

ACCELERATING FIRST-ORDER METHODS FOR BILEVEL OPTIMIZATION UNDER GENERAL SMOOTHNESS

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Bilevel optimization is pivotal in machine learning applications such as hyperparameter tuning and adversarial training. While existing methods for nonconvex-
 014 strongly-convex bilevel optimization can find an ϵ -stationary point under Lipschitz continuity assumptions, two critical gaps persist: improving algorithmic
 015 complexity and generalizing smoothness conditions. This paper addresses these
 016 challenges by introducing an accelerated framework under Hölder continuity—a
 017 broader class of smoothness that subsumes Lipschitz continuity. We propose a
 018 restarted accelerated gradient method that leverages inexact hypergradient estimators
 019 and establishes theoretical oracle complexity for finding ϵ -stationary points.
 020 Empirically, experiments on data hypercleaning and hyperparameter optimization
 021 demonstrate superior convergence rates compared to state-of-the-art baselines.
 022

1 INTRODUCTION

027 Bilevel optimization is a powerful paradigm with applications in various machine learning tasks,
 028 such as hyperparameter tuning [1; 2; 3], adversarial training [4; 5; 6; 7], and reinforcement learning
 029 [8; 9; 10]. It involves two levels of optimization, where the objective at the upper level depends on
 030 the solution to a lower-level optimization problem. The general bilevel problem can be expressed
 031 as:

$$032 \min_{x \in \mathbb{R}^{d_x}, y \in Y^*(x)} f(x, y), \quad \text{where } Y^*(x) = \arg \min_{y \in \mathbb{R}^{d_y}} g(x, y). \quad (1)$$

034 In this formulation, $f(x, y)$ denotes the upper-level objective, while $g(x, y)$ denotes the lower-level
 035 objective.

037 This study examines the nonconvex-strongly-convex framework, wherein the lower-level function
 038 $g(x, y)$ exhibits strong convexity with respect to y , while the upper-level function $f(x)$ is possibly
 039 nonconvex. In this case, the lower-level objective admits a unique solution $Y^*(x) = \{y^*(x)\}$. Then
 040 Problem equation 1 is equivalent to minimizing the hyper-objective function

$$041 \varphi(x) := f(x, y^*(x)), \quad \text{where } y^*(x) = \arg \min_{y \in \mathbb{R}^{d_y}} g(x, y).$$

044 As shown in [11; 12], the hyper-gradient $\nabla \varphi(x)$ is given by:

$$045 \nabla \varphi(x) = \nabla_x f(x, y) + \nabla y^*(x) \nabla_y f(x, y^*(x)) \\ 046 = \nabla_x f(x, y^*(x)) - \nabla_{xy}^2 g(x, y^*(x)) [\nabla_{yy}^2 g(x, y^*(x))]^{-1} \nabla_y f(x, y^*(x)). \quad (2)$$

049 The goal of this paper is to find the point x such that $\varphi(x)$ is an ϵ -stationary point, i.e., $\|\nabla \varphi(x)\| \leq \epsilon$.
 050 For nonconvex-strongly-convex bilevel optimization, previous work [13; 14; 15] primarily focuses
 051 on assuming Lipschitz continuity of ∇f , ∇g , $\nabla^2 g$, and $\nabla^3 g$, and either approximates the hyper-
 052 gradient $\nabla \varphi(x)$ or minimizes a penalty function. Approximating the hyper-gradient $\nabla \varphi(x)$ requires
 053 first-order oracle access to f and second-order oracle access to g , whereas minimizing the penalty
 function only requires first-order oracle access to both f and g .

054 Two key open questions remain: (i) For first-order methods, it remains open whether the existing al-
 055 gorithmic complexities for finding approximate first-order stationary points in nonconvex-strongly-
 056 convex bilevel optimization can be further improved under high order smoothness, and (ii) whether
 057 the Lipschitz continuity assumptions can be generalized to the Hölder continuity.
 058

059 **1.1 RELATED WORK**
 060

061 **Nonconvex optimization:** For unconstrained nonconvex objectives with Lipschitz continuous gra-
 062 dient, the classical gradient descent (GD) is known to find an ϵ -stationary point within $\mathcal{O}(\epsilon^{-2})$
 063 gradient computations [16]. This rate is optimal among the first-order methods [17; 18]. Under
 064 the additional assumption of Lipschitz continuous Hessians, accelerated gradient descent (AGD)
 065 [19; 20; 21] finds an ϵ -stationary point in $\tilde{\mathcal{O}}(\epsilon^{-7/4})$ evaluations. [22] and [23] further show that
 066 AGD with restarts achieves $\mathcal{O}(\epsilon^{-7/4})$ complexity for finding ϵ -stationary points, without additional
 067 log factors. Under the more general assumption of Hölder continuity of the Hessian, [24] proposed
 068 a universal, parameter-free heavy-ball method equipped with two restart mechanisms, achieving a
 069 complexity bound of $\mathcal{O}(H_\nu^{1/(2+2\nu)}\epsilon^{-(4+3\nu)/(2+2\nu)})$ in terms of function and gradient evaluations,
 070 where $\nu \in [0, 1]$ and H_ν denote the Hölder exponent and constant, respectively.

071 **Bilevel Optimization Methods:** To approximate the hyper-gradient, gradient-based methods
 072 contain approximate implicit differentiation (AID) [25; 11; 26; 27; 11] and iterative differentiation (ITD)
 073 [25; 11; 26; 11; 28]. Using the hyper-gradient equation 2, one can find an ϵ -stationary point of $\varphi(x)$
 074 within $\tilde{\mathcal{O}}(\epsilon^{-2})$ first-order oracle calls from f and $\tilde{\mathcal{O}}(\epsilon^{-2})$ second-order oracle calls from g [29; 26].
 075 In practical implementations, these methods typically rely on access to Jacobian or Hessian-vector
 076 product oracles. [14] proposed a fully first-order method that does not require Jacobian or Hessian-
 077 vector product oracles, and finds an ϵ -stationary point using only first-order gradients of f and g .
 078 Concurrently, [13] proposed a method that achieves a near-optimal convergence rate of $\tilde{\mathcal{O}}(\epsilon^{-2})$.
 079 Moreover, under high-order smoothness assumptions, they established an accelerated convergence
 080 rate of $\tilde{\mathcal{O}}(\epsilon^{-7/4})$.
 081

082 Table 1: Complexity bounds for finding ϵ -stationary points under Lipschitz continuity assumptions.

Algorithm	$Gc(f, \epsilon)$	$Gc(g, \epsilon)$	$JV(g, \epsilon)$	$HV(g, \epsilon)$
AID-BiO ([26])	$\mathcal{O}(\kappa^3\epsilon^{-2})$	$\mathcal{O}(\kappa^3\epsilon^{-2})$	$\mathcal{O}(\kappa^3\epsilon^{-2})$	$\tilde{\mathcal{O}}(\kappa^3\epsilon^{-2})$
ITD-BiO ([26])	$\mathcal{O}(\kappa^3\epsilon^{-2})$	$\mathcal{O}(\kappa^4\epsilon^{-2})$	$\tilde{\mathcal{O}}(\kappa^4\epsilon^{-2})$	$\tilde{\mathcal{O}}(\kappa^4\epsilon^{-2})$
RAHGD ([15])	$\tilde{\mathcal{O}}(\ell^{3/4}\kappa^{11/4}\epsilon^{-7/4})$	$\tilde{\mathcal{O}}(\ell^{3/4}\kappa^{13/4}\epsilon^{-7/4})$	$\tilde{\mathcal{O}}(\ell^{3/4}\kappa^{11/4}\epsilon^{-7/4})$	$\tilde{\mathcal{O}}(\ell^{3/4}\kappa^{13/4}\epsilon^{-7/4})$
F ² BA ([13])	$\tilde{\mathcal{O}}(\ell\kappa^4\epsilon^{-2})$	$\tilde{\mathcal{O}}(\ell\kappa^4\epsilon^{-2})$	\	\
AccF ² BA ([13])	$\tilde{\mathcal{O}}(\ell^{3/4}\kappa^{13/4}\epsilon^{-7/4})$	$\tilde{\mathcal{O}}(\ell^{3/4}\kappa^{13/4}\epsilon^{-7/4})$	\	\
Proposed method (this work)	$\tilde{\mathcal{O}}(\ell^{3/4}\kappa^{13/4}\epsilon^{-7/4})$	$\tilde{\mathcal{O}}(\ell^{3/4}\kappa^{13/4}\epsilon^{-7/4})$	\	\

090 **1.2 OUR CONTRIBUTION**
 091

092 In this paper, we propose an accelerated first-order algorithm for solving nonconvex-strongly convex
 093 bilevel optimization problems. Our main contributions are summarized as follows:
 094

095 1. We introduce an accelerated first-order method framework—originally developed for non-
 096 convex optimization—into the setting of nonconvex-strongly convex bilevel optimization,
 097 and consider more general Hölder continuity assumptions on f and g .
 098 2. We prove that, with a carefully designed restart condition, the iterates generated by our
 099 proposed method remain uniformly bounded within each epoch. Based on this, we demon-
 100 strate that the algorithm is convergent with accelerated performance.
 101 3. Even under the standard Lipschitz continuity setting, our method improves the first-order
 102 oracle complexity for finding an ϵ -stationary point of $\varphi(x)$ to $\tilde{\mathcal{O}}(\ell^{3/4}\kappa^{13/4}\epsilon^{-7/4})$, with-
 103 out requiring access to second-order oracles, where ℓ and κ denote the problem’s largest
 104 smoothness and condition number. This bound improves upon previously known results,
 105 as summarized in Table 1, and is consistent with the concurrent findings of [13], who es-
 106 tablished a similar $\tilde{\mathcal{O}}(\epsilon^{-7/4})$ rate under a different restarting scheme.
 107 4. Our experimental results further support the theoretical convergence guarantees.

Organization. The rest of this work is organized as follows. Section 2 delineates the assumptions and specific algorithmic subroutines. Section 3 formally presents our proposed algorithm along with some basic lemmas. Section 4 provides a complexity bound for finding approximate first-order stationary points. In Section 5, we provide some numerical experiments to show the outstanding performance of our proposed method. Section 6 concludes the paper and discusses future directions. Technical analyses are deferred to the appendix.

Notation. Let $a, b \in \mathbb{R}^d$ be vectors, where $\langle a, b \rangle$ represents their inner product and $\|a\|$ denotes the Euclidean norm. For a matrix $A \in \mathbb{R}^{m \times n}$, $\|A\|$ is used to denote the operator norm, which is equivalent to the largest singular value of the matrix. Let $Gc(f, \epsilon)$ and $Gc(g, \epsilon)$ denote the number of gradient evaluations with respect to f and g , respectively. Let $JV(g, \epsilon)$ denote the number of Jacobian-vector products $\nabla_{xy}^2 g(x, y)v$, and $HV(g, \epsilon)$ denote the number of Hessian-vector products $\nabla_{yy}^2 g(x, y)v$. The diameter \mathcal{R} of a compact set C is defined as $\mathcal{R} := \max_{x_1, x_2 \in C} \|x_1 - x_2\|$.

2 PRELIMINARIES

In this section, we present the key definitions and assumptions used throughout the paper.

Definition 1 (Restricted Hölder Continuity). *Let h be a twice differentiable function. We say that $\nabla^2 h$ is restrictively (ν, H_ν) -Hölder continuous with diameter $\mathcal{R} > 0$ if*

$$H_\nu := \sup_{\|x-y\| \leq \mathcal{R}} \frac{\|\nabla^2 h(x) - \nabla^2 h(y)\|}{\|x-y\|^\nu} < +\infty, \quad \nu \in [0, 1].$$

When $\mathcal{R} = +\infty$, we call $\nabla^2 h$ is (ν, H_ν) -Hölder continuous if $\nu \in [0, 1]$ and $H_\nu < +\infty$.

We make the following assumptions on the upper-level function f and lower-level function g :

Assumption 1. *We make the following assumptions:*

- i. *The function $\varphi(x)$ is lower bounded.*
- ii. *The function $g(x, y)$ is μ -strongly convex in y , and has L_g -Lipschitz continuous gradients.*
- iii. *The function $g(x, y)$ has ρ_g -Lipschitz continuous Hessians and is (ν_g, M_g) -Hölder continuous in its third-order derivatives.*
- iv. *The function $f(x, y)$ is C_f -Lipschitz continuous in y and has L_f -Lipschitz continuous gradients.*
- v. *The Hessian $\nabla_{xx}^2 f(x, y)$ is (ν_f, H_f) -Hölder continuous.*
- vi. *The mixed and second-order partial derivatives $\nabla_{xy}^2 f(x, y)$, $\nabla_{yx}^2 f(x, y)$, and $\nabla_{yy}^2 f(x, y)$ are ρ_f -Lipschitz continuous.*

The assumptions employed in this study are consistent with those commonly adopted in prior literature [13; 27; 14; 15]. To introduce Hölder continuity, we extend the Lipschitz continuity assumptions about the Hessian of f , and the third-order derivative of g to our assumptions equation iii, equation v, equation vi.

Definition 2. *Under Assumption 1, we define the largest smoothness constant as*

$$\ell := \max \{C_f, L_f, H_f, \rho_f, L_g, \rho_g, M_g\},$$

and the condition number as $\kappa := \ell/\mu$.

Observe that problem equation 1 can be reformulated as:

$$\min_{x \in \mathbb{R}^{d_x}, y \in \mathbb{R}^{d_y}} f(x, y^*(x)), \quad \text{s.t. } g(x, y) - g^*(x) \leq 0, \quad (3)$$

where $g^*(x) = g(x, y^*(x))$ is the value function. A nature penalty problem associated with problem equation 3 is

$$\min_{x \in \mathbb{R}^{d_x}, y \in \mathbb{R}^{d_y}} L_\lambda(x, y) := f(x, y) + \lambda(g(x, y) - g^*(x)),$$

162 where $\lambda > 0$ is a penalty parameter. This problem is equivalent to minimizing the following auxiliary
 163 function:

$$164 \quad L_\lambda^*(x) := L_\lambda(x, y_\lambda^*(x)), \text{ where } y_\lambda^*(x) = \arg \min_{y \in \mathbb{R}^d} L_\lambda(x, y). \quad (4)$$

166 It has been proven in [13] that $L_\lambda^*(x)$ and $\nabla L_\lambda^*(x)$ asymptotically approximate $\varphi(x)$ and $\nabla \varphi(x)$,
 167 respectively, as λ is sufficiently large. Moreover, $\nabla L_\lambda^*(x)$ is Lipschitz continuous and its Lipschitz
 168 constant does not involve λ . We restate their result below for completeness.

169 **Lemma 1** ([13, Lemma 4.1]). *Under Assumption 1, for $\lambda \geq 2L_f/\mu$, we have*

- 170 i. $|L_\lambda^*(x) - \varphi(x)| \leq \mathcal{O}(\ell\kappa^2/\lambda)$,
- 171 ii. $\|\nabla L_\lambda^*(x) - \nabla \varphi(x)\| \leq \mathcal{O}(\ell\kappa^3/\lambda)$,
- 173 iii. $\nabla L_\lambda^*(x)$ is $\mathcal{O}(\ell\kappa^3)$ -Lipschitz continuous.

175 In the remainder of the article, we denote the Lipschitz continuous constant of $\nabla L_\lambda^*(x)$ in Lemma 1
 176 by $L = \mathcal{O}(\ell\kappa^3)$ for convenience. Then we introduce a lemma showing that $\nabla^2 L_\lambda^*(x)$ is restrictively
 177 (ν_f, H_ν) -Hölder continuous with diameter \mathcal{R} , where the detailed expression of H_ν , depending on λ
 178 and \mathcal{D} , can be found in equation 16 of Appendix C.1.

179 **Lemma 2.** *Under Assumption 1, for $\lambda \geq 2L_f/\mu$, $\nabla^2 L_\lambda^*(x)$ is restrictively $(\nu_f, H_\nu(\lambda, \mathcal{R}))$ -Hölder
 180 continuous with diameter $\mathcal{R} > 0$, where*

$$181 \quad H_\nu(\lambda, \mathcal{R}) = \mathcal{O}(\ell\kappa^{\nu_f}) + \mathcal{O}(\lambda^{1-\nu_g} \ell\kappa^{4+\nu_g}) \mathcal{R}^{1-\nu_f}.$$

183 3 RESTARTED ACCELERATED GRADIENT DESCENT UNDER GENERAL 184 SMOOTHNESS

186 In this section, we present our algorithm in Algorithm 1 and discuss several of its key properties. The
 187 algorithm has a nested loop structure. The outer loop uses the accelerated gradient descent (AGD)
 188 method with a restart schemes, inspired from the recently works in [22; 23]. The iteration counter k
 189 is reset to 0 when AGD restarts, whereas the total iteration counter K is not. We refer to the period
 190 between a reset of k and the next reset as an epoch. We introduce a subscript t to denote the number
 191 of restarts. It is important to note that the subscript t in Algorithm 1 is primarily included to facilitate
 192 a simpler convergence analysis. Provided that no ambiguity occurs, we omit the subscript t , which
 193 means that the iterates are within the same epoch.

194 In Lines 4 and 5, we invoke AGD, which is summarized in Algorithm 2, to find estimators of
 195 $y^*(w_{t,k})$ and $y_\lambda^*(w_{t,k})$, respectively. AGD achieves linear convergence when applied to the mini-
 196 mization of smooth and strongly convex functions $g(x, \cdot)$ and $f(x, \cdot) + \lambda g(x, \cdot)$. We note that the
 197 iteration number of inner AGD steps plays an important role in the complexity analysis. We will
 198 provide the parameters setting for AGD subroutines in Section 4. In the following, we describe some
 199 operations involved in the algorithm.

200 **Restart Condition.** Here, we focus on the iterates within a single epoch and omit the subscript t ,
 201 which indexes different epochs. Then we define $S_k = \sum_{i=1}^k \|x_i - x_{i-1}\|^2$, and the restart condition

$$203 \quad (k+1)^{4+\nu_f} H_\nu^2 S_k^{\nu_f} > L^2, \quad (5)$$

204 where the constant H_ν will be defined in equation 6 below. If equation 5 holds, the epoch terminates;
 205 otherwise, it continues. We say that an epoch ends at iteration k , if S_k triggers the restart condition
 206 equation 5. It is worth noting that, unlike the restart conditions in [22; 15] and the concurrent work
 207 by [13], our restart condition is independent of ϵ .

209 **Hölder Constant H_ν .** From Lemma 2, $\nabla^2 L_\lambda^*(x)$ is restrictively $(\nu_f, H_\nu(\lambda, \mathcal{R}))$ -Hölder continuous
 210 with diameter $\mathcal{R} > 0$. Here we choose a specific \mathcal{R} and the corresponding $H_\nu(\lambda, \mathcal{R})$, denoted
 211 by \mathcal{D} and H_ν , satisfying

$$212 \quad \mathcal{D} = \mathcal{O}\left(\lambda^{-(1-\nu_g)} \kappa^{-(1+\nu_g)}\right), \quad H_\nu = \mathcal{O}\left(\lambda^{\nu_f(1-\nu_g)} \ell\kappa^{3+(1+\nu_g)\nu_f}\right). \quad (6)$$

214 The derivation of H_ν and \mathcal{D} is provided in equation 18 of Appendix D. Then $\nabla^2 L_\lambda^*(x)$ is restrictively
 215 (ν_f, H_ν) -Hölder continuous with diameter \mathcal{D} . In the case of Lipschitz continuity, i.e., $\nu_f = \nu_g = 1$,
 equation 6 implies $H_\nu = \mathcal{O}(\ell\kappa^5)$ and $\mathcal{D} = \mathcal{O}(\kappa^{-2})$.

216 **Algorithm 1** Restarted Accelerated gradient descent under General Smoothness (RAGD-GS)
217

218 1: **Input:** initial point $x_{0,0}$; gradient Lipschitz constant $L > 0$; Hessian Hölder constant $H_\nu > 0$
219 and $\nu_f \in [0, 1]$; penalty parameter $\lambda > 0$; momentum parameter $\theta_k \in (0, 1)$; parameters
220 $\alpha, \alpha' > 0, \beta, \beta' \in (0, 1), \{T_{t,k}\}, \{T'_{t,k}\}$ of AGD
221 2: $k \leftarrow 0, K \leftarrow 0, t \leftarrow 0, w_{0,0} \leftarrow x_{0,0}, y_{0,-1} \leftarrow 0, z_{0,-1} \leftarrow 0$
222 3: **repeat**
223 4: $z_{t,k} \leftarrow \text{AGD}(g(w_{t,k}, \cdot), z_{t,k-1}, T_{t,k}, \alpha, \beta)$
224 5: $y_{t,k} \leftarrow \text{AGD}(f(w_{t,k}, \cdot) + \lambda g(w_{t,k}, \cdot), y_{t,k-1}, T'_{t,k}, \alpha', \beta')$
225 6: $\hat{\nabla}L_\lambda^*(w_{t,k}) \leftarrow \nabla_x f(w_{t,k}, y_{t,k}) + \lambda(\nabla_x g(w_{t,k}, y_{t,k}) - \nabla_x g(w_{t,k}, z_{t,k}))$
226 7: $x_{t,k+1} \leftarrow w_{t,k} - \frac{1}{L}\hat{\nabla}L_\lambda^*(w_{t,k})$
227 8: $w_{t,k+1} \leftarrow x_{t,k+1} + \theta_{k+1}(x_{t,k+1} - x_{t,k})$
228 9: $k \leftarrow k + 1, K \leftarrow K + 1$
229 10: **if** $(k+1)^{4+\nu_f} H_\nu^2 S_k^{\nu_f} > L^2$ **then**
230 11: $x_{t+1,0} \leftarrow x_{t,k}$
231 12: $y_{t+1,-1} \leftarrow 0, z_{t+1,-1} \leftarrow 0, w_{t+1,0} \leftarrow x_{t+1,0}$
232 13: $k \leftarrow 0, t \leftarrow t + 1$
233 14: **end if**
234 15: **until** $\|\nabla L_\lambda(\bar{w}_{t,k})\| \leq \epsilon$
235 16: **Output:** averaged solution $\bar{w}_{t,k}$ defined by (7)

238 **Averaged Solution.** Inspired by [23], we set $\theta_k = \frac{k}{k+1}$ and define

$$\bar{w}_k = \sum_{i=0}^{k-1} p_{k,i} w_i, \quad (7)$$

242 where $p_{k,i} = \frac{2(i+1)}{k(k+1)}$. We can update \bar{w}_k in the following manner: $\bar{w}_k = \frac{k-1}{k+1}\bar{w}_{k-1} + \frac{2}{k+1}w_{k-1}$.

244 The following lemma shows that $\{x_i\}_{i=0}^{k-1}$ and $\{w_i\}_{i=0}^{k-1}$ are bounded within any epoch ending at
245 iteration k .

246 **Lemma 3.** *Let Assumption 1 holds, H_ν and $\mathcal{D} = \mathcal{R}$ be given in equation 6, and \bar{w}_k be defined in
247 equation 7. For any epoch ending at iteration k , the following holds:*

$$249 \max_{0 \leq i \leq j \leq k-1} \|x_i - x_j\| \leq \mathcal{D}, \quad \max_{0 \leq i \leq k-1} \|w_i - \bar{w}_k\| \leq \max_{0 \leq i \leq j \leq k-1} \|w_i - w_j\| \leq \mathcal{D}.$$

250 **Condition 1** (Inexact gradients). *Under Assumption 1 and given $\sigma > 0$, we assume that the estimators $y_{t,i}$ and $z_{t,i}$ satisfy the conditions*

$$253 \quad \|z_{t,i} - y^*(w_{t,i})\| \leq \frac{\sigma}{2\lambda L_g}, \quad \|y_{t,i} - y_\lambda^*(w_{t,i})\| \leq \frac{\sigma}{4\lambda L_g}, \quad (8)$$

255 for any t -th epoch ending at iteration k , where $i = 0, \dots, k-1$.

256 **Remark 1.** *It is noteworthy that Condition 1 holds in Algorithm 1 as long as the inner loop iteration
257 number $T_{t,k}$ and $T'_{t,k}$ are large enough. This will be formally addressed in our convergence analysis
258 later, in Theorem 2.*

259 Under Condition 1, the bias of $\nabla L_\lambda^*(w_{t,k})$ and its estimator $\hat{\nabla}L_\lambda^*(w_{t,k})$ can be bounded as shown
260 below:

262 **Lemma 4** (Inexact gradients). *Under Assumption 1 and supposing that Condition 1 holds, we have*

$$263 \quad \|\nabla L_\lambda^*(w_{t,i}) - \hat{\nabla}L_\lambda^*(w_{t,i})\| \leq \sigma$$

264 for any t -th epoch ending at iteration k , where $i = 0, \dots, k-1$.

266 4 COMPLEXITY ANALYSIS

268 In this section, we analyze the performance of Algorithm 1. We begin in Section 4.1 by presenting
269 several useful lemmas that rely on the boundedness of the iterates generated within a single epoch.

270 These results serve as key tools for our subsequent analysis. We then establish the descent property
 271 of the objective function and derive an upper bound for $\|\nabla L_\lambda^*(\bar{w}_i)\|$. Finally, in Section 4.2, we
 272 present the main complexity results for Algorithm 1.

274 **4.1 TOOLS FOR ANALYSIS**

276 We use the following two Hessian-free inequalities to analyze the complexity of Algorithm 1.

277 **Lemma 5.** *Under Assumption 1 and with $\lambda \geq 2L_f/\mu$, the following holds for any x_1, \dots, x_n
 278 satisfying $\max_{1 \leq i \leq j \leq n} \|x_i - x_j\| \leq \mathcal{D}$ and $q_1, \dots, q_n \geq 0$ such that $\sum_{q=1}^n q_i = 1$:*

$$279 \quad \left\| \nabla L_\lambda^* \left(\sum_{i=1}^n q_i x_i \right) - \sum_{i=1}^n q_i \nabla L_\lambda^*(x_i) \right\| \leq \frac{H_\nu}{1 + \nu_f} \left(\sum_{1 \leq i < j \leq n} q_i q_j \|x_i - x_j\|^2 \right)^{\frac{1+\nu_f}{2}},$$

283 where H_ν and \mathcal{D} are defined in (6).

285 **Lemma 6.** *Under Assumption 1 and with $\lambda \geq 2L_f/\mu$, the following holds for any x and x' satisfying
 286 $\|x - x'\| \leq \mathcal{D}$:*

$$287 \quad L_\lambda^*(x) - L_\lambda^*(x') \leq \frac{1}{2} \langle \nabla L_\lambda^*(x) + \nabla L_\lambda^*(x'), x - x' \rangle + \frac{2H_\nu}{(1 + \nu_f)(2 + \nu_f)(3 + \nu_f)} \|x - x'\|^{2+\nu_f},$$

289 where H_ν and \mathcal{D} are defined in (6).

291 Lemma 5 bounds the discrepancy between the average gradient over an epoch and the true gradient
 292 at the averaged iterate \bar{w}_k defined in (7), while Lemma 6 establishes a quadratic surrogate inequality
 293 for the function difference, which serves as a key ingredient for showing descent of the potential
 294 function. In light of these lemmas and following [23], we define the potential function Φ_k as

$$295 \quad \Phi_k := L_\lambda^*(x_k) + \frac{\theta_k^2}{2} \left(\frac{1}{2L} \|\nabla L_\lambda^*(x_{k-1}) + L(x_k - x_{k-1})\|^2 + \frac{L}{2} \|x_k - x_{k-1}\|^2 \right). \quad (9)$$

297 The following lemma shows that Φ_k is a decreasing sequence if $\|x_k - x_{k-1}\|$ and σ are sufficiently
 298 small.

300 **Lemma 7.** *Suppose that Assumption 1, Condition 1, and $\lambda \geq 2L_f/\mu$ hold. Then we have*

$$301 \quad \Phi_{k+1} - \Phi_k \leq \|x_k - x_{k-1}\|^{2+\nu_f} \left(\frac{2H_\nu}{(1 + \nu_f)(2 + \nu_f)(3 + \nu_f)} \theta_k^{2+\nu_f} + \frac{H_\nu}{1 + \nu_f} \theta_k^{\frac{3+\nu_f}{2}} \right) \\ 302 \quad + \|x_k - x_{k-1}\|^{2+2\nu_f} \frac{2H_\nu^2}{(1 + \nu_f)^2} \frac{\theta_k^{2+\nu_f}}{L} + \frac{\theta_{k+1}^2 + \theta_k^2 - 2}{4} L \|x_{k+1} - x_k\|^2 \\ 303 \quad - \frac{\theta_k^2}{4L} \|\nabla L_\lambda^*(x_k)\|^2 + \frac{\sigma^2}{2L} + \sigma \|x_{k+1} - x_k\|. \quad (10)$$

309 Moreover, we can leverage this potential decrease to quantify the reduction of $L_\lambda^*(\cdot)$ over an entire
 310 epoch. The following lemma shows that $L_\lambda^*(x)$ decreases whenever $S_k > 0$ and σ is sufficiently
 311 small.

312 **Lemma 8.** *Suppose that Assumption 1, Condition 1, and $\lambda \geq 2L_f/\mu$ hold. Then the decrease value
 313 of $L_\lambda^*(\cdot)$ in one epoch satisfies:*

$$314 \quad L_\lambda^*(x_k) - L_\lambda^*(x_0) \leq -\frac{LS_k}{32k} + \frac{k\sigma^2}{2L} + \sigma \sum_{i=0}^{k-1} \|x_{i+1} - x_i\|. \quad (11)$$

317 The following lemma provides an upper bound on the minimum gradient norm of the penalized
 318 objective L_λ^* evaluated at the averaged iterates $\{\bar{w}_i\}_{i=1}^{k-1}$.

320 **Lemma 9.** *Suppose that Assumption 1, Condition 1, and $\lambda \geq 2L_f/\mu$ hold. The following is true
 321 when $k \geq 2$:*

$$322 \quad \min_{1 \leq i < k} \|\nabla L_\lambda^*(\bar{w}_i)\| \leq \sigma + cL\sqrt{S_{k-1}/k^3},$$

323 where $c = 2\sqrt{6} + 27$.

324 4.2 MAIN RESULTS
325326 In the following proposition, we show that the iteration complexity of the outer loop is bounded.
327328 **Proposition 1.** Suppose that Assumption 1, Condition 1, and $\lambda \geq 2L_f/\mu$ hold. Let $c = 2\sqrt{6} + 27$
329 as defined in Lemma 9, and define $\Delta_\lambda = L_\lambda^*(x_{0,0}) - \min_{x \in \mathbb{R}^{d_x}} L_\lambda^*(x)$. Let
330

331
$$(\alpha, \beta) = \left(\frac{1}{L_g}, \frac{\sqrt{L_g} - \sqrt{\mu}}{\sqrt{L_g} + \sqrt{\mu}} \right), \quad (\alpha', \beta') = \left(\frac{1}{2\lambda L_g}, \frac{\sqrt{4L_g} - \sqrt{\mu}}{\sqrt{4L_g} + \sqrt{\mu}} \right), \quad (12)$$

332
$$\theta_k = \frac{k}{k+1} \quad \text{and} \quad \sigma = \frac{1}{64c+1}\epsilon.$$

333

334 *Algorithm 1 terminates within*
335

336
$$\mathcal{O} \left(\Delta_\lambda \lambda^{\frac{\nu_f(1-\nu_g)}{(2+2\nu_f)}} \ell^{\frac{2+\nu_f}{2+2\nu_f}} \kappa^{\frac{6+4\nu_f+\nu_f\nu_g}{(2+2\nu_f)}} \epsilon^{-\frac{4+3\nu_f}{2+2\nu_f}} \right)$$

337

338 total iterations, outputting $\bar{w}_{t,k}$ satisfying $\|\nabla L_\lambda^*(\bar{w}_{t,k})\| \leq \epsilon$. Moreover, Algorithm 1 terminates
339 within

340
$$\mathcal{O} \left(\Delta_\lambda \lambda^{\frac{1-\nu_g}{(2-\nu_f)(1+\nu_f)}} \ell^{\frac{1}{1+\nu_f}} \kappa^{\frac{8-3\nu_f}{(2-\nu_f)(1+\nu_f)}} \epsilon^{-\frac{2+\nu_f}{2+2\nu_f}} \right)$$

341

342 epochs.
343344 We present the complexity analysis of our algorithm, aiming to establish its guarantee for finding an
345 $\mathcal{O}(\epsilon)$ -stationary point of problem (1).346 **Theorem 1.** Suppose that both Assumption 1 and Condition 1 hold. Define $\Delta = \varphi(x_{0,0}) -$
347 $\min_{x \in \mathbb{R}^{d_x}} \varphi(x)$. Let $\lambda = \max(\mathcal{O}(\kappa), \mathcal{O}(\ell\kappa^3)/\epsilon, \mathcal{O}(\ell\kappa^2)/\Delta)$ and set the other parameters as specified in equation 12, Algorithm 1 terminates within
348

349
$$\mathcal{O} \left(\Delta \ell^{\frac{2+2\nu_f-\nu_f\nu_g}{2+2\nu_f}} \kappa^{\frac{6+7\nu_f-2\nu_f\nu_g}{2+2\nu_f}} \epsilon^{-\frac{4+4\nu_f-\nu_f\nu_g}{2+2\nu_f}} \right)$$

350

351 iterates, outputting $\bar{w}_{t,k}$ satisfying $\|\nabla \varphi(\bar{w}_k)\| \leq 2\epsilon$. Moreover, Algorithm 1 terminates within
352

353
$$\mathcal{O} \left(\Delta \ell^{\frac{1+\nu_f-\nu_f\nu_g}{1+\nu_f}} \kappa^{\frac{3+4\nu_f-2\nu_f\nu_g}{1+\nu_f}} \epsilon^{-\frac{2+2\nu_f-\nu_f\nu_g}{1+\nu_f}} \right)$$

354

355 epochs.
356357 When $\nu_f = \nu_g = 1$, Theorem 1 shows that within $\mathcal{O}(\Delta \ell^{3/4} \kappa^{11/4} \epsilon^{-7/4})$ outer iterations and
358 $\mathcal{O}(\Delta \ell^{1/2} \kappa^{5/2} \epsilon^{-3/2})$ epochs, the algorithm will find an $\mathcal{O}(\epsilon)$ -stationary point.
359360 **Remark 2.** Throughout the proof, we only use the restricted Hölder and Lipschitz properties, where
361 restricted Lipschitz continuity can be defined analogously to Definition 1. Therefore, the assumption
362 on global Lipschitz and Hölder smoothness in Assumption 1 can be relaxed to restricted smoothness.
363364 To make Condition 1 hold, it suffices to run AGD for a sufficiently large number of iterations, which
365 only introduces a logarithmic factor to the total complexity. This gives the following result.
366367 **Theorem 2.** Suppose that Assumption 1 holds. In the t -th epoch, we set the inner-loop iteration
368 numbers $T_{t,k}$ and $T'_{t,k}$ according to equation 44, equation 45, equation 46, and equation 47 in
369 Appendix E. We then run Algorithm 1 with the parameters specified in Theorem 1. Under these
370 settings, all $y_{t,k}$ and $z_{t,k}$ satisfy Condition 1. Moreover, the total first-order oracle complexity is
371

372
$$\tilde{\mathcal{O}} \left(\Delta \ell^{\frac{2+2\nu_f-\nu_f\nu_g}{2+2\nu_f}} \kappa^{\frac{7+8\nu_f-2\nu_f\nu_g}{2+2\nu_f}} \epsilon^{-\frac{4+4\nu_f-\nu_f\nu_g}{2+2\nu_f}} \right).$$

373

374 When $\nu_f = \nu_g = 1$, the first-order oracle complexity is $\tilde{\mathcal{O}}(\Delta \ell^{3/4} \kappa^{13/4} \epsilon^{-7/4})$. This matches the
375 $\tilde{\mathcal{O}}(\epsilon^{-7/4})$ rate obtained independently and concurrently by [13], and also improves upon the earlier
376 result of [15], as shown in Table 1. We defer the proof to Appendix E. Under the Hölder continuity
377 assumption, to the best of our knowledge, we are the first to propose a method that finds an ϵ -
378 stationary point. Furthermore, under the Lipschitz continuity assumption, our approach outperforms
379 all existing methods in the literature, as the proposed method RAGD-GS relies solely on first-order
380 oracle information, which is in line with the concurrent work [13].
381

378

5 NUMERICAL EXPERIMENT

380 This section compares the performance of the proposed method with several existing methods, in-
 381 cluding RAHGD [15], BA [29], AID [26], ITD [26], F²BA [13] and AccF²BA [13]. For the bilevel
 382 approximation (BA) method introduced in [29], we implement a conjugate gradient approach to
 383 compute Hessian-vector products since the original work doesn't specify this computational detail.
 384 We refer to this modified version as BA-CG to distinguish it from other algorithm. To quantify
 385 variability, each experiment is repeated over 5 independent trials, and we report the average perfor-
 386 mance. Our experiments were conducted on a PC with Intel Core i7-13650HX CPU (2.60GHz, 20
 387 cores), 24GB RAM, and the platform is 64-bit Windows 11 Home Edition (version 26100).

389

5.1 DATA HYPERCLEANING

390 Data hypercleaning ([30]; [28]) is a bilevel optimization problem aimed at cleaning noisy labels in
 391 datasets. The cleaned data forms the validation set, while the rest serves as the training set. The
 392 problem is formulated as:

$$395 \min_{\lambda \in \mathbb{R}^{N_{\text{tr}}}} f(W^*(\lambda), \lambda) = \frac{1}{|\mathcal{D}_{\text{val}}|} \sum_{(x_i, y_i) \in \mathcal{D}_{\text{val}}} -\log(y_i^\top W^*(\lambda) x_i)$$

$$396 \text{s.t. } W^*(\lambda) = \arg \min_{W \in \mathbb{R}^{d_y \times d_x}} \frac{1}{|\mathcal{D}_{\text{tr}}|} \sum_{(x_i, y_i) \in \mathcal{D}_{\text{tr}}} -\sigma(\lambda_i) \log(y_i^\top W x_i) + C_r \|W\|^2,$$

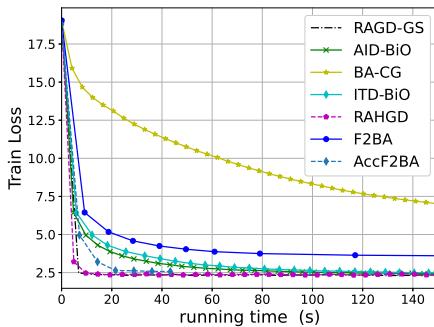
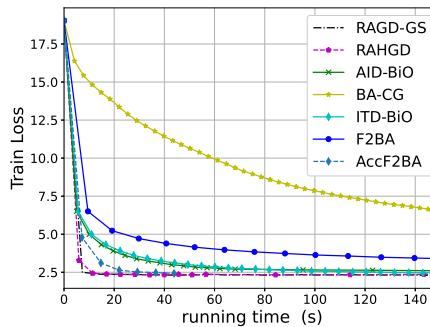
$$397$$

$$398$$

$$399$$

400 where \mathcal{D}_{tr} and \mathcal{D}_{val} are the training and validation sets, respectively, W is the weight matrix of the
 401 classifier, $\sigma(\cdot)$ is the sigmoid function, and C_r is a regularization parameter. In our experiments, we
 402 follow [30] and set $C_r = 0.001$.

403 For MNIST [31], we use $|\mathcal{D}_{\text{tr}}| = 20,000$ training samples (partially noisy) and $|\mathcal{D}_{\text{val}}| = 5,000$ clean
 404 validation samples, with corruption rate p indicating the ratio of noisy labels in the training set. In
 405 Figures 1 and 2, inner and outer learning rates are searched over $\{0.001, 0.01, 0.1, 1, 10, 100\}$. For
 406 all methods except BA, inner GD/AGD steps are from $\{50, 100, 200, 500\}$; for BA, we choose GD
 407 steps from $\{\lceil c(k+1)^{1/4} \rceil : c \in \{0.5, 1, 2, 4\}\}$ as in [29]. For F²BA, AccF²BA and our method, λ
 408 is selected from $\{100, 300, 500, 700\}$. The results, shown in Figures 1 and 2, demonstrate that our
 409 proposed method achieves acceleration effects comparable to those in [13; 15], and outperforms all
 410 other methods.

424 Figure 1: Corruption rate $p = 0.2$ 424 Figure 2: Corruption rate $p = 0.4$ 427

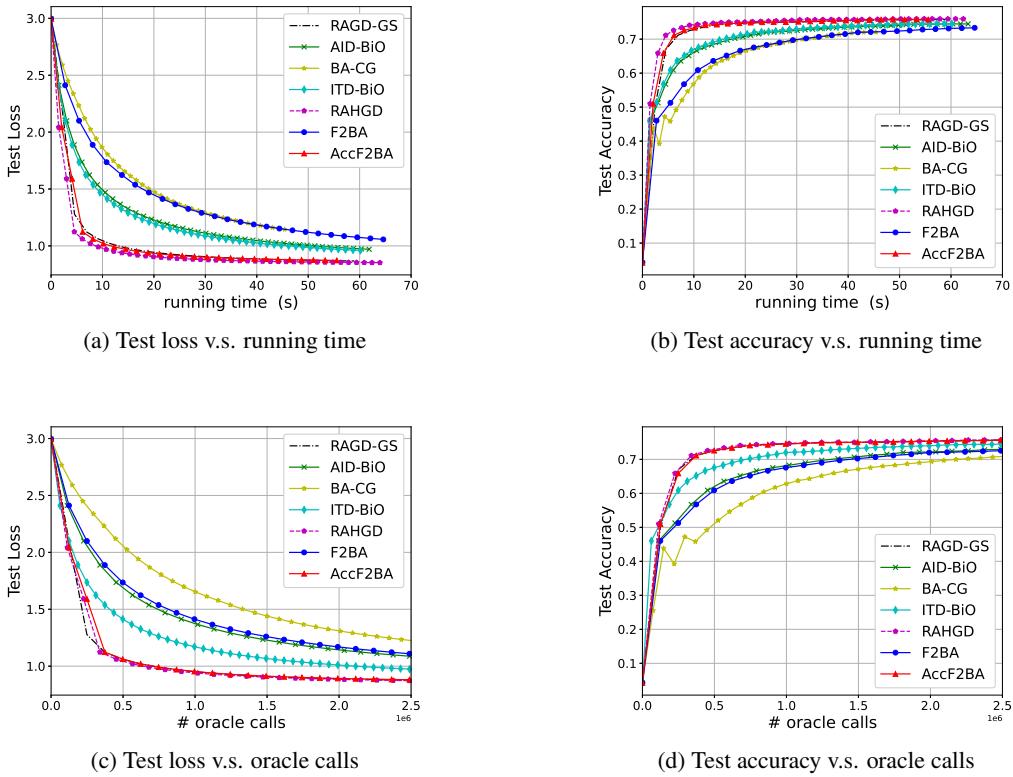
5.2 HYPERPARAMETER OPTIMIZATION

428 Hyperparameter optimization is a bilevel optimization task aimed at minimizing the validation loss.
 429 We compare our proposed algorithms with baseline algorithms on the 20 Newsgroups dataset [11],
 430 which consists of 18,846 news articles divided into 20 topics, with 130,170 sparse tf-idf features.
 431 The dataset is split into training, validation, and test sets with sizes $|\mathcal{D}_{\text{tr}}| = 5,657$, $|\mathcal{D}_{\text{val}}| = 5,657$,

432 and $|\mathcal{D}_{\text{test}}| = 7,532$, respectively. The optimization problem is formulated as:
 433

$$\begin{aligned} 434 \quad & \min_{\lambda \in \mathbb{R}^p} \frac{1}{|\mathcal{D}_{\text{val}}|} \sum_{(x_i, y_i) \in \mathcal{D}_{\text{val}}} L(w^*(\lambda); x_i, y_i) \\ 435 \\ 436 \quad & \text{s.t.} \quad w^*(\lambda) = \arg \min_{w \in \mathbb{R}^{c \times p}} \frac{1}{|\mathcal{D}_{\text{tr}}|} \sum_{(x_i, y_i) \in \mathcal{D}_{\text{tr}}} L(w; x_i, y_i) + \frac{1}{2cp} \sum_{j=1}^c \sum_{k=1}^p \exp(\lambda_k) w_{jk}^2. \\ 437 \\ 438 \end{aligned}$$

439 For the evaluation in Figure 3, inner and outer learning rates are selected from $\{0.001, 0.01, 0.1,$
 440 $1, 10, 100\}$, and GD/AGD steps from $\{5, 10, 30, 50\}$. For BA, we choose GD steps from
 441 $\{\lceil c(k+1)^{1/4} \rceil : c \in \{0.5, 1, 2, 4\}\}$ as in [29]. For F²BA, AccF²BA and our method, λ is cho-
 442 sen from $\{100, 300, 500, 700\}$. As shown in Figure 3, our proposed method exhibits performance
 443 comparable to that of [13; 15], while significantly outperforming other competing algorithms by
 444 converging faster and reaching a lower test loss.



457 Figure 3: Results of test loss and test accuracy evaluated on the test set.
 458
 459

474 6 CONCLUSION

475 This work introduces an accelerated first-order framework for solving nonconvex-strongly convex
 476 bilevel optimization problems, extending nonconvex optimization techniques to a broader setting
 477 under generalized Hölder continuity. With a carefully designed restart condition, the iterates re-
 478 main uniformly bounded within each epoch, ensuring stability and convergence. We further provide
 479 oracle complexity bounds with rigorous error analysis and convergence guarantees. Our theory is
 480 supported by empirical evidence, demonstrating the effectiveness and robustness of the algorithm.
 481 While recent advances in the stochastic setting [14; 32; 13] mainly focus on the first-order oracle
 482 complexity, it remains unclear whether acceleration with an appropriate restart scheme is attainable
 483 under higher-order smoothness assumptions ($\nabla^2 f$ and $\nabla^3 g$). Challenges such as noisy restart trig-
 484 gers and precise hyper-gradient estimation make this nontrivial. We leave this challenging direction
 485 for future work.

486
487
ETHICS STATEMENT488
489
490
491
492
493
494
495
496
497
498
499
500
This work does not present any apparent ethical concerns. The proposed algorithms are purely
theoretical and experimental in nature, and they do not involve human subjects, sensitive personal
data, or applications that pose foreseeable risks of harm. Nevertheless, we recognize the importance
of ethical considerations in machine learning research and adhere to the ICLR Code of Ethics.501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
REPRODUCIBILITY STATEMENT500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
To ensure reproducibility, we provide the following: (1) all theoretical results are accompanied
by complete proofs in the appendix; (2) experimental setups, including dataset preprocessing and
hyperparameter settings, are described in detail; (3) source code implementing our algorithms will be
made available in the supplementary material. These resources should allow others to fully replicate
our findings.500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
REFERENCES500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
[1] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel programming for hyperparameter optimization and meta-learning. In *International conference on machine learning*, pages 1568–1577. PMLR, 2018.
[2] Matthew MacKay, Paul Vicol, Jon Lorraine, David Duvenaud, and Roger Grosse. Self-tuning networks: Bilevel optimization of hyperparameters using structured best-response functions. *arXiv preprint arXiv:1903.03088*, 2019.
[3] He Chen, Haochen Xu, Rujun Jiang, and Anthony Man-Cho So. Lower-level duality based reformulation and majorization minimization algorithm for hyperparameter optimization. In *International Conference on Artificial Intelligence and Statistics*, pages 784–792. PMLR, 2024.
[4] Tianyi Lin, Chi Jin, and Michael Jordan. On gradient descent ascent for nonconvex-concave minimax problems. In *International conference on machine learning*, pages 6083–6093. PMLR, 2020.
[5] Tianyi Lin, Chi Jin, and Michael I Jordan. Near-optimal algorithms for minimax optimization. In *Conference on learning theory*, pages 2738–2779. PMLR, 2020.
[6] Jiali Wang, He Chen, Rujun Jiang, Xudong Li, and Zihao Li. Fast algorithms for stackelberg prediction game with least squares loss. In *International Conference on Machine Learning*, pages 10708–10716. PMLR, 2021.
[7] Jiali Wang, Wen Huang, Rujun Jiang, Xudong Li, and Alex L Wang. Solving stackelberg prediction game with least squares loss via spherically constrained least squares reformulation. In *International conference on machine learning*, pages 22665–22679. PMLR, 2022.
[8] Gautam Kunapuli, Kristin P Bennett, Jing Hu, and Jong-Shi Pang. Classification model selection via bilevel programming. *Optimization Methods & Software*, 23(4):475–489, 2008.
[9] Zhuoran Yang, Yongxin Chen, Mingyi Hong, and Zhaoran Wang. Provably global convergence of actor-critic: A case for linear quadratic regulator with ergodic cost. *Advances in neural information processing systems*, 32, 2019.
[10] Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale stochastic algorithm framework for bilevel optimization: Complexity analysis and application to actor-critic. *SIAM Journal on Optimization*, 33(1):147–180, 2023.
[11] Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration complexity of hypergradient computation. In *International Conference on Machine Learning*, pages 3748–3758. PMLR, 2020.
[12] Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In *International conference on machine learning*, pages 737–746. PMLR, 2016.

[13] Lesi Chen, Yaohua Ma, and Jingzhao Zhang. Near-optimal nonconvex-strongly-convex bilevel optimization with fully first-order oracles. *Journal of Machine Learning Research*, 26(109):1–56, 2025.

[14] Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert D Nowak. A fully first-order method for stochastic bilevel optimization. In *International Conference on Machine Learning*, pages 18083–18113. PMLR, 2023.

[15] Haikuo Yang, Luo Luo, Chris Junchi Li, and Michael I Jordan. Accelerating inexact hypergradient descent for bilevel optimization. *arXiv preprint arXiv:2307.00126*, 2023.

[16] Yurii Nesterov. *Introductory lectures on convex optimization: A basic course*, volume 87. Springer Science & Business Media, 2013.

[17] Coralia Cartis, Nicholas IM Gould, and Ph L Toint. On the complexity of steepest descent, newton’s and regularized newton’s methods for nonconvex unconstrained optimization problems. *Siam journal on optimization*, 20(6):2833–2852, 2010.

[18] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary points i. *Mathematical Programming*, 184(1):71–120, 2020.

[19] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. “convex until proven guilty”: Dimension-free acceleration of gradient descent on non-convex functions. In *International conference on machine learning*, pages 654–663. PMLR, 2017.

[20] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Accelerated methods for nonconvex optimization. *SIAM Journal on Optimization*, 28(2):1751–1772, 2018.

[21] Chi Jin, Praneeth Netrapalli, and Michael I Jordan. Accelerated gradient descent escapes saddle points faster than gradient descent. In *Conference On Learning Theory*, pages 1042–1085. PMLR, 2018.

[22] Huan Li and Zhouchen Lin. Restarted nonconvex accelerated gradient descent: No more polylogarithmic factor in the in the $\mathcal{O}(\epsilon^{(-7/4)})$ complexity. *Journal of Machine Learning Research*, 24(157):1–37, 2023.

[23] Naoki Marumo and Akiko Takeda. Parameter-free accelerated gradient descent for nonconvex minimization. *SIAM Journal on Optimization*, 34(2):2093–2120, 2024.

[24] Naoki Marumo and Akiko Takeda. Universal heavy-ball method for nonconvex optimization under hölder continuous hessians. *Mathematical Programming*, pages 1–29, 2024.

[25] Justin Domke. Generic methods for optimization-based modeling. In *Artificial Intelligence and Statistics*, pages 318–326. PMLR, 2012.

[26] Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and enhanced design. In *International conference on machine learning*, pages 4882–4892. PMLR, 2021.

[27] Minhui Huang, Xuxing Chen, Kaiyi Ji, Shiqian Ma, and Lifeng Lai. Efficiently escaping saddle points in bilevel optimization. *Journal of Machine Learning Research*, 26(1):1–61, 2025.

[28] Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-propagation for bilevel optimization. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pages 1723–1732. PMLR, 2019.

[29] Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. *arXiv preprint arXiv:1802.02246*, 2018.

[30] Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse gradient-based hyperparameter optimization. In *International conference on machine learning*, pages 1165–1173. PMLR, 2017.

[31] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

594 [32] Jeongyeol Kwon, Dohyun Kwon, and Hanbaek Lyu. On the complexity of first-order methods
595 in stochastic bilevel optimization. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller,
596 Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp, editors, *Proceed-
597 ings of the 41st International Conference on Machine Learning*, volume 235 of *Proceed-
598 ings of Machine Learning Research*, pages 25784–25811. PMLR, 21–27 Jul 2024. URL
599 <https://proceedings.mlr.press/v235/kwon24b.html>.

600 [33] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. *SIAM review*,
601 51(3):455–500, 2009.

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 APPENDIX
649650 This appendix provides additional theoretical results and technical proofs that support the main text.
651 For clarity, we organize the appendix to follow the structure of the main paper: each subsection
652 presents the detailed derivations and omitted proofs of the corresponding lemmas and theorems.
653654 **A THE USE OF LARGE LANGUAGE MODELS (LLMs)**
655656 No large language models (LLMs) were used in the development of the research ideas, theoretical
657 results, experiments, or writing of this paper. All contents are solely the work of the authors.
658660 **B NOTATIONS FOR TENSORS**
661662 We adopt the tensor notation from [33]. For a three-way tensor $\mathcal{X} \in \mathbb{R}^{d_1 \times d_2 \times d_3}$, the entry at
663 (i_1, i_2, i_3) is denoted by $[\mathcal{X}]_{i_1, i_2, i_3}$. The inner product between \mathcal{X} and \mathcal{Y} is defined as
664

665
$$\langle \mathcal{X}, \mathcal{Y} \rangle := \sum_{i_1, i_2, i_3} [\mathcal{X}]_{i_1, i_2, i_3} [\mathcal{Y}]_{i_1, i_2, i_3}.$$

666
667

668 The operator norm is

669
$$\|\mathcal{X}\| := \sup_{\|x_1\| = \|x_2\| = \|x_3\| = 1} \langle \mathcal{X}, x_1 \circ x_2 \circ x_3 \rangle,$$

670

671 where $[x_1 \circ x_2 \circ x_3]_{i_1, i_2, i_3} := [x_1]_{i_1} [x_2]_{i_2} [x_3]_{i_3}$. This definition generalizes the matrix spectral norm
672 and the Euclidean norm for vectors to three-way tensors. Let $\mathcal{X} \in \mathbb{R}^{d_1 \times d_2 \times d_3}$ be a three-way tensor,
673 and let $A \in \mathbb{R}^{d_1' \times d_1}$ be a matrix. The mode-1 product of \mathcal{X} and A , denoted by $\mathcal{X} \times_1 A \in \mathbb{R}^{d_1' \times d_2 \times d_3}$,
674 is defined component-wise as

675
$$[\mathcal{X} \times_1 A]_{i_1', i_2, i_3} := \sum_{i_1=1}^{d_1} A_{i_1', i_1} \mathcal{X}_{i_1, i_2, i_3}.$$

676
677

678 Mode-2 and mode-3 products, denoted by $\mathcal{X} \times_2 B$ and $\mathcal{X} \times_3 C$, are defined analogously for matrices
679 $B \in \mathbb{R}^{d_2' \times d_2}$ and $C \in \mathbb{R}^{d_3' \times d_3}$, respectively. Moreover, the operator norm satisfies the submultiplicative
680 property under mode- i multiplication:
681

682
$$\|\mathcal{X} \times_i A\| \leq \|A\| \cdot \|\mathcal{X}\|, \quad \text{for } i = 1, 2, 3.$$

683
684

685 **C PROOF OF LEMMAS IN SECTION 2**
686687 **Lemma C.1** (Lemma B.2 by [13]). *Under Assumption 1, for $\lambda \geq 2L_f/\mu$, it holds that $\|y_\lambda^*(x) - y^*(x)\| \leq \frac{C_f}{\lambda\mu}$.*
688
689690 **Lemma C.2** (Lemma B.5 by [13]). *Under Assumption 1, for $\lambda \geq 2L_f/\mu$, it holds that $\|\nabla y^*(x) - \nabla y_\lambda^*(x)\| \leq D_2/\lambda$, where*
691

692
$$D_2 := \left(\frac{1}{\mu} + \frac{2L_g}{\mu^2} \right) \left(L_f + \frac{C_f \rho_g}{\mu} \right) = \mathcal{O}(\kappa^3).$$

693
694

695 **Lemma C.3** (Lemma B.6 by [13]). *Under Assumption 1, for $\lambda \geq 2L_f/\mu$, it holds that $\|\nabla y^*(x)\| \leq L_g/\mu$, $\|\nabla y_\lambda^*(x)\| \leq 4L_g/\mu$.*
696
697698 This implies that $y^*(x)$ is (L_g/μ) -Lipschitz continuous, $y_\lambda^*(x)$ is $(4L_g/\mu)$ -Lipschitz continuous.
699700 **Lemma C.4.** *Under Assumption 1, for $\lambda \geq 2L_f/\mu$, we have*

701
$$\|\nabla^2 y^*(x) - \nabla^2 y_\lambda^*(x)\| \leq \frac{D_4}{\lambda^{\nu_g}},$$

702 where
703

$$\begin{aligned}
 704 \quad D_4 &:= \frac{2\rho_g}{\mu^2} \left(\frac{\mu}{2L_f} \right)^{1-\nu_g} \left(1 + \frac{L_g}{\mu} \right)^2 \left(L_f + \frac{C_f \rho_g}{\mu} \right) + \frac{14L_g \rho_g D_2}{\mu^2} \left(\frac{\mu}{2L_f} \right)^{1-\nu_g} \\
 705 \quad &+ \frac{50L_g^2}{\mu^3} \left(\rho_f \left(\frac{\mu}{2L_f} \right)^{1-\nu_g} + M_g \left(\frac{C_f}{\mu} \right)^{\nu_g} \right) \\
 706 \quad &= \mathcal{O}(\kappa^{4+\nu_g}).
 \end{aligned}$$

712 *Proof.* We begin by differentiating the identity
713

$$714 \quad \nabla_{xy}^2 g(x, y^*(x)) + \nabla y^*(x) \nabla_{yy}^2 g(x, y^*(x)) = 0 \\ 715$$

716 with respect to x . This yields
717

$$\begin{aligned}
 718 \quad \nabla_{xxy}^3 g(x, y^*(x)) + \nabla_{yxy}^3 g(x, y^*(x)) \times_1 \nabla y^*(x) + \nabla^2 y^*(x) \times_3 \nabla_{yy}^2 g(x, y^*(x)) \\
 719 \quad + \nabla_{xyy}^3 g(x, y^*(x)) \times_2 \nabla y^*(x) + \nabla_{yyy}^3 g(x, y^*(x)) \times_1 \nabla y^*(x) \times_2 \nabla y^*(x) = 0.
 \end{aligned}$$

721 Rearranging terms to isolate $\nabla^2 y^*(x)$, we obtain
722

$$\begin{aligned}
 723 \quad &\nabla^2 y^*(x) \\
 724 \quad &= -(\nabla_{xxy}^3 g(x, y^*(x)) + \nabla_{yxy}^3 g(x, y^*(x)) \times_1 \nabla y^*(x)) \times_3 [\nabla_{yy}^2 g(x, y^*(x))]^{-1} \\
 725 \quad &- \nabla_{xyy}^3 g(x, y^*(x)) \times_2 \nabla y^*(x) \times_3 [\nabla_{yy}^2 g(x, y^*(x))]^{-1} \\
 726 \quad &- \nabla_{yyy}^3 g(x, y^*(x)) \times_1 \nabla y^*(x) \times_2 \nabla y^*(x) \times_3 [\nabla_{yy}^2 g(x, y^*(x))]^{-1}.
 \end{aligned} \tag{13}$$

731 Analogously, we have
732

$$\begin{aligned}
 733 \quad &\nabla^2 y_\lambda^*(x) \\
 734 \quad &= -(\nabla_{xxy}^3 L_\lambda(x, y_\lambda^*(x)) + \nabla_{yxy}^3 L_\lambda(x, y_\lambda^*(x)) \times_1 \nabla y_\lambda^*(x)) \times_3 [\nabla_{yy}^2 L_\lambda(x, y_\lambda^*(x))]^{-1} \\
 735 \quad &- \nabla_{xyy}^3 L_\lambda(x, y_\lambda^*(x)) \times_2 \nabla y_\lambda^*(x) \times_3 [\nabla_{yy}^2 L_\lambda(x, y_\lambda^*(x))]^{-1} \\
 736 \quad &- \nabla_{yyy}^3 L_\lambda(x, y_\lambda^*(x)) \times_1 \nabla y_\lambda^*(x) \times_2 \nabla y_\lambda^*(x) \times_3 [\nabla_{yy}^2 L_\lambda(x, y_\lambda^*(x))]^{-1}.
 \end{aligned} \tag{14}$$

740 Next, we estimate the difference between the corresponding third-order derivatives in the original
741 and penalized problems. To begin with, we observe that
742

$$743 \quad \left\| \nabla_{xxy}^3 g(x, y^*(x)) - \frac{\nabla_{xxy}^3 L_\lambda(x, y_\lambda^*(x))}{\lambda} \right\| \leq M_g \|y_\lambda^*(x) - y^*(x)\|^{\nu_g} + \frac{\rho_f}{\lambda} = \frac{\rho_f}{\lambda} + M_g \left(\frac{C_f}{\lambda \mu} \right)^{\nu_g}.$$

747 Similarly, for the mixed partial derivative and its contraction with $\nabla y^*(x)$, we have
748

$$\begin{aligned}
 749 \quad &\left\| \nabla_{yxy}^3 g(x, y^*(x)) \times_1 \nabla y^*(x) - \frac{\nabla_{yxy}^3 L_\lambda(x, y_\lambda^*(x)) \times_1 \nabla y_\lambda^*(x)}{\lambda} \right\| \\
 750 \quad &\leq \|\nabla y^*(x) - \nabla y_\lambda^*(x)\| \|\nabla_{yxy}^3 g(x, y^*(x))\| + \|\nabla y_\lambda^*(x)\| \left\| \nabla_{yxy}^3 g(x, y^*(x)) - \frac{\nabla_{yxy}^3 L_\lambda(x, y_\lambda^*(x))}{\lambda} \right\| \\
 751 \quad &\leq \frac{\rho_g D_2}{\lambda} + \frac{4L_g}{\mu} \left(\frac{\rho_f}{\lambda} + M_g \left(\frac{C_f}{\lambda \mu} \right)^{\nu_g} \right).
 \end{aligned}$$

756 Furthermore, we control the error in the third-order term involving two contractions:
757

$$\begin{aligned}
758 & \left\| \nabla_{yyy}^3 g(x, y^*(x)) \times_1 \nabla y^*(x) \times_2 \nabla y^*(x) - \frac{\nabla_{yyy}^3 L_\lambda(x, y_\lambda^*(x)) \times_1 \nabla y_\lambda^*(x) \times_2 \nabla y_\lambda^*(x)}{\lambda} \right\| \\
759 & \leq \|\nabla y^*(x)\| \|\nabla_{yyy}^3 g(x, y^*(x))\| \|\nabla y^*(x) - \nabla y_\lambda^*(x)\| \\
760 & + \|\nabla y_\lambda^*(x)\| \|\nabla_{yyy}^3 g(x, y^*(x))\| \|\nabla y^*(x) - \nabla y_\lambda^*(x)\| \\
761 & + \|\nabla y_\lambda^*(x)\|^2 \left\| \nabla_{xxy}^3 g(x, y^*(x)) - \frac{\nabla_{xxy}^3 L_\lambda(x, y_\lambda^*(x))}{\lambda} \right\| \\
762 & \leq \frac{5L_g \rho_g D_2}{\lambda \mu} + \frac{16L_g^2}{\mu^2} \left(\frac{\rho_f}{\lambda} + M_g \left(\frac{C_f}{\lambda \mu} \right)^{\nu_g} \right).
\end{aligned}$$

763
764 Combining the above inequalities, we are now ready to bound the difference between the second
765 derivatives:
766

$$\begin{aligned}
767 & \|\nabla^2 y^*(x) - \nabla^2 y_\lambda^*(x)\| \\
768 & \leq \rho_g \left(1 + \frac{L_g}{\mu} \right)^2 \left\| \left[\nabla_{yy}^2 g(x, y^*(x)) \right]^{-1} - \left[\frac{\nabla_{yy}^2 L_\lambda(x, y_\lambda^*(x))}{\lambda} \right]^{-1} \right\| \\
769 & + \left(\frac{7L_g \rho_g D_2}{\lambda \mu} + \frac{25L_g^2}{\mu^2} \left(\frac{\rho_f}{\lambda} + M_g \left(\frac{C_f}{\lambda \mu} \right)^{\nu_g} \right) \right) \left\| \left[\frac{\nabla_{yy}^2 L_\lambda(x, y_\lambda^*(x))}{\lambda} \right]^{-1} \right\| \\
770 & \leq \frac{2\rho_g}{\lambda \mu^2} \left(1 + \frac{L_g}{\mu} \right)^2 \left(L_f + \frac{C_f \rho_g}{\mu} \right) + \frac{14L_g \rho_g D_2}{\lambda \mu^2} + \frac{50L_g^2}{\mu^3} \left(\frac{\rho_f}{\lambda} + M_g \left(\frac{C_f}{\lambda \mu} \right)^{\nu_g} \right) \\
771 & \leq \frac{D_4}{\lambda^{\nu_g}}.
\end{aligned}$$

□

772
773
774 **Lemma C.5.** Under Assumption 1, for $\lambda \geq 2L_f/\mu$, the mappings $\nabla y^*(x)$ and $\nabla y_\lambda^*(x)$ are Lipschitz
775 continuous with constants $\left(1 + \frac{L_g}{\mu} \right)^2 \frac{\rho_g}{\mu}$ and $\left(1 + \frac{4L_g}{\mu} \right)^2 \left(\frac{2\rho_g}{\mu} + \frac{\rho_f}{L_f} \right)$, respectively.
776

777 *Proof.* Recall that

$$778 \nabla y_\lambda^*(x) = -\nabla_{xy}^2 L_\lambda(x, y_\lambda^*(x)) \left[\nabla_{yy}^2 L_\lambda(x, y_\lambda^*(x)) \right]^{-1},$$

779 and

$$780 \nabla y^*(x) = -\nabla_{xy}^2 g(x, y^*(x)) \left[\nabla_{yy}^2 g(x, y^*(x)) \right]^{-1}.$$

781 By equation 13 and equation 14, we can obtain the Lipschitz constants of $\nabla y^*(x)$ and $\nabla y_\lambda^*(x)$ by
782 directly bounding $\|\nabla^2 y^*(x)\|$ and $\|\nabla^2 y_\lambda^*(x)\|$. Specifically, we have
783

$$\begin{aligned}
784 & \|\nabla^2 y^*(x)\| \leq \frac{1}{\mu} \left(\rho_g + \rho_g \frac{L_g}{\mu} + \rho_g \frac{L_g}{\mu} + \rho_g \left(\frac{L_g}{\mu} \right)^2 \right) = \frac{\rho_g}{\mu} \left(1 + \frac{L_g}{\mu} \right)^2, \\
785 & \|\nabla^2 y_\lambda^*(x)\| \leq \frac{2}{\lambda \mu} (\rho_f + \lambda \rho_g) \left(1 + 2 \frac{4L_g}{\mu} + \left(\frac{4L_g}{\mu} \right)^2 \right) \leq \left(1 + \frac{4L_g}{\mu} \right)^2 \left(\frac{2\rho_g}{\mu} + \frac{\rho_f}{L_f} \right).
\end{aligned}$$

786 Here we use Lemma C.3, $\lambda \geq 2L_f/\mu$, $\|\nabla_{xxy}^3 g(x, y)\| \leq \rho_g$, $\|\nabla_{xyy}^3 g(x, y)\| \leq \rho_g$,
787 $\|\nabla_{yyy}^3 g(x, y)\| \leq \rho_g$, $\|\nabla_{yy}^2 g(x, y)\| \geq \mu$, $\|\nabla_{yy}^2 L_\lambda(x, y)\| \geq \frac{1}{2}\lambda\mu$, $\|\nabla_{xxy}^3 f(x, y)\| \leq \rho_f$,
788 $\|\nabla_{xyy}^3 f(x, y)\| \leq \rho_f$ and $\|\nabla_{yyy}^3 f(x, y)\| \leq \rho_f$.
789

□

810 C.1 PROOF OF LEMMA 2
811812 *Proof.* We decompose $\nabla^2 L_\lambda^*(x)$ into two components:
813

814
815
$$\nabla^2 L_\lambda^*(x) = A(x) + B(x),$$

816

817 where
818

819
820
$$A(x) = \nabla_{xx}^2 f(x, y_\lambda^*(x)) + \nabla y_\lambda^*(x) \nabla_{yx}^2 f(x, y_\lambda^*(x))$$

821

822 and
823

824
825
$$B(x) = \lambda (\nabla_{xx}^2 g(x, y_\lambda^*(x)) - \nabla_{xx}^2 g(x, y^*(x)))$$

826
$$+ \lambda (\nabla y_\lambda^*(x) \nabla_{yx}^2 g(x, y_\lambda^*(x)) - \nabla y^*(x) \nabla_{yx}^2 g(x, y^*(x))).$$

827

828 To analyze the variation of $A(x)$, we observe:
829

830
831
$$\|A(x_1) - A(x_2)\|$$

832
$$\leq \|\nabla_{xx}^2 f(x_1, y_\lambda^*(x_1)) - \nabla_{xx}^2 f(x_2, y_\lambda^*(x_2))\|$$

833
$$+ \|\nabla y_\lambda^*(x_1) \nabla_{yx}^2 f(x_1, y_\lambda^*(x_1)) - \nabla y_\lambda^*(x_2) \nabla_{yx}^2 f(x_2, y_\lambda^*(x_2))\|$$

834
$$\leq \|\nabla_{xx}^2 f(x_1, y_\lambda^*(x_1)) - \nabla_{xx}^2 f(x_2, y_\lambda^*(x_2))\|$$

835
$$+ \|\nabla y_\lambda^*(x_1) \nabla_{yx}^2 f(x_1, y_\lambda^*(x_1)) - \nabla y_\lambda^*(x_2) \nabla_{yx}^2 f(x_1, y_\lambda^*(x_1))\|$$

836
$$+ \|\nabla y_\lambda^*(x_2) \nabla_{yx}^2 f(x_1, y_\lambda^*(x_1)) - \nabla y_\lambda^*(x_2) \nabla_{yx}^2 f(x_2, y_\lambda^*(x_2))\|$$

837
$$\leq H_f (1 + \frac{4L_g}{\mu})^{\nu_f} \|x_1 - x_2\|^{\nu_f} + \frac{4L_g}{\mu} \rho_f (1 + \frac{4L_g}{\mu}) \|x_1 - x_2\|$$

838
$$+ (1 + \frac{4L_g}{\mu})^2 (\frac{2\rho_g}{\mu} + \frac{\rho_f}{L_f}) L_f \|x_1 - x_2\|$$

839
$$\leq H_f (1 + \frac{4L_g}{\mu})^{\nu_f} \|x_1 - x_2\|^{\nu_f}$$

840
$$\underbrace{+ \left(\frac{4L_g}{\mu} \rho_f (1 + \frac{4L_g}{\mu}) + (1 + \frac{4L_g}{\mu})^2 (\frac{2\rho_g}{\mu} + \frac{\rho_f}{L_f}) L_f \right)}_{C_2} \mathcal{D}^{1-\nu_f} \|x_1 - x_2\|^{\nu_f}. \quad (15)$$

841
842
843
844
845
846
847
848
849
850
851
852

853 The first step applies the triangle inequality. The second step relies on the (ν_f, H_f) -Hölder continuity
854 of $\nabla_{xx}^2 f$, the bound $\nabla_{yx}^2 f(\cdot, \cdot) \preceq L_f$, and Lemma C.2. Here, $C_1 = \mathcal{O}(\ell \kappa^{\nu_f})$, $C_2 = \mathcal{O}(\ell \kappa^3)$.
855856 Next, we evaluate $\nabla B(x)$ by differentiating:
857

858
$$\nabla B(x) = \lambda (\nabla_{xxx}^3 g(x, y_\lambda^*(x)) - \nabla_{xxx}^3 g(x, y^*(x)))$$

859
$$+ \lambda (\nabla_{yxx}^3 g(x, y_\lambda^*(x)) \times_1 \nabla y_\lambda^*(x) - \nabla_{yxx}^3 g(x, y^*(x)) \times_1 \nabla y^*(x))$$

860
$$+ \lambda (\nabla_{xyx}^3 g(x, y_\lambda^*(x)) \times_2 \nabla y_\lambda^*(x) - \nabla_{xyx}^3 g(x, y^*(x)) \times_2 \nabla y^*(x))$$

861
$$+ \lambda (\nabla_{yyx}^3 g(x, y_\lambda^*(x)) \times_1 \nabla y_\lambda^*(x) \times_2 \nabla y_\lambda^*(x) - \nabla_{yyx}^3 g(x, y^*(x)) \times_1 \nabla y^*(x) \times_2 \nabla y^*(x))$$

862
$$+ \lambda \left(\nabla^2 y_\lambda^*(x) \times_3 [\nabla_{yx}^2 g(x, y_\lambda^*(x))]^\top - \nabla^2 y^*(x) \times_3 [\nabla_{yx}^2 g(x, y^*(x))]^\top \right).$$

863

864 To bound the Lipschitz constant of $B(x)$, we control $\|\nabla B(x)\|$ as follows:
 865

$$\begin{aligned}
 866 \|\nabla B(x)\| \leq & \lambda \|\nabla_{xxx}^3 g(x, y^*(x)) - \nabla_{xxx}^3 g(x, y_\lambda^*(x))\| \\
 867 & + \lambda \|\nabla y^*(x)\| \|\nabla_{yxx}^3 g(x, y^*(x)) - \nabla_{yxx}^3 g(x, y_\lambda^*(x))\| \\
 868 & + \lambda \|\nabla y_\lambda^*(x) - \nabla y^*(x)\| \|\nabla_{yxx}^3 g(x, y_\lambda^*(x))\| \\
 869 & + \lambda \|\nabla y^*(x)\| \|\nabla_{xyx}^3 g(x, y^*(x)) - \nabla_{xyx}^3 g(x, y_\lambda^*(x))\| \\
 870 & + \lambda \|\nabla y^*(x) - \nabla y_\lambda^*(x)\| \|\nabla_{xyx}^3 g(x, y_\lambda^*(x))\| \\
 871 & + \lambda \|\nabla y^*(x)\| \|\nabla_{yyx}^3 g(x, y^*(x))\| \|\nabla y_\lambda^*(x) - \nabla y^*(x)\| \\
 872 & + \lambda \|\nabla y_\lambda^*(x)\| \|\nabla_{yyx}^3 g(x, y^*(x))\| \|\nabla y_\lambda^*(x) - \nabla y^*(x)\| \\
 873 & + \lambda \|\nabla y^*(x)\|^2 \|\nabla_{yyx}^3 g(x, y^*(x)) - \nabla_{yyx}^3 g(x, y_\lambda^*(x))\| \\
 874 & + \lambda \|\nabla^2 y^*(x)\| \|\nabla_{yx}^2 g(x, y^*(x)) - \nabla_{yx}^2 g(x, y_\lambda^*(x))\| \\
 875 & + \lambda \|\nabla^2 y^*(x) - \nabla^2 y_\lambda^*(x)\| \|\nabla_{yx}^2 g(x, y_\lambda^*(x))\|.
 \end{aligned}$$

880 Using the smoothness and Hölder continuity assumptions on g , as well as bounds from Lemma C.1,
 881 Lemma C.2, and Lemma C.4, we arrive at:

$$\begin{aligned}
 882 \|\nabla B(x)\| \leq & \lambda M_g \left(\frac{C_f}{\lambda \mu} \right)^{\nu_g} \left(1 + \frac{L_g}{\mu} \right)^2 + \left(2 + \frac{5L_g}{\mu} \right) \lambda \rho_g \frac{D_2}{\lambda} \\
 883 & + \lambda \rho_g \left(\frac{C_f}{\lambda \mu} \right) \left(1 + \frac{L_g}{\mu} \right)^2 \frac{\rho_g}{\mu} + \lambda L_g \frac{D_4}{\lambda^{\nu_g}} \\
 884 = & \lambda^{1-\nu_g} M_g \left(\frac{C_f}{\mu} \right)^{\nu_g} \left(1 + \frac{L_g}{\mu} \right)^2 + \left(2 + \frac{5L_g}{\mu} \right) \rho_g D_2 \\
 885 & + \rho_g \left(\frac{C_f}{\mu} \right) \left(1 + \frac{L_g}{\mu} \right)^2 \frac{\rho_g}{\mu} + \lambda^{1-\nu_g} L_g D_4.
 \end{aligned}$$

886 Denote the entire right-hand side as $C_3 = \mathcal{O}(\lambda^{1-\nu_g} \ell \kappa^{4+\nu_g})$. Finally, we estimate the restricted
 887 Hölder constant of $\nabla^2 L_\lambda^*(x)$:

$$\begin{aligned}
 888 \frac{\|\nabla^2 L_\lambda^*(x_1) - \nabla^2 L_\lambda^*(x_2)\|}{\|x_1 - x_2\|^{\nu_f}} & \leq \frac{\|A(x_1) - A(x_2)\|}{\|x_1 - x_2\|^{\nu_f}} + \frac{\|B(x_1) - B(x_2)\|}{\|x_1 - x_2\|^{\nu_f}} \\
 889 & \leq C_1 + (C_2 + C_3) \|x_1 - x_2\|^{1-\nu_f} \\
 890 & \leq C_1 + (C_2 + C_3) \mathcal{R}^{1-\nu_f}.
 \end{aligned}$$

901 Define

$$H_\nu(\lambda, \mathcal{R}) := C_1 + (C_2 + C_3) \mathcal{R}^{1-\nu_f} = \mathcal{O}(\ell \kappa^{\nu_f}) + \mathcal{O}(\lambda^{1-\nu_g} \ell \kappa^{4+\nu_g}) \mathcal{R}^{1-\nu_f}. \quad (16)$$

902 Thus, $\nabla^2 L_\lambda^*(x)$ is restrictively $(\nu_f, H_\nu(\lambda, \mathcal{R}))$ -Hölder continuous with diameter \mathcal{R} . In the case
 903 $\nu_f = 1$ and $\nu_g = 1$, this implies $\nabla^2 L_\lambda^*(x)$ is $\mathcal{O}(\ell \kappa^5)$ -Lipschitz continuous. \square

904 D PROOF OF LEMMAS IN SECTION 3

905 D.1 AGD SUBROUTINES

906 This method boasts an optimal convergence rate as shown below:

907 **Lemma D.1** ([16], Section 2). *Running Algorithm 2 on an ℓ_h -smooth and μ_h -strongly convex ob-
 908 jective function $h(\cdot)$ with $\alpha = 1/\ell_h$ and $\beta = (\sqrt{\kappa_h} - 1) / (\sqrt{\kappa_h} + 1)$ produces an output z_T
 909 satisfying*

$$910 \|z_T - z^*\|^2 \leq (1 + \kappa_h) \left(1 - \frac{1}{\sqrt{\kappa_h}} \right)^T \|z_0 - z^*\|^2,$$

911 where $z^* = \arg \min_z h(z)$ and $\kappa_h = \ell_h/\mu_h$ denotes the condition number of the objective h .

Algorithm 2 AGD (h, z_0, T, α, β)

```

918
919 1: Input: objective function  $h(\cdot)$ ; start point  $z_0$ ; iteration number  $T \geq 1$ ; step-size  $\alpha > 0$ ; momen-
920 2:  $\tilde{z}_0 \leftarrow z_0$ 
921 3: for  $t = 0, \dots, T - 1$  do
922 4:    $z_{t+1} \leftarrow \tilde{z}_t - \alpha \nabla h(\tilde{z}_t)$ 
923 5:    $\tilde{z}_{t+1} \leftarrow z_{t+1} + \beta(z_{t+1} - z_t)$ 
924 6: end for
925 7: Output:  $z_T$ 
926
927
928
929
```

D.2 PROOF OF LEMMA 3

930 *Proof.* Consider an epoch ending at iteration $k \geq 2$. By applying the Cauchy–Schwarz inequality
931 to the restart condition equation 5, we obtain
932

$$933 \max_{0 \leq i \leq j \leq k-1} \|x_i - x_j\| \leq \sum_{i=1}^{k-1} \|x_i - x_{i-1}\| \leq \sqrt{k S_{k-1}} \leq \left(\frac{L}{H_\nu}\right)^{\frac{1}{\nu_f}}. \quad (17)$$

936 This implies that the diameter of $\text{conv}(\{x_i\}_{i=0}^{k-1})$ is less than $\left(\frac{L}{H_\nu}\right)^{\frac{1}{\nu_f}}$. By solving a system of equa-
937 tions:

$$938 \begin{cases} \mathcal{R} = 3\left(\frac{L}{H_\nu}\right)^{\frac{1}{\nu_f}}, \\ H_\nu(\lambda, \mathcal{R}) = H_\nu, \end{cases} \quad (18)$$

941 where $H_\nu(\lambda, \mathcal{R})$ is defined in equation 16. We have

$$942 \quad 943 H_\nu = \mathcal{O}\left(\lambda^{\nu_f(1-\nu_g)} \ell \kappa^{3+(1+\nu_g)\nu_f}\right), \quad \mathcal{R} = \mathcal{O}\left(\lambda^{-(1-\nu_g)} \kappa^{-(1+\nu_g)}\right). \quad (19)$$

944 Denote this specific \mathcal{R} by \mathcal{D} . The boundedness of $\{x_i\}_{i=1}^{k-1}$ has been ensured by equation 17. From
945 line 8 in Algorithm 1, we have

$$946 \quad 947 \|w_{i+1} - w_i\| \leq (1 + \theta_{i+1})\|x_{i+1} - x_i\| + \theta_i\|x_i - x_{i-1}\| \leq 2\|x_{i+1} - x_i\| + \|x_i - x_{i-1}\|.$$

948 The last inequality holds due to $\theta_k \in (0, 1)$. So

$$949 \quad 950 \max_{0 \leq i < k} \|w_i - \bar{w}_k\| \leq \max_{0 \leq i \leq j < k} \|w_i - w_j\| \leq 3 \max_{0 \leq i \leq j < k} \|x_i - x_j\| \leq \mathcal{D},$$

951 where \bar{w}_k is defined in equation 7. The first inequality holds because $\bar{w}_k \in \text{conv}(\{w_i\}_{i=0}^{k-1})$, and the
952 maximum diameter of the convex hull is attained by a pair of its vertices.

□

D.3 PROOF OF LEMMA 4

955 *Proof.* Consider the exact gradient of $L_\lambda^*(\cdot)$:

$$956 \quad \nabla L_\lambda^*(w_{t,k}) = \nabla_x f(w_{t,k}, y_\lambda^*(w_{t,k})) + \lambda (\nabla_x g(w_{t,k}, y_\lambda^*(w_{t,k})) - \nabla_x g(w_{t,k}, y^*(w_{t,k}))),$$

957 and the inexact gradient estimator used by Algorithm 1:

$$958 \quad \hat{\nabla} L_\lambda^*(w_{t,k}) = \nabla_x f(w_{t,k}, y_{t,k}) + \lambda (\nabla_x g(w_{t,k}, y_{t,k}) - \nabla_x g(w_{t,k}, z_{t,k})).$$

959 By the triangle inequality, the Lipschitz continuity assumptions in Condition 1, and the condition
960 $L_f \leq \frac{1}{2}\lambda\mu \leq \lambda L_g$, we obtain:

$$\begin{aligned}
961 & \|\nabla L_\lambda^*(w_{t,k}) - \hat{\nabla} L_\lambda^*(w_{t,k})\| \\
962 & \leq L_f \|y_{t,k} - y_\lambda^*(w_{t,k})\| + \lambda L_g \|y_{t,k} - y_\lambda^*(w_{t,k})\| + \lambda L_g \|z_{t,k} - y^*(w_{t,k})\| \\
963 & = (L_f + \lambda L_g) \|y_{t,k} - y_\lambda^*(w_{t,k})\| + \lambda L_g \|z_{t,k} - y^*(w_{t,k})\| \\
964 & \leq (L_f + \lambda L_g) \cdot \frac{\sigma}{4\lambda L_g} + \lambda L_g \cdot \frac{\sigma}{2\lambda L_g} \\
965 & \leq \frac{\sigma}{2} + \frac{\sigma}{2} = \sigma.
\end{aligned}$$

□

972 **E PROOF OF LEMMAS IN SECTION 4**
 973

974 **Lemma E.1.** *Under Assumption 1 and with $\lambda \geq 2L_f/\mu$, the following holds for any x and x' :*

975
$$976 \quad L_\lambda^*(x) - L_\lambda^*(x') \leq \langle \nabla L_\lambda^*(x'), x - x' \rangle + \frac{L}{2} \|x - x'\|^2.$$

 977

978 **E.1 PROOF OF LEMMA 5**
 979

980 *Proof.* Let $\bar{x} = \sum_{i=1}^n q_i x_i$. Since L_λ^* is twice differentiable, we have

981
$$982 \quad \nabla L_\lambda^*(x_i) - \nabla L_\lambda^*(\bar{x}) = \nabla^2 L_\lambda(\bar{x})(x_i - \bar{x}) + \int_0^1 (\nabla^2 L_\lambda^*(\bar{x} + t(x_i - \bar{x})) - \nabla^2 L_\lambda^*(\bar{x}))(x_i - \bar{x}) dt.$$

 983

Computing the weighted average sum, we have

984
$$985 \quad \sum_{i=1}^n q_i \nabla L_\lambda^*(x_i) - \nabla L_\lambda^*(\bar{x}) = \sum_{i=1}^n q_i \int_0^1 (\nabla^2 L_\lambda^*(\bar{x} + t(x_i - \bar{x})) - \nabla^2 L_\lambda^*(\bar{x}))(x_i - \bar{x}) dt$$

 986

987 and

988
$$989 \quad \left\| \sum_{i=1}^n q_i \nabla L_\lambda^*(x_i) - \nabla L_\lambda^*(\bar{x}) \right\| \leq \sum_{i=1}^n q_i \int_0^1 \|\nabla^2 L_\lambda^*(\bar{x} + t(x_i - \bar{x})) - \nabla^2 L_\lambda^*(\bar{x})\| \|x_i - \bar{x}\| dt$$

 990
 991
$$992 \quad \leq \sum_{i=1}^n q_i \int_0^1 H_\nu \|t(x_i - \bar{x})\|^{\nu_f} \|x_i - \bar{x}\| dt$$

 993
 994
$$995 \quad = \frac{H_\nu}{1 + \nu_f} \sum_{i=1}^n q_i \|x_i - \bar{x}\|^{1 + \nu_f}$$

 996
 997
$$998 \quad = \frac{H_\nu}{1 + \nu_f} \sum_{i=1}^n q_i^{\frac{1 - \nu_f}{2}} \left(q_i \|x_i - \bar{x}\|^2 \right)^{\frac{1 + \nu_f}{2}}$$

 999
 1000
$$1001 \quad \leq \frac{H_\nu}{1 + \nu_f} \left(\sum_{i=1}^n q_i \right)^{\frac{1 - \nu_f}{2}} \left(\sum_{i=1}^n q_i \|x_i - \bar{x}\|^2 \right)^{\frac{1 + \nu_f}{2}}$$

 1002
 1003
$$1004 \quad = \frac{H_\nu}{1 + \nu_f} \left(\sum_{1 \leq i < j \leq n} q_i q_j \|x_i - x_j\|^2 \right)^{\frac{1 + \nu_f}{2}}.$$

 1005

1006 The second inequality holds due to $\|x_i - \bar{x}\| \leq \max_{1 \leq i \leq j \leq n} \|x_i - x_j\| \leq \mathcal{D}$, Lemma 2 and equation
 1007 equation 6. The last inequality uses Hölder inequality. The last equality holds due to $\sum_{i=1}^n q_i = 1$
 1008 and $\sum_{i=1}^n q_i \|x_i - \bar{x}\|^2 = \sum_{1 \leq i < j \leq n} q_i q_j \|x_i - x_j\|^2$. \square
 1009

1010 **E.2 PROOF OF LEMMA 6**
 1011

1012 *Proof.*

1013
$$1014 \quad L_\lambda^*(x) - L_\lambda^*(x') - \frac{1}{2} \langle \nabla L_\lambda^*(x) + \nabla L_\lambda^*(x'), x - x' \rangle$$

 1015
 1016
$$1017 \quad = \int_0^1 \langle \nabla L_\lambda^*(tx + (1 - t)x'), x - x' \rangle - \frac{1}{2} \langle \nabla L_\lambda^*(x) + \nabla L_\lambda^*(x'), x - x' \rangle dt$$

 1018
 1019
$$1020 \quad = \int_0^1 \langle \nabla L_\lambda^*(tx + (1 - t)x') - t \nabla L_\lambda^*(x) - (1 - t) \nabla L_\lambda^*(x'), x - x' \rangle dt$$

 1021
 1022
$$1023 \quad \leq \int_0^1 \|\nabla L_\lambda^*(tx + (1 - t)x') - t \nabla L_\lambda^*(x) - (1 - t) \nabla L_\lambda^*(x')\| \|x - x'\| dt$$

 1024
 1025
$$1026 \quad \leq \frac{H_\nu}{1 + \nu_f} \int_0^1 (t(1 - t)^{1 + \nu_f} + (1 - t)t^{1 + \nu_f}) \|x - x'\|^{2 + \nu_f} dt$$

 1026
 1027
$$1028 \quad = \frac{2H_\nu}{(1 + \nu_f)(2 + \nu_f)(3 + \nu_f)} \|x - x'\|^{2 + \nu_f}.$$

1026 The last inequality follows from Lemma 5 by setting $n = 2$, $(x_1, x_2) = (x, x')$, and $(q_1, q_2) =$
 1027 $(t, 1 - t)$.
 1028

□

1029

1030

1031 E.3 PROOF OF LEMMA 7
 10321033 *Proof.* Let
 1034

1035
$$P_k := \langle \nabla L_\lambda^*(x_{k-1}), x_k - x_{k-1} \rangle.$$

 1036

1037 From Lemma E.1, we have
 1038

1039

1040
$$\begin{aligned} L_\lambda^*(x_{k+1}) - L_\lambda^*(w_k) &\leq \langle \nabla L_\lambda^*(w_k), x_{k+1} - w_k \rangle + \frac{L}{2} \|x_{k+1} - w_k\|^2 \\ 1041 &= -\frac{1}{L} \langle \nabla L_\lambda^*(w_k), \hat{\nabla} L_\lambda^*(w_k) \rangle + \frac{1}{2L} \|\hat{\nabla} L_\lambda^*(w_k)\|^2. \end{aligned} \quad (20)$$

 1042

1043 From Lemma 6 and Lemma 3, it follows that $\|w_k - x_k\| \leq \|x_k - x_{k-1}\| \leq \mathcal{D}$ and
 1044

1045

1046
$$\begin{aligned} L_\lambda^*(w_k) - L_\lambda^*(x_k) &\leq \frac{1}{2} \langle \nabla L_\lambda^*(w_k) + \nabla L_\lambda^*(x_k), w_k - x_k \rangle \\ 1047 &\quad + \frac{2H_\nu}{(1 + \nu_f)(2 + \nu_f)(3 + \nu_f)} \|w_k - x_k\|^{2+\nu_f}. \end{aligned} \quad (21)$$

 1048

1049 By summing inequalities equation 20 and equation 21, we evaluate the expression as follows
 1050

1051

1052
$$\begin{aligned} L_\lambda^*(x_{k+1}) - L_\lambda^*(x_k) & \\ 1053 &\leq \frac{1}{2} \langle \nabla L_\lambda^*(w_k) + \nabla L_\lambda^*(x_k), w_k - x_k \rangle + \frac{2H_\nu \theta_k^{2+\nu_f}}{(1 + \nu_f)(2 + \nu_f)(3 + \nu_f)} \|x_k - x_{k-1}\|^{2+\nu_f} \\ 1054 &\quad - \frac{1}{L} \langle \nabla L_\lambda^*(w_k), \hat{\nabla} L_\lambda^*(w_k) \rangle + \frac{1}{2L} \|\hat{\nabla} L_\lambda^*(w_k)\|^2. \end{aligned} \quad (22)$$

 1055

1056

1057 To evaluate the first term on the right-hand side, we decompose it into four terms:
 1058

1059

1060
$$\begin{aligned} \langle \nabla L_\lambda^*(w_k) + \nabla L_\lambda^*(x_k), w_k - x_k \rangle & \\ 1061 &= \underbrace{2 \langle \nabla L_\lambda^*(w_k), w_k - x_k \rangle}_{(A)} + \underbrace{\theta_k \langle \nabla L_\lambda^*(x_{k-1}), w_k - x_k \rangle}_{(B)} \\ 1062 &\quad - \underbrace{\theta_k \langle \nabla L_\lambda^*(x_k), w_k - x_k \rangle}_{(C)} - \underbrace{\langle \nabla L_\lambda^*(w_k) + \theta_k \nabla L_\lambda^*(x_{k-1}) - (1 + \theta_k) \nabla L_\lambda^*(x_k), w_k - x_k \rangle}_{(D)}. \end{aligned}$$

 1063

1064

1065 Let $n = 2$, $q_1 = 1/(1 + \theta_k)$, $q_2 = \theta_k/(1 + \theta_k)$ in Lemma 5, we have
 1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

$$\begin{aligned} &\left\| \nabla L_\lambda^*(x_k) - \frac{1}{1 + \theta_k} \nabla L_\lambda^*(w_k) - \frac{\theta_k}{1 + \theta_k} \nabla L_\lambda^*(x_{k-1}) \right\| \\ &\leq \frac{H_\nu}{1 + \nu_f} \left(\frac{\theta_k}{(1 + \theta_k)^2} \|w_k - x_{k-1}\|^2 \right)^{\frac{1+\nu_f}{2}} \\ &= \frac{H_\nu}{1 + \nu_f} \theta_k^{\frac{1+\nu_f}{2}} \|x_k - x_{k-1}\|^{1+\nu_f}. \end{aligned} \quad (23)$$

1080 Now, we proceed to evaluate (A), (B), (C) and (D) respectively.
1081
1082
$$(A) = \frac{1}{L} \|\nabla L_\lambda^*(w_k)\|^2 + L\|w_k - x_k\|^2 - L\|(w_k - x_k) - \frac{1}{L}\nabla L_\lambda^*(w_k)\|^2$$

1083
1084
$$= \frac{1}{L} \|\nabla L_\lambda^*(w_k)\|^2 + \theta_k^2 L\|x_k - x_{k-1}\|^2 - L \left\| (x_{k+1} - x_k) + \left(\frac{1}{L} \hat{\nabla} L_\lambda^*(w_k) - \frac{1}{L} \nabla L_\lambda^*(w_k) \right) \right\|^2$$

1085
1086
$$= \frac{1}{L} \|\nabla L_\lambda^*(w_k)\|^2 + \theta_k^2 L\|x_k - x_{k-1}\|^2 - L\|x_{k+1} - x_k\|^2$$

1087
1088
$$- \frac{1}{L} \left\| \hat{\nabla} L_\lambda^*(w_k) - \nabla L_\lambda^*(w_k) \right\|^2 - 2\langle x_{k+1} - x_k, \hat{\nabla} L_\lambda^*(w_k) - \nabla L_\lambda^*(w_k) \rangle,$$

1089
1090
$$(B) = \theta_k^2 \langle \nabla L_\lambda^*(x_{k-1}), x_k - x_{k-1} \rangle = \theta_k^2 P_k,$$

1091
1092
$$(C) = -\theta_k P_{k+1} + \theta_k \langle \nabla L_\lambda^*(x_k), x_{k+1} - w_k \rangle$$

1093
$$= -\theta_k P_{k+1} - \frac{\theta_k}{L} \langle \nabla L_\lambda^*(x_k), \hat{\nabla} L_\lambda^*(w_k) \rangle,$$

1094
1095
$$(D) \leq \frac{2H_\nu}{1 + \nu_f} \theta_k^{\frac{3+\nu_f}{2}} \|x_k - x_{k-1}\|^{2+\nu_f}.$$

1096

1097 Here we use equality $2\langle a, b \rangle = \frac{1}{L}\|a\|^2 + L\|b\|^2 - L\|b - \frac{1}{L}a\|^2$, $x_{k+1} = w_k - \frac{1}{L}\hat{\nabla} L_\lambda^*(w_k)$, $w_k =$
1098 $x_k + \theta_k(x_k - x_{k-1})$ and equation 23. Plugging the evaluations into (22), we have

1099
1100
$$L_\lambda^*(x_{k+1}) - L_\lambda^*(x_k) \leq \frac{2H_\nu}{(1 + \nu_f)(2 + \nu_f)(3 + \nu_f)} \theta_k^{2+\nu_f} \|x_k - x_{k-1}\|^{2+\nu_f}$$

1101
1102
$$+ \frac{\theta_k^2 L}{2} \|x_k - x_{k-1}\|^2 - \frac{L}{2} \|x_{k+1} - x_k\|^2$$

1103
1104
$$- \langle x_{k+1} - x_k, \hat{\nabla} L_\lambda^*(w_k) - \nabla L_\lambda^*(w_k) \rangle$$

1105
1106
$$+ \frac{\theta_k^2}{2} P_k - \frac{\theta_k}{2} P_{k+1} + \frac{H_\nu}{1 + \nu_f} \theta_k^{\frac{3+\nu_f}{2}} \|x_k - x_{k-1}\|^{2+\nu_f}$$

1107
1108
$$- \frac{\theta_k}{2L} \langle \nabla L_\lambda^*(x_k), \hat{\nabla} L_\lambda^*(w_k) \rangle.$$

1109

1110 Next, to bound the last term on the right-hand side of equation 24, by triangle inequality and equa-
1111 tion 23, we have

1111
1112
$$\left\| (1 + \theta_k) \nabla L_\lambda^*(x_k) - \hat{\nabla} L_\lambda^*(w_k) \right\|$$

1113
1114
$$\leq \left\| (1 + \theta_k) \nabla L_\lambda^*(x_k) - \nabla L_\lambda^*(w_k) \right\| + \left\| \hat{\nabla} L_\lambda^*(w_k) - \nabla L_\lambda^*(w_k) \right\|$$

1115
1116
$$\leq \sigma + \theta_k \|\nabla L_\lambda^*(x_{k-1})\| + \frac{2H_\nu}{1 + \nu_f} \theta_k^{\frac{1+\nu_f}{2}} \|x_k - x_{k-1}\|^{1+\nu_f}.$$

1117

Squaring both sides yields

1118
1119
$$\left\| (1 + \theta_k) \nabla L_\lambda^*(x_k) - \hat{\nabla} L_\lambda^*(w_k) \right\|^2$$

1120
1121
$$= (1 + \theta_k)^2 \|\nabla L_\lambda^*(x_k)\|^2 + \|\hat{\nabla} L_\lambda^*(w_k)\|^2 - 2(1 + \theta_k) \langle \nabla L_\lambda^*(x_k), \hat{\nabla} L_\lambda^*(w_k) \rangle$$

1122
1123
$$\geq (1 + \theta_k)^2 \|\nabla L_\lambda^*(x_k)\|^2 - 2(1 + \theta_k) \langle \nabla L_\lambda^*(x_k), \hat{\nabla} L_\lambda^*(w_k) \rangle,$$

and

1124
1125
$$\left(\sigma + \theta_k \|\nabla L_\lambda^*(x_{k-1})\| + \frac{2H_\nu}{1 + \nu_f} \theta_k^{\frac{1+\nu_f}{2}} \|x_k - x_{k-1}\|^{1+\nu_f} \right)^2$$

1126
1127
$$\leq \theta_k (1 + \theta_k) \|\nabla L_\lambda^*(x_{k-1})\|^2 + 2(1 + \theta_k) \left(\sigma^2 + \frac{4H_\nu^2}{(1 + \nu_f)^2} \theta_k^{1+\nu_f} \|x_k - x_{k-1}\|^{2+2\nu_f} \right).$$

1128

1129 Here we use the inequalities $(a + b)^2 \leq (1 + \frac{1}{\theta_k})a^2 + (1 + \theta_k)b^2$ and $(a + b)^2 \leq 2(a^2 + b^2)$.
1130 Rearranging the terms yields

1131
1132
$$-\langle \nabla L_\lambda^*(x_k), \hat{\nabla} L_\lambda^*(w_k) \rangle \leq \sigma^2 + \frac{\theta_k}{2} \|\nabla L_\lambda^*(x_{k-1})\|^2 + \frac{4H_\nu^2}{(1 + \nu_f)^2} \theta_k^{1+\nu_f} \|x_k - x_{k-1}\|^{2+2\nu_f}$$

1133

$$- \frac{1 + \theta_k}{2} \|\nabla L_\lambda^*(x_k)\|^2.$$

1134 By plugging this bound into (24): we obtain
 1135

1136

1137

1138

$$\begin{aligned}
 L_{\lambda}^*(x_{k+1}) - L_{\lambda}^*(x_k) &\leq \frac{2H_{\nu}}{(1+\nu_f)(2+\nu_f)(3+\nu_f)} \theta_k^{2+\nu_f} \|x_k - x_{k-1}\|^{2+\nu_f} \\
 &\quad + \frac{\theta_k^2 L}{2} \|x_k - x_{k-1}\|^2 - \frac{L}{2} \|x_{k+1} - x_k\|^2 \\
 &\quad - \langle x_{k+1} - x_k, \hat{\nabla} L_{\lambda}^*(w_k) - \nabla L_{\lambda}^*(w_k) \rangle \\
 &\quad + \frac{\theta_k^2}{2} P_k - \frac{\theta_k}{2} P_{k+1} + \frac{H_{\nu}}{1+\nu_f} \theta_k^{\frac{3+\nu_f}{2}} \|x_k - x_{k-1}\|^{2+\nu_f} \\
 &\quad + \frac{\theta_k^2}{4L} \|\nabla L_{\lambda}^*(x_{k-1})\|^2 + \frac{2H_{\nu}^2}{(1+\nu_f)^2} \frac{\theta_k^{2+\nu_f}}{L} \|x_k - x_{k-1}\|^{2+2\nu_f} \\
 &\quad - \frac{(1+\theta_k)\theta_k}{4L} \|\nabla L_{\lambda}^*(x_k)\|^2 + \frac{\theta_k \sigma^2}{2L}. \tag{25}
 \end{aligned}$$

1145

1146

1147

1148

1149

1150

1151

1152

Considering equation 9, equation 25 and $\theta_k \leq 1$, we have
 1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

From Young's inequalities and $\theta_{k+1}^2 - \theta_k^2 \leq 0$, we have
 1170

1171

1172

1173

1174

1175

1176

Finally, we derive the inequality below:
 1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

□

1188 E.4 PROOF OF LEMMA 8
11891190 *Proof.* Summing Lemma 7 from $i = 0, \dots, k - 1$ and telescoping yields
1191

$$\begin{aligned}
1192 \Phi_k - \Phi_0 &= \sum_{i=0}^{k-1} (\Phi_{i+1} - \Phi_i) \\
1193 &\leq \sum_{i=0}^{k-1} \left(\|x_i - x_{i-1}\|^{2+\nu_f} \left(\frac{2H_\nu}{(1+\nu_f)(2+\nu_f)(3+\nu_f)} \theta_i^{2+\nu_f} + \frac{H_\nu}{1+\nu_f} \theta_i^{\frac{3+\nu_f}{2}} \right) \right. \\
1194 &\quad + \|x_i - x_{i-1}\|^{2+2\nu_f} \frac{2H_\nu^2}{(1+\nu_f)^2} \frac{\theta_i^{2+\nu_f}}{L} + \frac{\theta_{i+1}^2 + \theta_i - 2}{4} L \|x_{i+1} - x_i\|^2 \\
1195 &\quad \left. - \frac{\theta_i^2}{4L} \|\nabla L_\lambda^*(x_i)\|^2 + \frac{\sigma^2}{2L} + \sigma \|x_{i+1} - x_i\| \right) \\
1196 &\leq \sum_{i=0}^{k-1} \|x_i - x_{i-1}\|^{2+\nu_f} \left(\frac{2H_\nu}{(1+\nu_f)(2+\nu_f)(3+\nu_f)} \theta_{k-1}^{2+\nu_f} + \frac{H_\nu}{1+\nu_f} \theta_{k-1}^{\frac{3+\nu_f}{2}} \right) \\
1197 &\quad + \sum_{i=0}^{k-1} \|x_i - x_{i-1}\|^{2+2\nu_f} \frac{2H_\nu^2}{(1+\nu_f)^2} \frac{\theta_{k-1}^{2+\nu_f}}{L} + \frac{\theta_k^2 + \theta_{k-1} - 2}{4} L \sum_{i=0}^{k-1} \|x_{i+1} - x_i\|^2 \\
1198 &\quad \left. - \frac{\theta_0^2}{4L} \|\nabla L_\lambda^*(x_i)\|^2 + \frac{k\sigma^2}{2L} + \sigma \sum_{i=0}^{k-1} \|x_{i+1} - x_i\| \right). \tag{26}
\end{aligned}$$

1211 The second inequality holds due to $\{\theta_k\}$ is non-decreasing and non-negative. Moreover, by the
1212 definition of Φ_k in equation 9, we have
1213

1214 $\Phi_k - L_\lambda^*(x_k) = \frac{\theta_k^2}{2} \left(\frac{1}{2L} \|\nabla L_\lambda^*(x_{k-1}) + L(x_k - x_{k-1})\|^2 + \frac{L}{2} \|x_k - x_{k-1}\|^2 \right) \geq 0, \tag{27}$
1215

1216 $\Phi_0 - L_\lambda^*(x_0) = \frac{\theta_0^2}{4L} \|L_\lambda^*(x_0)\|^2 \geq 0. \tag{28}$
1217

1218 From Power-Mean Inequality, we have
1219

1220 $\sum_{i=0}^{k-1} \|x_i - x_{i-1}\|^{2+\nu_f} \leq S_{k-1}^{\frac{2+\nu_f}{2}}, \quad \sum_{i=0}^{k-1} \|x_i - x_{i-1}\|^{2+2\nu_f} \leq S_{k-1}^{1+\nu_f}. \tag{29}$
1221

1222 Substituting equation 27, equation 28, and equation 29 into equation 26, we obtain
1223

$$\begin{aligned}
1224 L_\lambda^*(x_k) - L_\lambda^*(x_0) &\leq S_{k-1}^{\frac{2+\nu_f}{2}} \left(\frac{2H_\nu}{(1+\nu_f)(2+\nu_f)(3+\nu_f)} \theta_{k-1}^{2+\nu_f} + \frac{H_\nu}{1+\nu_f} \theta_{k-1}^{\frac{3+\nu_f}{2}} \right) \\
1225 &\quad + S_{k-1}^{1+\nu_f} \cdot \frac{2H_\nu^2}{(1+\nu_f)^2} \cdot \frac{\theta_{k-1}^{2+\nu_f}}{L} + \frac{\theta_k^2 + \theta_{k-1} - 2}{4} L S_k \\
1226 &\quad + \frac{k\sigma^2}{2L} + \sigma \sum_{i=0}^{k-1} \|x_{i+1} - x_i\|.
\end{aligned}$$

1227 Applying the restart condition equation 5 and noting that $S_{k-1} \leq S_k$, we further obtain
1228

$$\begin{aligned}
1229 L_\lambda^*(x_k) - L_\lambda^*(x_0) &\leq \left(\frac{2}{(1+\nu_f)(2+\nu_f)(3+\nu_f)} \theta_{k-1}^{2+\nu_f} + \frac{1}{1+\nu_f} \theta_{k-1}^{\frac{3+\nu_f}{2}} \right) \cdot \frac{L S_k}{k^{2+\frac{\nu_f}{2}}} \\
1230 &\quad + \frac{2}{(1+\nu_f)^2} \theta_{k-1}^{2+\nu_f} \cdot \frac{L S_k}{k^{4+\nu_f}} + \frac{\theta_k^2 + \theta_{k-1} - 2}{4} L S_k \\
1231 &\quad + \frac{k\sigma^2}{2L} + \sigma \sum_{i=0}^{k-1} \|x_{i+1} - x_i\|.
\end{aligned}$$

Since $0 \leq \nu_f \leq 1$, and

$$\left(\frac{7}{3}\theta_{k-1}^{2+\nu_f} + \theta_{k-1}^{\frac{3+\nu_f}{2}}\right) \cdot \frac{1}{k^{2+\frac{\nu_f}{2}}} + \frac{\theta_k^2 + \theta_{k-1} - 2}{4} \leq -\frac{1}{32k}, \quad \forall k \geq 1,$$

we obtain

$$\begin{aligned}
L_\lambda^*(x_k) - L_\lambda^*(x_0) &\leq LS_k \left(\left(\frac{7}{3} \theta_{k-1}^{2+\nu_f} + \theta_{k-1}^{\frac{3+\nu_f}{2}} \right) \cdot \frac{1}{k^{2+\frac{\nu_f}{2}}} + \frac{\theta_k^2 + \theta_{k-1} - 2}{4} \right) \\
&\quad + \frac{k\sigma^2}{2L} + \sigma \sum_{i=0}^{k-1} \|x_{i+1} - x_i\| \\
&\leq -\frac{LS_k}{32k} + \frac{k\sigma^2}{2L} + \sigma \sum_{i=0}^{k-1} \|x_{i+1} - x_i\|.
\end{aligned}$$

1

E.5 PROOF OF LEMMA 9

Proof. Define

$$Z_k = \sum_{i=0}^{k-1} \prod_{j=i+1}^{k-1} \theta_j = \frac{k+1}{2},$$

so that $p_{k,i} = \frac{1}{Z_k} \prod_{j=i+1}^{k-1} \theta_j$. From definition (7), we have:

$$\begin{aligned}
\sum_{i=0}^{k-1} p_{k,i} \hat{\nabla} L_{\lambda}^*(w_i) &= \sum_{i=0}^{k-1} p_{k,i} L(w_i - x_{i+1}) \\
&= \sum_{i=0}^{k-1} p_{k,i} L(\theta_i(x_i - x_{i-1}) - (x_{i+1} - x_i)) \\
&= \sum_{i=0}^{k-1} L(p_{k,i-1}(x_i - x_{i-1}) - p_{k,i}(x_{i+1} - x_i)) \\
&= -L p_{k,k-1}(x_k - x_{k-1}).
\end{aligned}$$

From $\bar{w}_k \in \text{conv}(\{w_i\}_{i=0}^{k-1})$, Lemma 3 and Lemma 5, we have

$$\begin{aligned}
\|\nabla L_{\lambda}^*(\bar{w}_k)\| &\leq \left\| \sum_{i=0}^{k-1} p_{k,i} \nabla L_{\lambda}^*(w_i) \right\| + \frac{H_{\nu}}{1+\nu_f} \left(\sum_{0 \leq i < j < k} p_{k,i} p_{k,j} \|w_i - w_j\|^2 \right)^{\frac{1+\nu_f}{2}} \\
&\leq \sigma + L p_{k,k-1} \|x_k - x_{k-1}\| + \frac{H_{\nu}}{1+\nu_f} \left(\sum_{0 \leq i < j < k} p_{k,i} p_{k,j} \|w_i - w_j\|^2 \right)^{\frac{1+\nu_f}{2}} \\
&\leq \sigma + \frac{L}{Z_k} \|x_k - x_{k-1}\| + \frac{H_{\nu}}{(1+\nu_f) Z_k^{1+\nu_f}} \left(\sum_{0 \leq i < j < k} \|w_i - w_j\|^2 \right)^{\frac{1+\nu_f}{2}}. \quad (30)
\end{aligned}$$

1296 Here we use inequality $p_{k,i} \leq p_{k,k-1} = 1/Z_k = 2/(k+1)$ for all $0 \leq i < k$. Regarding the last
 1297 term in equation 30, we have
 1298

$$\begin{aligned}
 1301 \quad & \|w_i - w_j\| \\
 1302 \quad & \leq \|w_i - x_i\| + \sum_{l=i+1}^{j-1} \|x_l - x_{l-1}\| + \|w_j - x_{j-1}\| \\
 1304 \quad & = \|x_i - x_{i-1}\| + \sum_{l=i+1}^{j-1} \|x_l - x_{l-1}\| + 2\|x_j - x_{j-1}\| \\
 1305 \quad & \leq \left(1^2 + \sum_{l=i+1}^{j-1} 1^2 + 2^2\right)^{1/2} \left(\sum_{l=i}^j \|x_l - x_{l-1}\|^2\right)^{1/2} \\
 1309 \quad & = \sqrt{j-i+4} \left(\sum_{l=i}^j \|x_l - x_{l-1}\|^2\right)^{1/2}.
 \end{aligned}$$

1315
 1316
 1317 The above inequalities hold by the triangle inequality, $0 \leq \theta_k \leq 1$ and Cauchy–Schwarz inequality,
 1318 respectively. Then
 1319

$$\begin{aligned}
 1323 \quad & \sum_{0 \leq i < j < k} \|w_i - w_j\|^2 \leq \sum_{0 \leq i < j < k} \sum_{l=i}^j (j-i+4) \|x_l - x_{l-1}\|^2 \\
 1324 \quad & = \sum_{l=0}^{k-1} \left(\sum_{i=0}^l \sum_{j=l}^{k-1} (j-i+4) \right) \|x_l - x_{l-1}\|^2 - 4 \sum_{l=0}^{k-1} \|x_l - x_{l-1}\|^2 \\
 1325 \quad & = \frac{k+7}{2} \sum_{l=0}^{k-1} (l+1)(k-l) \|x_l - x_{l-1}\|^2 - 4 \sum_{l=0}^{k-1} \|x_l - x_{l-1}\|^2 \\
 1326 \quad & \leq \frac{k+7}{2} \sum_{l=0}^{k-1} \frac{(k+1)^2}{4} \|x_l - x_{l-1}\|^2 - 4 \sum_{l=0}^{k-1} \|x_l - x_{l-1}\|^2 \\
 1327 \quad & = \frac{(k-1)(k+5)^2}{8} \sum_{l=0}^{k-1} \|x_l - x_{l-1}\|^2 \leq \frac{(k-1)(k+5)^2}{8} S_k. \tag{31}
 \end{aligned}$$

1338
 1339
 1340 Plugging equation 31 into equation 30, we have
 1341

$$\begin{aligned}
 1344 \quad & \|\nabla L_\lambda^*(\bar{w}_k)\| \leq \sigma + \frac{L}{Z_k} \|x_k - x_{k-1}\| + \frac{H_\nu}{1+\nu_f} (1/Z_k)^{1+\nu_f} \left(\frac{(k-1)(k+5)^2}{8}\right)^{\frac{1+\nu_f}{2}} S_k^{\frac{1+\nu_f}{2}}. \\
 1345 \quad & \tag{32}
 \end{aligned}$$

1346 Then for $k \geq 2$, combining with (32), we have
 1347
 1348
 1349

$$\begin{aligned}
& \sum_{i=1}^{k-1} Z_i^2 \min_{1 \leq i \leq k} \|\nabla L_\lambda^*(\bar{w}_i)\| \\
& \leq \sum_{i=1}^{k-1} Z_i^2 \|\nabla L_\lambda^*(\bar{w}_i)\| \\
& \leq \sigma \sum_{i=1}^{k-1} Z_i^2 + \sum_{i=1}^{k-1} \left(L Z_i \|x_i - x_{i-1}\| + \frac{H_\nu}{1+\nu_f} (1/Z_i)^{\nu_f-1} \left(\frac{(i-1)(i+5)^2}{8} \right)^{\frac{1+\nu_f}{2}} S_i^{\frac{1+\nu_f}{2}} \right) \\
& \leq \sigma \sum_{i=1}^{k-1} Z_i^2 + L \sqrt{S_{k-1}} \left(\sum_{i=1}^{k-1} Z_i^2 \right)^{1/2} + \frac{H_\nu}{1+\nu_f} \sum_{i=1}^{k-1} (1/Z_i)^{\nu_f-1} \left(\frac{(i-1)(i+5)^2}{8} \right)^{\frac{1+\nu_f}{2}} S_{k-1}^{(1+\nu_f)/2} \\
& \leq \sigma \sum_{i=1}^{k-1} Z_i^2 + L \sqrt{S_{k-1}} \left(\sum_{i=1}^{k-1} Z_i^2 \right)^{1/2} + \frac{L \sqrt{1/k^{4+\nu_f}}}{1+\nu_f} \sum_{i=1}^{k-1} \left(\frac{2}{i+1} \right)^{\nu_f-1} \left(\frac{(i-1)(i+5)^2}{8} \right)^{\frac{1+\nu_f}{2}} S_{k-1}^{\frac{1}{2}} \\
& = \sigma \sum_{i=1}^{k-1} Z_i^2 + L \sqrt{S_{k-1}} \left(\left(\sum_{i=1}^{k-1} Z_i^2 \right)^{1/2} + \frac{\sqrt{1/k^{4+\nu_f}}}{1+\nu_f} \sum_{i=1}^{k-1} \left(\frac{2}{i+1} \right)^{\nu_f-1} \left(\frac{(i-1)(i+5)^2}{8} \right)^{\frac{1+\nu_f}{2}} \right).
\end{aligned}$$

Notice that $Z_k = \frac{k+1}{2}$ and $\frac{k^3}{12} \leq \sum Z_i^2 \leq \frac{k^3}{6}$, we have

$$\begin{aligned}
\min_{1 \leq i \leq k} \|\nabla L_\lambda^*(\bar{w}_i)\| & \leq \sigma + L \sqrt{S_{k-1}} \frac{\left(\left(\sum_{i=1}^{k-1} Z_i^2 \right)^{1/2} + \frac{\sqrt{1/k^{4+\nu_f}}}{1+\nu_f} \sum_{i=1}^{k-1} \left(\frac{2}{i+1} \right)^{\nu_f-1} \left(\frac{(i-1)(i+5)^2}{8} \right)^{(1+\nu_f)/2} \right)}{\left(\sum_{i=1}^{k-1} Z_i^2 \right)} \\
& \leq \sigma + L \sqrt{S_{k-1}} \frac{\frac{k^{\frac{3}{2}}}{\sqrt{6}} + \sqrt{\frac{1}{k^{4+\nu_f}}} \sum_{i=1}^{k-1} \frac{9}{2} i^{\frac{5}{2} + \frac{\nu_f}{2}}}{k^3/12} \\
& \leq \sigma + cL \sqrt{S_{k-1}/k^3},
\end{aligned}$$

where c is a constant, $c = 2\sqrt{6} + 27$. The last inequality holds due to $\sum_{i=1}^{k-1} i^{\frac{5}{2} + \frac{\nu_f}{2}} \leq \frac{1}{2} k^{\frac{7}{2} + \frac{\nu_f}{2}}$. \square

E.6 PROOF OF PROPOSITION 1

Proof. Consider an epoch ends at iteration k and ignore the subscript t . If \bar{w}_k is not an ϵ -first-order stationary point and $k \geq 2$, from Lemma 9, we have:

$$\epsilon \leq \sigma + cL \sqrt{S_{k-1}/k^3} \leq \sigma + cL \sqrt{S_k/k^3}.$$

If $k = 1$, $\sigma + cL \sqrt{S_k/k^3} = \sigma + cL \|x_1 - x_0\| = \sigma + c \|\hat{\nabla} L_\lambda^*(x_0)\| \geq \epsilon$. Here we set $\sigma = \frac{1}{64c+1}\epsilon$, the above inequality is

$$S_k \geq \frac{\epsilon^2 k^3}{(c + \frac{1}{64})^2 L^2}, \quad \forall k \geq 1. \quad (33)$$

From (33), We have

$$\sigma \sqrt{k S_k} = \frac{1}{64c+1} \epsilon \sqrt{k S_k} \leq \frac{L S_k}{64k}, \quad (34)$$

$$\frac{k \sigma^2}{2L} \leq \frac{k}{2L} \frac{1}{64^2} L^2 \frac{S_k}{k^3} \leq \frac{L S_k}{2 \times 64^2 k}. \quad (35)$$

From restart condition equation 5, we have

$$S_k > \left(\frac{L^2/k^{4+\nu_f}}{H_\nu^2} \right)^{1/\nu_f}. \quad (36)$$

1404 Then we can bound S_k as:
1405

$$1406 \\ 1407 S_k = S_k^{\frac{4+3\nu_f}{4+4\nu_f}} S_k^{\frac{\nu_f}{4+4\nu_f}} \geq L^{-\frac{3}{2}} \left(\frac{64\epsilon}{64c+1} \right)^{\frac{4+3\nu_f}{2+2\nu_f}} k^2 H_\nu^{-\frac{1}{2+2\nu_f}}.$$

1408 From Lemma 8, (34) and (35), in this epoch, decrease of $L_\lambda^*(x)$ is
1409

$$1410 \\ 1411 L_\lambda^*(x_0) - L_\lambda^*(x_k) \geq \frac{LS_k}{32k} - \frac{k\sigma^2}{2L} - \sigma\sqrt{kS_k} \geq \frac{LS_k}{100k} \\ 1412 \\ 1413 \geq \frac{1}{100} L^{-\frac{1}{2}} \left(\frac{64\epsilon}{64c+1} \right)^{\frac{4+3\nu_f}{2+2\nu_f}} k H_\nu^{-\frac{1}{2+2\nu_f}}.$$

1414 Sum above inequality over all epochs and denote the number of total iterates as K , we have
1415

$$1416 \\ 1417 \\ 1418 K \leq 100\Delta_\lambda L^{\frac{1}{2}} H_\nu^{\frac{1}{2+2\nu_f}} \left(\frac{64c+1}{64\epsilon} \right)^{\frac{4+3\nu_f}{2+2\nu_f}}. \quad (37)$$

1419 As a result, we can denote the expression in the right side of equation 37 as K_{\max} . Substitute
1420 $H_\nu = \lambda^{\nu_f(1-\nu_g)} \mathcal{O}(\ell\kappa^{3+(1+\nu_g)\nu_f})$ and $L = \mathcal{O}(\ell\kappa^3)$ for (37), we have
1421

$$1422 \\ 1423 K \leq \mathcal{O} \left(\Delta_\lambda \lambda^{\frac{\nu_f(1-\nu_g)}{(2+2\nu_f)}} \ell^{\frac{2+\nu_f}{2+2\nu_f}} \kappa^{\frac{6+4\nu_f+\nu_f\nu_g}{(2+2\nu_f)}} \epsilon^{-\frac{4+3\nu_f}{2+2\nu_f}} \right). \quad (38)$$

1424 We can also bound S_k as:
1425

$$1426 \\ 1427 \\ 1428 S_k = S_k^{\frac{2+\nu_f}{2+2\nu_f}} S_k^{\frac{\nu_f}{2+2\nu_f}} \geq L^{-1} \left(\frac{64\epsilon}{64c+1} \right)^{\frac{2+\nu_f}{1+\nu_f}} k H_\nu^{-\frac{1}{1+\nu_f}}.$$

1429 From Lemma 8, (34), (35), in this epoch, decrease of $L_\lambda^*(x)$ is
1430

$$1431 \\ 1432 \\ 1433 L_\lambda^*(x_0) - L_\lambda^*(x_k) \geq \frac{LS_k}{32k} - \frac{k\sigma^2}{2L} - \sigma\sqrt{kS_k} \\ 1434 \geq \frac{LS_k}{100k} \\ 1435 \geq \frac{1}{100} \left(\frac{64\epsilon}{64c+1} \right)^{\frac{2+\nu_f}{1+\nu_f}} H_\nu^{-\frac{1}{1+\nu_f}}. \quad (39)$$

1436 Sum above inequalities over all epochs, we have
1437

$$1438 \\ 1439 \\ 1440 T \leq 100\Delta_\lambda \left(\frac{64c+1}{64\epsilon} \right)^{\frac{2+\nu_f}{1+\nu_f}} H_\nu^{\frac{1}{1+\nu_f}}. \quad (40)$$

1441 Substitute $H_\nu = \lambda^{\nu_f(1-\nu_g)} \mathcal{O}(\ell\kappa^{3+(1+\nu_g)\nu_f})$ and $L = \mathcal{O}(\ell\kappa^3)$ for equation 40, we have
1442

$$1443 \\ 1444 T \leq \mathcal{O} \left(\Delta_\lambda \lambda^{\frac{\nu_f(1-\nu_g)}{(1+\nu_f)}} \ell^{\frac{1}{1+\nu_f}} \kappa^{\frac{3+(1+\nu_g)\nu_f}{(1+\nu_f)}} \epsilon^{-\frac{2+\nu_f}{1+\nu_f}} \right). \quad (41)$$

1445 \square

E.7 PROOF OF THEOREM 1

1446 *Proof.* From Lemma 1, we have $\|\nabla L_\lambda^*(x) - \nabla \varphi(x)\| \leq \mathcal{O}(\ell\kappa^3)/\lambda$. From Lemma 1, we have
1447 $|L_\lambda^*(x) - \varphi(x)| \leq \mathcal{O}(\kappa^2)/\lambda$. Denote the number of total iterates as K , from Proposition 1, the
1448 following holds:
1449

$$1450 \\ 1451 \|\nabla \varphi(\bar{w}_k)\| \leq \|\nabla L_\lambda^*(\bar{w}_k) - \nabla \varphi(\bar{w}_k)\| + \|\nabla L_\lambda^*(\bar{w}_k)\| \leq 2\epsilon.$$

1452 Substitute equation 38 and equation 41 with $\lambda = \max(\mathcal{O}(\kappa), \mathcal{O}(\ell\kappa^3)/\epsilon, \mathcal{O}(\ell\kappa^2)/\Delta)$, the theorem
1453 is proved. \square

1458 E.8 PROOF OF THEOREM 2
14591460 **Lemma E.2.** Consider the t -epoch generated by Algorithm 1 and ending at iteration k , we claim
1461 that for any t and its corresponding k , we can find some constant C to satisfy:

1462
1463
$$\|\nabla L_\lambda(w_{t,k-1})\|_2 \leq C.$$

1464

1465 *Proof.* For the t -epoch except the last epoch, $\bar{w}_{t,k}$ is not an ϵ -first-order stationary point. Since
1466 $L_\lambda^*(x)$ has L -Lipschitz continuous gradient, we have
1467

1468
$$\begin{aligned} L_\lambda^*(x_{k+1}) &\leq L_\lambda^*(w_k) + \langle \nabla L_\lambda^*(w_k), x_{k+1} - w_k \rangle + \frac{L}{2} \|x_{k+1} - w_k\|^2 \\ &\leq L_\lambda^*(w_k) - \frac{1}{L} \langle \nabla L_\lambda^*(w_k), \hat{\nabla} L_\lambda^*(w_k) \rangle + \frac{1}{2L} \|\hat{\nabla} L_\lambda^*(w_k)\|^2, \end{aligned}$$

1472

1473 where we use $x_{k+1} = w_k - \frac{1}{L} \hat{\nabla} L_\lambda^*(w_k)$. We also have
1474

1475
$$L_\lambda^*(x_k) \geq L_\lambda^*(w_k) + \langle \nabla L_\lambda^*(w_k), x_k - w_k \rangle - \frac{L}{2} \|x_k - w_k\|^2.$$

1476

1477 Combining the above inequalities leads to
1478

1479
$$\begin{aligned} L_\lambda^*(x_{k+1}) - L_\lambda^*(x_k) &\leq -\langle \nabla L_\lambda^*(w_k), x_k - w_k \rangle + \frac{L}{2} \|x_k - w_k\|^2 - \frac{1}{L} \langle \nabla L_\lambda^*(w_k), \hat{\nabla} L_\lambda^*(w_k) \rangle + \frac{1}{2L} \|\hat{\nabla} L_\lambda^*(w_k)\|^2 \\ &= L \langle x_{k+1} - w_k, x_k - w_k \rangle + \langle \hat{\nabla} L_\lambda^*(w_k) - \nabla L_\lambda^*(w_k), x_k - w_k \rangle + \frac{L}{2} \|x_k - w_k\|^2 \\ &\quad - \frac{1}{L} \langle \nabla L_\lambda^*(w_k), \hat{\nabla} L_\lambda^*(w_k) \rangle + \frac{1}{2L} \|\hat{\nabla} L_\lambda^*(w_k)\|^2 \\ &= \frac{L}{2} (\|x_{k+1} - w_k\|^2 + \|x_k - w_k\|^2 - \|x_{k+1} - x_k\|^2) + \langle \hat{\nabla} L_\lambda^*(w_k) - \nabla L_\lambda^*(w_k), x_k - w_k \rangle \\ &\quad + \frac{L}{2} \|x_k - w_k\|^2 - \frac{1}{L} \langle \nabla L_\lambda^*(w_k), \hat{\nabla} L_\lambda^*(w_k) \rangle + \frac{1}{2L} \|\hat{\nabla} L_\lambda^*(w_k)\|^2 \\ &\leq L \|x_k - w_k\|^2 - \frac{L}{2} \|x_{k+1} - x_k\|^2 + \langle \hat{\nabla} L_\lambda^*(w_k) - \nabla L_\lambda^*(w_k), x_k - w_k \rangle + \frac{1}{L} \|\hat{\nabla} L_\lambda^*(w_k)\|^2 \\ &\quad - \frac{1}{L} \langle \hat{\nabla} L_\lambda^*(w_k), \nabla L_\lambda^*(w_k) \rangle \\ &\stackrel{(a)}{\leq} L \|x_k - x_{k-1}\|^2 - \frac{L}{2} \|x_{k+1} - x_k\|^2 + \|\hat{\nabla} L_\lambda^*(w_k) - \nabla L_\lambda^*(w_k)\| \cdot \|x_k - x_{k-1}\| \\ &\quad + \frac{1}{L} \|\hat{\nabla} L_\lambda^*(w_k)\|^2 - \frac{1}{L} \langle \nabla L_\lambda^*(w_k), \hat{\nabla} L_\lambda^*(w_k) \rangle \\ &= L \|x_k - x_{k-1}\|^2 - \frac{L}{2} \|x_{k+1} - x_k\|^2 + \|\hat{\nabla} L_\lambda^*(w_k) - \nabla L_\lambda^*(w_k)\| \cdot \|x_k - x_{k-1}\| \\ &\quad + \frac{1}{L} \|\hat{\nabla} L_\lambda^*(w_k)\|^2 - \frac{1}{2L} (\|\nabla L_\lambda^*(w_k)\|^2 + \|\hat{\nabla} L_\lambda^*(w_k)\|^2 - \|\nabla L_\lambda^*(w_k) - \hat{\nabla} L_\lambda^*(w_k)\|^2) \\ &\stackrel{(b)}{\leq} L \|x_k - x_{k-1}\|^2 - \frac{L}{2} \|x_{k+1} - x_k\|^2 + \|\hat{\nabla} L_\lambda^*(w_k) - \nabla L_\lambda^*(w_k)\| \cdot \|x_k - x_{k-1}\| \\ &\quad - \frac{1}{4L} \|\nabla L_\lambda^*(w_k)\|^2 + \frac{3}{4L} \|\nabla L_\lambda^*(w_k) - \hat{\nabla} L_\lambda^*(w_k)\|^2 \\ &\stackrel{(c)}{\leq} L \|x_k - x_{k-1}\|^2 - \frac{L}{2} \|x_{k+1} - x_k\|^2 - \frac{1}{4L} \|\nabla L_\lambda^*(w_k)\|^2 + \sigma \|x_k - x_{k-1}\| + \frac{3}{4L} \sigma^2, \end{aligned}$$

1509
1510 where we use $\|x_k - w_k\| = \theta_k \|x_k - x_{k-1}\| \leq \|x_k - x_{k-1}\|$ in $\stackrel{(a)}{\leq}$, the triangle inequality in $\stackrel{(b)}{\leq}$
1511 and Lemma 4 in $\stackrel{(c)}{\leq}$.

1512 Summing over the above inequality, and using $x_0 = x_{-1}$, we have
 1513

$$\begin{aligned}
 1514 \quad & L_{\lambda}^*(x_k) - L_{\lambda}^*(x_0) \\
 1515 \quad & \leq \frac{L}{2} \sum_{i=0}^{k-2} \|x_{i+1} - x_i\|^2 - \frac{1}{4L} \sum_{i=0}^{k-1} \|\nabla L_{\lambda}^*(w_i)\|^2 + \sigma \sum_{i=0}^{k-1} \|x_i - x_{i-1}\| + \frac{3}{4L} \sigma^2 k \\
 1516 \quad & \leq \frac{L}{2} \sum_{i=0}^{k-2} \|x_{i+1} - x_i\|^2 - \frac{1}{4L} \sum_{i=0}^{k-1} \|\nabla L_{\lambda}^*(w_i)\|^2 + \sigma \sqrt{k-1} \sqrt{\sum_{i=0}^{k-2} \|x_{i+1} - x_i\|^2} + \frac{3}{4L} \sigma^2 k \\
 1517 \quad & \stackrel{(d)}{\leq} \frac{L}{2} S_{k-1} - \frac{1}{4L} \|\nabla L_{\lambda}^*(w_{k-1})\|^2 + \sigma \sqrt{k} S_{k-1} + \frac{3}{4L} \sigma^2 k \\
 1518 \quad & \stackrel{(e)}{\leq} \frac{L}{2} S_{k-1} - \frac{1}{4L} \|\nabla L_{\lambda}^*(w_{k-1})\|^2 + \sigma \sqrt{k} S_{k-1} + \frac{3}{4L} \sigma^2 k \\
 1519 \quad & \stackrel{(f)}{\leq} \frac{L}{2} \left(\frac{L}{H_{\nu}} \right)^{\frac{2}{\nu_f}} - \frac{1}{4L} \|\nabla L_{\lambda}^*(w_{k-1})\|^2 + \sigma ((L/H_{\nu})^{\frac{1}{\nu_f}}) + \frac{3}{4L} \sigma^2 k \\
 1520 \quad & \stackrel{(g)}{\leq} \frac{L}{2} \left(\frac{L}{H_{\nu}} \right)^{\frac{2}{\nu_f}} - \frac{1}{4L} \|\nabla L_{\lambda}^*(w_{k-1})\|^2 + \sigma ((L/H_{\nu})^{\frac{1}{\nu_f}}) + \frac{3LS_k}{4 \times 64^2 k}, \tag{42}
 1521 \\
 1522 \quad & \\
 1523 \quad & \\
 1524 \quad & \\
 1525 \quad & \\
 1526 \quad & \\
 1527 \quad & \\
 1528 \quad & \\
 1529 \quad & \\
 1530 \quad & \\
 1531 \quad & \\
 1532 \quad & \\
 1533 \quad & \\
 1534 \quad & \\
 1535 \quad & \\
 1536 \quad & \\
 1537 \quad & \\
 1538 \quad & \\
 1539 \quad & \\
 1540 \quad & \\
 1541 \quad & \\
 1542 \quad & \\
 1543 \quad & \\
 1544 \quad & \\
 1545 \quad & \\
 1546 \quad & \\
 1547 \quad & \\
 1548 \quad & \\
 1549 \quad & \\
 1550 \quad & \\
 1551 \quad & \\
 1552 \quad & \\
 1553 \quad & \\
 1554 \quad & \\
 1555 \quad & \\
 1556 \quad & \\
 1557 \quad & \\
 1558 \quad & \\
 1559 \quad & \\
 1560 \quad & \\
 1561 \quad & \\
 1562 \quad & \\
 1563 \quad & \\
 1564 \quad & \\
 1565 \quad &
 \end{aligned}$$

1530 where we use the Cauchy–Schwarz inequality in $\stackrel{(d)}{\leq}$, non-negativity of norm in $\stackrel{(e)}{\leq}$, the restart condi-
 1531 tion equation 5 in $\stackrel{(f)}{\leq}$ and equation 35 in $\stackrel{(g)}{\leq}$. For the last term in equation 42, we have
 1532

$$\begin{aligned}
 1533 \quad & \frac{S_k}{k} \leq \frac{S_{k-1}}{k} + \frac{\|x_k - x_{k-1}\|^2}{k} \\
 1534 \quad & \stackrel{(a)}{\leq} \left(\frac{L}{H_{\nu}} \right)^{2/\nu_f} + \frac{\|x_k - x_{k-1}\|^2}{k} \\
 1535 \quad & \stackrel{(b)}{\leq} \left(\frac{L}{H_{\nu}} \right)^{2/\nu_f} + \frac{1}{k} \left\| w_{k-1} - x_{k-1} - \frac{1}{L} \hat{\nabla} L_{\lambda}^*(w_{k-1}) \right\|^2 \\
 1536 \quad & \stackrel{(c)}{\leq} \left(\frac{L}{H_{\nu}} \right)^{2/\nu_f} + \frac{2}{k} \|w_{k-1} - x_{k-1}\|^2 + \frac{2}{kL^2} \left\| \hat{\nabla} L_{\lambda}^*(w_{k-1}) \right\|^2 \\
 1537 \quad & \stackrel{(d)}{\leq} \left(\frac{L}{H_{\nu}} \right)^{2/\nu_f} + \frac{8}{k} \mathcal{D}^2 + \frac{4}{kL^2} \|\nabla L_{\lambda}^*(w_{k-1})\|^2 + \frac{4\sigma^2}{L^2},
 1538 \\
 1539 \quad & \\
 1540 \quad & \\
 1541 \quad & \\
 1542 \quad & \\
 1543 \quad & \\
 1544 \quad & \\
 1545 \quad & \\
 1546 \quad & \\
 1547 \quad & \\
 1548 \quad & \\
 1549 \quad & \\
 1550 \quad & \\
 1551 \quad & \\
 1552 \quad & \\
 1553 \quad & \\
 1554 \quad & \\
 1555 \quad & \\
 1556 \quad & \\
 1557 \quad & \\
 1558 \quad & \\
 1559 \quad & \\
 1560 \quad & \\
 1561 \quad & \\
 1562 \quad & \\
 1563 \quad & \\
 1564 \quad & \\
 1565 \quad &
 \end{aligned}$$

1547 where we use the restart condition equation 5 in $\stackrel{(a)}{\leq}$, $x_k = w_{k-1} - \frac{1}{L} \hat{\nabla} L_{\lambda}^*(w_{k-1})$ in $\stackrel{(b)}{\leq}$, Lemma 3
 1548 in $\stackrel{(c)}{\leq}$ and Lemma 4 in $\stackrel{(d)}{\leq}$. Combined with equation 42, we obtain
 1549

$$\begin{aligned}
 1550 \quad & L_{\lambda}^*(x_k) - L_{\lambda}^*(x_0) \\
 1551 \quad & \leq \left(\frac{1}{2} + \frac{3}{4 \times 64^2} \right) L \left(\frac{L}{H_{\nu}} \right)^{\frac{2}{\nu_f}} + \frac{3L}{4 \times 64^2} \left(\frac{8}{k} \mathcal{D}^2 + \frac{4\sigma^2}{L^2} \right) \\
 1552 \quad & \quad - \left(\frac{1}{4L} - \frac{3}{64^2 L} \right) \|\nabla L_{\lambda}^*(w_{k-1})\|^2 + \sigma ((L/H_{\nu})^{\frac{1}{\nu_f}}) \tag{43}
 1553 \\
 1554 \quad & \\
 1555 \quad & \\
 1556 \quad & \\
 1557 \quad & \\
 1558 \quad & \\
 1559 \quad & \\
 1560 \quad & \\
 1561 \quad & \\
 1562 \quad & \\
 1563 \quad & \\
 1564 \quad & \\
 1565 \quad &
 \end{aligned}$$

1558 We claim that for any t -th epoch ending at iteration k , we can find some constant C to satisfy:

$$\|\nabla L_{\lambda}(w_{t,k-1})\|_2 \leq C.$$

1561 Otherwise, equation 43 shows that $L_{\lambda}^*(w_{t,k})$ can go to $-\infty$, which contradicts to $\min_{x \in \mathbf{R}^{d_x}} \varphi(x) >$
 1562 $-\infty$ in Assumption 1 and $|L_{\lambda}^*(x) - \varphi(x)| \leq \mathcal{O}(\ell\kappa^2/\lambda)$ in Lemma 1. \square
 1563

1564 With the help of Lemma E.2, we provide the proof of Theorem 2.
 1565

1566 *Proof.* We firstly show the boundedness of $\|y^*(w_{t,0})\|$. Suppose that the t -epoch ends at iteration k ,
 1567 we have

$$\begin{aligned}
 1569 \quad & \|y^*(w_{t+1,0}) - y^*(w_{0,0})\| \\
 1570 \quad & \leq \|y^*(x_{t,k}) - y^*(w_{t,k-1})\| + \|y^*(w_{t,k-1}) - y^*(w_{t,0})\| + \|y^*(w_{t,0}) - y^*(w_{0,0})\| \\
 1571 \quad & \leq \frac{L_g}{\mu} \|x_{t,k} - w_{t,k-1}\| + \frac{L_g}{\mu} \|w_{t,k-1} - w_{t,0}\| + \|y^*(w_{t,0}) - y^*(w_{0,0})\| \\
 1572 \quad & \leq \frac{L_g}{\mu} \left(\frac{C + \sigma}{L} + \mathcal{D} \right) + \|y^*(w_{t,0}) - y^*(w_{0,0})\|.
 \end{aligned}$$

1576

1577 The first inequality holds due to triangular inequality, the second inequality holds due to $y^*(x)$ is
 1578 L_g/μ -Lipschitz continuous and the last inequality holds due to Lemma 4 and Lemma E.2. Then we
 1579 have

$$\begin{aligned}
 1580 \quad & \|y^*(w_{t,0})\| \leq \|y^*(w_{t,0}) - y^*(w_{0,0})\| + \|y^*(w_{0,0})\| \\
 1581 \quad & \leq \|y^*(w_{0,0})\| + \frac{L_g}{\mu} \left(\frac{C + \sigma}{L} + \mathcal{D} \right) t \\
 1582 \quad & \leq \|y^*(w_{0,0})\| + \frac{L_g}{\mu} \left(\frac{C + \sigma}{L} + \mathcal{D} \right) T,
 \end{aligned}$$

1586

1587 where T is the total number of epochs. We can set $\{T_{t,i}, T'_{t,i}\}$ as follows: let

$$T_{t,i} = \left\lceil 2 \sqrt{\frac{L_g}{\mu}} \log \sqrt{1 + \frac{L_g}{\mu}} \left(1 + 2\lambda \frac{L_g^2}{\sigma\mu} \left(\frac{C + \sigma}{L} + 5\mathcal{D} \right) \right) \right\rceil, \quad (44)$$

$$T'_{t,i} = \left\lceil 2 \sqrt{\frac{4L_g}{\mu}} \log \sqrt{1 + \frac{4L_g}{\mu}} \left(1 + 16\lambda \frac{L_g^2}{\sigma\mu} \left(\frac{C + \sigma}{L} + 5\mathcal{D} \right) \right) \right\rceil \quad (45)$$

1596

1597 for $i \geq 1$, and

$$T_{t,i} = \left\lceil 2 \sqrt{\frac{L_g}{\mu}} \log \sqrt{1 + \frac{L_g}{\mu}} \left(\|y^*(w_{0,0})\| + \frac{L_g}{\mu} \left(\frac{C + \sigma}{L} + \mathcal{D} \right) T \right) \frac{2\lambda L_g}{\sigma} \right\rceil, \quad (46)$$

$$T'_{t,i} = \left\lceil 2 \sqrt{\frac{4L_g}{\mu}} \log \sqrt{1 + \frac{4L_g}{\mu}} \left(\|y^*(w_{0,0})\| + \frac{4L_g}{\mu} \left(\frac{C + \sigma}{L} + \mathcal{D} \right) T \right) \frac{4\lambda L_g}{\sigma} \right\rceil \quad (47)$$

1605

1606 for $i = 0$, where T is the total number of epochs. From Theorem 1, we know that

$$T \leq \mathcal{O}(\Delta \ell^{\frac{1+\nu_f - \nu_f \nu_g}{1+\nu_f}} \kappa^{\frac{3+4\nu_f - 2\nu_f \nu_g}{1+\nu_f}} \epsilon^{-\frac{2+2\nu_f - \nu_f \nu_g}{1+\nu_f}}).$$

1609

1610 Then we prove equation 8 holds for $z_{t,i}$ by induction. For $i = 0$, by the definition of $T_{t,0}$ in
 1611 equation 46, we have

$$\begin{aligned}
 1613 \quad & \|z_{t,0} - y^*(w_{t,0})\| \leq \sqrt{1 + \frac{L_g}{\mu}} \left(1 - \sqrt{\frac{\mu}{L_g}} \right)^{T_{t,0}/2} \|z_{t,-1} - y^*(w_{t,0})\| \\
 1614 \quad & \leq \sqrt{1 + \frac{L_g}{\mu}} \left(1 - \sqrt{\frac{\mu}{L_g}} \right)^{T_{t,0}/2} \|y^*(w_{t,0})\| \\
 1615 \quad & \leq \frac{\sigma}{2\lambda L_g}.
 \end{aligned}$$

1620 From Lemma D.1, if $i \geq 1$, we have
 1621
 1622 $\|z_{t,i} - y^*(w_{t,i})\| \leq \sqrt{1 + \frac{L_g}{\mu}} (1 - \sqrt{\frac{\mu}{L_g}})^{T_{t,i}/2} \|z_{t,i-1} - y^*(w_{t,i})\|$
 1623
 1624
 1625 $\stackrel{(a)}{\leq} \sqrt{1 + \frac{L_g}{\mu}} (1 - \sqrt{\frac{\mu}{L_g}})^{T_{t,i}/2} (\|y^*(w_{t,i}) - y^*(w_{t,i-1})\| + \|z_{t,i-1} - y^*(w_{t,i-1})\|)$
 1626
 1627
 1628 $\stackrel{(b)}{\leq} \sqrt{1 + \frac{L_g}{\mu}} (1 - \sqrt{\frac{\mu}{L_g}})^{T_{t,i}/2} \left(\frac{L_g}{\mu} \|w_{t,i} - w_{t,i-1}\| + \frac{\sigma}{2\lambda L_g} \right)$
 1629
 1630
 1631 $\stackrel{(c)}{\leq} \sqrt{1 + \frac{L_g}{\mu}} (1 - \sqrt{\frac{\mu}{L_g}})^{T_{t,i}/2} \left(\frac{2L_g}{\mu} \|x_{t,i} - x_{t,i-1}\| + \frac{L_g}{\mu} \|x_{t,i-1} - x_{t,i-2}\| + \frac{\sigma}{2\lambda L_g} \right)$
 1632
 1633
 1634 $\stackrel{(d)}{\leq} \sqrt{1 + \frac{L_g}{\mu}} (1 - \sqrt{\frac{\mu}{L_g}})^{T_{t,i}/2} \left(\frac{L_g}{\mu} \left(\frac{C + \sigma}{L} + 5\mathcal{D} \right) + \frac{\sigma}{2\lambda L_g} \right)$
 1635
 1636
 1637 $\stackrel{(e)}{\leq} \frac{\sigma}{2\lambda L_g},$
 1638

1639 where the inequality $\stackrel{(a)}{\leq}$ follows from the triangle inequality, $\stackrel{(b)}{\leq}$ uses the inductive hypothesis and
 1640 the fact that $y^*(x)$ is L_g/μ -Lipschitz continuous, $\stackrel{(c)}{\leq}$ holds by the definition $w_{t,i} = x_{t,i} + \theta_i(x_{t,i} -$
 1641 $x_{t,i-1})$, $\stackrel{(d)}{\leq}$ applies Lemma 3 and Lemma E.2, and $\stackrel{(e)}{\leq}$ follows from equation 44. Therefore, by
 1642 mathematical induction, we conclude that equation 8 holds for all $z_{t,i}$ with $\{T_{t,i}\}$ defined in equation
 1643 44, equation 46. Similarly, we can prove that equation 8 holds for $y_{t,i}$ with $T'_{t,i}$ defined in equation
 1644 45, equation 47. So all $y_{t,i}$ and $z_{t,i}$ satisfy Condition 1. The total first-order oracle complexity
 1645 is $\sum_{t,i} T_{t,i}$, i.e.,
 1646

$$\tilde{\mathcal{O}} \left(\Delta \ell^{\frac{2+2\nu_f - \nu_f \nu_g}{2+2\nu_f}} \kappa^{\frac{7+8\nu_f - 2\nu_f \nu_g}{2+2\nu_f}} \epsilon^{-\frac{4+4\nu_f - \nu_f \nu_g}{2+2\nu_f}} \right).$$

1647 When $\nu_f = \nu_g = 1$, the first-order oracle complexity is $\tilde{\mathcal{O}}(\Delta \ell^{3/4} \kappa^{13/4} \epsilon^{-7/4})$.
 1648 □
 1649

1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673