
Game Solving with Online Fine-Tuning

Ti-Rong Wu,1∗ Hung Guei,1∗ Ting Han Wei,2 Chung-Chin Shih,1,3 Jui-Te Chin,3 I-Chen Wu3,4

1Institute of Information Science, Academia Sinica, Taiwan
2Department of Computing Science, University of Alberta, Canada

3Department of Computer Science, National Yang Ming Chiao Tung University, Taiwan
4Research Center for Information Technology Innovation, Academia Sinica, Taiwan

tirongwu@iis.sinica.edu.tw, hguei@iis.sinica.edu.tw, tinghan@ualberta.ca
rockmanray.cs02@nycu.edu.tw, pikachin.cs10@nycu.edu.tw, icwu@cs.nctu.edu.tw

Abstract

Game solving is a similar, yet more difficult task than mastering a game. Solving
a game typically means to find the game-theoretic value (outcome given optimal
play), and optionally a full strategy to follow in order to achieve that outcome. The
AlphaZero algorithm has demonstrated super-human level play, and its powerful
policy and value predictions have also served as heuristics in game solving. How-
ever, to solve a game and obtain a full strategy, a winning response must be found
for all possible moves by the losing player. This includes very poor lines of play
from the losing side, for which the AlphaZero self-play process will not encounter.
AlphaZero-based heuristics can be highly inaccurate when evaluating these out-
of-distribution positions, which occur throughout the entire search. To address
this issue, this paper investigates applying online fine-tuning while searching and
proposes two methods to learn tailor-designed heuristics for game solving. Our
experiments show that using online fine-tuning can solve a series of challenging 7x7
Killall-Go problems, using only 23.54% of computation time compared to the base-
line without online fine-tuning. Results suggest that the savings scale with problem
size. Our method can further be extended to any tree search algorithm for problem
solving. Our code is available at https://rlg.iis.sinica.edu.tw/papers/neurips2023-
online-fine-tuning-solver.

1 Introduction

Playing and solving strategic games have served as drivers and major milestones [1] in artificial
intelligence research. To master such games, the objective is often designed to optimize on the
objective of maximizing the probability of winning. In the past several decades, researchers made sig-
nificant progress in game playing, reaching super-human playing levels in many domains. Successful
examples include Chinook (checkers) [2], Deep Blue (chess) [3], AlphaGo (Go) [4], and AlphaStar
(StarCraft II) [5]. Furthermore, AlphaZero [6, 7] and MuZero [8] even boast generality by mastering
a variety of games without requiring expert human knowledge. Although these learning-based agents
have progressed dramatically in playing strength, there are no guarantees that their decisions are
always correct [9, 10] in terms of game-theoretic value, which is defined as the outcome of the game
given optimal play for both players. Game solving is this pursuit of finding game-theoretic values.

Game solving is a more difficult challenge than game playing. Many seemingly simple games
have astronomically large state spaces, with no simple way of exploring this space. Here is where

∗These authors contributed equally.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

advancements in game playing can aid game solving. Strong agents are commonly leveraged to
evaluate positions, providing guidance and reducing the search space significantly. For example, the
checkers program Chinook claimed to have reached super-human levels as early as 1996 [2], then
about 10 years later, played an instrumental role in the proof that checkers is a drawn game [11].
Similarly, contemporary learning-based approaches such as AlphaZero are widely used to help reduce
the search space for game solving. Game solvers that utilized AlphaZero include Hex [12], Go [13],
Killall-Go [14], and the Rubik’s cube [15, 16]. Such approaches are not limited to applications in
games but extend to other non-game fields, like automated theorem proving [17].

However, a major issue still exists when using learning-based approaches to aid game solving. In
the two-player, zero-sum setting, a simple description for a proof involves verifying that there is a
winning move for the winner, for all possibilities played by the losing side; i.e. no matter how the loser
plays, the winner must be able to respond correctly. However, most learning-based agents are trained
along a strong line of play by both players, with some exploration to nearby states for robustness.
Using AlphaZero as an example, training samples are generated via self-play by the best version of
itself up to that point. Learning-based methods are powerful in that they generalize for previously
unseen positions, but accuracy tends to drop the further you stray from training samples. To verify all
possibilities on the losing side, the vast majority of positions we must evaluate during the search for
a proof are therefore out-of-distribution. To illustrate, AlphaZero-like networks have been shown
to make inconsistent or completely incorrect evaluations, simply by adding two meaningless stones
to a position [10]. In another example, in the attempt to solve one of the hardest Go life-and-death
(L&D) problems from the famous book Igo Hatsuyoron,2 all AlphaZero-like programs failed. It
was hypothesized that this was because these highly specific problems are rarely encountered during
training [18].

This paper proposes applying online fine-tuning methods to train learning-based systems while
solving games. In our proposed methods, during game solving, an online trainer is added so that the
learned heuristic is improved as new data that is relevant to the solving task is generated. This is
done by utilizing new information such as solved and critical positions in the current solver search
tree. The trainer therefore can learn better heuristics dynamically, that are particularly fine-tuned for
the upcoming evaluations. Experiments are conducted on 16 challenging 7x7 Killall-Go three-move
openings, shown in Figure 3. We develop a distributed game solver with online fine-tuning, that is
built upon the state-of-the-art 7x7 Killall-Go solver [13]. Experiment results show that the online
fine-tuning solver can greatly reduce the search space by a factor of 4.61 on average. Namely, it
searches only 21.69% of nodes, using 23.54% of the computation time, as compared to the offline
solver. Most importantly, for larger problems, the online fine-tuning solver performs significantly
faster than that without, which implies that our method scales with problem size.

2 Background

2.1 Game solvers

A two-player zero-sum game is considered solved if we know of a winning strategy for either player
which guarantees a winning outcome,3 regardless of how the opponent plays; i.e. the player must
have at least one action that leads to a win, for all actions by the opponent. A winning strategy is
often represented as an AND-OR tree called a solution tree [19], where the game positions with the
winner to move are represented by OR-nodes, and those for the opponent by AND-nodes. Leaf nodes
in a solution tree are all terminal positions where the outcome is a win.

A solver is a program that does a proof search and can identify a winning strategy or a solution tree, if
found. Solvers often rely on heuristic tree search for games with large and complex game state spaces.
Search algorithms such as alpha-beta search [20], proof number search (PNS) [21], or Monte Carlo
tree search (MCTS) [22, 23] have all been shown to be successful. In addition, previous research has
shown that none of the algorithms dominates the others [24, 25, 14].

2Igo Hatsuyoron is a classic collection of L&D problems in Go, which demand complex calculations to solve.
L&D problems are puzzles that test your ability to identify the safety of specific pieces in a given game position.

3We only consider “weak solutions” [1] in this paper, where different opening positions are treated as
independent sub-games. Draws are also not considered, but can be determined via two searches, one for each
player. If both outcomes are losses, then it must be a draw.

2

2.2 Distributed game solver

In cases where search spaces are too large for a single instance solver under reasonable time and
memory constraints, multiple solvers are often run in parallel, forming a distributed computing system,
to scale up the solving process. Examples of games solved by distributed computing include checkers
[11], heads-up limit hold’em poker [26], breakthrough [27], Hex [28], and Connect6 [25, 29].

These distributed game solving/analysis systems, also known as distributed game solvers, have been
presented commonly with two components, a manager and a set of workers. A manager divides the
overall problem into smaller sub-problems, keeping only the initial portion of the search tree – the
beginning of the game – in memory. As this search tree is expanded, the manager may decide to
offload analysis of specific positions to its workers. These offloaded sub-problems are also called jobs
[25, 29]. A worker computes jobs by taking as input, a specific position and any relevant parameters
(e.g. time limits), then outputs either a solved or heuristic value for that position. A worker can be a
single solver, a game engine, or even a combination of both.

For example, in the checkers proof, Chinook and another depth-first proof-number search [30] solver
were combined as a heuristic. From the perspective of the manager, a solved job result, such as a
proven win, loss, or draw, can be thought of as a terminal node in its solution tree. Unsolved jobs
also provide useful information, such as heuristic values to determine likely win or likely loss, to
guide further tree expansions, with the worker acting as a relatively expensive and accurate heuristic.
Similar to the checkers proof, Connect6 openings have also been solved by encapsulating the task of
solving and playing a position into a single job, which was then dispatched by a manager to a set of
workers [25, 29, 31]. In all examples listed above, a centralized scheme is used where one manager
coordinates between dozens to hundreds of workers.

2.3 Proof Cost Network

When using neural networks as heuristics in solving, recent research points out that there is room
for improvement when using the value network learned from the AlphaZero algorithm[16, 14]. In a
search tree, when several actions can reach a winning outcome, AlphaZero-trained networks have
no preference for choosing one that wins fastest. This can increase the amount of computation
significantly.

To address this challenge, the Proof Cost Network (PCN) [14] predicts a proof cost value, rather
than a win rate. The cost value represents a logarithmically-normalized estimate of the number of
nodes that are required to solve the position. Specifically, PCN adopts the AlphaZero training process
and generates self-play games using the cost value to guide the MCTS toward faster winning moves.
These self-play games are then used to update PCN’s cost values. The resulting network will focus
the proof search on actions with minimal cost. Experiments show that the proof cost value is highly
correlated to problem difficulty, and can significantly improve solving capability.

3 Game solver with online fine-tuning

This section describes our methods for applying online fine-tuning to game solving. We chose
an MCTS-based solver due to its popularity when integrating AlphaZero networks as heuristics
[16, 13, 14]. However, it is worth noting that the methods presented in this paper are search-
independent and can be readily applied to other search algorithms such as alpha-beta search or
PNS.

3.1 Distributed game solver

Our distributed game solver consists of a PCN serving as its heuristic, a manager, and a set of
workers. The manager maintains an MCTS rooted at the position to be solved. During the proof
search, the manager follows PUCT [32] selection to traverse from the root to a leaf node. Next, the
PCN estimates the cost of the selected leaf node, denoted by vl. vl is a heuristic value representing
the log estimated number of positions that must be examined to solve this node. If the value is larger
than a designated threshold, i.e. vl ≥ vthr, its proof cost is considered too high to warrant a job. The
manager will then continue to follow MCTS, expanding the node and backpropagating vl to the root.
Alternatively, if vl < vthr, the leaf node is highly likely to be solved outright by a worker, at which

3

Fine-Tuning

Solutions

(b) Workers(a) Manager

PCN

Worker

Jobs

Solved

/Critical

Positions

Models

⋯
Self-Play

(c) Online Fine-Tuning Trainer

𝑣𝑡ℎ𝑟

Queue

Figure 1: The online fine-tuning game solver
architecture.

e

r

a b c d

f g

j k l

m n

h i
MCTS Selection Path

Selection 1: r a g j

Selection 2: r a g k m

Selection 3: r a g k n

Selection 4: r d

Selection 5: r b h

Selection 6: r b i

Solved

Solved

Figure 2: A manager AND-OR tree with six MCTS
selection paths. Positions d and j are solved in this
tree.

point a job is created. Job granularity is therefore controlled with vthr. Larger vthr generates more
difficult jobs with higher failure rates, while smaller vthr leads to easier but more numerous jobs. A
balanced vthr should be set according to the game instance and worker capabilities.

Workers are game solving programs that are limited by specific constraints, say, a given time limit.
To keep the heuristic consistent during the proof search, workers use the same PCN weights as the
manager. If the job is solved within the given constraint, the worker returns the result, either a win or
a loss, back to the manager; otherwise, it returns an unknown. Once the manager receives the job
result, it updates the search tree accordingly. For unsolved jobs, the manager expands the nodes that
generated the corresponding jobs. The interaction between the manager and the workers is shown
between Figure 1(a) and 1(b).

3.2 Online Fine-Tuning Trainer

The Online Fine-Tuning Trainer (OFT) maintains the PCN during the proof search so that the manager
and workers have access to ever improving heuristics. Without online fine-tuning, both the manager
and workers simply use a fixed PCN, denoted by θ0, trained via the AlphaZero self-play process.
The OFT starts with θ0, then fine-tunes the weights via updates during the proof search. To do this,
the manager picks out solved and/or critical positions in its search tree, adds them to the list of
training samples, then the OFT uses them to perform self-play and training. The fine-tuned PCN
(θ1, θ2, ..., θt, ...) can then be used to further guide the manager and workers towards a faster proof.
The manager and workers update to the most recent θt immediately when a new PCN checkpoint
is trained by the OFT. The above iterative process is shown in Figure 1. Details are provided in the
following sections.

3.2.1 Online fine-tuning trainer with solved positions

During the proof search, many previously unsolved positions may become solved in the manager’s
search tree. This new information can be used by the OFT to improve the accuracy of the PCN.
Figure 2 provides an example of a manager’s AND-OR search tree and six recent selection paths. In
this example, positions j and d are marked as solved and sent to the OFT after the first and fourth
selection, respectively. The OFT maintains a queue that stores these solved positions, as shown
in Figure 1(c). Self-play games are generated as in normal PCN training [14]. However, in the
optimization phase, the OFT randomly samples training data not only from the generated self-play
games, but also from the queue of solved positions. For these solved positions, the cost values are
always set to zero (i.e. solved to be a win, from the perspective of the OR-player), since no nodes need
to be examined to solve the position. The OFT only samples 10% of training data from the solved
queue during optimization to avoid overfitting, where the remaining 90% are sampled from self-play
games. In addition, the queue only stores the most recent 1,000 solved positions received from the
manager. During self-play, when using θt to evaluate positions that are solved by the manager, it is
highly likely to predict costs close to zero. From the AND-player’s perspective, it favors moves that
lead to larger costs to delay the OR-player’s victory. Therefore, self-play naturally explores positions
which have not yet been solved in the manager’s search tree.

4

3.2.2 Online fine-tuning trainer with critical positions

Other than solved positions, we can also improve the PCN with specific positions of interest chosen
from the manager’s current search tree. Positions are considered critical if they are selected in the
most recent MCTS iterations in the manager. For example, in the first selection in Figure 2, all
positions r, a, g, and j in the MCTS selection path are considered critical positions. During self-play,
the trainer randomly chooses one critical position, and performs self-play starting from that position.
Thus, θt can provide more accurate predictions for positions that proof search is currently exploring.

A more selective process can be used to improve the quality of critical positions. First, we can omit r,
since self-play from r is already performed to train θ0. Ideally, we would prefer to focus on deeper
unsolved positions. To achieve this, we only consider the leaf position in the selection path as critical.
Also, the OFT maintains a queue in which only the recent 1,000 critical positions are stored. This
way, the OFT can focus on the most urgent positions which are likely to be solved soon. As these
positions are also usually sent to the workers (if the PCN value v ≤ vthr), the workers can also take
advantage of θt. Next, we can omit leaf positions solved solely by the manager; i.e. leaf nodes that
were solved not as jobs. For example, j will not be considered critical in the first selection in Figure
2. Since j is already solved, it is not necessary to perform self-play from that position. Only m, n,
h, and i will be sent to the OFT as critical positions in the second, third, fifth, and sixth selection,
respectively. Note that r, a, and g were critical positions before b and k became critical, since the
parent nodes are always expanded before their children. Thus, the trainer will gradually fine-tune the
PCN by focusing only on deeper critical positions to help avoid redundancy during fine-tuning.

In summary, the pre-trained θ0 learns general heuristics by exploring from empty games, while the
online θt refines its heuristics for specific positions of interest. As a side note, the fine-tuning process
is related to the catastrophic forgetting phenomenon [33], as the focus is shifted from one part of the
proof search to another. Interestingly, forgetting is not only acceptable in this context, but probably
even preferred, because the heuristic only needs to be accurate for the part of the search space the
manager is currently working on. Additionally, the two proposed methods are independent and can
be combined. We evaluate these methods in our experiments.

3.3 Manager job assignment improvements

Job assignment refers to the manager’s responsibility of dividing the overall problem into distinct
jobs. Better job assignment schemes can eliminate redundancy and improve parallelism. We propose
three techniques to further improve the efficiency of job assignment, which we call virtual solving,
top-k selection, and AND-player job assignment.

Virtual solving. When a job is assigned to workers, we assume that the job result will be solved,
even before it is actually returned by a worker. The virtually solved outcome is backpropagated as a
normal job outcome. This technique has similar concepts to the virtual loss [34], virtual win [29],
and Young Brothers Wait Concept (YBWC) [35], which were used to avoid repeatedly searching
superfluous nodes during the proof search. For example, in Figure 2, assume the manager selects a
path from r to a leaf h and assigns the job to a worker, at which point h is immediately marked as
virtually solved. Its parent node b, an OR-node, is then also marked as virtually solved. Furthermore,
if nodes a, c, and e (d is solved already) are all solved or virtually solved, their parent r will also
be marked as virtually solved. When the job result returns, the manager reverts the virtually solved
markers and updates the status of all nodes accordingly. The virtual solving technique can provide a
highly efficient job assignment scheme, in that the manager search tree can be nearly the same as the
solution tree if most virtually solved nodes are indeed winning.

Top-k selection. We exploit the fact that all child nodes must be solved for every AND-node to
improve parallelism. At each AND-node, we select uniformly at random among the top k unsolved
children that are likely to be sent off as jobs eventually, i.e. those with the top k highest PUCT scores.
For example, in Figure 2, assume k = 2 and nodes a and b are the top two children of AND-node r;
nodes k and l are the top two for g. Note that we omit node j because it is already solved. At node r,
the manager selects between a and b with equal probability. Note that selections at OR-nodes remain
unchanged. In addition, we only apply top-k selection when the simulation count of the AND-node
is larger than k. Top-k selection improves parallelism by allowing the manager to assign more jobs
simultaneously, when it is combined with virtual solving. We use k = 4 in our experiments.

5

AND-player job assignment. We only distribute AND-nodes as jobs, i.e. OR-nodes are never
assigned and are directly expanded in the manager. For example, in Figure 2, the OR-node b is not
assigned as a job even if vb < vthr. The manager creates the AND-node h from the leaf node b, then
assigns it to a worker as a job. The underlying intuition is that assuming the PCN policy head output
is accurate as a move ordering heuristic, the first guess will often be the move that leads to a solution
for OR-nodes. Therefore, by skipping OR-nodes job assignment entirely, the manager gains a 1-ply
look ahead. In practice, all three job assignment schemes are applied simultaneously.

4 Experiments

We demonstrate our online fine-tuning game solver by solving several three-move 7x7 Killall-Go
openings. 7x7 Killall-Go is a variant of Go, where the rules are the same except that: (a) Black places
two stones initially, and (b) Black wins if all white stones are killed; otherwise, White wins. Since
White aims to live, winning specific openings for this variant is equivalent to solving a L&D problem.
Many Go experts believe that 7x7 Killall-Go is a win for White. So far, no proof has been published
yet. In this paper, we only focus on weakly solved games [36] in which White wins. Thus, White is
considered the OR-player throughout.

4.1 The 7x7 Killall-Go solver

We build our 7x7 Killall-Go solver upon an AlphaZero training framework [37]. First, we pre-train a
PCN θ0 [14] to serve as heuristics for the game solver (starting from an empty board). We incorporate
the Gumbel AlphaZero algorithm [38] into PCN training, since it performs equivalently well even
with a small simulation count. This reduces the computation cost for online fine-tuning without
compromising accuracy. The pre-training took around 52 1080Ti GPU-hours. Next, we incorporate
several useful techniques into the solver to accelerate solving. This includes relevance zone-based
search (RZS) [13], zone pattern tables [39], and GHI handling to deal with cycles in Go [40]. This
solver is then used as workers in a distributed game solver. The manager is also based on the above
solver, with the job assignment techniques added, as described in subsection 3.3. The OFT is similar
to the PCN pre-training, but with fine-tuning as described in subsection 3.2.

Two kinds of distributed game solvers are considered for our experiments. The baseline solver uses
the manager and worker only, while using a pre-trained, fixed θ0 as the heuristic throughout the whole
proof search. In contrast, the online fine-tuning solver uses the OFT to fine-tune the PCN heuristic
dynamically during the proof search. In addition, we consider three variations of online fine-tuning
solvers using solved positions (SP), critical positions (CP), and a combination of both (SP+CP). Both
solvers use vthr = 16.5 for the manager job granularity.4 For fairness, we ran both solvers on 9
1080Ti GPUs. The baseline solver uses one GPU for the manager and eight GPUs shared among
workers. For the online fine-tuning solver, the manager and trainer each uses one GPU, while workers
share the remaining seven GPUs. Detailed implementations and other machine configuration details
are specified in the appendix.

B
A
D

2
1
C
1

(a) Jump (J)

E 2
F

D

1
C
A
B

1

(b) Knight’s move
(K)

1

A
2

1

(c) Diagonal jump
(D)

B D
A
1
1

2

C

E

(d) Stretch (S)

Figure 3: Four 7x7 Killall-Go opening groups, including (a) four openings, JA-JD; (b) six openings,
KA-KF; (c) one opening, DA; (d) five openings, SA-SE.

We select a set of three-move openings based on recommendations from experts, including a profes-
sional 9-dan player. These openings can be classified into four groups, named after their commonly

4We choose vthr = 16.5 according to the experiments on different PCN thresholds, as shown in the appendix.

6

shared first move opening: jump (J), knight’s move (K), diagonal jump (D), and stretch (S), shown in
Figure 3a, 3b, 3c, and 3d respectively. For each opening group, experts also suggest the most likely
winning move for White. We split these openings into several three-move openings by exploring
Black’s possible replies. For each opening group, we select the most difficult replies by Black
according to expert recommendations and the PCN policy head output. For simplicity, in the rest
of the paper, JA represents the position resulting from Black playing at A in the jump group; KB
represents Black playing at B in the knight’s move group, etc. The gray solid squares represent
moves that are also suggested by the PCN, but cannot be solved by both of the baseline and online
fine-tuning solvers in one day. With limited computing resources, we leave these openings for future
work. In total, we use 16 three-move openings as shown in Figure 3.

4.2 Baseline versus online fine-tuning

Table 1 lists statistics for solving the 16 three-move openings by the baseline solver and three variants
of online fine-tuning solvers. In general, all online fine-tuning solvers outperform the baseline solver
in most openings. ONLINE-SP, ONLINE-CP, and ONLINE-SP+CP, require only about 48.53%, 21.69%,
and 23.07% of the visited nodes, and 52.67%, 23.54%, and 24.99% of the computing time compared
to BASELINE. This shows that fine-tuning PCNs with critical positions, which are currently being
solved by either the manager or workers, provides better heuristics for the current search tree and
accelerates the solving process. Furthermore, ONLINE-SP+CP has nearly the same performance as
ONLINE-CP, with both methods outperforming ONLINE-SP. This means that training with critical
positions is more important than solved positions. To reduce the overhead of sending both solved
and critical positions, we simply choose ONLINE-CP for further analysis, i.e. all instances of online
fine-tuning solver for the rest of this section refers to ONLINE-CP. In conclusion, these results indicate
that θ0 provides less accurate heuristics, which impacts the proof search negatively. By performing
online fine-tuning with either solved or critical positions, we can fine-tune the PCN dynamically
according to the manager’s current focus and therefore find faster solutions.

Table 1: The number of nodes and time to solve 16 7x7 Killall-Go three-move openings by the
baseline and three variants of online fine-tuning solvers. “# Nodes” lists the numbers of all nodes
visited by the manager and workers together. All the listed times are rounded to the nearest second.
The rightmost column lists the number of PCN models produced by the online fine-tuning trainer.

BASELINE ONLINE-SP ONLINE-CP ONLINE-SP+CP

Nodes Time (s) # Nodes Time (s) # PCN # Nodes Time (s) # PCN # Nodes Time (s) # PCN

JA 8,964,444,959 142,115 4,054,562,593 69,699 359 1,288,601,416 22,384 186 1,425,668,707 24,865 225
JB 7,137,514,712 155,786 3,378,672,517 83,454 424 1,576,437,139 31,957 272 1,601,479,130 31,455 283
JC 721,004,784 12,514 819,264,890 13,963 57 316,391,324 6,537 59 414,108,746 8,343 69
JD 1,271,426,148 30,209 846,365,092 19,396 113 545,655,175 11,083 102 502,966,563 10,896 103
KA 134,881,952 2,103 143,814,448 2,621 14 111,838,889 2,102 18 104,905,173 1,931 18
KB 10,153,035,632 156,583 3,794,290,131 64,493 305 2,242,789,149 38,947 343 2,527,488,112 43,200 386
KC 38,217,263 747 45,217,101 1,156 6 26,441,989 758 6 25,508,784 706 6
KD 2,754,213,379 47,494 1,504,977,329 25,715 126 955,257,191 17,434 145 920,902,808 16,357 148
KE 1,197,819,407 18,771 214,614,577 3,917 21 181,418,954 3,336 30 168,590,287 3,095 28
KF 9,516,440,320 147,271 6,080,836,868 100,690 519 2,107,185,330 35,418 285 2,027,558,505 35,197 305
DA 7,322,743,383 112,874 3,015,438,589 50,046 248 1,761,842,477 30,313 266 1,665,511,033 28,337 235
SA 51,272,288 937 54,574,495 1,471 7 41,863,480 992 9 41,796,555 1,105 10
SB 215,380,103 3,860 65,970,358 1,423 7 55,541,455 1,364 12 109,591,487 2,258 20
SC 97,559,402 1,557 213,889,777 3,553 19 98,661,355 1,715 16 93,535,813 1,655 15
SD 8,187,017,679 124,644 3,821,472,453 63,058 329 1,395,444,447 23,751 154 1,485,439,307 25,531 224
SE 4,297,808,879 64,227 2,065,528,927 33,437 166 757,256,934 12,465 103 1,200,741,176 20,428 182

sum 62,060,780,290 1,021,692 30,119,490,145 538,092 - 13,462,626,704 240,556 - 14,315,792,186 255,359 -

Table 1 also shows another interesting result: the larger the problem, the better the improvement.
For better visualization, the solving times are depicted as a bar chart in Figure 4, where the x-axis is
sorted according to the solving time of the baseline solver. In Figure 4, the online fine-tuning solver
solves all openings within 40,000 seconds, while the baseline solver uses more than one day to solve
six openings. Most impressively, for JA, the online fine-tuning solver performs about 6.35 times
faster than the baseline, reducing the computation time from 142,115 to 22,384 seconds, while the
number of visited nodes is reduced from 8.96 billion to 1.29 billion or so nodes.

The online fine-tuning solver does not always perform better than the baseline, especially when the
openings are relatively easy to solve for the baseline. In Table 1, the baseline uses less time to solve
SA and SC. The following reasons may be why this limitation exists for smaller problems. First, the

7

KC SA SC KA SB JC KE JD KD SE DA SD JA KF JB KB
0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

Ti
m

e
(s

)

BASELINE

ONLINE-SP

ONLINE-CP

ONLINE-SP+CP

Figure 4: Solving time comparison for 16 three-move 7x7 Killall-Go openings.

1

1

2
3 4

5A

B

(a) Sub-position of JA.

0 20 40 60 80 100 120 140 160 180

15

20

25

Iteration

L
en

gt
h

(b) Average length of critical positions.

Figure 5: Behavioral analysis of the online fine-tuning solver for the opening JA.

online fine-tuning solver relies on a trainer to fine-tune the PCN. The quicker the problem can be
solved, the less time the trainer has to fine-tune specific PCN weights. Consequently, it has a weaker
impact on improvement. This is corroborated by the fact that these two openings end up with less
than 20 PCN versions,5 as shown in Table 1. Second, when compared to the baseline, the online
fine-tuning solver has less computing power for the workers. The trainer overhead takes up a GPU
and leaves workers with seven instead of eight GPUs used by the baseline.

It is also worth mentioning that all three-move openings in both jump and stretch are solved. As
these openings are considered the most difficult moves, we expect that both jump and stretch (i.e.,
the two-move openings) can probably be solved completely in the near future, with more computing
resources.

4.3 Behavior analysis for the online fine-tuning solver

We further analyze the behavior of two solvers by studying the opening JA, where the online fine-
tuning solver has the largest speedup among all openings, i.e. 6.35 times faster than the baseline. We
observe several positions in which the winning moves for White differed between the two solvers.
For example, a crucial sub-position in the solution tree is shown in Figure 5a. The baseline and online
fine-tuning solver chose moves A and B to search, respectively. We examine θ0 and find that the

5In our settings, the trainer typically generates a new PCN version about every 120 seconds.

8

probabilities from the policy network for moves A and B are 0.416 and 0.133, respectively. As a
result, the baseline solver has a lower chance to explore B. In contrast, with the help of the OFT, the
online fine-tuning solver quickly realizes that solving B is faster, though it still attempted to search A
initially, as it starts with the same θ0. In terms of node counts, the baseline spent a total of 1.63 billion
nodes, with approximately 1.48 billion (91.00%) and 35.50 million (2.18%) nodes spent on searching
A and B, respectively, while the online fine-tuning solver spent a total of 136.47 million nodes on
that position, with approximately 22.13 million (16.21%) and 95.17 million (69.74%) nodes spent on
searching A and B, respectively. This example clearly demonstrates the advantage of using the OFT.

Next, we investigate the set of critical positions maintained by the online fine-tuning trainer, as
described in subsection 3.2.2. During fine-tuning, the trainer randomly selects positions from the
queue, then runs self-play games from these positions. Figure 5b shows the average path length
of critical positions during training in the y-axis, and the training iteration in the x-axis, where the
trainer generates a new PCN version for every iteration. The length starts at around 10 and gradually
increases to nearly 25 in the end. This is because as the manager search tree grows through node
expansion, the critical positions are chosen from deeper parts of the tree. The curve also fluctuates
as the proof search progresses. This is because the manager tends to focus on a sub-problem at a
time. When a subtree is solved, the manager may then shift its attention to other unsolved parts of the
proof search, which can have a relatively shallower depth. We also analyze similar figures for other
openings in the appendix.

4.4 Updating PCNs in online fine-tuning

We investigate the impact of updating PCNs for the manager and workers during online fine-tuning.
We select four openings, JC, KE, DA, and SE, one from each opening group, for this experiment.
Table 2 summarizes results, where BASELINE denotes the baseline solver, ONLINE-CP denotes the
online fine-tuning solver that updates PCNs for both the manager and workers (as described in
subsection 3.2.2), ONLINE-CP-M denotes updating the PCN for the manager only, and ONLINE-CP-W
for workers only.

First, updating PCNs for both the manager and workers performs the best. By using consistent PCNs,
jobs assigned by the manager are efficiently solved by the workers. With inconsistent PCNs, the
results can be even worse than the baseline. Generally, ONLINE-CP-M outperforms ONLINE-CP-W,
except for the opening SE. We find that the pre-trained PCN causes ONLINE-CP-W to divide its
computing resources across several OR nodes (white moves), many of which are relatively difficult
to solve. In contrast, for ONLINE-CP-M, with the updated PCNs, the manager focuses on one white
move (or a smaller number of white moves), of which they are much easier to solve. Thus, even if
there is a mismatch between the manager and workers in ONLINE-CP-M, focusing on one good white
move can still result in efficiency.

Table 2: Impact of updating PCNs in the
online fine-tuning solver. The number repre-
sents the time (in seconds) for solving each
opening by using different methods.

JC KE DA SE

BASELINE 12,514 18,771 112,874 64,227
ONLINE-CP-M 9,992 5,445 46,719 28,769
ONLINE-CP-W 13,516 54,360 65,304 26,168
ONLINE-CP 6,537 3,336 30,313 12,465

Table 3: Ablation study for job assignment schemes in
the online fine-tuning solver. The number represents
the time (in seconds) for solving each opening by using
different methods.

JC KE DA SE

ONLINE-CP 6,537 3,336 30,313 12,465
w/o AND assg. 8,618 3,762 53,275 18,926
w/o top-k 6,520 3,639 46,080 36,093
w/o AND assg. & top-k 10,480 6,171 58,527 33,677

4.5 Ablation study for job assignment schemes

We conduct an ablation study in the online fine-tuning solver to analyze the impact of job assignment
schemes, described in subsection 3.3. We only include ablations for top-k selection and AND-player
job assignment, since virtual solving is required to avoid job redundancy. The ablation study is
performed on the same four openings as subsection 4.4, JC, KE, DA, and SE. Table 3 summarizes the
ablation results, where ONLINE-CP denotes the online fine-tuning solver that uses both schemes; the
other three versions denote the ablations by removing specific schemes from ONLINE-CP. If the top-k

9

selection is removed, the manager always selects the best child during selection for both AND-nodes
and OR-nodes. If we do not follow the AND-player job assignment scheme (abbreviated as AND
assg. in the table), the manager assigns both AND-player and OR-player jobs.

From Table 3, ONLINE-CP performs the best in general. In particular, ONLINE-CP only requires
around 48.37% of the computing time on average over all four openings, compared to the solver
without both schemes (the last row in the table). When comparing each technique individually, the
improvement varies from problem to problem.

5 Discussion

This paper demonstrates the potential of using online fine-tuning for game solving. On average across
multiple openings, our proposed online fine-tuning solver only uses 23.54% of the computation
time compared to the baseline. Our distributed game solver is the first online fine-tuning method
for problem solving based on AlphaZero-like algorithms. Although we focus on online fine-tuning
throughout this paper, we can also claim that the complete distributed game solver is a life-long
learning system. The online trainer continuously refines heuristics for unfamiliar (unsolved) positions,
and forgets the previously learned knowledge (solved positions). However, this forgotten knowledge
is saved (remembered) in the manager’s solution tree. As a result, the worker and trainer will not
need to evaluate these positions again.

There are many other topics for future investigation. Our experiments on the four challenging 7x7
Killall-Go opening groups show that two groups are likely to be solved in the near future. However,
for the other two, or even 7x7 Killall-Go in its entirety, we expect more novel techniques are needed.
As for the standard Go game, the largest solved board to date is only 5x6 in size [41], with no
published progress in 14 years. We expect online fine-tuning to be one of the key improvements that
can help push this boundary. As for generality, our method is not limited to Go but can be easily
applied to other two-player zero-sum games like Hex or Othello. Moreover, we expect it has the
potential to extend to single-player games such as Rubik’s Cube, or even to other non-game fields,
such as automated theorem proving [17] or chemical syntheses [42, 43].

Acknowledgments and Disclosure of Funding

This research is partially supported by the National Science and Technology Council (NSTC) of
the Republic of China (Taiwan) under Grant Number NSTC 111-2222-E-001-001-MY2, NSTC
111-2221-E-A49-101-MY2, NSTC 110-2221-E-A49-067-MY3, and NSTC 111-2634-F-A49-013.

References
[1] H Jaap van den Herik, Jos W H M Uiterwijk, and Jack Van Rijswijck. Games solved: Now and

in the future. Artificial Intelligence, 134(1):277–311, 2002.

[2] Jonathan Schaeffer. One Jump Ahead: Challenging Human Supremacy in Checkers. ICGA
Journal, 20(2):93–93, 1997.

[3] Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep Blue. Artificial intelligence,
134(1-2):57–83, 2002.

[4] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489,
2016.

[5] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Jun-
young Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in StarCraft II using multi-agent reinforcement learning. Nature, 575(7782):350–354,
2019.

[6] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
Go without human knowledge. Nature, 550(7676):354–359, 2017.

10

[7] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general
reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science,
362(6419):1140–1144, 2018.

[8] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre,
Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy
Lillicrap, and David Silver. Mastering Atari, Go, chess and shogi by planning with a learned
model. Nature, 588(7839):604–609, 2020.

[9] Adam Gleave, Michael Dennis, Cody Wild, Neel Kant, Sergey Levine, and Stuart Russell.
Adversarial Policies: Attacking Deep Reinforcement Learning. In 8th International Conference
on Learning Representations, ICLR 2020, 2020.

[10] Li-Cheng Lan, Huan Zhang, Ti-Rong Wu, Meng-Yu Tsai, I-Chen Wu, and Cho-Jui Hsieh.
Are AlphaZero-like Agents Robust to Adversarial Perturbations? In 36th Advances in Neural
Information Processing Systems, NIPS 2022, 2022.

[11] Jonathan Schaeffer, Neil Burch, Yngvi Björnsson, Akihiro Kishimoto, Martin Müller, Robert
Lake, Paul Lu, and Steve Sutphen. Checkers Is Solved. Science, 317(5844):1518–1522, 2007.

[12] Chao Gao, Martin Müller, and Ryan Hayward. Focused Depth-first Proof Number Search using
Convolutional Neural Networks for the Game of Hex. In 26th International Joint Conference
on Artificial Intelligence, IJCAI 2017, volume 17, pages 3668–3674, 2017.

[13] Chung-Chin Shih, Ti-Rong Wu, Ting Han Wei, and I-Chen Wu. A Novel Approach to Solving
Goal-Achieving Problems for Board Games. In 36th AAAI Conference on Artificial Intelligence,
AAAI 2022, volume 36, pages 10362–10369, 2022.

[14] Ti-Rong Wu, Chung-Chin Shih, Ting Han Wei, Meng-Yu Tsai, Wei-Yuan Hsu, and I-Chen Wu.
AlphaZero-based Proof Cost Network to Aid Game Solving. In 10th International Conference
on Learning Representations, ICLR 2022, 2022.

[15] Stephen McAleer, Forest Agostinelli, Alexander Shmakov, and Pierre Baldi. Solving the
Rubik’s Cube with Approximate Policy Iteration. In 7th International Conference on Learning
Representations, ICLR 2019, 2019.

[16] Forest Agostinelli, Stephen McAleer, Alexander Shmakov, and Pierre Baldi. Solving the Rubik’s
cube with deep reinforcement learning and search. Nature Machine Intelligence, 1(8):356–363,
2019.

[17] Guillaume Lample, Marie-Anne Lachaux, Thibaut Lavril, Xavier Martinet, Amaury Hayat,
Gabriel Ebner, Aurélien Rodriguez, and Timothée Lacroix. HyperTree Proof Search for Neural
Theorem Proving. In 36th Advances in Neural Information Processing Systems, NIPS 2022,
2022.

[18] David Wu. Deep-Learning the Hardest Go Problem in the World. https://blog.
janestreet.com/deep-learning-the-hardest-go-problem-in-the-world/, 2019.
Accessed: 2023-01-19.

[19] Wim Pijls and Arie de Bruin. Game tree algorithms and solution trees. Theoretical computer
science, 252(1-2):197–215, 2001.

[20] George C. Stockman. A minimax algorithm better than alpha-beta? Artificial Intelligence, 12
(2):179–196, 1979.

[21] Louis Victor Allis, Maarten van der Meulen, and H Jaap van den Herik. Proof-number search.
Artificial Intelligence, 66(1):91–124, 1994.

[22] Mark H M Winands, Yngvi Björnsson, and Jahn-Takeshi Saito. Monte-carlo tree search solver.
In International Conference on Computers and Games, pages 25–36. Springer, 2008.

[23] Tristan Cazenave and Abdallah Saffidine. Score Bounded Monte-Carlo Tree Search. In 7th
International Conference on Computers and Games, CG 2010, pages 93–104. Springer Berlin
Heidelberg, 2011.

11

https://blog.janestreet.com/deep-learning-the-hardest-go-problem-in-the-world/
https://blog.janestreet.com/deep-learning-the-hardest-go-problem-in-the-world/

[24] Timo V Ewalds. Playing and Solving Havannah. Master’s thesis, University of Alberta, 2012.

[25] Ting Han Wei, Chao-Chin Liang, I Wu, Lung-Pin Chen, et al. Software development architecture
for job-level algorithms. ICGA Journal, 38(3):131–148, 2015.

[26] Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-up limit
hold’em poker is solved. Science, 347(6218):145–149, 2015.

[27] Abdallah Saffidine, Nicolas Jouandeau, and Tristan Cazenave. Solving BRREAKTHROUGH
with Race Patterns and Job-Level Proof Number Search. In 13th International Conference on
Advances in Computer Games, ACG 2011, pages 196–207. Springer, 2011.

[28] Philip Henderson, Broderick Arneson, and Ryan B Hayward. Solving 8x8 Hex. In 21st
International Joint Conference on Artificial Intelligence, IJCAI 2009, volume 9, pages 505–510,
2009.

[29] I-Chen Wu, Hung-Hsuan Lin, Der-Johng Sun, Kuo-Yuan Kao, Ping-Hung Lin, Yi-Chih Chan,
and Po-Ting Chen. Job-Level Proof Number Search. IEEE Transactions on Computational
Intelligence and AI in Games, 5(1):44–56, 2012.

[30] Ayumu Nagai. Df-pn Algorithm for Searching AND/OR Trees and Its Applications. PhD thesis,
University of Tokyo, Tokyo, Japan, 2002.

[31] Jr-Chang Chen, I-Chen Wu, Wen-Jie Tseng, Bo-Han Lin, and Chia-Hui Chang. Job-level
alpha-beta search. IEEE Transactions on Computational Intelligence and AI in Games, 7(1):
28–38, 2014.

[32] Christopher D Rosin. Multi-armed bandits with episode context. Annals of Mathematics and
Artificial Intelligence, 61(3):203–230, 2011.

[33] Michael McCloskey and Neal J Cohen. Catastrophic Interference in Connectionist Networks:
The Sequential Learning Problem. In Psychology of learning and motivation, volume 24, pages
109–165. Academic Press, 1989.

[34] Guillaume MJ-B Chaslot, Mark HM Winands, and H. Jaap van den Herik. Parallel Monte-Carlo
Tree Search. In 6th International Conference on Computers and Games, CG 2008, pages 60–71.
Springer, 2008.

[35] Rainer Feldmann, Burkhard Monien, Peter Mysliwietz, and Oliver Vornberger. Distributed
game-tree search. ICCA Journal, 12(2):65–73, 1989.

[36] Louis Victor Allis. Searching for Solutions in Games and Artificial Intelligence. PhD thesis,
Transnational University Limburg, Maastricht, Netherlands, 1994.

[37] Ti-Rong Wu, Hung Guei, Po-Wei Huang, Pei-Chiun Peng, Ting Han Wei, Chung-Chin Shih,
and Yun-Jui Tsai. Minizero: Comparative analysis of Alphazero and Muzero on Go, Othello,
and Atari games. arXiv preprint arXiv:2310.11305, 2023.

[38] Ivo Danihelka, Arthur Guez, Julian Schrittwieser, and David Silver. Policy improvement by
planning with Gumbel. In 10th International Conference on Learning Representations, ICLR
2022, 2022.

[39] Chung-Chin Shih, Ting Han Wei, Ti-Rong Wu, and I-Chen Wu. A Local-Pattern Related
Look-Up Table. IEEE Transactions on Games, 2023.

[40] Akihiro Kishimoto and Martin Müller. A General Solution to the Graph History Interaction
Problem. In 19th AAAI Conference on Artificial Intelligence, AAAI 2004, volume 4, pages
644–649, 2004.

[41] Erik C D van der Werf and Mark H M Winands. Solving go for Rectangular Boards. ICGA
Journal, 32(2):77–88, 2009.

[42] Marwin HS Segler, Mike Preuss, and Mark P Waller. Planning chemical syntheses with deep
neural networks and symbolic AI. Nature, 555(7698):604–610, 2018.

12

[43] Akihiro Kishimoto, Beat Buesser, Bei Chen, and Adi Botea. Depth-First Proof-Number Search
with Heuristic Edge Cost and Application to Chemical Synthesis Planning. In 33rd Advances in
Neural Information Processing Systems, NIPS 2019, pages 7224–7234, 2019.

[44] Andrew J Palay. Searching with Probabilities. PhD thesis, Carnegie Mellon University, 1983.

[45] Akihiro Kishimoto and Martin Müller. A solution to the GHI problem for depth-first proof-
number search. Information Sciences, 175(4):296–314, 2005.

13

A Implementation details

A.1 PCN training

We basically follow the same PCN training method by Wu et al. [14] but replace the AlphaZero
algorithm with the Gumbel AlphaZero algorithm [38], where the simulation count is set to 326 in
self-play and starts by sampling 16 actions. The architecture of the PCN contains three residual
blocks with 256 hidden channels. A total of 400,000 self-play games are generated for the whole
training. During optimization, the learning rate is fixed at 0.02, and the batch size is set to 1,024.
The PCN is optimized for 500 steps for every 2,000 self-play games. The pre-trained PCN requires
around 13 hours to train on a machine with four 1080Ti GPUs, i.e. 52 1080Ti GPU-hours. For the
online trainer, we use the same hyperparameters as the pre-trained PCN but only use one GPU.

A.2 7x7 Killall-Go solver

Our solver is built upon the state-of-the-art (SOTA) 7x7 Killall-Go solver [13] except for the following
three changes. First, our solver uses PCN as heuristics while the SOTA solver trains a network with
Faster to Life (FTL) techniques. Both networks aim to provide a faster move for solving, but FTL
requires additional (komi7) settings in solving, so PCN is much easier to use in our solver. Second,
we implement the transposition table based on Shih et al. [39]. This greatly reduces the solving
time. Finally, we implement a solution for resolving Graph-History-Interaction (GHI, i.e. cycles in
Go) [44] problems to ensure the correctness of reusing solutions in the transposition table, based on
Kishimoto and Müller [40, 45]’s GHI solution.

A.3 Worker design

The worker is itself a Killall-Go solver. It is GPU bound, i.e. it relies on GPUs more than CPUs
since the PCN (a neural network) requires intensive GPU computation. Thus, to fully utilize GPU
resources, we implement batch GPU inferencing to accelerate PCN evaluations for workers. In
practice, we collect 48 workers together in one process with multiple threads. The process runs
MCTS selection for each worker independently. Namely, a total of 48 leaf nodes are generated and
evaluated by PCN with one GPU at once. The 48 leaf nodes are collected as a batch for batch GPU
inferencing, with a batch size of 48. This method greatly reduces the solving time when more workers
are used. The baseline distributed game solver creates eight processes as workers, each with one
GPU, for a total of 384 workers (eight processes with 48 workers). The online fine-tuning solver has
the same number of workers for fairness, but uses seven GPUs (one GPU is spared for the online
trainer); the configuration is six processes with 55 workers and one process with 54 workers.

B Experiment details

B.1 Setup

All experiments are conducted in three machines, each equipped with two Intel Xeon E5-2678 v3
CPUs, 192G RAM, and four GTX 1080Ti GPUs. We list other hyperparameters in Table 4.

For the memory used in solving, the manager requires 20G RAM for expanding every 1M nodes, and
every 48 workers together in one process requires 30G RAM at most. Note that workers use the same
amount of memory regardless of problem size. They are limited to 100,000 nodes per job; the job
result is “unsolved” if a solution is not obtained within that limit.

Specifically, for BASELINE with 384 workers, solving KA used 2,103 seconds, required 3G RAM for
the manager and 240G RAM for the workers; solving KB used 156,583 seconds, required 170G RAM
for the manager and 240G RAM for the workers. However, for BASELINE with only 48 workers,
solving KA used 12,151 seconds but only required 2G RAM for the manager and 30G RAM for the
workers. Overall, the settings can be varied depending on available machines.

6The original PCN training used 400 simulation counts in the self-play, requiring much more computing
resources than using Gumbel algorithm.

7Since Black plays the first stone in the game of Go, White usually earns some extra points called komi for
balance.

14

Table 4: Hyperparameters used in the baseline and online fine-tuning solvers. All variants of online
fine-tuning solvers use the same settings.

BASELINE ONLINE

Manager

GPUs 1 1
vthr 16.5 16.5

k for top-k selection 4 4

Worker
GPUs 8 7

workers 384 384
node limitation per job 100,000 100,000

Trainer # GPUs 0 1

B.2 Scalability of the distributed game solver

To evaluate the scalability of the distributed game solver, we run BASELINE with different numbers
of workers on KA. Specifically, the solvers use 384, 192, 96, and 48 workers, using 8, 4, 2, and 1
GPU, respectively. Every 48 workers share one GPU. The results are shown in Table 5. Overall, the
speedup is around 1.8 times faster when the number of workers is doubled (up to 384 workers due to
our machine limitation).

Table 5: Detailed statistics for solving KA by BASELINE with different numbers of workers.

Workers # Nodes Time (s) Manager
Nodes # Jobs Avg. Job

Time (s)
Avg. Job
Nodes # PCN Solved

Jobs (%)
Avg. Worker
Loading (%) Speedup

384 134,881,952 2,103 121,236 21,748 34.48 6,196.46 0 97.87% 94.53% 5.78
192 120,676,465 3,596 99,678 18,598 35.92 6,483.32 0 98.44% 98.57% 3.09
96 112,344,894 6,502 84,752 16,422 37.45 6,835.96 0 98.87% 98.90% 1.71
48 109,362,406 12,151 74,665 15,292 37.78 7,146.73 0 99.05% 98.60% 1.00

B.3 Statistics of solving 7x7 Killall-Go three-move openings

Figure 6 shows the next winning moves (the fourth moves) of 16 three-move openings for both
baseline and ONLINE-CP solvers. Generally, both solvers solve the openings at the same next moves,
except JB. The full solution trees for each opening can be found in this link: https://rlg.iis.
sinica.edu.tw/papers/neurips2023-online-fine-tuning-solver/solution-trees.
We also provide a tool and a README file for explaining the solution tree.

It is worth mentioning that JA and JB are similar to one of the common josekis8 played in 19x19 Go.
The joseki usually occurs when Black makes a corner enclosure move, also known as shimari in
Japanese, like the two stones marked as “1” in JA and JB. Then, White attempts to invade Black’s
territories by playing at the stone marked as “2”. Judging by the online fine-tuning solver’s ability to
solve JA and JB, we foresee a high potential to extend our work to solving other 19x19 Go corner
josekis in the future.

In addition, Figure 7 shows the curve for average critical position lengths. These curves are all similar
in the sense that it starts with small average lengths, which gradually increases during fine-tuning.

Table 6, Table 7, Table 8 and Table 9 list the experiment results of the baseline and three variants of
online fine-tuning solvers respectively, in more detail than those in Table 1 in the main text. These
tables include the number of nodes for solving, the solving time in seconds, the number of nodes
used in the manager, the number of jobs, the average time for solving each job, the average number
of nodes for solving each job, the number of updated PCNs, the success rate of solving jobs, and the
average worker load during solving. In general, the solving time is correlated with the number of
nodes and the number of jobs. For online fine-tuning, the solving time is also correlated with the
number of PCNs as the trainer updates PCNs at a stable speed. Note that the number of PCNs is
always 0 for the baseline solver, as they do not update PCNs during solving.

8A joseki is a move sequence that is widely believed to be balanced play by both players.

15

https://rlg.iis.sinica.edu.tw/papers/neurips2023-online-fine-tuning-solver/solution-trees
https://rlg.iis.sinica.edu.tw/papers/neurips2023-online-fine-tuning-solver/solution-trees

1

1

2
3 A

(a) JA

1

1

23
AB

(b) JB

1

1

2

3
A

(c) JC

1

1

2

3
A

(d) JD

1

12 3
A

(e) KA

1

12
3

A

(f) KB

1

12
3

A

(g) KC

1

12
3

A

(h) KD

1

123
A

(i) KE

1

12
3A

(j) KF

1
2

13
A

(k) DA

1
1

23
A

(l) SA

1
1

2
3

A

(m) SB

1
1

2

3

A

(n) SC

1
1

2
3
A

(o) SD

1
1

2
3
A

(p) SE

Figure 6: The solutions of the next winning move for 16 7x7 Killall-Go openings. For each opening,
“A” and “B” represents the winning move found by the baseline solver and the online fine-tuning
solver respectively. If both solvers solve the opening with the same winning move, only “A” is shown
on the board.

In our experiments, the average success rates of solving jobs are around 97.30%, 98.44%, 99.14%
and 99.08% for the baseline and the online fine-tuning solvers, respectively. In addition, for some
quickly solved openings, e.g. KC, SA, and SB, the average time for solving each job is far less than
other difficult openings. While the workers are able to solve jobs quickly, the managers are relatively
unable to create enough jobs for the workers, causing the workers to be relatively idle (lower avg.
worker loading). Compared with the baseline solver, online fine-tuning solvers have better success
rates of solving as well as lesser nodes for each job. This confirms that online fine-tuning successfully
fine-tuned the PCNs for critical positions that the manager is interested in, thereby increasing the job
efficiency overall.

Table 6: Detailed statistics for the openings solved by BASELINE.

Nodes Time (s) Manager
Nodes # Jobs Avg. Job

Time (s)
Avg. Job
Nodes # PCN Solved

Jobs (%)
Avg. Worker
Loading (%)

JA 8,964,444,959 142,115 4,842,554 792,465 68.68 11,305.99 0 96.83% 99.48%
JB 7,137,514,712 155,786 3,689,548 635,263 93.90 11,229.72 0 96.80% 99.48%
JC 721,004,784 12,514 900,221 165,308 23.66 4,356.14 0 98.96% 73.70%
JD 1,271,426,148 30,209 655,078 128,885 89.32 9,859.73 0 97.75% 98.96%
KA 134,881,952 2,103 121,236 21,748 34.48 6,196.46 0 97.87% 94.53%
KB 10,153,035,632 156,583 8,241,207 1,240,258 48.34 8,179.58 0 98.20% 99.48%
KC 38,217,263 747 72,880 15,284 10.33 2,495.71 0 98.39% 62.02%
KD 2,754,213,379 47,494 1,499,735 246,500 73.67 11,167.20 0 97.07% 99.22%
KE 1,197,819,407 18,771 1,024,660 150,490 47.14 7,952.65 0 97.79% 98.44%
KF 9,516,440,320 147,271 5,208,724 789,225 71.50 12,051.36 0 96.88% 99.68%
DA 7,322,743,383 112,874 4,326,195 636,200 67.90 11,503.33 0 95.62% 99.22%
SA 51,272,288 937 79,967 17,772 14.26 2,880.50 0 98.37% 75.78%
SB 215,380,103 3,860 288,751 52,191 22.91 4,121.23 0 97.99% 78.65%
SC 97,559,402 1,557 113,821 22,376 23.31 4,354.92 0 97.94% 90.62%
SD 8,187,017,679 124,644 4,286,025 668,654 71.36 12,237.62 0 95.18% 99.48%
SE 4,297,808,879 64,227 2,234,093 345,124 71.00 12,446.47 0 95.10% 98.86%

B.4 Different PCN thresholds

We examine different vthr from 11.5 to 21.5 on opening JC, using the baseline solver. The experiment
result is presented in Table 10, where the four columns represent the examined vthr, the total solving
time, the average time for workers to solve jobs, and the job success rate. Among these PCN
thresholds, we consider vthr = 16.5 to be a balanced setting as it performs well in the three metrics.
However, the results also show that the performance is not necessarily sensitive to different vthr
settings, i.e. the solving time is similar when vthr ∈ (15.5, 17.5).

16

0 20 40 60 80 100 120 140 160 180

15

20

25

Iteration

L
en

gt
h

JA

(a) JA

0 20 40 60 80 100 120 140 160 180 200 220 240 260

15

20

25

30

35

Iteration

L
en

gt
h

JB

(b) JB

0 5 10 15 20 25 30 35 40 45 50 55 60

12

14

16

18

20

22

24

Iteration

L
en

gt
h

JC

(c) JC

0 10 20 30 40 50 60 70 80 90 100

12

14

16

18

20

Iteration

L
en

gt
h

JD

(d) JD

2 4 6 8 10 12 14 16 18

12

14

16

18

20

Iteration

L
en

gt
h

KA

(e) KA

0 50 100 150 200 250 300 350

12

14

16

18

20

22

24

Iteration

L
en

gt
h

KB

(f) KB

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

11

12

13

14

15

Iteration

L
en

gt
h

KC

(g) KC

0 20 40 60 80 100 120 140

15

20

25

Iteration

L
en

gt
h

KD

(h) KD

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

12

14

16

18

20

22

Iteration

L
en

gt
h

KE

(i) KE

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

15

20

25

Iteration

L
en

gt
h

KF

(j) KF

Figure 7: Average length of critical positions for each opening.

As demonstrated in the table, vthr outside of this range deteriorates the solving performance. On the
one hand, when vthr is too high, e.g. vthr = 21.5, only about 95% of jobs can be solved, implying
that about 5% of the jobs are wasted. On the other hand, when vthr is too low, e.g. vthr = 11.5, the

17

0 20 40 60 80 100 120 140 160 180 200 220 240 260

15

20

25

Iteration

L
en

gt
h

DA

(k) DA

1 2 3 4 5 6 7 8 9 10

15

20

25

Iteration

L
en

gt
h

SA

(l) SA

1 2 3 4 5 6 7 8 9 10 11 12 13

12

14

16

Iteration

L
en

gt
h

SB

(m) SB

2 4 6 8 10 12 14 16

12

14

16

Iteration

L
en

gt
h

SC

(n) SC

0 20 40 60 80 100 120 140 160 180

12

14

16

18

20

22

Iteration

L
en

gt
h

SD

(o) SD

0 10 20 30 40 50 60 70 80 90 100

15

20

25

Iteration

L
en

gt
h

SE

(p) SE

Figure 7: Average length of critical positions for each opening.

Table 7: Detailed statistics for the openings solved by ONLINE-SP.

Nodes Time (s) Manager
Nodes # Jobs Avg. Job

Time (s)
Avg. Job
Nodes # PCN Solved

Jobs (%)
Avg. Worker
Loading (%)

JA 4,054,562,593 69,699 2,491,326 479,455 55.45 8,451.41 359 98.49% 98.95%
JB 3,378,672,517 83,454 1,607,080 327,626 97.49 10,307.68 424 97.27% 99.14%
JC 819,264,890 13,963 704,540 137,752 35.96 5,942.28 57 98.08% 88.34%
JD 846,365,092 19,396 500,259 106,495 69.00 7,942.77 113 98.50% 98.91%
KA 143,814,448 2,621 174,202 34,222 26.17 4,197.31 14 98.55% 90.25%
KB 3,794,290,131 64,493 3,671,889 548,306 43.54 6,913.33 305 98.99% 99.05%
KC 45,217,101 1,156 100,985 21,847 11.12 2,065.09 6 99.47% 54.07%
KD 1,504,977,329 25,715 986,849 202,651 48.37 7,421.58 126 98.86% 98.95%
KE 214,614,577 3,917 246,259 50,422 28.29 4,251.48 21 98.85% 95.48%
KF 6,080,836,868 100,690 5,431,753 855,725 44.93 7,099.72 519 99.19% 99.21%
DA 3,015,438,589 50,046 2,682,998 418,088 45.56 7,206.03 248 98.55% 98.90%
SA 54,574,495 1,471 122,611 25,403 11.78 2,143.52 7 98.47% 56.24%
SB 65,970,358 1,423 124,986 25,917 15.46 2,540.62 7 98.10% 79.84%
SC 213,889,777 3,553 141,447 32,739 39.32 6,528.86 19 98.06% 95.22%
SD 3,821,472,453 63,058 2,224,352 406,191 59.27 9,402.59 329 97.37% 99.01%
SE 2,065,528,927 33,437 1,647,455 282,992 44.79 7,293.07 166 98.21% 98.26%

assigned jobs can be solved quickly with a high success rate. However, this requires the manager to
assign more jobs, which increases the overhead of handling job assignments between the manager and
the workers, thereby increasing the solving time. Note that the appropriate vthr may vary for different
games and for different numbers of available workers. It is possible to adjust vthr dynamically during
solving, which is left for future work.

18

Table 8: Detailed statistics for the openings solved by ONLINE-CP.

Nodes Time (s) Manager
Nodes # Jobs Avg. Job

Time (s)
Avg. Job
Nodes # PCN Solved

Jobs (%)
Avg. Worker
Loading (%)

JA 1,288,601,416 22,384 1,314,785 259,008 32.68 4,970.07 186 99.48% 98.44%
JB 1,576,437,139 31,957 1,643,806 327,442 36.67 4,809.38 272 99.46% 96.66%
JC 316,391,324 6,537 538,369 109,298 17.09 2,889.83 59 99.27% 72.38%
JD 545,655,175 11,083 501,953 109,891 38.12 4,960.85 102 99.32% 98.75%
KA 111,838,889 2,102 159,614 32,153 22.60 3,473.37 18 98.70% 92.69%
KB 2,242,789,149 38,947 3,202,296 575,365 24.45 3,892.46 343 99.65% 93.25%
KC 26,441,989 758 69,052 15,423 9.12 1,709.97 6 99.01% 50.78%
KD 955,257,191 17,434 1,222,772 227,427 26.86 4,194.90 145 99.69% 89.35%
KE 181,418,954 3,336 261,253 49,484 24.25 3,660.93 30 98.86% 94.53%
KF 2,107,185,330 35,418 2,555,399 427,993 31.27 4,917.44 285 99.60% 98.06%
DA 1,761,842,477 30,313 2,556,573 421,268 26.16 4,176.17 266 99.60% 94.03%
SA 41,863,480 992 86,749 19,634 12.60 2,127.77 9 98.57% 70.96%
SB 55,541,455 1,364 125,338 27,612 11.64 2,006.96 12 98.48% 64.32%
SC 98,661,355 1,715 116,980 24,770 24.34 3,978.38 16 98.17% 94.28%
SD 1,395,444,447 23,751 1,575,572 278,198 32.24 5,010.35 195 99.13% 98.33%
SE 757,256,934 12,465 892,615 153,343 30.43 4,932.50 103 99.17% 98.26%

Table 9: Detailed statistics for the openings solved by ONLINE-SP+CP.

Nodes Time (s) Manager
Nodes # Jobs Avg. Job

Time (s)
Avg. Job
Nodes # PCN Solved

Jobs (%)
Avg. Worker
Loading (%)

JA 1,425,668,707 24,865 1,370,665 278,183 33.85 5,120.00 225 99.45% 98.18%
JB 1,601,479,130 31,455 1,743,905 351,934 33.16 4,545.55 283 99.50% 95.31%
JC 414,108,746 8,343 693,560 140,608 17.68 2,940.20 69 99.54% 75.26%
JD 502,966,563 10,896 401,057 89,954 45.82 5,586.92 103 99.13% 98.44%
KA 104,905,173 1,931 109,111 23,739 28.97 4,414.51 18 98.21% 95.83%
KB 2,527,488,112 43,200 3,148,579 578,009 27.79 4,367.30 386 99.59% 96.09%
KC 25,508,784 706 58,399 13,172 10.58 1,932.16 6 99.18% 53.65%
KD 920,902,808 16,357 1,092,352 210,345 27.80 4,372.87 148 99.57% 91.15%
KE 168,590,287 3,095 214,173 42,447 26.24 3,966.74 28 98.81% 94.79%
KF 2,027,558,505 35,197 2,203,830 383,317 34.79 5,283.76 305 99.57% 98.33%
DA 1,665,511,033 28,337 2,252,356 377,189 27.77 4,409.62 235 99.53% 95.57%
SA 41,796,555 1,105 95,672 21,325 10.67 1,955.49 10 98.67% 55.73%
SB 109,591,487 2,258 167,238 34,085 19.62 3,210.33 20 98.04% 78.12%
SC 93,535,813 1,655 94,822 21,820 26.28 4,282.36 15 98.12% 93.49%
SD 1,485,439,307 25,531 1,674,274 296,617 32.26 5,002.29 224 99.15% 97.12%
SE 1,200,741,176 20,428 1,289,405 231,498 33.15 5,181.26 182 99.17% 98.01%

B.5 Comparison to offline fine-tuning

We now investigate how much benefit we can gain from offline fine-tuning for a specific opening.
To do this, we first train θ0 by generating 400,000 self-play games (around 52 1080Ti GPU-hours)
from the empty board. The resulting network is the same as the one referred to as θ0 in the main
text. Next, we fine-tune θ0 by generating 200,000 additional self-play games (around 26 1080Ti
GPU-hours) from the specific opening we are interested in. That is, if we want to solve the opening
JC, we generate self-play games starting from that opening, and perform updates on θ0 to obtain
what we refer to as θ

′

0-JC. For this experiment, we used four openings, so the networks θ
′

0-JC, θ
′

0-KE,
θ
′

0-DA, and θ
′

0-SE were produced. Lastly, in the baseline case, we do not update the network with
critical positions; the same network is used all throughout the proof search. In ONLINE-CP, critical
positions are chosen and the θ

′

0 is further fine-tuned using the OFT (resulting in θ
′

1, θ
′

2, ..., θ
′

t, ...).

Table 11 shows the times for solving these four openings with and without offline fine-tuning. The left
two columns use θ0 while the right two columns use θ

′

0. With offline fine-tuning, the solving times
for these openings generally decrease in the baseline solver, since the θ

′

0 is specifically fine-tuned for
each opening, but exceptions may still occur, as in opening JC. However, when using θ

′

0, the solving
times for ONLINE-CP increase for opening JC, DA, and SE. This may be because θ

′

0 only helps
learn better heuristics for the opening positions, but does not always guarantee providing accurate
heuristics for all varieties of positions during solving. In addition, it is worth noting that although

19

Table 10: The solving time, average job completion time, and success rate of solvable jobs for solving
opening JC by the baseline solver with different PCN thresholds.

vthr Time (s) Avg. Job Time (s) Solved Jobs (%)

11.5 23,559 2.00 99.92%
12.5 22,870 3.60 99.84%
13.5 18,356 5.75 99.74%
14.5 19,458 12.06 99.55%
15.5 12,519 16.29 99.29%
16.5 12,514 23.66 98.96%
17.5 12,877 33.73 98.34%
18.5 17,536 46.06 97.35%
19.5 22,343 52.04 96.75%
20.5 24,469 58.73 95.99%
21.5 27,810 70.50 94.94%

Table 11: Comparing the impact of a single batch, offline fine-tuning, i.e. pre-training for the specific
opening instead of from an empty board.

w/o offline fine-tuning (θ0) w/ offline fine-tuning (θ
′
0)

BASELINE ONLINE-CP BASELINE ONLINE-CP

JC 12,514 6,537 22,748 10,099
KE 18,771 3,336 2,248 2,417
DA 112,874 30,313 90,298 33,055
SE 64,227 12,465 28,905 42,522

offline fine-tuned θ
′

0 accelerates the solving time for the baseline solver, it is impractical since we
cannot expect to pre-train θ

′

0 for each opening, especially if our eventual goal is to solve complete
games from an empty board outright. In contrast, our online fine-tuning solver provides an automatic
method that fine-tunes the PCN dynamically without too much extra computation cost.

20

	Introduction
	Background
	Game solvers
	Distributed game solver
	Proof Cost Network

	Game solver with online fine-tuning
	Distributed game solver
	Online Fine-Tuning Trainer
	Online fine-tuning trainer with solved positions
	Online fine-tuning trainer with critical positions

	Manager job assignment improvements

	Experiments
	The 7x7 Killall-Go solver
	Baseline versus online fine-tuning
	Behavior analysis for the online fine-tuning solver
	Updating PCNs in online fine-tuning
	Ablation study for job assignment schemes

	Discussion
	Implementation details
	PCN training
	7x7 Killall-Go solver
	Worker design

	Experiment details
	Setup
	Scalability of the distributed game solver
	Statistics of solving 7x7 Killall-Go three-move openings
	Different PCN thresholds
	Comparison to offline fine-tuning

