 −

1

L
∇̂L∗

λ(wk−1)

∥
∥
∥
∥

2

(c)

≤
(

L

Hν

)2/νf

+
2

k
‖wk−1 − xk−1‖2 +

2

kL2

∥
∥
∥∇̂L∗

λ(wk−1)
∥
∥
∥

2

(d)

≤
(

L

Hν

)2/νf

+
8

k
D2 +

4

kL2
‖∇L∗

λ(wk−1)‖2 +
4σ2

L2
,

where we use the restart condition equation 5 in
(a)

≤ , xk = wk−1 − 1
L∇̂L∗

λ(wk−1) in
(b)

≤ , Lemma 3

in
(c)

≤ and Lemma 4 in
(d)

≤ . Combined with equation 42, we obtain

L∗
λ (xk)− L∗

λ (x0)

≤
(
1

2
+

3

4× 642

)

L

(
L

Hν

) 2
νf

+
3L

4× 642

(
8

k
D2 +

4σ2

L2

)

−
(

1

4L
− 3

642L

)

‖∇L∗
λ (wk−1)‖2 + σ((L/Hν)

1
νf )

(43)

We claim that for any t-th epoch ending at iteration k, we can find some constant C to satisfy:

‖∇Lλ (wt,k−1)‖2 ≤ C.

Otherwise, equation 43 shows that L∗
λ (wt,k) can go to−∞, which contradicts to minx∈Rdx ϕ(x) >

−∞ in Assumption 1 and |L∗
λ(x)− ϕ(x)| ≤ O(ℓκ2/λ) in Lemma 1. ⊔⊓

With the help of Lemma E.2, we provide the proof of Theorem 2.
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Proof. We firstly show the boundedness of ‖y∗(wt,0)‖. Suppose that the t-epoch ends at iteration k,
we have

‖y∗(wt+1,0)− y∗(w0,0)‖
≤‖y∗(xt,k)− y∗(wt,k−1)‖+ ‖y∗(wt,k−1)− y∗(wt,0)‖+ ‖y∗(wt,0)− y∗(w0,0)‖

≤Lg

µ
‖xt,k − wt,k−1‖+

Lg

µ
‖wt,k−1 − wt,0‖+ ‖y∗(wt,0)− y∗(w0,0)‖

≤Lg

µ
(
C + σ

L
+D) + ‖y∗(wt,0)− y∗(w0,0)‖.

The first inequality holds due to triangular inequality, the second inequality holds due to y∗(x) is
Lg/µ-Lipschitz continuous and the last inequality holds due to Lemma 4 and Lemma E.2. Then we
have

‖y∗(wt,0)‖ ≤‖y∗(wt,0)− y∗(w0,0)‖+ ‖y∗(w0,0)‖

≤‖y∗(w0,0)‖+
Lg

µ
(
C + σ

L
+D)t

≤‖y∗(w0,0)‖+
Lg

µ
(
C + σ

L
+D)T,

where T is the total number of epochs. We can set {Tt,i, T
′
t,i} as follows: let

Tt,i =

⌈

2

√

Lg

µ
log

√

1 +
Lg

µ

(

1 + 2λ
L2
g

σµ
(
C + σ

L
+ 5D)

)⌉

,

T ′
t,i =

⌈

2

√

4Lg

µ
log

√

1 +
4Lg

µ

(

1 + 16λ
L2
g

σµ
(
C + σ

L
+ 5D)

)⌉

(44)

(45)

for i ≥ 1, and

Tt,i =

⌈

2

√

Lg

µ
log

√

1 +
Lg

µ

(

‖y∗(w0,0)‖+
Lg

µ
(
C + σ

L
+D)T

)
2λLg

σ

⌉

,

T ′
t,i =

⌈

2

√

4Lg

µ
log

√

1 +
4Lg

µ

(

‖y∗(w0,0)‖+
4Lg

µ
(
C + σ

L
+D)T

)
4λLg

σ

⌉

(46)

(47)

for i = 0, where T is the total number of epochs. From Theorem 1, we know that

T ≤ O(∆ℓ
1+νf−νf νg

1+νf κ
3+4νf−2νf νg

1+νf ǫ
− 2+2νf−νf νg

1+νf ).

Then we prove equation 8 holds for zt,i by induction. For i = 0, by the definition of Tt,0 in
equation 46, we have

‖zt,0 − y∗(wt,0)‖ ≤
√

1 +
Lg

µ
(1−

√
µ

Lg
)Tt,0/2‖zt,−1 − y∗(wt,0)‖

≤
√

1 +
Lg

µ
(1−

√
µ

Lg
)Tt,0/2‖y∗(wt,0)‖

≤ σ

2λLg
.
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From Lemma D.1, if i ≥ 1, we have

‖zt,i − y∗(wt,i)‖ ≤
√

1 +
Lg

µ
(1−

√
µ

Lg
)Tt,i/2‖zt,i−1 − y∗(wt,i)‖

(a)

≤
√

1 +
Lg

µ
(1−

√
µ

Lg
)Tt,i/2 (‖y∗(wt,i)− y∗(wt,i−1)‖+ ‖zt,i−1 − y∗(wt,i−1)‖)

(b)

≤
√

1 +
Lg

µ
(1−

√
µ

Lg
)Tt,i/2

(
Lg

µ
‖wt,i − wt,i−1‖+

σ

2λLg

)

(c)

≤
√

1 +
Lg

µ
(1−

√
µ

Lg
)Tt,i/2

(
2Lg

µ
‖xt,i − xt,i−1‖+

Lg

µ
‖xt,i−1 − xt,i−2‖+

σ

2λLg

)

(d)

≤
√

1 +
Lg

µ
(1−

√
µ

Lg
)Tt,i/2

(
Lg

µ
(
C + σ

L
+ 5D) + σ

2λLg

)

(e)

≤ σ

2λLg
,

where the inequality
(a)

≤ follows from the triangle inequality,
(b)

≤ uses the inductive hypothesis and

the fact that y∗(x) is Lg/µ-Lipschitz continuous,
(c)

≤ holds by the definition wt,i = xt,i + θi(xt,i −

xt,i−1),
(d)

≤ applies Lemma 3 and Lemma E.2, and
(e)

≤ follows from equation 44. Therefore, by
mathematical induction, we conclude that equation 8 holds for all zt,i with {Tt,i} defined in equa-
tion 44,equation 46. Similarly, we can prove that equation 8 holds for yt,i with T ′

t,i defined in equa-
tion 45, equation 47. So all yt,i and zt,i satisfy Condition 1. The total first-order oracle complexity
is
∑

t,i Tt,i, i.e.,

Õ
(

∆ℓ
2+2νf−νf νg

2+2νf κ
7+8νf−2νf νg

2+2νf ǫ
− 4+4νf−νf νg

2+2νf

)

.

When νf = νg = 1, the first-order oracle complexity is Õ
(
∆ℓ3/4κ13/4ǫ−7/4

)
.

⊔⊓
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