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ABSTRACT

Bilevel optimization is pivotal in machine learning applications such as hyperpa-
rameter tuning and adversarial training. While existing methods for nonconvex-
strongly-convex bilevel optimization can find an e-stationary point under Lips-
chitz continuity assumptions, two critical gaps persist: improving algorithmic
complexity and generalizing smoothness conditions. This paper addresses these
challenges by introducing an accelerated framework under Holder continuity—a
broader class of smoothness that subsumes Lipschitz continuity. We propose a
restarted accelerated gradient method that leverages inexact hypergradient estima-
tors and establishes theoretical oracle complexity for finding e-stationary points.
Empirically, experiments on data hypercleaning and hyperparameter optimization
demonstrate superior convergence rates compared to state-of-the-art baselines.

1 INTRODUCTION

Bilevel optimization is a powerful paradigm with applications in various machine learning tasks,
such as hyperparameter tuning [1};12; 3], adversarial training [4; 3;6; [7], and reinforcement learning
[8;19;10]. It involves two levels of optimization, where the objective at the upper level depends on
the solution to a lower-level optimization problem. The general bilevel problem can be expressed
as:

min f(z,y), whereY*(z)=argming(z,y). (H
z€Rdz yeY* () yERDY

In this formulation, f(x,y) denotes the upper-level objective, while g(z,y) denotes the lower-level
objective.

This study examines the nonconvex-strongly-convex framework, wherein the lower-level function
g(x,y) exhibits strong convexity with respect to y, while the upper-level function f(x) is possibly
nonconvex. In this case, the lower-level objective admits a unique solution Y*(x) = {y*(z)}. Then
Problem equation [lis equivalent to minimizing the hyper-objective function

o(x) := f(x,y"(x)), wherey™(x)=argming(z,y).
yER%Y

As shown in [11};[12], the hyper-gradient V(x) is given by:

Vo(z) =V f (z,y) + Vy* (2)V, f (2,47 (x))

- 2
= Vof (2,97 (2) = V2,0 (@,y" (2)) [V2,0 (2, 5" (2))] ' Vyf (2,97 (). ?

The goal of this paper is to find the point « such that ¢(x) is an e-stationary point, i.e., ||V (z)|| < e.
For nonconvex-strongly-convex bilevel optimization, previous work [[13;114;15] primarily focuses
on assuming Lipschitz continuity of V f, Vg, V2g, and V3¢, and either approximates the hyper-
gradient V() or minimizes a penalty function. Approximating the hyper-gradient V(z) requires
first-order oracle access to f and second-order oracle access to g, whereas minimizing the penalty
function only requires first-order oracle access to both f and g.
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Two key open questions remain: (i) For first-order methods, it remains open whether the existing al-
gorithmic complexities for finding approximate first-order stationary points in nonconvex—strongly-
convex bilevel optimization can be further improved under high order smoothness, and (ii) whether
the Lipschitz continuity assumptions can be generalized to the Holder continuity.

1.1 RELATED WORK

Nonconvex optimization: For unconstrained nonconvex objectives with Lipschtiz continuous gra-
dient, the classical gradient descent (GD) is known to find an e-stationary point within (’)(6_2)
gradient computations [[16]. This rate is optimal among the first-order methods [[17; [18]. Under
the additional assumption of Lipschitz continuous Hessians, accelerated gradient descent (AGD)
[19; 20; 21] finds an e-stationary point in @(6’7/ 4) evaluations. [22] and [23] further show that
AGD with restarts achieves O(e~7/*) complexity for finding e-stationary points, without additional
log factors. Under the more general assumption of Holder continuity of the Hessian, [24] proposed
a universal, parameter-free heavy-ball method equipped with two restart mechanisms, achieving a

complexity bound of O(H./*t2)¢=(4+3v)/(2+2)) in terms of function and gradient evaluations,
where v € [0, 1] and H, denote the Holder exponent and constant, respectively.

Bilevel Optimization Methods: To approximate the hyper-gradient, gradient-based methods con-
tain approximate implicit differentiation (AID) [23;/11;126;/27;/11] and iterative differentiation (ITD)
[25;111;26; [11); 28]. Using the hyper-gradient equation[2] one can find an e-stationary point of ¢(x)
within O(e~?2) first-order oracle calls from f and O(e~?) second-order oracle calls from g [29; 26].
In practical implementations, these methods typically rely on access to Jacobian or Hessian-vector
product oracles. [[14] proposed a fully first-order method that does not require Jacobian or Hessian-
vector product oracles, and finds an e-stationary point using only first-order gradients of f and g.
Concurrently, [13] proposed a method that achieves a near-optimal convergence rate of O(e~2).
Moreover, under high-order smoothness assumptions, they established an accelerated convergence
rate of O(e~7/%).

Table 1: Complexity bounds for finding e-stationary points under Lipschitz continuity assumptions.

Algorithm Ge(f, €) Gce(g, €) IV(g, € HV(g, €)
AID-BiO ([26]) O(k3¢72) O(k3¢72) O(x3¢72) O(k3¢72)
ITD-BiO ([26]) O(k37?2) O(k*e2) O(k*e?) O(k'e?)
RAHGD ([15]) @(63/4#1/46*7/4) (5(63/4/{13/45*7/4) (5(€3/4/{11/4e’7/4) @(53/4513/4677/4)
F?BA([13)]) O(Lrre?) O(trte?) \ \
AccF?BA([13]) O(L3/AR13A=T/A) | O(13/413/4e7T/4) \ \
Proposed method (this work) | O(£3/4x13/4¢=7/4) | O(13/4x13/4e=7/4) \ \

1.2 OUR CONTRIBUTION

In this paper, we propose an accelerated first-order algorithm for solving nonconvex—strongly convex
bilevel optimization problems. Our main contributions are summarized as follows:

1. We introduce an accelerated first-order method framework—originally developed for non-
convex optimization—into the setting of nonconvex—strongly convex bilevel optimization,
and consider more general Holder continuity assumptions on f and g.

2. We prove that, with a carefully designed restart condition, the iterates generated by our
proposed method remain uniformly bounded within each epoch. Based on this, we demon-
strate that the algorithm is convergent with accelerated performance.

3. Even under the standard Lipschitz continuity setting, our method improves the first-order
oracle complexity for finding an e-stationary point of ¢(z) to O(¢3/*k3/4e=7/4), with-
out requiring access to second-order oracles, where ¢ and s denote the problem’s largest

smoothness and condition number. This bound improves upon previously known results,
as summarized in Table [1l and is consistent with the concurrent findings of [13], who es-

tablished a similar @(6_7/ %) rate under a different restarting scheme.

4. Our experimental results further support the theoretical convergence guarantees.
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Organization. The rest of this work is organized as follows. Section [2l delineates the assumptions
and specific algorithmic subroutines. Section [ formally presents our proposed algorithm along
with some basic lemmas. Sectiondprovides a complexity bound for finding approximate first-order
stationary points. In Section [5] we provide some numerical experiments to show the outstanding
performance of our proposed method. Section[6]concludes the paper and discusses future directions.
Technical analyses are deferred to the appendix.

Notation. Let a,b € R? be vectors, where (a, b) represents their inner product and ||a|| denotes
the Euclidean norm. For a matrix A € R™*", || A is used to denote the operator norm, which is
equivalent to the largest singular value of the matrix. Let G¢(f, €) and Gc(g, €) denote the number
of gradient evaluations with respect to f and g, respectively. Let JV (g, €) denote the number of
Jacobian-vector products Viy g(x,y)v, and HV (g, €) denote the number of Hessian-vector products

V2,9(x,y)v. The diameter R of a compact set C'is defined as R := max,, s,ec |1 — z2||.

2 PRELIMINARIES

In this section, we present the key definitions and assumptions used throughout the paper.

Definition 1 (Restricted Holder Continuity). Let h be a twice differentiable function. We say that
V2h is restrictively (v, H,)-Hélder continuous with diameter R > 0 if

2 w2
H, = sup [V*h(x) Vyh(y)
le—yll<R llz —yll

| < 400, veo,1].

When R = +o00, we call V?h is (v, H, )-Holder continuous if v € [0,1] and H,, < +o0.

We make the following assumptions on the upper-level function f and lower-level function g:

Assumption 1. We make the following assumptions:

i. The function o(x) is lower bounded.
ii. The function g(x,y) is p-strongly convex in y, and has L4-Lipschitz continuous gradients.

iti. The function g(x,y) has pg-Lipschitz continuous Hessians and is (vq, My)-Hélder continuous
in its third-order derivatives.

iv. The function f(x,y) is C¢-Lipschitz continuous in y and has L g-Lipschitz continuous gradients.
v. The Hessian V2 f(z,y) is (vf, Hy)-Hélder continuous.

vi. The mixed and second-order partial derivatives Viyf(x, Y), Vsz(x, y), and Viyf(x, y) are
pf-Lipschitz continuous.

The assumptions employed in this study are consistent with those commonly adopted in prior litera-
ture [13;127;114;115]. To introduce Holder continuity, we extend the Lipschitz continuity assumptions
about the Hessian of f, and the third-order derivative of g to our assumptions equation|iiil equation[®
equation

Definition 2. Under Assumption[l] we define the largest smoothness constant as
Ci=max{Cy, Ly, Hy,py; Lg, pgs My}

and the condition number as k == £/ .

Observe that problem equation[I] can be reformulated as:

min_ f(z,y"(z)), stg(z,y)-g"(x) <0, 3)
z€RIz | ycR%

where g*(x) = g(z,y*(z)) is the value function. A nature penalty problem associated with prob-
lem equation [3]is

min ., La(z,y) == f(z,y) + Mg(z,y) — 9" (x)),
z€Rde | yeR%Y
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where A > 0 is a penalty parameter. This problem is equivalent to minimizing the following auxiliary
function:

Ly (z) := Ly (z,yx(x)), where y3(z) = arg ;Iélkrtli Lx(z,y). 4)

It has been proven in [13] that L (z) and VL} (x) asymptotically approximate ¢(z) and Vo (z),
respectively, as X is sufficiently large. Moreover, VL (z) is Lipschitz continuous and its Lipschitz
constant does not involve A. We restate their result below for completeness.

Lemma 1 ([13, Lemma 4.11). Under Assumption[l] for X > 2Ly /11, we have
i, |L3(2) — p(@)] < O(Es/ ),

ii. IVL3(2) — V()] < O3 /),

iii. VL3 (x) is O(¢k3)-Lipschitz continuous.

In the remainder of the article, we denote the Lipshitz continuous constant of VL3 (x) in Lemma ]
by L = O(¢x?) for convenience. Then we introduce a lemma showing that V2L} (z) is restrictively
(v, H,)-Holder continuous with diameter R, where the detailed expression of H,,, depending on A
and D, can be found in equation [T6] of Appendix

Lemma 2. Under Assumption [} for X > 2Ly /u, V2L () is restrictly (v¢, H,(\, R))-Hélder
continuous with diameter R > 0, where

HV(AaR) = O(é/.{l’f) + O(}\lfugfﬂﬁlJrug)lel,f'

3 RESTARTED ACCELERATED GRADIENT DESCENT UNDER GENERAL
SMOOTHNESS

In this section, we present our algorithm in Algorithm[Tland discuss several of its key properties. The
algorithm has a nested loop structure. The outer loop uses the accelerated gradient descent (AGD)
method with a restart schemes, inspired from the recently works in [22;23]. The iteration counter k
is reset to 0 when AGD restarts, whereas the total iteration counter K is not. We refer to the period
between a reset of k and the next reset as an epoch. We introduce a subscript ¢ to denote the number
of restarts. It is important to note that the subscript ¢ in Algorithm[Tlis primarily included to facilitate
a simpler convergence analysis. Provided that no ambiguity occurs, we omit the subscript ¢, which
means that the iterates are within the same epoch.

In Lines 4 and 5, we invoke AGD, which is summarized in Algorithm 2] to find estimators of
y*(wy,r) and y3 (wy ), respectively. AGD achieves linear convergence when applied to the mini-
mization of smooth and strongly convex functions g(z,-) and f(z,-) + Ag(x,-). We note that the
iteration number of inner AGD steps plays an important role in the complexity analysis. We will
provide the parameters setting for AGD subroutines in SectionH] In the following, we describe some
operations involved in the algorithm.

Restart Condition. Here, we focus on the iterates within a single epoch and omit the subscript ¢,
which indexes different epochs. Then we define Sy, = Zle |z; — 2;_1]/?, and the restart condition

(k+ 1) HES, 7 > L2, )
where the constant H,, will be defined in equation[@]below. If equation[3holds, the epoch terminates;
otherwise, it continues. We say that an epoch ends at iteration k, if .Sy, triggers the restart condition
equation[3l It is worth noting that, unlike the restart conditions in [22;/15] and the concurrent work
by [13], our restart condition is independent of e.

Holder Constant H,. From Lemmall V?L%(x) is restrictively (v, H, (X, R))-Holder continu-
ous with diameter R > 0. Here we choose a specific R and the corresponding H,, (A, R), denoted
by D and H,, satisfying

D=0 ()\—(1—Vg)/€—(1+yg)) . H, =0 ()\Vf(1—yg)£,{3+(1+ug)uf) ' (6)

The derivation of H,, and D is provided in equation[I8lof Appendix[Dl Then V2 L} (z) is restrictively
(v, H,)-Holder continuous with diameter D. In the case of Lipschitz continuity, i.e., vy = vy = 1,
equation[@implies H,, = O({x°) and D = O(k~2).



Under review as a conference paper at ICLR 2026

Algorithm 1 Restarted Accelerated gradient descent under General Smoothness (RAGD-GS)

1: Input: initial point ¢ o; gradient Lipschitz constant L > 0; Hessian Holder constant H,, > 0
and vy € [0,1]; penalty parameter A > 0; momentum parameter 65 € (0,1); parameters

a, ol > 0,88 € (0,1), {Tox), {Tg,k} of AGD
k <+ 0, K « 0, t <+ 0, Wo,0 <= 20,0, Yo,—1 0, 20,—1 < 0
repeat

2tk + AGD (g (wt,ka ) s 2t k—1, Tt,/w a, B)

Yt k +— AGD (f (’U}t ks ) + )‘g (wt ks ) ayt,k—lth/,k;v O/7B/>

VL Mwe ) < Vo f (wt koY) + A (Vag (We ke, Yek) — Vag (Wi ks 2ek))
Tt +1 < Wk — *VL,\(ZUt k)

Wy 1 < Te k1 T Okr1 (Tepr1 — Tok)
9: k<—k+1,K<—K—|—l
10:if (k+ 1) H2SY > L2 then

A A S ol

11: Tty1,0 < Ttk

12: Yer1,—1 < 0, 2¢401,-1 < 0, Wey1,0 < Tey10
13: k+—0,t+t+1

14: end if

15: until |V Ly (0 )]] < e
16: Output: averaged solution w; j defined by (@)

Averaged Solution. Inspired by [23], we set 0}, = 75 and define
k= Zpk,iwi; )
i=0
C_2(i41) . . o kel Py
where pj, ; = EET) - We can update wy, in the following manner: wy = Pt We—1 + g W1
The following lemma shows that {xz and {wZ 0 are bounded within any epoch ending at

iteration k.
Lemma 3. Let Assumption [l holds, H, and D = R be given in equation|8 and wy, be defined in
equation[/l For any epoch ending at iteration k, the following holds:

— ]| <D < ,—w,|| < D.
ocidax o -zl <D, max lwi -l < max lw; - wgl] <

Condition 1 (Inexact gradients). Under Assumption[lland given o > 0, we assume that the estima-
tors Yy ; and z ; satisfy the conditions
o

<
”_4>\Lg’ ®)

120 =y (we.i) 1y2,: = yx(wei)

= 2)\L

for any t-th epoch ending at iteration k, where i =0,..., k — 1.

Remark 1. It is noteworthy that Condition[ll holds in Algorithm[llas long as the inner loop iteration
number Ty j, and Tt i are large enough. This will be formally addressed in our convergence analysis
later; in Theorem D)

Under Condition[I] the bias of VL% (w; ;) and its estimator V L} (w; ;) can be bounded as shown
below:

Lemma 4 (Inexact gradients). Under Assumption[lland supposing that Condition[ll holds, we have
IVLE (wei) = VLX (wei)|| < o
for any t-th epoch ending at iteration k, where i = 0,..., k — 1.

4 COMPLEXITY ANALYSIS

In this section, we analyze the performance of Algorithm[Il We begin in Section d.I]by presenting
several useful lemmas that rely on the boundedness of the iterates generated within a single epoch.
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These results serve as key tools for our subsequent analysis. We then establish the descent property
of the objective function and derive an upper bound for || VL% (w@;)||. Finally, in Section we
present the main complexity results for Algorithm 11

4.1 TOOLS FOR ANALYSIS

We use the following two Hessian-free inequalities to analyze the complexity of Algorithm I}

Lemma 5. Under Assumption [Il and with X > 2Ly /p, the following holds for any x1,. .., xy
satisfying maxi<;<j<n ||z; — ;|| < Dand q1,...,q, > 0 such that ZZ:l q = 1:
1+1/f
n n H
VLL() i) = Y a:VLA(wi)| < - > aigjlle — ) :
— — + vy —
i=1 i=1 1<i<j<n

where H,, and D are defined in (6).

Lemma 6. Under Assumptionlland with A > 2Ly / 11, the following holds for any x and x’ satisfying
|z —2'|| < D:

2H,
1+ Vf)(2 + l/f)(3 + Uf)

1
Li(z) = L3(2") < 5(VLA(2) + VLA(2), z —a') + g Raach

|z — x
where H,, and D are defined in ().

Lemma 3l bounds the discrepancy between the average gradient over an epoch and the true gradient
at the averaged iterate wy, defined in (7)), while Lemmal[6lestablishes a quadratic surrogate inequality
for the function difference, which serves as a key ingredient for showing descent of the potential
function. In light of these lemmas and following [23], we define the potential function &, as
0? L 9

@y, == L} (2 )+5 ||VLA (zh—1) + L(zp — z-1)|? + 5 lew =z )
The following lemma shows that ®, is a decreasing sequence if ||z — x;_1]| and o are sufficiently
small.

Lemma 7. Suppose that Assumption[l) Condition[l] and X > 2L ¥ / hold. Then we have

2H, 24 H, 3tvg
P — @) <|lwp — zp_1 |2t Y f Y 9,2
br1 = i Sllzi = @i | ((1+uf)(2+uf)(3+uf) b Ly k
2H2 0T 02, 40, —2
+ [lzg =z [P B4 Rt Lljwy 1 — x|

(1—|—I/f)2 L 4

02 2
— L IVLS @OI? + 5F + ollakes — @l (10)

L

Moreover, we can leverage this potential decrease to quantify the reduction of L3 (-) over an entire
epoch. The following lemma shows that L (z) decreases whenever Sy > 0 and o is sufficiently
small.

Lemma 8. Suppose that Assumption[l) Condition[l) and X > 2L ¥ /1 hold. Then the decrease value
of L} (+) in one epoch satisfies:

* * LSk 2
Li(wx) = Li(wo) < = 32—]{+—+02Hx1+1 i, (1n)

The following lemma provides an upper bound on the minimum gradient norm of the penalized
objective L evaluated at the averaged iterates {w; } ¥~}

Lemma 9. Suppose that Assumption[l) Condition[ll and X\ > 2L/ hold. The following is true
when k > 2:

12111’1 VLA (w;)|| < o+ cLy/Sk—1/k3,
where ¢ = 2v/6 + 27.
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4.2 MAIN RESULTS

In the following proposition, we show that the iteration complexity of the outer loop is bounded.
Proposition 1. Suppose that Assumption[ll Condition[l) and X > 2L/ hold. Let ¢ = 2v/6 + 27
as defined in Lemmal[9 and define Ay = L% (x¢,0) — min,cga. L (z). Let
(@.8)= (- V2 ol ) = (g, VeV
Ly \/Ly+ i 2ALy" /ALy + /i (12)
k

0= —— and o= .
FTrr1 " 7T Gaet1”

Algorithm[[lterminates within
vi(l—vg) 24vp  64dvpdvirg 443y
O A)\)\ (FF2vp) g2F2vp = (FH2vp) o 2H2vy

total iterations, outputting Wy i, satisfying |V L} (W, i) < e. Moreover, Algorithm [I] terminates
within

1—vg 1 8—3v 2+1/f
O (A/\)\(Quf)(1+uf)£1+uf K(2—uf)(1+uf) 6_ 2+21/f>
epochs.

We present the complexity analysis of our algorithm, aiming to establish its guarantee for finding an
O(e)-stationary point of problem (T)).

Theorem 1. Suppose that both Assumption [Il and Condition [Il hold. Define A = ¢(xo,0) —
mingcpa, @(z). Let X\ = max(O(k), O(lk?) /e, O(¢Kx?)/A) and set the other parameters as speci-
fied in equation[I2] Algorithm[llterminates within

2+2uf—ufug 6+7uf72ufl/g 4+4ufufug>

O (Af 2+2vy K 2+2v) € 242vy

iterates, outputting Wy j, satisfying ||V (wy)|| < 2e. Moreover, Algorithm[ll terminates within

+vy—vyvg 3+4Uf—QUfug _2+QUfoug)

O (Ag 1t+vy K 1+vy € T+vy

epochs.

When vy = v, = 1, Theorem [[ shows that within O (A€3/ 4117467/ 4) outer iterations and
O(A¢Y/2,5/2673/2) epochs, the algorithm will find an O(¢)-stationary point.
Remark 2. Throughout the proof, we only use the restricted Holder and Lipschitz properties, where

restricted Lipschitz continuity can be defined analogously to Definition[ll Therefore, the assumption
on global Lipschitz and Hélder smoothness in Assumption[ll can be relaxed to restricted smoothness.

To make Condition[lhold, it suffices to run AGD for a sufficiently large number of iterations, which
only introduces a logarithmic factor to the total complexity. This gives the following result.
Theorem 2. Suppose that Assumption [l holds. In the t-th epoch, we set the inner-loop iteration
numbers Ty and T} according to equation equation equation and equation 7 in
Appendix [l We then run Algorithm [Il with the parameters specified in Theorem[ll Under these
settings, all y ;. and zy j, satisfy Condition[ll Moreover, the total first-order oracle complexity is

B 242vp—vyrg  TH8vy—2vpvg d4dvy—vyrg
O (Af 22y K 2F2vy 6_ 2+2vy ) .

When v; = v, = 1, the first-order oracle complexity is O(A¢3/4513/4¢=7/4). This matches the
@(6*7/ 4) rate obtained independently and concurrently by [13], and also improves upon the earlier
result of [15], as shown in Table[Il We defer the proof to Appendix [El Under the Holder continuity
assumption, to the best of our knowledge, we are the first to propose a method that finds an e-
stationary point. Furthermore, under the Lipschitz continuity assumption, our approach outperforms
all existing methods in the literature, as the proposed method RAGD-GS relies solely on first-order
oracle information, which is in line with the concurrent work [[13].
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5 NUMERICAL EXPERIMENT

This section compares the performance of the proposed method with several existing methods, in-
cluding RAHGD [115], BA [29], AID [26], ITD [26], F>BA [13] and AccF>BA [13]. For the bilevel
approximation (BA) method introduced in [29], we implement a conjugate gradient approach to
compute Hessian-vector products since the original work doesn’t specify this computational detail.
We refer to this modified version as BA-CG to distinguish it from other algorithm. To quantify
variability, each experiment is repeated over 5 independent trials, and we report the average perfor-
mance. Our experiments were conducted on a PC with Intel Core i7-13650HX CPU (2.60GHz, 20
cores), 24GB RAM, and the platform is 64-bit Windows 11 Home Edition (version 26100).

5.1 DATA HYPERCLEANING

Data hypercleaning ([30]; [28]) is a bilevel optimization problem aimed at cleaning noisy labels in
datasets. The cleaned data forms the validation set, while the rest serves as the training set. The
problem is formulated as:

min fWV*(A\),\) =—=— > —log(y/ W* (M)
AERNt ‘IDV'dl| (x4,yi) EDya

1

st. W*(\) = argmin ——

—o(\;) log(y] Wz;) + C,||[ W%,
e D]

(z4,Y:) €Dy

where D, and D,, are the training and validation sets, respectively, W is the weight matrix of the
classifier, o(+) is the sigmoid function, and C,. is a regularization parameter. In our experiments, we
follow [130] and set C,. = 0.001.

For MNIST [31]], we use |Dy| = 20,000 training samples (partially noisy) and |Dy,| = 5,000 clean
validation samples, with corruption rate p indicating the ratio of noisy labels in the training set. In
Figures [[land 2l inner and outer learning rates are searched over {0.001, 0.01, 0.1, 1, 10, 100}. For
all methods except BA, inner GD/AGD steps are from {50, 100, 200, 500}; for BA, we choose GD
steps from {[c(k + 1)1/4] : ¢ € {0.5,1,2,4}} as in [29]. For F?BA, AccF’BA and our method, A
is selected from {100, 300, 500, 700}. The results, shown in Figures [Tland 2l demonstrate that our
proposed method achieves acceleration effects comparable to those in [13;15], and outperforms all
other methods.

-—- RAGD-GS -—- RAGD-GS
175 —— AID-BiO L | N N RAHGD
BA-CG 150 —— AID-BiO
—+— ITD-BIO BA-CG
,,,,, RAHGD 9 a5 —+— ITD-BiO
—e— F2BA S —e— F2BA
—-4-- ACCF2BA .% 10.0 --¢-- AccF2BA
=
7.5

< 2.5

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
running time (s) running time (s)
Figure 1: Corruption rate p = 0.2 Figure 2: Corruption rate p = 0.4

5.2 HYPERPARAMETER OPTIMIZATION

Hyperparameter optimization is a bilevel optimization task aimed at minimizing the validation loss.
We compare our proposed algorithms with baseline algorithms on the 20 Newsgroups dataset [11],
which consists of 18,846 news articles divided into 20 topics, with 130,170 sparse tf-idf features.
The dataset is split into training, validation, and test sets with sizes |Dy| = 5,657, |Dya| = 5,657,
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and |Dieg| = 7,532, respectively. The optimization problem is formulated as:

LY Lt e

min ——
AERP | Dy
(zi,yi) €D

st.  w*(\) = arg min
) werexr | Dyl

1 e
Z L(w; x;,y;) + 2% Z Zexp(Ak)wJQ-k.

(%i,Y:) €Dy J=1k=1

For the evaluation in Figure B inner and outer learning rates are selected from {0.001, 0.01, 0.1,
1, 10, 100}, and GD/AGD steps from {5, 10, 30, 50}. For BA, we choose GD steps from
{[e(k+1)'/4] : ¢ € {0.5,1,2,4}} as in [29]. For F?BA, AccF?BA and our method,  is cho-
sen from {100, 300, 500, 700}. As shown in Figure 8] our proposed method exhibits performance
comparable to that of [13;15], while significantly outperforming other competing algorithms by
converging faster and reaching a lower test loss.

3.0 -—- RAGD-GS
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@ 203 BA-CG
15 I —+— ITD-BiO
02 --e-- RAHGD
o1 —e— F2BA
Lo : —— AccF2BA
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
running time (s) running time (s)
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(c) Test loss v.s. oracle calls (d) Test accuracy v.s. oracle calls

Figure 3: Results of test loss and test accuracy evaluated on the test set.

6 CONCLUSION

This work introduces an accelerated first-order framework for solving nonconvex—strongly convex
bilevel optimization problems, extending nonconvex optimization techniques to a broader setting
under generalized Holder continuity. With a carefully designed restart condition, the iterates re-
main uniformly bounded within each epoch, ensuring stability and convergence. We further provide
oracle complexity bounds with rigorous error analysis and convergence guarantees. Our theory is
supported by empirical evidence, demonstrating the effectiveness and robustness of the algorithm.
While recent advances in the stochastic setting [[14; [32; [13] mainly focus on the first-order oracle
complexity, it remains unclear whether acceleration with an appropriate restart scheme is attainable
under higher-order smoothness assumptions (V2 f and V3g). Challenges such as noisy restart trig-
gers and precise hyper-gradient estimation make this nontrivial. We leave this challenging direction
for future work.



Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work does not present any apparent ethical concerns. The proposed algorithms are purely
theoretical and experimental in nature, and they do not involve human subjects, sensitive personal
data, or applications that pose foreseeable risks of harm. Nevertheless, we recognize the importance
of ethical considerations in machine learning research and adhere to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide the following: (1) all theoretical results are accompanied
by complete proofs in the appendix; (2) experimental setups, including dataset preprocessing and
hyperparameter settings, are described in detail; (3) source code implementing our algorithms will be
made available in the supplementary material. These resources should allow others to fully replicate
our findings.

REFERENCES

[1] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil.
Bilevel programming for hyperparameter optimization and meta-learning. In Infernational
conference on machine learning, pages 1568—1577. PMLR, 2018.

[2] Matthew MacKay, Paul Vicol, Jon Lorraine, David Duvenaud, and Roger Grosse. Self-tuning
networks: Bilevel optimization of hyperparameters using structured best-response functions.
arXiv preprint arXiv:1903.03088, 2019.

[3] He Chen, Haochen Xu, Rujun Jiang, and Anthony Man-Cho So. Lower-level duality based re-
formulation and majorization minimization algorithm for hyperparameter optimization. In In-
ternational Conference on Artificial Intelligence and Statistics, pages 784-792. PMLR, 2024.

[4] Tianyi Lin, Chi Jin, and Michael Jordan. On gradient descent ascent for nonconvex-concave
minimax problems. In International conference on machine learning, pages 6083-6093.
PMLR, 2020.

[5] Tianyi Lin, Chi Jin, and Michael I Jordan. Near-optimal algorithms for minimax optimization.
In Conference on learning theory, pages 2738-2779. PMLR, 2020.

[6] Jiali Wang, He Chen, Rujun Jiang, Xudong Li, and Zihao Li. Fast algorithms for stackelberg
prediction game with least squares loss. In International Conference on Machine Learning,
pages 10708-10716. PMLR, 2021.

[7] Jiali Wang, Wen Huang, Rujun Jiang, Xudong Li, and Alex L Wang. Solving stackelberg
prediction game with least squares loss via spherically constrained least squares reformulation.
In International conference on machine learning, pages 22665-22679. PMLR, 2022.

[8] Gautam Kunapuli, Kristin P Bennett, Jing Hu, and Jong-Shi Pang. Classification model selec-
tion via bilevel programming. Optimization Methods & Software, 23(4):475-489, 2008.

[9] Zhuoran Yang, Yongxin Chen, Mingyi Hong, and Zhaoran Wang. Provably global convergence
of actor-critic: A case for linear quadratic regulator with ergodic cost. Advances in neural
information processing systems, 32, 2019.

[10] Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale stochastic
algorithm framework for bilevel optimization: Complexity analysis and application to actor-
critic. SIAM Journal on Optimization, 33(1):147-180, 2023.

[11] Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration

complexity of hypergradient computation. In International Conference on Machine Learning,
pages 3748-3758. PMLR, 2020.

[12] Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In International
conference on machine learning, pages 737-746. PMLR, 2016.

10



Under review as a conference paper at ICLR 2026

[13] Lesi Chen, Yaohua Ma, and Jingzhao Zhang. Near-optimal nonconvex-strongly-convex bilevel
optimization with fully first-order oracles. Journal of Machine Learning Research, 26(109):
1-56, 2025.

[14] Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert D Nowak. A fully first-order
method for stochastic bilevel optimization. In International Conference on Machine Learning,
pages 18083-18113. PMLR, 2023.

[15] Haikuo Yang, Luo Luo, Chris Junchi Li, and Michael I Jordan. Accelerating inexact hypergra-
dient descent for bilevel optimization. arXiv preprint arXiv:2307.00126, 2023.

[16] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2013.

[17] Coralia Cartis, Nicholas IM Gould, and Ph L Toint. On the complexity of steepest descent, new-
ton’s and regularized newton’s methods for nonconvex unconstrained optimization problems.
Siam journal on optimization, 20(6):2833-2852, 2010.

[18] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding
stationary points i. Mathematical Programming, 184(1):71-120, 2020.

[19] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. “convex until proven guilty”:
Dimension-free acceleration of gradient descent on non-convex functions. In International
conference on machine learning, pages 654—663. PMLR, 2017.

[20] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Accelerated methods for
nonconvex optimization. SIAM Journal on Optimization, 28(2):1751-1772, 2018.

[21] Chi Jin, Praneeth Netrapalli, and Michael I Jordan. Accelerated gradient descent escapes
saddle points faster than gradient descent. In Conference On Learning Theory, pages 1042—
1085. PMLR, 2018.

[22] Huan Li and Zhouchen Lin. Restarted nonconvex accelerated gradient descent: No more
polylogarithmic factor in the in the o (epsilon”(-7/4)) complexity. Journal of Machine Learning
Research, 24(157):1-37, 2023.

[23] Naoki Marumo and Akiko Takeda. Parameter-free accelerated gradient descent for nonconvex
minimization. SIAM Journal on Optimization, 34(2):2093-2120, 2024.

[24] Naoki Marumo and Akiko Takeda. Universal heavy-ball method for nonconvex optimization
under holder continuous hessians. Mathematical Programming, pages 1-29, 2024.

[25] Justin Domke. Generic methods for optimization-based modeling. In Artificial Intelligence
and Statistics, pages 318-326. PMLR, 2012.

[26] Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and
enhanced design. In International conference on machine learning, pages 4882—4892. PMLR,
2021.

[27] Minhui Huang, Xuxing Chen, Kaiyi Ji, Shigian Ma, and Lifeng Lai. Efficiently escaping saddle
points in bilevel optimization. Journal of Machine Learning Research, 26(1):1-61, 2025.

[28] Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-
propagation for bilevel optimization. In The 22nd International Conference on Artificial In-
telligence and Statistics, pages 1723-1732. PMLR, 2019.

[29] Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv
preprint arXiv:1802.02246, 2018.

[30] Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and
reverse gradient-based hyperparameter optimization. In International conference on machine
learning, pages 1165-1173. PMLR, 2017.

[31] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

11



Under review as a conference paper at ICLR 2026

[32]

[33]

Jeongyeol Kwon, Dohyun Kwon, and Hanbaek Lyu. On the complexity of first-order methods
in stochastic bilevel optimization. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller,
Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp, editors, Proceed-
ings of the 41st International Conference on Machine Learning, volume 235 of Proceed-
ings of Machine Learning Research, pages 25784-25811. PMLR, 21-27 Jul 2024. URL
https://proceedings.mlr.press/v235/kwon24b.htmll

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review,
51(3):455-500, 2009.

12


https://proceedings.mlr.press/v235/kwon24b.html

Under review as a conference paper at ICLR 2026

APPENDIX

This appendix provides additional theoretical results and technical proofs that support the main text.
For clarity, we organize the appendix to follow the structure of the main paper: each subsection
presents the detailed derivations and omitted proofs of the corresponding lemmas and theorems.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

No large language models (LLMs) were used in the development of the research ideas, theoretical
results, experiments, or writing of this paper. All contents are solely the work of the authors.

B NOTATIONS FOR TENSORS

We adopt the tensor notation from [33]. For a three-way tensor X € R%*2Xds  the entry at
(11,12, 13) is denoted by [X];, i,,i5- The inner product between X and ) is defined as

<X’y> = Z [X]il,iz,iz[y]ihimia'
11,12,13

The operator norm is

H‘X” = sup <X7I1 OI20I3>7
lz1|=llz2ll=lzs]|=1
where [11022023];, 4545 = [Z1], [¥2)is [€3]is- This definition generalizes the matrix spectral norm

and the Euclidean norm for vectors to three-way tensors. Let X € R4 42X be a three-way tensor,

and let A € R% %91 be a matrix. The mode-1 product of X’ and A, denoted by X' x; A € R%1 xd2xds
is defined component-wise as

dy
(X %1 Al igia = D Ay iy Xi iy

11=1

Mode-2 and mode-3 products, denoted by X’ x4 B and X x 3 C, are defined analogously for matrices

B e R%d and ¢ e R¥*ds, respectively. Moreover, the operator norm satisfies the submultiplica-
tive property under mode-¢ multiplication:

1 x; A < Al - | X, fori=1,2,3.

C PROOF OF LEMMAS IN SECTION[2]

Lemma C.1 (Lemma B.2 by [13]). Under Assumption[ll for X\ > 2L /p, it holds that ||y} (z) —
* Cy
y (@)l < 50

Lemma C.2 (Lemma B.5 by [13]). Under Assumption[ll for X > 2L/, it holds that | Vy*(x) —
Vyi(z)|| < Da/\ where

1 2L Csp
Dy = +g><L —|—fg>=(’) K3) .
? (u u? ! % ()

Lemma C.3 (Lemma B.6 by [13]). Under Assumption[l] for X\ > 2L/, it holds that | Vy*(z)|| <
Lo/ VY3 (@)l < 4Lg/ .

This implies that y*(z) is (L4 /p)-Lipschitz continuous, y3 () is (4L4/p)-Lipschitz continuous.
Lemma C.4. Under Assumptionll] for X > 2L /11, we have

Dy

IV2y*(2) = VZy3()ll < 17

13
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where

2 Lo\2 C 14L,p,D
Dy =2 (1w <1+/j) (Lf+ fpg)+ 9Pg 22 (L yi-v,

p* 2Ly I p? 2Ly
50L2 "
g 1—v, fv
g M (—=\V9
2 (G My S
—O(kH79)

Proof. We begin by differentiating the identity
V2,9 (z,y* () + Vy* (@) Vi g (z,y* () = 0
with respect to z. This yields

Viaayd (2,57 (2)) + Va9 (2,97 () x1 Vy* (@) + V2 (2) x3 V5,9 (2,57 ()
+ Vayd (@97 (2)) X2 VY™ (@) + Vi, (2,57 (@) x1 Vy* (2) x2 Vy*(2) = 0.

Rearranging terms to isolate V2y* (), we obtain
Viy*(x)
=~ (Vaey9 (2,57 (@) + Vg (.47 (2)) x1 Vy* (2)) x5 [Vy,9 (2,57 (2))] %)
) x2 Yy (2) x5 [V2,9 (24" (2)] "
) %1 Vy* (@) %o V' (2) x5 [V2,9 (2,57 ()] .

-1

— Vo9 (@, " (x)

Analogously, we have

V2y3 (x)

= — (V3L (2,93 (2)) + V3, Ly (2, 53(2)) x1 Vy3(2)) x5 [V2, La (2,53 (x))] "
— V3, L (2,95(2)) x2 Vyi(x) xs [V2, Ly (2,935(2))]
— V3, La (2, y5(x)) X1 Vyi() x2 Vyi(x) xs [V2, L (z,5(2))] -

-1

Next, we estimate the difference between the corresponding third-order derivatives in the original
and penalized problems. To begin with, we observe that

V3. . Ly (x4}
||Vixyg(ﬂf,y*(x))— a2 12,15(2)

N * v Pr Pf Cf Y9
< My llyi(2) — y*(@)[”* + EL = B+ 0, (M) _

Similarly, for the mixed partial derivative and its contraction with Vy* (), we have

Ve (z.y3(2)) x1 Vs (@)
A

Hvizyg (z,y"(2)) x1 Vy*(x)

<|IVy* (@) = VIR @) [ V5ayg (.97 @) + VYA ()]

pgD2 4Ly (py Cr\™
< — M, | — .
S + p \ + M, i

V3 g (2,97 (2) —

V3L (2,93 (@) H
A

14
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Furthermore, we control the error in the third-order term involving two contractions:

. . . V3, Ly (x,yx(x)) x1 Vyi(z) X2 Vyi(x)
Va0 (.3 (@) X1 V' (2) xa V' () — 222 ;

< IV (@) | V3,9 (@, (@) IVy* (2) — Vi ()]

+ [IVys (@) | V5,9 (57 ()| IVy*(x) — Vyi(a)]]

Vi ey (2,95 ()
)

+ V3 @) | Vi (2,97 (2))

1612 Vg
< Hapule o (B, (S2) ).
A 1% A A

Combining the above inequalities, we are now ready to bound the difference between the second
derivatives:

[V2y* () = Vg3 (a)

A

% * -1
o (TEapsD2 25L5 (ps (S5 Ve, L (z,y5(x))
A w2 A I\ A\ A

2pg Ly ? Crpy 14Lgpy Do 50[’52; Pf Cr\™
<o (1429) (L BL v, (2L
~Ap? ( o )T e s (T

=P (1 - l,;g) (V39 (z.y"(2))] -1 [ Vila (z, y;(x))]

O

Lemma C.5. Under Assumptionll] for X > 2L / i, the mappings Vy* (x) and Vy (x) are Lipschitz
2 2
. . L 4L 2 .
continuous with constants (1 + th) % and (1 + 7‘7> (% + Z—;) respectively.

Proof. Recall that
* * * -1
Vyi(z) = _viyLA (z,y3(x)) [szL,\ (xay/\(x))] )

and
-1

Vy*(z) = V2,9 (x,y"(2)) [Vi,9 (@, y" (z))]

By equation [[3] and equation [[4] we can obtain the Lipschitz constants of Vy*(z) and Vy3(z) by
directly bounding ||V?y* ()| and || V?y}(z)||. Specifically, we have

1 L L L\ ? _ Py L\’
V2 (@) < = pg+p g+p g+p<g) (1+ )
V2™ (@) u<g 9 9, TP\ m
AL AL, * (2,  pr
Viy < o (ep e 1+2g+( ) <( ) <9+
Vi3 (@) < /\u(f 9) . L L
Here we use Lemma A= 2Lf/u, IVieyg@ )l < pgs V39 y)ll < py.
Vool < pgs IIVyyg(x Yl > w IV Lale,y)ll > 320 [Vig, f@y)l < oy,
IVayyf (@ 9)| < pgand V5, f(z,9)]l < py-
O
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C.1 PROOF OF LEMMA[Z

Proof. We decompose V2L} (z) into two components:
V2L;(z) = A(z) + B(x),
where
A(z) = Vi f (2,y3(2)) + VA (2) Vi f (2,95 (2))
and

B(x) =X (V2,9 (z,y5(2) = V.9 (z,y"(2)))
+ M (Vyi (@) Vi,g (z, v (2) — Vy* (2)Vi,g (2, y"(x))) -

To analyze the variation of A(z), we observe:

[ A(z1) — A(z2)||
<V2of (21,93 (1)) = Vi f (2,43 (22)) ||
+ [IVys(21)Vief (1,535 (21)) — Vi (22) Vi f (22,45 (22)) ||
<V f (1,95 (21)) = Vi, f (22,53 (22)) ||
+IVyr(21) Vi f (21,95 (21)) = Vyi(22) Vi, f (21,95 (1)) |
+ ||Vy)\('r2)vwa(x17y)\(x1)) y;(‘rz)vyxf(x27y)\< 2)) ||
(

4L,
<Hj(1+ T)Vfllxl -z + 7Pf 1+ 7)le1 — 2|

4Lg. 5,205 | Py
14+ 29y2 (289 4 By —
e Lo Dy —
4L,
<0+ Layer oy s
I
N A —
Ch
AL AL, ALy o 20, pf >1_
(2 a4 2y (14 2922y PENE ) DYy — ol (15)
(MEepr+ oy 1 Loy 201, ) D101, -

Cy

The first step applies the triangle inequality. The second step relies on the (v, H)-Holder continu-
ity of V2, f, the bound V2 f(-,-) < Ly, and LemmalC2l Here, C1 = O({k"7), Cy = O(LK?).

Next, we evaluate V B(x) by differentiating:

VB(z) =X (V3,.9 (2,95 (2) — Vi,.9 (z,y" (z)))
+ A (V8,00 (2, $(0) = V2,0 (2,7 () x1 Vy* (@)
+ A (V3,09 (, o Vyx(z) — Vi,.9 (x,y" (2)) X2 Vy*(z))
+ A (V80 2,y $ () xo Vi (@) — V3,0 (2,57 (2)) x1 V' (2) x2 V()
A (V203(2) x5 [V2,9 (@, 03(0)] | = V25 (@) x5 [V2,9 (25" @) ).
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To bound the Lipschitz constant of B(x), we control |V B(z)|| as follows:

IVB(2)|| <AIV3.09(z,y* (2) = Vi,.0(z,y3 (@)
+ A Vy*(x )IIHVmg(fc y* (@) — Vieeg(z,yx(2))]|
+ Vs (@) = Vy* (@) [[[IV.09(2, 3 (@)
+ A[Vy* (l’)”Hnyxg(l’ y*(2)) = Vayeg(a,yi (@)
+AIVy* (2) = Vi (@)1 V3ye9(2, 3 () |
(2)
(x)
(x)

8

+ VY @)1V e9(z, v () V3 () — V" (2)]]
+ VYL @)V ye9(@,y* @) Vya(x) — Vy* (@)
+ VY (@) |21V 09, y* (2) — Vi, 9(2, y3 ()|
+ A V2y x)HIIVyTg(I y*(x)) — Vi,g(z, y5(2)]|
+AV2y* (2) = V2R (@) IV, 9 (2, y3 (@)

8

—~ o~

Using the smoothness and Holder continuity assumptions on g, as well as bounds from Lemma|C. 1]
LemmalC.2] and LemmalC.4] we arrive at:

Cf>”g ( Lg>2 5L, . D
<M, (=L T+ 22) 42+ =), =2

C L,\? D

oo () (145 e
Cr\" Ly\° 5L,

=AM, (f) (1 + g) +(2+ —2)pyD2
p 1 1

C Ly\*
+ g <f> (1 + g) Pa 4 N'=v L, Dy,
1 p) o w

Denote the entire right-hand side as C3 = O(A'""9/x%s). Finally, we estimate the restricted
Hélder constant of V2L (z):

IV2L3 (1) = V25 (2)|| _ [ A(z1) — A(xa)|| | [|B(z1) — B(xs)|
|z1 — @27 = = e |21 — @2|"s
<Cy + (Ca + Cs)|lwy — o'~
<Ci + (CQ + C3)R1_Vf.

IVB(x)

Define
H,(\,R) :=Cy + (Cy + C3)R"™Y = O(Ur") + O\ Vot tro)RE7Vr (16)

Thus, V2L3 () is restrictively (v¢, H, (), R))-Holder continuous with diameter R. In the case
vy = 1and v, = 1, this implies V2L () is O(¢x°)-Lipschitz continuous. O

D PROOF OF LEMMAS IN SECTION [3]

D.1 AGD SUBROUTINES

This method boasts an optimal convergence rate as shown below:

Lemma D.1 ([[L6], Section 2). Running Algorithm[21on an £y,-smooth and py,-strongly convex ob-
jective function h(-) with o = 1/€, and B = (\/kn — 1) / (\/En + 1) produces an output zr
satisfying

T
* 1 *
for =P < @) (1= =) B 1P,

where z* = arg min, h(z) and Ky, = Cy, [ up, denotes the condition number of the objective h.

17



Under review as a conference paper at ICLR 2026

Algorithm 2 AGD (h, 29, T, o, 3)

1: Input: objective function h(-); start point zg; iteration number 7' > 1; step-size « > 0; momen-
tum parameter 5 € (0,1)
20 < 2o
fort=0,...,7T—1do
Zt41 Zt —aVh (,gt)
Zip1 < 2ep1 + B (241 — 2t)
end for
Output: zp

AR AN ol

D.2 PROOF OF LEMMA[3

Proof. Consider an epoch ending at iteration k£ > 2. By applying the Cauchy—Schwarz inequality
to the restart condition equation[3 we obtain

k—1
L L
max ||z — ;] <Dl — @i < VESp1 < () (17)

0<i<j<k—1 ‘ v

1
This implies that the diameter of conv({z;}}~) is less than ()7 . By solving a system of equa-

v

tions: )
{ = 3(#)7 (18)
H,(\R) = Hy,
where H, (A, R) is defined in equation[I6 We have
H,=0 ()\Vf'(lfl’g)g,@3+(1+ﬂg)l'f> , R=0 ()\*(1*%)5*(1%9)) . (19)

Denote this specific R by D. The boundedness of {xi}f:_ 11 has been ensured by equation[I7l From
line 8 in Algorithm[Il we have

[witr — will < (L4 Oip) @i — @sll + Ollws — wia ]| < 2| win — @l + |2 — 2ia -
The last inequality holds due to 8y, € (0, 1). So

max |lw; —wg| < max ||w2 —w;|| <3 max ||;v1 —z;|| <D,
0<i<k 0<i<j< 0<i<j

where 1wy, is defined in equation[7] The first inequality holds because wy, € conv({w;}¥=), and the
maximum diameter of the convex hull is attained by a pair of its vertices.

O

D.3 PROOF OF LEMMA [

Proof. Consider the exact gradient of L} (-):
VL (W) = Vaf (Wer, yx(wer)) + A (Vag (wek, Ya(we k) — Vag (Wi, ¥ (wer)))

and the inexact gradient estimator used by Algorithm [Tk

VI (wek) = Vo (Wen Yek) + A (Vag (Wens Yek) — Vag Wik 2k)) -
By the triangle inequality, the Lipschitz continuity assumptions in Condition [I} and the condition
Ly < 2Au < ALy, we obtain:

IVLS (we,r) = VL3 (we ) |
<Lllyer — yx(weso) || + ALgllyer — 3 (weso) | + ALgllzek — y™ (wi k) |
=(Ls + ALg)llyt k= Y (W) + ALgllzek =y (weg)|

g
<(Ly +ALy) - 4/\L +/\Lg-—2/\Lg
<7219
2 2

18
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E PROOF OF LEMMAS IN SECTION [4]
Lemma E.1. Under Assumption[lland with X\ > 2L / i, the following holds for any x and x':
Li(@) ~ L) < (VI3 (&), 0 — ') + o — /|
E.1 PROOF OF LEMMA[3]
Proof. LetT = Y ., q;z;. Since L} is twice differentiable, we have
VL () — VLA(Z) = VLA (Z) (2 — ) + /1(V2Lf\(x +t(x; — 2)) — VELA(Z)) (2 — Z) dt.
Computing the weighted average sum, we have ’
S VL (1)~ VIL(2 Z 9 / (V2L (@ + b — 7)) — V2L3(&)) (a: — 7) di
and -

VL () — VIL(F) _Z /HVQL* _B) — VL(@)| i — 7] dt

<3 a [ olitei =) o3l a

H
T

1+ vy Pl
1+v
HV i 1—2uf 2 2f
- 0.7 (e —2l°)
1+ 14 ]
1—llf 1+l/f
Hl/ n 2 n 9 2
< T (Z%) (Zqz|$z—$| )
f i=1 i=1
H 1+21/f
v 2
= DD @iyl — )
Lt vy 1<i<j<n

The second inequality holds due to ||z; — Z|| < max;<i<;<n ||2; — ;|| < D, Lemma[land equation
equation[6l The last inequality uses Holder inequality. The last equality holds due to Z?:l g =1

and Y210 gillzi — 7 = 20 0 je @il — 24P 0
E.2 PROOF OF LEMMA [

Proof.
1
Li(x) = L3 (2") = 5(VLX(2) + VLi(2),x — 2')

1
:/0 (VLY (tx + (1 —t)2') ,x — 2') — %<VL;(£C) + VLY (2),z — 2"y dt
= /Ol(VL’j\(tx +(1—t)2") —tVLi(x) — (1 —t)VLA(2),z — 2') dt

1
S/ VLA (tz + (1 — t)a") — tVLi(x) — (1 — ) VL (2| ||z — 2’| d¢t
0

H, !
_1+Vf

(1 — )" 4+ (1= )" ) (| — 2/ [|PTr dt

B 2H,
o (1 + l/f)(2 + Vf)(3 + I/f)

lz — 2|
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The last inequality follows from Lemma [ by setting n = 2, (z1,22) = (x,2’), and (g1, ¢2) =
(t,1—1).

O
E.3 PROOF OF LEMMA[7]
Proof. Let
Pk = <VL§\(£L‘]€,1), T — $k71>.
From Lemmal[E.1] we have
* * * L 2
LN(zh41) = LX(wr) S(VLX(wk), @1 — k) + 5 llekrs — wil]
1 * v s 1 va
== Z<VLA(wk)7 VL (wg)) + EHVLA(wk)Hz- (20)
From Lemma[6and Lemma[3 it follows that ||wg — 2| < ||zx — zk—1]] < D and
1
L3 (wr) — L3 (k) <5 (VI3 (wn) + VL3 (28, w0y — )
2H, -
+ — Vi, 21
T o)+ o)) (3 1 wgy 0~ 2l @b
By summing inequalities equation 20 and equation 2] we evaluate the expression as follows
Li(ws1) — Li (1)
1 20,0,
< VL* VL* , _ vV _ B 2+vy
1 A 1 .-
— 7 (VLA (we), VI3 (wp)) + 57 [[VLA (wg) . (22)
To evaluate the first term on the right-hand side, we decompose it into four terms:
(VL (wk) + VL3 (z1), wi — zk)
= VL) (wi), wr — zx) + Ok (VLY (Tg 1), wg — xp)
(4) (B)
=0k (VL (wr), wp — o) (VL (wi) + 0 VLA (2r—1) — (1 + 0x) VLY (2k), we — @) -
() (D)
Letn=2,q1 = 1/(1 4 0), g2 = 0 /(1 + 6) in Lemmal[3] we have
VL (20) — — VL (wg) — —% VLt (1)
MR T g, TN T T gy, AR
l+1/f
H, O 2\ 2
< — Tp—
=T+ ((1—|—9k)2||wk gl )
H, Yo 1+
= 0,2 — T v 23
Tt % 2k — Tp—1]l (23)
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Now, we proceed to evaluate (A), (B), (C) and (D) respectively.

1 * 1 *
(4) =7 IV ()| + Ll =l = LGy — ) — 7 VL (i)

1 . 2
:Z||VL)\(wk)H2 + 0P Ly, — wpa|® -

1. 1
L ($k+1 — Ik) + <LVL§(U/]€) - LVL;(U%))

]' *
=7 IVL3 (wi)|* + 03 L]l — 21 |* = Llarsr — ]

1 ok * 2 2 ok *
— 2 |[VEs @) = VIR (w0 = 2ensn - wi, VI (we) = VL3 (w),

(B) =07(VL}(2k-1), T — Tp—1) = O3 P,
(C) = = Ok Pry1 + 01 (VL) (1), Thr1 — k)

0 N
= — 6k Ph1 — 7 (VLS (2), VL (i),

2H, v
(D)< 9 2 ||$k—$k 1|

|2+Vf.
“14uy

Here we use equality 2(a,b) = +||a||®> + L||b]|> — L||b — + %, Tyl = Wg — %?Lj(wk), wy =
2 + Ok (2, — ;1) and equation 23] Plugging the evaluations into (22)), we have

2Hl/ 2+4vy 2
Li(z — Li(x1) < 0, Tr — +vs
)\( kJrl) )\( k) —( +Vf)(2+yf)(3+yf) || k k— 1”
92
Jr7||9Ck e *||39k+1 — a|)?

—(Trg1 — Th, VL}‘(wk) — VL; (wg))

0,% 0% H, ¥

P —2p 0 > - vy

2 k 5 k+1 + 10 leg — zp—1]]

9 ~

57 (VLA (), wxm». (24)

Next, to bound the last term on the rlght hand side of equation 24 by triangle inequality and equa-
tion[23] we have

| @+ 00vLi @) = VL )|

<1+ 60 VLS () — VL3 (wn) | + [ V23 ) = 923 )
2H 1+1/f

<o+ 6 ||VLY(xp-1)| + T+u, —0, e — zp_q |7

Squaring both sides yields
11+ 6:) VLA (k) = VLY (wn) |
=(1+ 0, VLA (@) II” + | VL3 (wie) |7 = 201+ ) (VL (1), VLK (wy))
>(1+ 0, VLR (@) |? = 2(1 + 0) (VL3 (2x), VL3 (wr)),

and
2H, 2
(o B0 I LRl + Tt o = a7
<0 * 2 2 4H3 14vy 24+2vp
< k(1+9k)HVL)\(ZL'k71)” +2(1+9k) o +m9k ||(Ek—$k,1|| .

Here we use the inequalities (a + b)* < (1 + g-)a® + (1 + 6;)b% and (a + b)* < 2(a® + 7).
Rearranging the terms yields

* vl 0 * 4H3 v v
—(VL3(xy), VLY (wy)) <o? + —k||VL/\(:ck71)||2 + m@y Mg — zp_q ||*T27

1+9k

IVL3 (@) 1%
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By plugging this bound into (24): we obtain

2H 2+v
Li(z — Li(xp) < Y O Ny — mp_q |2
M#rg1) — LY ( k)*(1+z/f)(2+uf)(3+v) PRI (ET Y|
92
Jr7||$k—5€k 1|12 —*kaﬂ—wkﬂ

— (k1 — xx, VL (wr) — VLS (wy))

07 Oy H, >« 9tus
kp _Ep 0. 2 _ _ +vy
t5 P 5 Pt T4u, 0 lon — 2p—1]|
02 2H2 07T )
—|——VL*$ + — Ty — 1 |PT2
H ( k— 1)“ (1+Vf)2 L H k k 1“
(1+9k)0k " 2 9k02
D VS @l + es)

Considering equation[9] equation23]and 0, < 1, we have

2

0
Qi1 — P <LY(Tp41) — L3 (2) +

92 "
% (Pt GEIVE (@) 2+ Ll — 2l

28, ven,  H,
<|lzp — xp_q||PTYr Y 0, + Y 9,2
Sllok = ((1+uf)(2+uf)(3+uf) k T+up ¥
QHS 912g+yf ‘91%+1 — O
5 + Pit1
1+vp)? L 2

1 *
2 (P + g IVER (@) P+ Ll = ol

+ lzg — zp—1]* T

n 9]%4_1 — 0 (1+ Gk)
4L

2
g
IVL3 (@)1 +

or + ollzrer1 — k-

From Young’s inequalities and 9% b1 0, <0, we have

N L
—Pry1 = (VL (1), Tht1 — 21) < ||VLA(5Uk)||2 *||$k:+1 — x|

— 2L

Finally, we derive the inequality below:

2HV 24v Hy vy
P — By, <||lzp — Tp_1|*TVf 0, " 0, 2
SEEE ((1+uf)(2+uf)(3+uf) R ST
2H2 0T 02, + 6, —2
_ 2+4-2vy v k k41 L _ 2
+ llzk — zp—1]| G+v)? I + 1 Zk+1 — 2|
02 2
k HVL* (ze)I” + 5+ 5T + ol|zpg1 — 2.
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E.4 PROOF OF LEMMA[§]

Proof. Summing Lemma[7from i = 0,. ..,k — 1 and telescoping yields

k-1
Op — Py = Z(q)i“ - 9;)

k—1

2H vy, H, v
< i — Ti_ 2+vy v 92tV v _p2
*Zizo <'m zict <<1+uf><2+uf><3+uf>l T

2+4+v
s — o |22 21 0,7 O+ 0=
¢ = (1 + l/f)2 L 4

Llwiz — i

92 9 2
S IV L@ + 57 + ol — i)

k—1

2H, 2tv H 3tvy
< s — i ||FTY v gtvs L TV gz
<2 Mo =il (<1+Vf><2+uf><3+uf> R R

0
k—1 24v k—1
2H2 0, 0340, —2
. 2+2vy v k—1 k k—1 L ) 12
+ ; sz Iz—ln (1 n Vf)g 7 + 4 ; ”zz-&-l le
62 ko? -
- PIVL @ + G + 0 3 i il ). 26)

1=0

The second inequality holds due to {f;} is non-decreasing and non-negative. Moreover, by the
definition of @}, in equationBl, we have

92 L
b= L) = & (GHIVE () + Low = )P+ Ellow —mel?) 20, @)
* 9% * 2
Qg — L3 (z0) = ||L (zo)]| > 0. (28)

From Power-Mean Inequahty, we have

k—1 k—1
2oy ,
> llwi = @i T < S,~c LD s w | < 8 (29)
=0 =0
Substituting equation 27} equation 28] and equation 29]into equation 26l we obtain
vy oH - H, v
Ly (zg) — Li(z0) < S, 2 - 0, +——0,"
Maw) = Li(o) < 5,4 ((1+yf)(2+yf)(3+uf) Ltup *1 )
2+v
+ S 2H; 6, . O + 01 — 2LSk
(1 +vy)? L 4

+ — +UZ i1 — ).

Applying the restart condition equation [3]and noting that S;,_; < S, we further obtain
2 R s B
L+vp)2+vp)(B+vp) 1 14y 1 g2+
L2 24v; LSk | OF+0k—1 —2
(1_|_Vf)2 k=1 pAtvy 4

2 k—1
ST +UZ 2it1 — 2l|-
=0

L (@) — L (ao) < ( :

LSy,
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Since 0 < vy < 1, and

> - Vk>1,
2 4 = 32k =

T ovu Bvy 1 02 +0,_1 —2 1
<392+f+0k1>.2 Ot —2

we obtain

. . 7 940 vy 1 02 + 0,1 —2
L/\(J,‘k) —L/\(l‘o) < LS, ((392+ 4 +9k 1 > . kg_t,_’;f + k Z L )

+ — +JZ”$Z+1 — x|

LSk kO’

< 30k 7"‘02”55%1_552”
O
E.5 PROOF OF LEMMA[9
Proof. Define
B ki: 1:[ _k + L
i=0 j
so that py; = 5 HJ i+1 0;. From definition (7), we have:
k—1
Zpk ZVL)\ wz Zpk:z _xi+1)
=0
= Zplc,iL<9i(xi —xio1) = (Tiy1 — 3))
i=0
= ZL (Pri—1(Ti — Ti—1) — pre,i(Tit1 — 1))
= —Lpgp—1(zK — Tpp—1)-
From @y, € conv({w;}*~}), Lemma[3and Lemma[] we have
Lhvp
k—1 H 2
_ 2
IVIR@I < |3 peaVIR (|| + 75— | D prabes s = wyl
=0 0<i<j<k
Ly
2
H, 2
<o + Lk p—1llzn — zp-all + 5 o Z Ph,iPk,jllwi — wjll
0<i<j<k
1+Vf
L H i
<o+ — ek =zl + ————5- Z [|w; — w;|? . 30)
2, (1+vp)Z, Y 0<i<j<k

24



Under review as a conference paper at ICLR 2026

Here we use inequality pr; < prr—1 = 1/Z; = 2/(k + 1) forall 0 < i < k. Regarding the last
term in equation 30} we have

[Jw; — w|
Jj—1
<lws =il + Y Mo — @l + llwy — 254
l=i+1
j—1
=i —iall + D o — il + 2|z — 254
l=i+1
i1 2, 1/2
< (12+ Z 12+22> <Z|$l —$l1|2>
l=i+1 =1

1/2

Vi—itid (lewz—wz 1||>

The above inequalities hold by the triangle inequality, 0 < 6;, < 1 and Cauchy—Schwarz inequality,
respectively. Then

J

S w36 i+ 4) e - ai

0<i<j<k 0<i<j<k l=i
k-1 [ 1 k—1
221—24-4 s =21 |? = 4D o — 2
1=0 \i=0 j=1 1=0
k—1 k-1
k+7
e {(E ] EENY o) gy
1=0 1=0
k47w 1(lc+1)
< 21 — | —4Z|\$l—$z 1
1=0 1=0
k-1 k+52k S k+5
_( )é ZHxl—xl ? < Msk. (31)
Plugging equation 3]into equation 30} we have
14v
_ L ) 1iv, (K= (k+5)*\ =
L} <o+ = ||lzy — zh_ 1z e (T O) =
VLR (@01 < 0+ Flon = aual + o 1720 (E=2 S

(32)
Then for k > 2, combing with (32)), we have
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k
(Z ) in VL ()]

k-1

Z 2NV LS ()|

<o Z Z? + Z <in|xi —zial + 5
i=1 i=1
k—1

k—1 k—1 . .
H, 1, (=1 +5)2 (14,2
2 2\1/2 -1
SJ;Zi +L\/5k71(;4) iy > (1/z) ) s

=1

Hy g = D) 1o
By (R s )

k—1 k—1 . .
Ly/1/k3vs 2 (=1 +5)% 1y 1
2 241/2 vp—1 3
<o ;:1 Zi + Ly Skfl(;:l ZHV? 4+ § (i—|— 1) (e )7 SE

1—|—l/f 8

k-l i Atvy i—1)( 2 1ty
=0 > 7+ LS (<zZz>v2+W“ P ()
i=1 =1

1+I/f

3
Notice that Z;, = k“ and g > z2 < %, we have

1+l/j»

k—1 1RV S ve—1y(i—1)(i+5)2 v
((Zi_l Z2)12 4 VKT Z(i%) f 1(%)(1+ f)/2)

win VL3 (@) < o + Ly/Se s
1<i<k

+
f 4+1
<o+ L\/Si_1 k3/12

<o+ cLy Skfl/k/’?’,

where c is a constant, ¢ = 21/6 + 27. The last inequality holds due to Zi:ll i3+ <

E.6 PROOF OF PROPOSITION[I]

Proof. Consider an epoch ends at iteration k£ and ignore the subscript . If Wy, is not an e-first-order
stationary point and k > 2, from Lemmal9] we have:

€ <o+ cl\/Sk_1/k3 <o+ cL\/Si/k3.

Ifk=1,04 cL\/Si/k® = 0 + cL||z1 — xo|| = 0 + ¢|[VL;(x0)|| > €. Here we set 0 = @e,
the above inequality is
2/€3
Sp>——— VE>1. (33)
(c+g5) L2
From (33)), We have
1 LSy,
kS = VES, < =—= 34
BT Gae+ 17V = Gk &4
ko? k1 55k LSy,
< =[P < — 35
2L T 2L6427 k3 ~ 2 x 642k (35)
From restart condition equation [5] we have
L2 k.4+yf 1/vy
S > (/HQ> . (36)
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Then we can bound S}, as:

4+43v

443vy vy e 1
Py v 64 22wy T
Sp=28,""8 " > 73 (640—16— 1) K2H, T

From Lemmal[8] (34) and (33), in this epoch, decrease of L5 () is

LS, ko? LS
L (z0) — Li(ap) > ook — 20 5\ /kSy > 2k

— 32k 2L 100k
4+3uf
2+2v 1
> Loy (B N g
100 64c+ 1

Sum above inequality over all epochs and denote the number of total iterates as K, we have

atsvy

64c + 1\ 22y

64¢ ) '

As a result, we can denote the expression in the right side of equation 37l as K ,ax. Substitute
H, = X110 (¢k3+1+v0)vr) and L = O(¢k?) for (3T), we have

1
K < 100A,L} HZFT ( (37)

(38)

vi(l-vg) 2+4vy 6+4vstvyrg 4+43vy
K< O (AA)\ (3F2vp) p2F2vy 7 CH2vp) 2+2uf> )

We can also bound S}, as:

24vp o vp 6ie e
S =8 eI > ! kH, "7
kT 2k ko= 6dc + 1
From Lemmal[8] (34), (33), in this epoch, decrease of L} (z) is

LSk k0'2
* N >__r _ __  _
L (zo0) — Li(zx) = sk oL © kS,
< LSy,

=100k
2oy

i 1
> 1 ( 646 ) f Hl, 1+1/f. (39)

=100 \ 64c + 1
Sum above inequalities over all epochs, we have

24v

Gdc + 1\ 7
64e
Substitute H,, = A"/ (1770 O (¢k3+ (14791} and L = O(¢x?) for equation @0, we have

_1
T < 100A,, < H,™7. (40)

vi(l—vg) 1 3+(1+vg)vy 24vy
) . 41

T S O <A)\)\ (I+vy) €1+1/f K (T+vy) 67 T+vy

E.7 PROOF OF THEOREMIII

Proof. From Lemma [Tl we have ||VL3(z) — Vo(z)| < O¢x*)/A. From Lemma[Il we have
|L3(x) — p(z)| < O(k?)/X. Denote the number of total iterates as K, from Proposition [} the
following holds:

IVp(wr)|| < [[VLX(@r) = V()| + [V L (@) < 2e.

Substitute equation 38l and equation BTl with A = max(O(k), O(¢x3) /e, O(¢x?)/A), the theorem
is proved. U
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E.8 PROOF OF THEOREM[2|

Lemma E.2. Consider the t-epoch generated by Algorithm[Il and ending at iteration k, we claim
that for any t and its corresponding k, we can find some constant C to satisfy:

VL (wek—1)]l, < C.

Proof. For the t-epoch except the last epoch, w; j is not an e-first-order stationary point. Since
L% (z) has L-Lipschitz continuous gradient, we have

* * * L
LY (Tr41) < L) (wi) + (VLY (i) , D1 — wi) + 5 ekt — wil?
2

b

< 13 (wn) - 7 (VIS (wr), VLS (o)) + 57 [ V25 ()|

where we use zp 1 = wi — %VLj(wk). We also have

L
L3 (k) 2 L3 (wg) + (VL3 (wi)  2x = we) = 5 [lzx = wil.

Combining the above inequalities leads to
L} (wh41) = L (k)

¥ L 1
< — (VL3 (wg) , xp — wp) + 3 g, — wg|* —

L
it * L 2
=L <1'k+1 — Wk, Tl — wk> + <VL)\ (wk) — VLA (U}k) , T — wk> + 5 ||{L‘k — wk||

(VL (wn), VI3 () + 57 |93 ()|

1 * vl 1 > ok 2
— 2 (VI3 (we) , VL (wn) ) + 5 | VIS ()|
L N
=5 (lorr = will® + llz = well® = e = al®) + (VL3 (wi) = VL3 (wi) 2 — wi)

L 1 N I 1 |e . . 2
5l = well® = 7 (VL3 (), VI3 (we)) + 5 [ VL3 ()|

2 L 2 ok * 1 = ok 2
<L Jax = will® = 5 llowss — ol + (VIS (we) = VI3 (we) o — we ) + 7 | VI3 (wi)|
1

7 (VL3 (wn) VLS (w) )

(a) 9 L 9 - )
<Lz = n-all® = 5 o — @l + [ VI3 (we) = VL3 (wn)]| - 2 = wx-a]
1 va 4 2 1 * va B
7 [VER @] = 7 (TL5 ) VLS () )
L .
=L o = I = 5 loer = 2l + | VIS (wr) = VL3 ()| -z = axa
1

vz ] = g7 (95 ol + 923 o]~ 723 ) - 925 @)

(b) L o
<Ll = el = 5 loees = @l + | VIS (wr) = VL3 ()| - 2 = axa]

1 . 3 . o 2
— 17 IV (o)l + 77 || VL (wi) = VI3 ()|

() L 1 § 3
<Lz — zpal® - 3 |kt — zal — i IVL; (wi)l® + o |z, — 21l + 5027

(a) (b)

where we use ||z — wi|| = Ok ||zr — zr—1]] < |2k — zk—1]] in <, the triangle inequality in <
(©)
and LemmaMin <.
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Summing over the above inequality, and using o = x_1, we have
Ly (x ) — L3 (o)

= = k-1 3
2 * 2
52 lwis = aall* = 77 3 IVIL @I +0 3 Nl = zicall + 70k
=0 i=0 =0

(d) Lk 2 k—1 k—2 ) 3
Z||5Uz+1 ail|” — L;HVH(W +ovk-1 ZZOH%H*%‘H +ECTQ]€
© ésk_l — IV )P+ o VRS + %021@
2
<3 (5)"- ﬁ VL3 ()P + o((L/H)T) + 0%
2L (L) Lyl oty + S @)

(d) (e)
where we use the Cauchy—Schwarz inequality in <, non-negativity of norm in <, the restart condi-

. . .M . . ® . .
tion equationBlin < and equation[33]in <. For the last term in equation[42] we have

Sk Sk . Ika—xk 12
k
@ g o Ho:rxk 12
~ \H, k
(b) L 2/Vf R 2
< (m) H -1~ Tg-1— VLj(wkfl)
© /L 2/vy 2
< (g) s =il 4 s [V )|
@ ( L\ > ) 402
< (Hy> + D m”vh(wk—l)ﬂ t 77

(a) . (b)
where we use the restart condition equationBlin <, z = wr_1 — %VL (wg_1) in <, Lemmal[3]

. (© . (@ . . . .
in < and LemmaMlin <. Combined with equation 2] we obtain

L3 (zx) — L (20)

2
1 3 L\ vr 3L 8 402
<(z+—-\L 2pry
_<2+4><642> <H> T (k +L2> (43)

! <41L : 643L> VL5 (wa) [P + o ((L/H,) )

We claim that for any ¢-th epoch ending at iteration %, we can find some constant C' to satisfy:

VL (wee—1)]l, < C.

Otherwise, equation[43]shows that L5 (w; ) can go to —oo, which contradicts to min,cra, ©(z) >
—o0 in Assumption[Tland |L3 (z) — ¢(x)| < O(¢x?/)) in Lemmalll O

With the help of Lemmal[E2] we provide the proof of Theorem
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Proof. We firstly show the boundedness of ||y*(w o)||. Suppose that the ¢-epoch ends at iteration ,
we have

[y (wet1,0) = 4™ (wo,0) |
<lly*(@e k) =y (wen-0)ll + 1y (wep-1) =y (we,0)ll + [ly* (we,0) =y (wo,o)|

L L
<—Hlwek — wen-all + fllwt,k—l = wiol 4 [ly* (we,0) =y (wo,0)l

1
L, C+o N N
_f( 7 +D)+ ly™ (we,0) — y* (wo,0)l|-

The first inequality holds due to triangular inequality, the second inequality holds due to y*(z) is
L,/ p-Lipschitz continuous and the last inequality holds due to Lemma[@]and LemmalE2] Then we
have

ly* (we,0)l| <lly*(we0) =y (wo,0)ll + [y (wo,0)l
Ly, C+o

<
™ (wo,0) || + N( 7 + D)t
C+o
< —= DT
ly* (wo,0) |l + M( 7 )T,

where 7 is the total number of epochs. We can set {7} ;, T} ; } as follows: let

2
:’721/%103;1/14-[@(1-1—2)\%(04—0 )ﬂ (44)
ou: L
, 4L, 9, C+o
Ttl’V\/ \/1+ <1+16)\ M( 7 +5D)>-‘ (45)
fori > 1, and

L CH+o 2\L

Tm_{” log’/ ||y wo,0 |+7( T +D)T) Ug—‘, (46)
41 4L 4L C ANL

Tf; = |24/ —2log 1+9<||y( 0.0l + —%( +U+D)T) / (47)
Iz p p o L o

for ¢ = 0, where T is the total number of epochs. From Theorem[Il we know that

I+vy—vyvg 34+4vy—2vsvg 2+2vp—vyvg

T<OA 75 g e T ),

Then we prove equation [§] holds for z;; by induction. For i = 0, by the definition of T} in
equation46] we have

. L .
loto =y (weo)l| <41+ Z2(1 = [F) T2z 1 = (wro) |
K g
L 7
Sy 1+ =21 = 32l (weo)|
] Ly
o
< .
T2XL,
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From Lemma[D.] if ¢ > 1, we have

. L o . "
1260 = 4" (wea) [| <41+ <1 - L*)T“mﬂzt,ifl =y (wy)]|
g

(a) 14 i * * *
<y [T+ =2 = )2l (wes) =y (weica) |+ ll2io1 = o™ (weien) )
g

=

(b) m L o

<1+ 22— )T 2 [ 22wy s — wyioa|] + =

<y/1+ = Lg) (M l[wei — weiall + AL,

(©) , 2L L o

< 1+ 7(1 B Lﬂ)Tt’l/2 (ILLg”If,Z - xt,i—l“ + Fg”zt,i—l - It,i—QH + 2)\Lg>
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(d) L m , L, C+o o
< 1+ 2901 - Ti/2 [ 29 5D
- Jr,u( Lg) M( L + )+2)\Lg
() o
< )
T2)ML,

a) (b)
where the inequality < follows from the triangle inequality, < uses the inductive hypothesis and

(c)
the fact that y* () is Ly /u-Lipschitz continuous, < holds by the definition wy ; = ; + 6;(z¢,; —

d e
Tiio1)s (g) applies Lemma [3 and Lemma [E2] and (g) follows from equation f4] Therefore, by
mathematical induction, we conclude that equation [l holds for all zy,; with {T} ;} defined in equa-
tion @4lequation Similarly, we can prove that equation 8 holds for v; ; with TAi defined in equa-
tion 3] equation@7] So all v, ; and z;; satisfy Condition[Il The total first-order oracle complexity

is>, . Ty le.
t,3 ~ Lt °
’ ~ 2+21/f—l/f1/g 7+81/f—21/fug 74+41/f—1/fug
O Ag 2+2Vf K 2+2Vf € 2+2u‘f .

When vy = v, = 1, the first-order oracle complexity is O (A£3/1x13/4¢=7/4),
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