
LSH Tells You What To Discard: An Adaptive
Locality-Sensitive Strategy for KV Cache

Compression

Anonymous Author(s)
Affiliation
Address
email

Abstract

Transformer-based large language models (LLMs) use the key-value (KV) cache1

to significantly accelerate inference by storing the key and value embeddings of2

past tokens. However, this cache consumes significant GPU memory. In this work,3

we introduce LSH-E: an algorithm that uses locality-sensitive hashing (LSH) to4

compress the KV cache. LSH-E quickly locates tokens in the cache that are co-5

sine dissimilar to the current query token. This is achieved by computing the6

Hamming distance between binarized Gaussian projections of the current token7

query and cached token keys, with a projection length much smaller than the em-8

bedding dimension. We maintain a lightweight binary structure in GPU memory9

to facilitate these calculations. At every decoding step, the key and value of the10

current token replace the embeddings of a token expected to produce the lowest11

attention score. We demonstrate that LSH-E can compress KV cache by 30%-12

70% while maintaining high performance across reasoning, multiple-choice, and13

long-context retrieval tasks.14

1 Introduction15

The advent of large language models (LLMs) has enabled sharp improvements over innumerable16

downstream natural language processing (NLP) tasks, such as summarization and dialogue gen-17

eration [1, 2]. The hallmark feature of LLMs, the attention module [3, 4, 5], enables contextual18

processing over sequences of tokens. To avoid repeated dot products over key and value embed-19

dings of tokens, a key-value (KV) cache is maintained in VRAM to maintain these calculations.20

This technique is particularly popular with decoder LLMs.21

However, the size of the KV cache scales quadratically with sequence length n and linearly with22

the number of attention layers and heads. For example, maintaining the KV cache for a sequence of23

4K tokens in half-precision (FP16) can require approximately ∼16GB of memory for most models24

within the Llama 3 family [6]. These memory costs are exacerbated with batched inference and25

result in high decoding latency [7]. Consequently, there is significant interest in compressing the26

size of the KV cache to enable longer context windows and low-resource, on-device deployment.27

An emerging strategy for reducing the size of the KV cache is token eviction. This approach drops28

the key and value embeddings for past tokens in the cache, skipping future attention calculations29

involving these tokens. Various token eviction/retention policies have been explored in recent liter-30

ature, including the profiling of token type preferences [8], retention of heavy-hitter tokens [9, 10],31

and dropping tokens based on the high L2 norms of their key embeddings [11]. The latter approach32

[11] is intriguing as eviction decisions are performed pre-attention. However, this L2 dropout strat-33

egy only performs well on long-context retrieval tasks. It is specialized to retain only those tokens34

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

with the highest attention, which we find unsuitable for free-form reasoning tasks. Existing liter-35

ature suggests that retaining tokens with a diverse spectrum of attention scores (skewing high) is36

necessary [12, 9, 13].37

Is there a non-attentive KV cache compression strategy that is performant over a wide variety of38

tasks? This work answers this question positively by introducing a novel strategy, LSH-E, that39

dynamically determines token eviction pre-attention via locality-sensitive hashing (LSH) [14, 15].40

LSH-E evicts a past token from the cache whose key embedding is highly cosine dissimilar to the41

current query token embedding. The intuition behind this strategy is that high cosine dissimilarity42

indicates a low dot-product attention score. To efficiently scan for cosine (dis)similar tokens without43

performing attention, LSH-E leverages the SimHash [15, 14] to instead compare Hamming distances44

between c-length binary hashes of cached key embeddings and the current query embedding.45

LSH-E requires minimal overhead: for a total sequence length of ℓ tokens with embedding di-46

mension d, LSH-E maintains a constant-window-size (k), low-cost binary array (with compressed47

embedding dimension c) in GPU memory of size c × k bytes, where c ≪ d and k ≪ ℓ. Cached48

tokens with key embeddings that register low Hamming similarity measurements to decoded query49

embeddings are gradually replaced.50

Our contributions are as follows:51

• We introduce a novel attention-free token eviction strategy, LSH-E, that leverages locality-52

sensitive hashing (LSH) to quickly locate which token in the cache is the least relevant to53

the current query. This ranking procedure consists entirely of cheap Hamming distance54

calculations. The associated binary array for computing these similarities requires minimal55

memory overhead.56

• Novel Attention-Free Token Eviction: For a Llama 3 model, LSH-E can compress the57

KV cache by 30%-70% with minimal performance drop. LSH-E demonstrates high perfor-58

mance on reasoning tasks (GSM8K free-form [16], MedQA free-form [16]), long-context59

retrieval (Needle-in-a-Haystack, Common Word task, Ruler QA [17]), and multiple-choice60

(GSM8K MC, MedQA MC).61

• State-of-the-Art Performance: To the best of our knowledge, LSH-E achieves state-of-62

the-art performance for attention-free eviction across a wide variety of tasks. LSH-E out-63

performs L2 eviction in high-compression regimes over free-form reasoning and MC tasks,64

while performing comparably in long-context retrieval tasks specifically designed for the65

L2 eviction method to perform well on.66

• Open-Source Implementation: Upon public release of our manuscript, we will release an67

open-source implementation of LSH-E through a fork of the popular cold-compress library68

(https://github.com/AnswerDotAI/cold-compress).69

2 Preliminaries70

In this section, we review technical concepts crucial to attention and locality-sensitive hashing. We71

assume some base level of similarity with transformers, but for precise mathematical formalism, we72

refer the reader to [18].73

Scaled Dot-Product Attention. Consider a sequence of n tokens with e-dimensional real-valued74

representations x1, x2, . . . , xn. Let Q = [q1 q2 · · · qn] ∈ Rn×d, K = [k1k2 · · · kn] ∈ Rd×n75

where qi = Wqxi, ki = Wkxi and W,K ∈ Rd×e. The query and key projectors Wq and Wk are76

pre-trained weight matrices. We also define a value matrix V = [v1 v2 v2 · · · vn] ∈ Rdout×n with77

vi = Wvxi with trainable V ∈ Rdout×d, the scaled dot-product attention mechanism is given as78

Attention(Q,K, V) = V · softmax
(Q⊤K√

d

)
. (1)

Typically, attention layers contain multiple heads {hi}Ji=1 each with distinct query, key, and value79

projectors {W (hi)
q ,W

(hi)
k ,W

(hi)
v }Ji=1. In a multi-head setup, attention is computed in parallel across80

all heads, and the outputs are concatenated together and then passed through a linear layer for pro-81

cessing by the next transformer block. As Q,K, V are updated with each new incoming token, to82

2

https://github.com/AnswerDotAI/cold-compress

avoid significant re-computation, the current state of Q⊤K, Q, and K are maintained in the KV83

cache. Our goal is to bypass attention computation and caching for select tokens, i.e., sparsify the84

attention matrix Q⊤K, K, and V .85

Locality-sensitive hashing. We will now describe a family of locality-sensitive hashing (LSH)86

functions able to efficiently approximate nearest neighbors (per cosine similarity) of key/query vec-87

tors in high-dimensional Rd through comparison in a reduced c-dimensional space (per Hamming88

distance) with c ≪ d [19, 15]. Formally for our setup, distd(x, y) ≜ cos θx,y = x⊤y
||x|| ||y|| and89

distc(p, q) ≜ dH(p, q) which denotes the Hamming distance. We will project each vector from90

Rd into Zc
2, the space of c-bit binary strings (which is often referred to as a binary hash code). To91

acquire a c-bit long hash code from an input vector x ∈ Rd, we define a random projection matrix92

R ∈ Rc×d with iid entries ∼ N (0, 1). We then define h(x) = sgn(Rx), where sgn(·) (as an abuse93

of conventional notation) is the element-wise Heaviside step function (x ≥ 0 = 1, x < 0 = 0). For94

two unit vectors x, y ∈ Rd we have95

1

c
· E[dH

(
h(x), h(y)

)
] =

θx,y
π

, (2)

where θx,y = arccos(cos(θx,y)). We do not prove equation 2 in this work; see Theorem §3.1 in [14,96

Theorem 3.1]. In particular, if x and y are close in angle, the Hamming distance between h(x) and97

h(x) is low in expectation. Increasing the hash dimension c reduces variance.98

3 LSH-E: An LSH Eviction Strategy99

We will now formalize our eviction method. We assume that the KV cache has a limited and fixed100

budget C and conceptually divide the KV cache management during LLM inference into two stages:101

the initial Prompt Encoding Stage and then a Decoding Stage (i.e., textual generation). Unless102

otherwise noted, d refers to the query/key embedding dimension of tokens.103

Policy. Let St ⊂ [n] denote the set of indices of tokens retained in the KV cache at the t-th time104

step, where n is the current number of seen tokens. We shall momentarily define the eviction policy,105

which we denote as a function P : St−1 → St subject to |St| ≤ C for all t, where C is a cache106

budget. P inserts and evicts embeddings into the key cacheK, value cache V and a binary LSH hash107

table H (see Section 2), while maintaining the budget C. For time step t, Kt = KSt , Vt = VSt and108

H = h(Kt), where K and V are the key and value matrices of the attention head, and KSt and VSt109

are the set of key vectors and value vectors indexed by St. The function Fscore assigns a score for110

each key inside the KV cache.111

We define Fscore as the negative of hamming distances D between the hash code of a query vec-112

tor q and H: Fscore(q,K) = −dH(h(q),H), which is an array which contains all Hamming113

distances between q and key codes in H. The eviction index et at any step t is selected as114

et ← argmin
e∈St

Fscore(qt,Ht), which is the index of the token whose key code is furthest away115

from the query code. We define our policy as,116

P (St−1) = (St−1 \ et) ∪ t, (3)

i.e., we evict et from the list of cached indices, and the current token index is inserted.117

Prompt Encoding Stage. During the prompt encoding stage, the model processes the prompt,118

xprompt = [x1, ..., xN] ∈ RN×d, to compute the initial KV cache K0 and V0.119

Let C be the maximum number of tokens that can fit within the cache budget. The KV cache is first120

filled to full by storing the first C tokens, i.e., S0 = [C]. We calculate and store H0 = h(K0) =121 ⋃
i∈S0

h(ki), i.e., the hashes of all key embeddings for tokens 1 ≤ i ≤ C. Then, for each token122

n with C < n ≤ N remaining in the prompt, an entry inside the cache is selected for eviction.123

This protocol is detailed in Algorithm 1. Steps 3-5 in Algorithm 1 update and clear corresponding124

columns/rows in the cache; M(en, en) is a mask which clears row en and column en from the125

attention matrix.126

3

Algorithm 1 LSH-E (timestep t)

Require: key cache Kt−1, key matrix K (kt added), value cache Vt−1, value matrix V (vt added),
cache indices St−1, query qt, hash tableH, attention matrix Q⊤K (qtK added)

1: et ← argmin
e∈St−1

Fscore(qt,Kt−1)

2: St ← P (St−1) ▷ Apply the policy: evict token et, add token t
3: del Ht−1[et] ▷ Remove the key hash of token et
4: Ht ← Ht−1.add(h(kt)) ▷ Add key hash of token t
5: Kt ← KSt−1 ▷ Update key cache
6: Vt ← VSt−1 ▷ Update value cache
7: Q⊤K ← (Q⊤K)t ⊙M(et, et) ▷ Update attention matrix – clear column/row et

Decoding Stage. Let xdecoding = [z1, ...zT] ∈ RT×d be the generated tokens during autoregres-127

sive decoding. The generation phase updates the KV cache with each new token generated at time128

step t by the same process as described in Algorithm 1. (For notational simplicity, set t← N +1 to129

denote the first decoded token after the prompt.)130

Complexity Our strategy reduces KV cache memory overhead to constant C and computation131

overhead to constant per token.132

4 Experiments133

Tasks We evaluated our LSH eviction strategy across various tasks to demonstrate its effectiveness134

in reducing the memory cost of the KV cache while preserving the language quality of the gener-135

ated text. Our experiments are split into three main categories: free-response question answering,136

multiple choice, and long-context retrieval. Our long context modeling tasks include the multi-key137

needle-in-a-haystack task and the common words task from [17]. Question answering tasks include138

GSM8K [16] and MedQA [20].139

Metrics The question-answering tasks were evaluated using BERTScore, ROUGE, and GPT4-140

Judge. We prompt GPT-4 to look at both the model prediction and the ground truth answer, then141

provide a score from 1 - 5 on the coherence, faithfulness, and helpfulness of the answer in addition142

to how similar the prediction was to the ground truth. In this section, we report the average of these143

four scores. For details on individual scores and the prompts given to GPT-4, please refer to Ap-144

pendix A. For multiple-choice tasks, we report accuracy. The metric used to evaluate long context145

modeling tasks is the string matching score.146

Configuration and Setup We conducted experiments using Llama3 8B-Instruct model [6] at dif-147

ferent cache budgets on Nvidia L4 GPUs. We keep the first 4 and the most recent 10 tokens of the148

prompt in the KV cache at all times. We chose the L2 norm-based eviction, a similar method that149

does not depend on the attention score, as our baseline for comparison.150

4.1 Free Response Question Answering151

We tested each strategy against tasks that require generating accurate answers using multi-step rea-152

soning to assess their potential side effect on the LLM’s language quality and reasoning ability given153

a constrained KV cache budget.154

GSM8K GSM8K consists of grade-school-level math problems that typically require multiple155

reasoning steps. As shown in Figure 1, our LSH eviction strategy consistently outperforms the L2156

norm-based method across various cache sizes. Notably, even when the KV cache budget is set to157

50% of the full capacity, the LSH eviction strategy maintains a high answer quality, with minimal158

degradation in BERTScore F1, ROUGE-L, and GPT4-Judge scores.159

MedQA MedQA is a free-form multiple choice question answering dataset collected from profes-160

sional medical board exams. We use a processed version and sample 100 questions from it. Each161

question has 5 choices and only one correct answer, along with ground truth explanations and rea-162

soning steps. Figure 2 illustrates that our LSH-eviction method achieves better performance than163

4

Figure 1: GSM8K Cache Performance: as measured by BertScore F1, Rouge-L, and GPT-4-as-a-
judge, on GSM8K Free Response Question Answering for cache budgets of 90%, 70%, 50%, 30%,
and 10%. LSH outperforms L2 for all three metrics for every cache budget, with the most significant
difference for the 50% and 30% budgets.

Figure 2: MedQA Cache Performance: Performance, as measured by BertScore F1, Rouge-L,
and GPT-4-as-a-judge on the MedQA free response question answering dataset for cache budgets
of 90, 70, 50, 30, and 10. LSH outperforms L2 for all three metrics for every cache budget, with a
significant difference for the 30% and 10% budgets.

L2 for every cache budget tested. For both datasets, the LSH method produced more coherent and164

helpful answers across all cache budgets than L2.165

4.2 Multiple Choice Question Answering166

We evaluated our method on multiple-choice versions of GSM8K and MedQA. Multiple choice is a167

more difficult test of a model’s reasoning capability, as it takes away the ability to use intermediate168

results in the generated text. The model has to keep useful tokens during prompt compression in169

order to pick the correct answer choice.170

GSM8K Results For the multiple choice experiments, LSH significantly outperforms L2 for cache171

budgets of 30% and 50%. As shown in Figure 3a, L2’s accuracy drops significantly at smaller cache172

sizes, while LSH’s performance does not significantly drop until the cache budget is set at 10%.173

MedQA Results As per Figure 3b, the MedQA multiple choice experiment, LSH offers better174

performance than L2 for all tested cache budgets except 50%.175

4.3 Long-Context Retrieval176

To evaluate LSH’s ability to retain and retrieve important pieces of information from long contexts,177

we used the Needle-in-a-Haystack and Common Words tasks from [17]. These tests are excellent178

benchmarks to assess the compression method’s capability to keep important tokens inside the KV179

cache and drop the unimportant ones.180

Needle-in-a-Haystack In this task, the model must extract specific information buried within a181

large body of text. As illustrated in Figure 4b, our LSH eviction strategy LSH outperforms L2 at182

every cache budget bar 90%, and both methods see a sharp drop in the ability to recall the ”needle”183

after the cache budget drops to 50% and lower. L2SH outperforms L2 for these smaller cache sizes.184

5

(a) GSM8K MC (b) MedQA MC

Figure 3: Multiple Choice Tasks. We examine the performance of Llama3.1-8B-Instruct on the
multiple-choice versions of GSM8K and MedQA. For GSM-8K observe the LSH-E performs either
better or minimally worse than the uncompressed baseline for compression ratios up to 70%, while
the performance L2 eviction strategy rapidly decreases at > 30% KV cache compression. For
MedQA MC, LSH-E is able to maintain high performance for 10% compression, but both methods
lose at performance > 30% compression.

(a) Common Words (b) Needle-In-A-Haystack

Figure 4: Long-Context Retrieval. In these tasks, the LLM is asked to recover a special token
hidden amongst a long context of irrelevant information. Although the L2 strategy is specifically
designed for this category of task, we observe that LSH is able to either exceed or closely match the
performance of L2 eviction for nearly all budgets.

Common Words In the Common Words task, the model must identify the most frequent words185

from a long list. Figure 4a shows LSH performed on par with L2 in general and slightly better at186

30%, 50%, and 90% cache budget. Both methods outperform the full cache model at 90% cache187

size, indicating that some cache compression can actually increase performance. Neither method188

experienced a significant drop in performance until the cache budget was reduced to 30%.189

5 Conclusion190

In this work, we introduce LSH-E, an attention-free token eviction strategy that efficiently reduces191

the memory footprint of key-value (KV) caches in LLMs. Leveraging locality-sensitive hashing192

(LSH) to estimate the cosine similarity between current query tokens and past cached tokens, LSH-193

E dynamically evicts the least relevant tokens using low-cost Hamming distance calculations. Our194

experiments demonstrate that LSH-E can compress the KV cache by 30%-70% for Llama 3 models195

with minimal impact on performance across a range of tasks, including free-form reasoning, long-196

context retrieval, and multiple-choice.197

6

References198

[1] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian199

Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models.200

arXiv preprint arXiv:2303.18223, 2023.201

[2] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani202

Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large203

language models. arXiv preprint arXiv:2206.07682, 2022.204

[3] Dzmitry Bahdanau. Neural machine translation by jointly learning to align and translate. arXiv205

preprint arXiv:1409.0473, 2014.206

[4] Minh-Thang Luong. Effective approaches to attention-based neural machine translation. arXiv207

preprint arXiv:1508.04025, 2015.208

[5] A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems,209

2017.210

[6] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,211

Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd212

of models. arXiv preprint arXiv:2407.21783, 2024.213

[7] Yao Fu. Challenges in deploying long-context transformers: A theoretical peak performance214

analysis. arXiv preprint arXiv:2405.08944, 2024.215

[8] Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model216

tells you what to discard: Adaptive kv cache compression for llms. arXiv preprint217

arXiv:2310.01801, 2023.218

[9] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao219

Song, Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for220

efficient generative inference of large language models. Advances in Neural Information Pro-221

cessing Systems, 36, 2024.222

[10] Zhenyu Zhang, Shiwei Liu, Runjin Chen, Bhavya Kailkhura, Beidi Chen, and Atlas Wang.223

Q-hitter: A better token oracle for efficient llm inference via sparse-quantized kv cache. Pro-224

ceedings of Machine Learning and Systems, 6:381–394, 2024.225

[11] Alessio Devoto, Yu Zhao, Simone Scardapane, and Pasquale Minervini. A simple and effective226

l 2 norm-based strategy for kv cache compression. arXiv preprint arXiv:2406.11430, 2024.227

[12] Zhiyu Guo, Hidetaka Kamigaito, and Taro Watanabe. Attention score is not all you need228

for token importance indicator in kv cache reduction: Value also matters. arXiv preprint229

arXiv:2406.12335, 2024.230

[13] Sifan Long, Zhen Zhao, Jimin Pi, Shengsheng Wang, and Jingdong Wang. Beyond attentive231

tokens: Incorporating token importance and diversity for efficient vision transformers. In232

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages233

10334–10343, 2023.234

[14] Michel X Goemans and David P Williamson. Improved approximation algorithms for max-235

imum cut and satisfiability problems using semidefinite programming. Journal of the ACM236

(JACM), 42(6):1115–1145, 1995.237

[15] Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings238

of the thiry-fourth annual ACM symposium on Theory of computing, pages 380–388, 2002.239

[16] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,240

Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to241

solve math word problems. arXiv preprint arXiv:2110.14168, 2021.242

[17] Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia,243

and Boris Ginsburg. Ruler: What’s the real context size of your long-context language models?244

arXiv preprint arXiv:2404.06654, 2024.245

7

[18] Mary Phuong and Marcus Hutter. Formal algorithms for transformers. arXiv preprint246

arXiv:2207.09238, 2022.247

[19] Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. Approximate nearest neighbor search248

in high dimensions. In Proceedings of the International Congress of Mathematicians: Rio de249

Janeiro 2018, pages 3287–3318. World Scientific, 2018.250

[20] Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What251

disease does this patient have? a large-scale open domain question answering dataset from252

medical exams. Applied Sciences, 11(14):6421, 2021.253

8

Appendix254

A Granular GSM8K and MedQA scores255

GSM8K MedQA

Cache
Budget

(%)
Strategy Precision Recall F1 Precision Recall F1

10 L2 0.8585 0.7983 0.8270 0.8330 0.8126 0.8226
LSH 0.8602 0.8067 0.8323 0.8570 0.8080 0.8317

30 L2 0.8853 0.8487 0.8665 0.8554 0.8336 0.8443
LSH 0.8934 0.8557 0.8740 0.8665 0.8343 0.8500

50 L2 0.8907 0.8611 0.8756 0.8659 0.8412 0.8533
LSH 0.8970 0.8652 0.8807 0.8689 0.8417 0.8551

70 L2 0.8946 0.8653 0.8796 0.8679 0.8425 0.8549
LSH 0.8964 0.8666 0.8812 0.8687 0.8427 0.8555

90 L2 0.8961 0.8665 0.8810 0.8681 0.8427 0.8552
LSH 0.8965 0.8670 0.8814 0.8682 0.8427 0.8552

100 Full 0.8967 0.8672 0.8816 0.8682 0.8428 0.8553

Table 1: GSM8K and MedQA Question Answering BertScores.

GSM8K MedQA

Cache
Budget

(%)
Strategy Rouge 1 Rouge 2 Rouge L Rouge

Lsum Rouge 1 Rouge 2 Rouge L Rouge
Lsum

10 L2 0.1961 0.0494 0.1533 0.1795 0.3043 0.0717 0.1536 0.2885
LSH 0.2044 0.0510 0.1558 0.1840 0.3457 0.1102 0.1706 0.3242

30 L2 0.3979 0.1515 0.2924 0.3410 0.4285 0.1461 0.2128 0.4070
LSH 0.4529 0.1900 0.3471 0.3882 0.4495 0.1701 0.2271 0.4256

50 L2 0.4800 0.2070 0.3588 0.4109 0.4736 0.1845 0.2395 0.4495
LSH 0.5133 0.2379 0.3972 0.4404 0.4808 0.1935 0.2449 0.4554

70 L2 0.5103 0.2337 0.3907 0.4364 0.4837 0.1943 0.2472 0.4580
LSH 0.5213 0.2424 0.4040 0.4460 0.4871 0.1974 0.2488 0.4611

90 L2 0.5191 0.2403 0.4014 0.4438 0.4866 0.1966 0.2487 0.4606
LSH 0.5224 0.2433 0.4055 0.4465 0.4870 0.1973 0.2494 0.4610

100 Full 0.5239 0.2449 0.4054 0.4474 0.4865 0.1976 0.2484 0.4602

Table 2: GSM8K and MedQA Question Answering Rouge Scores.

9

GSM8K MedQA

Cache
Budget

(%)
Strategy Similar

to GT Coherent Faithful Helpful Similar
to GT Coherent Faithful Helpful

10 L2 1.0020 1.3140 1.0940 1.0320 1.1031 1.6955 1.6395 1.2829
LSH 1.0360 1.4860 1.2000 1.1100 1.9695 3.5167 2.6650 2.5472

30 L2 1.4300 2.5340 1.9700 1.9820 1.9391 3.6326 2.9420 2.8428
LSH 2.6920 3.8880 3.3900 3.3680 2.5108 4.4145 3.5334 3.6130

50 L2 2.3060 3.5760 3.1420 3.1120 2.8497 4.5108 3.7967 3.9499
LSH 3.5660 4.5780 4.2880 4.3040 3.0216 4.7299 4.1385 4.2544

70 L2 3.1200 4.2660 3.9520 3.9420 3.1945 4.7554 4.2348 4.3851
LSH 3.8400 4.6960 4.4540 4.4820 3.2318 4.8094 4.2917 4.4342

90 L2 3.6060 4.5660 4.3140 4.3560 3.2652 4.8183 4.3183 4.4578
LSH 3.9120 4.7240 4.5200 4.5420 3.2908 4.8389 4.3546 4.5069

100 Full 3.9240 4.7340 4.5760 4.5980 3.3369 4.8173 4.3418 4.5000

Table 3: GSM8K and MedQA Question Answering ChatGPT as a Judge

B Memory Usage256

Table 4 below compares the memory usage of KV cache and relevant data structures of L2 and LSH257

on the GSM8K and MedQA question answering experiments. LSH maintains hash(K), a binary258

hash matrix of the attention keys, in memory and, therefore, has slightly higher memory usage than259

L2. Our implementation uses 8-bits for binary values instead of 1-bit. Using 1-bit binary numbers260

will reduce the memory overhead of LSH by a factor of 8 and narrow the difference in memory261

usage between LSH and L2.262

GSM8K MedQA

Cache
Budget

(%)
Strategy Compression

Ratio

Cache
Memory

(GB)

Compression
Ratio

Cache
Memory

(GB)

10 L2 0.8355 0.7603 0.9289 2.5342
LSH 0.8380 0.8120 0.8812 2.6338

30 L2 0.6234 1.7740 0.6957 7.3492
LSH 0.6018 1.8531 0.6360 7.5786

50 L2 0.3968 2.7876 0.4175 12.1641
LSH 0.3716 2.8941 0.3901 12.5235

70 L2 0.1967 3.8013 0.1803 17.2325
LSH 0.1857 3.9351 0.1740 17.7285

90 L2 0.0859 4.8150 0.0498 22.0474
LSH 0.0823 4.9761 0.0483 22.6734

100 Full 0.0000 12.6934 0.0000 51.1181

Table 4: GSM8K and MedQA Question Answering KV Cache Memory Usage. LSH maintains a
binary hash matrix of attention keys in memory and therefore has slightly higher memory usage than
L2. Our implementation uses 8-bits for binary values instead of 1-bit. Using 1-bit binary numbers
will reduce the memory overhead of LSH by a factor of 8 and decrease the difference of memory
usage between LSH and L2.

10

C Ablation on LSH Dimension263

LSH
Dim BertScore F1 Rouge L GPT4 as

a Judge
Compression
Ratio

Cache
Memory
(GB)

4 0.8807 0.3974 4.3833 0.3728 2.8062

8 0.8802 0.3975 4.4113 0.3734 2.8355

16 0.8807 0.3972 4.3753 0.3716 2.8941

24 0.8802 0.3951 4.3733 0.3711 2.9527

32 0.8796 0.3926 4.3220 0.3710 3.0113

64 0.8797 0.3900 4.2333 0.3702 3.2456
Table 5: GSM8K Question Answering performance for different LSH dimensions. Cache budget
is fixed at 50%. LSH dimension does not have a significant impact on performance. Small LSH
dimensions perform slightly better than larger LSH dimensions.

To determine the effect of the LSH dimension, we conducted an ablation study using the GSM8K264

dataset. Fixing the cache budget to 50%, we tested LSH dimensions of 4, 8, 16, 32 and 64 bits. Table265

5 shows the results. The LSH dimension does not have a major impact on performance. In fact, 8266

bits performed the best, but just slightly higher than using more dimensions. This demonstrates that267

LSH does not need to have a high dimensionality and has minimal storage overhead. Using 8 bits,268

the storage overhead is 1 byte * cache size. For example, in a Llama3 70B-Instruct deployment with269

80 layers, 8 KV-heads, sequence length of 8192, batch size of 8 and 50% cache budget, LSH 8-bit,270

16-bit and 32-bit only use an extra 20MB, 40MB, and 80MB respectively, which are significantly271

smaller than the KV cache size of 640GB.272

11

	Introduction
	Preliminaries
	LSH-E: An LSH Eviction Strategy
	Experiments
	Free Response Question Answering
	Multiple Choice Question Answering
	Long-Context Retrieval

	Conclusion
	Granular GSM8K and MedQA scores
	Memory Usage
	Ablation on LSH Dimension

