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Abstract
The recent advancements in video diffusion mod-
els have created a strong basis for developing
world models with practical value. The upcoming
challenge is to investigate how an agent can lever-
age this foundation model for understanding, in-
teracting with, and planning within observed envi-
ronments. This requires incorporating additional
controllability into the model, transforming it into
a versatile game engine that can be dynamically
manipulated and controlled. To this end, we inves-
tigated the three key conditioning factors: camera,
context frame, and text, and identified the current
model design’s shortcomings. More specifically,
the fusion of camera embedding and features re-
sults in camera control being influenced by video
features. On the other hand, while the injection of
textual information compensates for unobserved
spatiotemporal structures, it also intrudes into the
already observed parts. To address these two is-
sues, we propose the Spacetime Epipolar Atten-
tion Layer, which ensures that the egomotion gen-
erated by the model strictly adheres to the cam-
era’s movement. Additionally, we integrate the
injection of text and context frame in a mutually
exclusive manner to alleviate the intrusion prob-
lem. Through extensive experiments, we demon-
strate that our new model EgoSim achieves ex-
cellent results on both the RealEstate and EpicK-
itchen datasets. For more results, please refer to
https://egosim.github.io/EgoSim/.

1. Introduction
The success of diffusion models (Ho et al., 2020) has revo-
lutionized the field of generative models, enabling advance-
ments from realistic image generation (Rombach et al.,

1University of Toronto 2Vector Institute 3Columbia Univer-
sity 4Georgia Tech 5Nvidia. Correspondence to: Wei Yu <gno-
sis@cs.toronto.edu>.

1 st Workshop on Controllable Video Generation at ICML, Vienna,
Austria. PMLR 235, 2024. Copyright 2024 by the author(s).

2022) to consistent video generation (Blattmann et al.,
2023b). Recent works on long-term video generative pre-
training (OpenAI, 2024) have further shown that diffusion
models can effectively capture the complex dynamics of the
physical world, laying a strong foundation for developing
world models (Ha & Schmidhuber, 2018) with practical
value.

The next challenge is to investigate how an agent can lever-
age this foundational model for understanding, interacting
with, and planning within observed environments. To this
end, we need to first identify what conditioning factors are
necessary for constructing an effective world model. Our
ultimate aim is to empower an agent to visualize potential
scenarios based on observed environmental data, much like
playing a game, thereby enhancing its ability to predict and
respond to different situations (Yang et al., 2023).

Conditioning with Camera, Frame and Text To create a
playable simulation engine, the primary desired feature is
to enable agents to freely explore the simulated world. This
necessitates using the agents’ egomotion data, e.g. camera
poses, as conditions to guide the generation process of the
video diffusion model. Fortunately, as the majority of pixel
changes in the video stem from the observer’s egomotions
rather than dynamic alterations in the surrounding environ-
ment, the pre-trained video diffusion models have already
successfully internalized prior knowledge about typical pat-
terns and transformations in the 3D world (Blattmann et al.,
2023b; Voleti et al., 2024). Therefore, our task is to deter-
mine how to efficiently extract this prior knowledge and
ensure that the videos generated by the model precisely
align with the specified camera motion instructions.

Existing methods (Wang et al., 2023; He et al., 2024) typi-
cally combine the transformed camera information directly
with intermediate features before feeding them into the tem-
poral transformer layer. This approach can indeed roughly
learn the camera motion. However, it is quite intuitive to
notice that the intermediate features, along with the camera
poses, jointly determine how the video is generated. As
shown in Figure 1a, influenced by the distribution of its
training data, the model may determine that even if the input
motion is valid in certain situations, the camera cannot move
forward because it has never seen an example of forward
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Figure 1. (a) Prompt: a kitchen with a stove top oven and a sink.

Figure 1. (b) Image-to-video generation: No prompt.

Figure 1. (c) Prompt: a bedroom with a bed and dresser in it.

Figure 1. To create a playable world simulator that supports free exploration and imagination based on observation, we have identified
several primary bottlenecks: (a) We attempt to generate a video of moving forward in front of a stove, but the model fails to fulfill
it because it has never seen such training data of moving above a stove. (b) Image-to-video model equipped with camera control, as
emphasized inside the blue box, can only depict details already observed in the first frame. (c) Enable text-to-video models with image
conditioning. The first row is a generated video while the second row is the groundtruth. As illustrated inside the red ellipse, introducing
textual information can erode the already observed part, leading to a disruptive transition from realistic scenes to complete fantasy.

movement in such scenarios. Therefore, the generated video
in this case will severely deviate from the user-specified
motion.

Additionally, we aim for the model to seamlessly integrate
observed environmental information, usually presented as
context frames, into the video generation process while si-
multaneously inferring unobserved structures and predicting
future interactions with the environment. Our preliminary
experiments indicate that although the pretrained image-to-
video model (Blattmann et al., 2023a) can produce authentic
videos with minor movements, increasing the amplitude of
the movement results in outputs that only depict the details
visible in the context frame, as illustrated in Figure 1b. This
suggests that the model needs supplementary information
to imagine the unobserved parts.

Moreover, through further analysis on text-to-video models
(Guo et al., 2023c), we found that adding textual informa-
tion can effectively compensate for previous shortcomings
by injecting extra spatiotemporal structure, leading to more
coherent and realistic video sequences. However, as shown
in Figure 1c, it became evident that this added spatiotempo-
ral structure intrudes upon already observed parts, causing a
disruptive transition from realistic scenes to complete fan-
tasy.

In summary, our detailed examination reveals that while
each condition in multi-condition inputs has an effective
controlling method, integrating these conditions together
often leads to their embeddings interfering with or negat-
ing each other, significantly undermining the reliability of
the generated video. This indicates that using a naively
unified embedding control interface may inevitably harm
the accuracy of video generation. Consequently, this paper
focuses on resolving the interactions between different
conditioning modalities to construct a coordinated and
compositional world model. The contributions of our pa-
per can be categorized as follows:

1. We introduce a novel plug-in DiT (Peebles & Xie,
2023) module called the Spacetime Epipolar Attention layer
(SEAL) to override the interference of other features in
video generation, making it more accurately aligned with
camera motion.

2. We propose to arrange text information and visual con-
ditions in a mutually exclusive relationship and leverage
camera movement information to further assist in clearly
defining the boundaries between the text and visual ele-
ments, ensuring they do not interfere with each other during
the generation process.

3. We evaluate the proposed method EgoSim on two com-
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petitive benchmarks, RealEstate and Epic Kitchen datasets,
in a multi-condition-input setting. Extensive experimen-
tal results show that our model achieves precise control
that previous methods could not accomplish. It not only
generates video that accurately follows camera movements
but also fills in unobserved new information into existing
observations and interacts with the environment.

2. Orchestrating Diverse Conditions
Given a reference image, a text prompt and a sequence
of camera poses, our goal is to generate a video sequence
which starts from the context frame, faithfully obeys the
user-specified motion and interact with environment in ac-
cordance with the textual description. As discussed earlier,
the current control methods for these conditioning factors
often interfere with each other, leading to the generation of
videos that are inconsistent and unexpected.

Our initial analysis has pinpointed two main sources of
this conflict: the interaction between camera control and
intermediate features, and the interplay between text and
context frames. This chapter will begin by providing an
overview of video generation models and then address these
two critical issues separately to resolve the problems.

2.1. Preliminary

Diffusion Models (Ho et al., 2020) are a class of generative
models designed to produce high-quality samples through
a multi-step process. Starting with Gaussian noise, these
models iteratively refine and denoise the initial random
input. In the case of video generation (Blattmann et al.,
2023b), a sequence of N images (or their latent features)
z1:N0 are progressively subjected to noise ϵ, transforming
them into a normal distribution over T steps. A neural
network ϵσ is then trained to predict the added noise from
these noised inputs. During training, the network aims
to minimize the mean squared error (MSE) between its
predictions and the actual noise. The training objective
function is defined as follows:

L(θ) = Ez0:N ,ϵ,ct,t

[∥∥ϵ− ϵ̂θ(z
1:N
t , ct, t)

∥∥2
2

]
where ct represents conditional embeddings.

2.1.1. CONTROLLABLE VIDEO GENERATION

Controllability plays an important role in video generation
as it enables users to craft content precisely as they envision.
In this work, we aim to integrate three distinct control con-
ditions— autonomous camera motion, reference images,
and text —into a single pipeline.

First, regarding camera motion, it’s important to note that
the field of video diffusion models is still relatively new.

Control over camera motion has only been tentatively ex-
plored so far. Recent methods (Wang et al., 2023; He et al.,
2024) primarily achieve control by combining camera em-
beddings with intermediate features. On the other hand,
there is a wealth of research on both text-to-video (Guo
et al., 2023c) and image-to-video generation (Blattmann
et al., 2023a), but combining these two approaches remains
rare. Typically, text-to-video generation incorporates CLIP
embeddings (Radford et al., 2021) of texts through mul-
tiple cross-attention layers while image-to-video models
are mainly trained from scratch by concatenating repeated
first-frame image features to noised input.

2.2. Camera Control

In this paper, we attempt to develop a more robust and
reliable method for controlling camera trajectories in video
generation. Existing approaches, which concatenate or add
camera embeddings with intermediate features (Wang et al.,
2023; He et al., 2024), often result in camera movements
being influenced by these features. Therefore, we need a
control method that operates relatively independently of
these features.

2.2.1. SPACETIME EPIPOLAR ATTENTION LAYER

We propose using geometric constraints derived from epipo-
lar lines to precisely guide camera movements. Epipolar
attention (Kant et al., 2024; Du et al., 2023) has been ex-
tensively studied in the context of 3D generation, but its
potential for video generation remains largely unexplored.
Current publicly available pre-trained models all utilize fac-
tored space-time attention, which means that a patch in one
frame cannot directly attend to a patch in another frame.
Inspired by SORA (OpenAI, 2024), we addressed this lim-
itation by first rearranging the latent representation into
spacetime patches and introducing the DiT (Peebles & Xie,
2023) structure to enable interaction between patches.

Next, we can utilize the newly established channel to en-
force camera control by leveraging the epipolar geometry.
More specifically, consider a patch coordinate (u, v) in the
target frame It, where the intrinsic parameters Kt and ex-
trinsic parameters, including rotation Rt and translation Tt
relative to canonical frame, are known. The epipolar line
li corresponding to this patch can be calculated using the
fundamental matrix:

li = Fi

[
u, v, 1

]T
= K−T

i

(
[Tt]× Rt

)
K−1

t

[
u, v, 1

]T
(1)

As illustrated in Figure 2, with the help of epipolar lines,
model can identify which regions in other frames to focus
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Figure 2. EgoSim Overview. Left: A simple illustration of how epipolar attention is calculated. Each patch only attends to patches from
other frames which directly intersect or are near the re-projection of the unprojected epipolar line. Right: This diagram shows how various
embeddings are injected into the video diffusion model. All attention modules along with the entire SEAL inside the dashed box with a
flammable sign are set trainable. For simplicity, ResNets are omitted and trainable parts are not repeatedly emphasized with flammable
sign for other blocks.

on for any given patch as follows:

EpipolarAttention(Q,K, V ) = softmax
(
QKT

⋆√
dk

)
V⋆ (2)

where K⋆ and V⋆ are keys and values calculated from
patches directly crossed by or near the projection of epipo-
lar lines. After constructing such links between all patches,
the model can learn to effectively extract knowledge about
viewpoint changes in the 3D world from video generative
pre-training.

2.2.2. CAMERA EMBEDDINGS

Since the temporal transformer mainly focuses on learn-
ing motion information, integrating the camera embedding
(Wang et al., 2023; He et al., 2024) into the temporal trans-
former can have the most direct impact on egomotion gener-
ation. More importantly, it is compatible with epipolar atten-
tion. Therefore, this paper retains and improves the method
of injecting camera embedding. Methods like MotionCtrl
(Wang et al., 2023), which directly flatten the camera pose,
can also capture camera motion but overlook intrinsic pa-
rameters. Similar to a concurrent work, CameraCtrl (He
et al., 2024), we concatenate the camera positional encoding
(Vaswani et al., 2017) with Plücker embedding (Sitzmann
et al., 2021) to get a more precise geometric interpretation
for each patch.

2.3. Frame v.s. Text

As previously mentioned, after we equipped the video model
with camera movement control capabilities, relying solely
on the context frame was insufficient for the model to en-

vision the details of unobserved scenes. This underscores
the necessity of text input, which supplements the unob-
served spatiotemporal structure. However, we also realized
that textual information is intrusive, and thus it should be
mutually exclusive with the observed visual information.
Specifically, a particular patch in a specific frame should
be explained either by text or by the context frame, but not
both. To determine which source of information to use, we
find that integrating camera motion data can help provide a
clearer distinction between the two.

2.3.1. BETTER EMBEDDING COORDINATION

To preserve the text-to-video capabilities that the cross-
attention layer has learned, we decided to begin with text-
to-video generation model and then modify it to support
image-to-video generation. Therefore, we decided to make
improvements based on the I2V-adapter (Guo et al., 2023a)
pipeline. In I2V-adapter, an additional trainable cross-
attention operation is performed in the self-attention layer
for the first frame where ground truth is provided. In some
cases, we find it would be helpful to use a precomputed
epipolar attention mask into the cross-attention to achieve
more precise feature fusion.

Additionally, we modify the cross-attention component of
the UNet (Ronneberger et al., 2015). The I2V-adapter fol-
lows the IP-adapter (Ye et al., 2023) by adding the output of
extra cross-attention computations with image embeddings.
In contrast, we directly concatenate the text and image em-
beddings to mitigate mutual interference between the two
types of information. Furthermore, we incorporate camera
embedding, processed through a fully connected layer, into
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both embeddings to inform the model which of these two
embeddings should be more adopted under the current cam-
era trajectory. Note that cross-attention layers of the spatial
blocks are set trainable as well.

3. Evaluation
We will now evaluate the proposed method, EgoSim, and
demonstrate its applications across various scenarios. In
particular, we will highlight the following key capabilities of
the model: (a). precise control of camera movement, and (b).
generating meaningful interactions with the environment
based on both observation and imagination.

3.1. Experimental Setup

Datasets: We select RealEstate (Zhou et al., 2018) and
EpicKitchen (Damen et al., 2018) as evaluation benchmarks
because they both come with camera poses (Tschernezki
et al., 2024). Additionally, we used BLIP (Li et al., 2022)
to label every frame for both datasets.

Pretrained weights: We leverage two pretrained video dif-
fusion model as base to implement our method. More specif-
ically, for the image-to-video case, we use Stable Video
Diffusion (SVD) (Blattmann et al., 2023a). For experiments
that require text input, we use AnimateDiff V3 (Guo et al.,
2023c).

Baselines: To the best of our knowledge, there is no video
model that can simultaneously accept camera information,
video frames, and text as conditional inputs. Consequently,
we can only attempt some simplified experimental scenar-
ios, or we can modify existing methods for comparative
purposes. CameraCtrl (He et al., 2024) and MotionCtrl
(Wang et al., 2023) are included as baselines for video diffu-
sion model equipped with camera motion control. Methods
which can modify AnimateDiff for image conditioning in-
volve I2V-adapter (Guo et al., 2023a) and SparseCtrl (Guo
et al., 2023b). We reproduced the above models following
the respective research papers and publicly available code.

Metrics: To estimate the fidelity of egocentric video pre-
diction, SSIM ((Wang et al., 2004)) and the Fréchet Video
Distance (FVD) (Unterthiner et al., 2019) are calculated
between the predictions and groundtruths. Besides, we re-
cruit Colmap (Sayab et al.) to assess the camera poses of
generated videos to see if they authentically follow camera
movements. TransErr and RotErr (He et al., 2024) are
computed by comparing the ground truth camera poses [R—
T ] and estimation [R∗— T∗], as follows.

RotErr =
n∑

j=1

arccos

(
tr(Rj

∗R
jT )− 1

2

)

TransErr =
n∑

j=1

∥T j − T j
∗ ∥2

We use a mixture of groundtruth trajectories and more diffi-
cult random trajectories to calculate the above errors.

3.2. RealEstate

RealEstate (Zhou et al., 2018) consists of a large number
of open house video tours. In the case of AnimateDiff, we
resize the video resolution to 256× 384. We train and test
the model with a length of 16 frames. For SVD, we resize
to 256× 512 and use T = 14.

3.2.1. TEXT-TO-VIDEO GENERATION WITH CAMERA
CONTROL

In this section, we will first evaluate the effectiveness of
SEAL for text-to-video model equipped with camera control
on the RealEstate dataset. As presented in left part of Table
1, the proposed method outperforms all previous methods
by a wide margin on all metrics.

Qualitative analysis in Fig 3a further demonstrates the lim-
itations of previous methods and the superiority of our ap-
proach. We can see that the baseline model is unable to gen-
erate out-of-distribution movements because its control is
influenced by intermediate features. In contrast, our method
perfectly adheres to the specified camera movements. In
addition, SEAL also improves the consistency and realism
of the videos thanks to its spacetime structure.

3.2.2. IMAGE-TO-VIDEO GENERATION WITH CAMERA
CONTROL

Next, we move to the pure image-to-video setting and com-
pare our method with SVD + MotionCtrl. it should be noted
that estimating SSIM becomes practically meaningful in
the case of frame-conditioned generation because SSIM
can more effectively tell us if the model strictly follows the
given camera motion for a given groundtruth-generation
pair. Besides, as SVD uses more parameters, calculations
and data compared to AnimateDiff, the overall generated
video quality is better.

Results: As shown in the first two rows of Table 1, EgoSim
significantly improves on all metrics compared to the base-
line methods. In Figure 3b, we can see that because the con-
text frame we provide is a long corridor, MotionCtrl would
assume that movement to the lower right corner should not
occur even if it’s a valid movement. On the contrary, our
model can faithfully generate the corresponding movement
to the lower right corner as expected.
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a. Text-to-video generation. Prompt: A bathroom with a toilet.
Input camera moving forward, left and then forward are shown on the left.
CameraCtrl depicts it wrong by not moving left and by stopping before toilet.

EgoSim

CameraCtrl

b. Image-to-video generation: No prompt. SVD base.
Input camera moving toward lower right are shown on the left.
MotionCtrl depicts it wrong by moving backward.

EgoSim

MotionCtrl

c. Prompt: An aerial view of a suburban neighborhood
Camera focuses on the center while moving in a circular motion.
Baseline depicts it wrong by adding irrelvant details.

EgoSim

CameraCtrl
+

I2V-Adapter

Figure 3. Qualitative Comparison on RealEstate Datasets
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Method RealEstate-T2V RealEstate-I2V EpicKitchen
TransErr RotErr FVD TransErr RotErr FVD SSIM TransErr RotErr FVD SSIM

MotionCtrl - - - 7.74 0.88 330.1 0.822 - - - -
EgoSim (SVD) - - - 5.21 0.53 223.8 0.934 - - - -
MotionCtrl 9.88 1.23 793.5 - - - - - - - -
CameraCtrl 9.67 1.23 782.4 - - - - - - - -
+ I2V - - - 13.95 1.68 472.9 0.808 15.95 1.77 1172.1 0.733
+ SparseCtrl - - - - - 1360.8 0.45 - - 1566.2 0.42

EgoSim 8.01 0.80 722.0 6.75 0.77 293.7 0.903 12.41 1.27 663.2 0.839

Table 1. Quantitative comparison among baselines. Note that for TransErr, RotErr and FVD, lower number indicates better performance
while higher SSIM means better.

3.2.3. CAMERA, FRAME AND TEXT

As we mentioned earlier, due to the lack of existing base-
lines in this setting, we can only create baseline models for
comparison by combining existing methods. More specifi-
cally, we tried the following two combinations: CameraCtrl
+ I2V-Adapter and CameraCtrl + SparseCtrl (Guo et al.,
2023b). It is worth noting that CameraCtrl + I2V-Adapter in
general performed well, but we were unable to successfully
reproduce the results with CameraCtrl + SparseCtrl and can-
not calculate TransErr and RotErr even though we directly
used the publicly available code and the pre-trained weights
provided by the authors.

Results: Quantitative results are summarized in the middle
part of Table 1 and EgoSim achieves the best performance.
From the generated videos in Figure 3c, we can see that
CameraCtrl + I2V-Adapter suffers from the intrusion issue
while the proposed method can add reasonable imagination
on top of observed details.

3.3. EpicKitchen

Finally, we move to the most challenging setting, EpicK-
itchen (Damen et al., 2018). Compared with RealEstate,
EpicKitchen involves not only camera movements but also
a significant amount of interaction with the environment.
Thus, the model needs to learn additionally how to generate
videos of these actions. We trained an additional LORA for
EpicKitchen, and as in the previous section, we conducted
experiments using CameraCtrl + I2V-Adapter and Camer-
aCtrl + SparseCtrl as baselines. We resized the video frames
to 256× 448 and use T = 14.

Results: The quantitative comparisons are provided in the
right part of Table 1 and EgoSim achieves the best scores on
all metrics. The qualitative analysis in Fig 4 further reveals
the advantage of our method. We encourage readers to view
more impressive visual results in the project page. EgoSim
not only learned to generate precise autonomous movements
but also can perform environmental interactions such as
washing dishes and opening drawers. This significantly
broadens the range of potential applications for EgoSim.
Past inverse dynamics approaches (Du et al., 2024) were

limited in their ability to control autonomous movements,
restricting test scenarios to fixed camera positions. However,
with the advent of EgoSim, we can now attempt to learn
more advanced inverse dynamics models. This enables
dynamic camera positioning and broader testing capabilities,
paving the way for more robust and versatile autonomous
systems.

4. Related Work
4.1. Video generation

Since the advent of the deep learning era, video genera-
tion has been an active area of research. Initially, Con-
vLSTM model (Shi et al., 2015; Wang et al., 2017; Yu
et al., 2020) was popular, followed by GAN models (Sko-
rokhodov et al., 2022), and more recently, video diffusion
models (Blattmann et al., 2023b) have become the main-
stream. Video diffusion model (Blattmann et al., 2023a)
usually extends a 2D image diffusion architecture to han-
dle video data, enabling joint training on both images and
videos from the ground up. To leverage powerful pre-trained
image generators like Stable Diffusion (Rombach et al.,
2022), subsequent approaches expand the 2D architecture
by integrating temporal layers between the pre-trained 2D
layers. This new model is then fine-tuned on a large video
dataset. The latest advancement is SORA (OpenAI, 2024),
which abandons the aforementioned strategy and directly
uses diffusion transformers (Peebles & Xie, 2023) to train on
large-scale videos of different sizes. Its generation quality
is exceptionally impressive.

4.2. 3D generation

Our work is also closely related to 3D generation. With
the introduction of the Scene Representation Transformer
(Sajjadi et al., 2022), researchers have begun attaching ray
embeddings directly to image patches. This allows neural
networks to automatically learn the associations of differ-
ent patches in 3D space. Many methods also directly em-
ploy epipolar geometry (Kant et al., 2024; Du et al., 2023).
These methods typically aggregate information from differ-
ent viewpoints through ray projection and unprojection to
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Prompt: a person is preparing a pizza in front of stove

Baseline depicts it wrong by adding distorted hallucination.

GT

EgoSim

CameraCtrl
+

I2V-Adapter

Figure 4. Qualitative Comparison on EpicKitchen Dataset

achieve consistent 3D generation. Our work adopts a similar
strategy.

5. Conclusion and Limitation
This paper introduces EgoSim, a compositional world sim-
ulator that can egocentrically explore and interact with the
observed environment. To achieve this, we identify two
major obstacles that prevent the creation of meaningful
videos that accurately adhere to user-specified instructions
and tackle them with spacetime epipolar attention and better
embedding coordination. Our designed model has demon-
strated unprecedented controllability and the potential uses
of such an egocentric world simulator are also diverse and
impactful.

Despite the impressive results demonstrated by our model,
its potential has not yet been fully tapped.

More powerful pretrain weights: Firstly, although the
base we used for our model is among the strongest publicly
available, it is not the strongest existing base. If our method
could be linked to a more powerful base model, we expect
to produce more impressive and consistent videos.

Hallucination: Secondly, like all diffusion models, the
hallucination problem still plagues EgoSim. We need to
research further methods to address this issue.

Inverse dynamics: Finally, the most suitable application

scenario for this method is inverse dynamics. We hope
to test EgoSim soon for training robots, giving embodied
agents the ability to plan and simulate the future through
imagination.
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