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Abstract

In the era of pre-trained LLMs, understanding their intrinsic sparse patterns becomes
paramount, especially in the context of their scalability and efficiency. Recently, Jaiswal
et al. (2023a) coined the concept of “essential sparsity” (ES) which states the existence of
a sharp turning point in the sparsity-performance curve when large pre-trained models are
pruned using simple magnitude-based criteria. Despite significant attention to investigating
how pruning impacts the performance of pre-trained models, its impact on adversarial
robustness and distribution shifts has been overlooked. In this work, we extend the concept
of ES to robustness ESrobust, which illustrates the existence of a sharp turning point for
robust performance. In comparison with clean performance, we found that sparsity tends
to positively benefit the robust performance and ESrobust is observed at slightly higher
sparsity than ES. Our study presents a simple yet intriguing message that simple one-shot
low-magnitude pruning is a powerful tool for identifying subnetworks that not only retain
true performance but also robust performance on adversarial benchmarks. In addition,
we found that carefully designed weight-importance criteria can further push the ESrobust
to non-trivial sparsity ratios (e.g. 50-55%). Moreover, we also extended our experiments
across popular textual attacks (e.g., deletion, character swap, etc.) for distribution shifts,
and found our observations related to ESrobust holds. All related codes will be open-sourced.
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1 Introduction

Large-scale pre-trained language models have reshaped the paradigms of deep learning, set-
ting new benchmarks across diverse applications from computer vision (Dosovitskiy et al.,
2020; Han et al., 2022; Hugo et al., 2021; Parmar et al., 2018; Zheng et al., 2020) to nat-
ural language processing (Yang et al., 2019b; Liu et al., 2019; Talmor et al., 2018; Yang
et al., 2019a; Wang et al., 2018; Ding et al., 2019; Chowdhery et al., 2022; Wei et al., 2022).
Yet, as the parameter of these models exponentially increased, concerns regarding their effi-
ciency, scalability, and real-world deployment have arisen, especially in environments where
resources are constrained. To mitigate the high computational and memory footprints of
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these models, network pruning which shrinks network sizes by removing specific weight from
the model - essentially setting them to zero, has become one prominent research direction.
Despite numerous existing algorithms (Frankle and Carbin, 2018; Chen et al., 2020; Jaiswal
et al., 2021b; Yin et al., 2023a; You et al., 2019; Jaiswal et al., 2022; Lee et al., 2018; Yu et al.,
2020), it is worth highlighting that these techniques have been notably effective for smaller
networks, but their application to large language models remains challenging. The iterative
processes involved in traditional pruning approaches, such as the Lottery Ticket Hypothesis
(LTH) (Frankle et al., 2019), become increasingly infeasible as model sizes increase, due to
computational overheads.

Recently, (Jaiswal et al., 2023a) proposed the concept of essential sparsity for large
pre-trained models, which suggest that a significant proportion of the weights in them can
be removed for free, although the proportion may vary depending on the complexity of the
downstream task. This observation highlights the ease of removing parameters exploiting
the emerged sparse patterns defined by low-magnitude weights, during pre-training at no
cost. Interestingly, despite enormous attention towards achieving better efficiency without
sacrificing performance, very limited attention has been given towards understanding the
robustness inhibited by these compressed models. Some recent studies (Jin et al., 2020;
Wang et al., 2019; Li et al., 2020) reveal that even dense large-scale language models are
vulnerable to carefully crafted adversarial examples, which can fool the models to output
arbitrarily wrong answers by perturbing input sentences in a human-imperceptible way. To
this end, in this work, we investigate an underexplored direction: How does compression
induced by removing low-magnitude weights impact the robustness of dense models when
evaluated on the unified adversarial benchmark?

To this end, we first explore if pruning with low-magnitude weights preserve the ro-
bustness of large pre-trained models using exiting high-quality multi-task benchmarks for
robustness evaluation of language models. Our work can be viewed as an extension of Es-
sential Sparsity (Jaiswal et al., 2023a) for Robustness against the adverserial data. Based
on our experimental observations, we define essential sparsity for robustness as the
sharp dropping point, beyond which the robust performance of large pre-trained models
drops significantly w.r.t. change in sparsity ratio. Our extensive experiments unveils sev-
eral subtler and interesting findings:

• We found that simple one-shot low-magnitude pruning is a powerful tool for identifying
subnetworks which not only retain true performance (estimated on clean benchmarks
e.g. GLUE ) but also robust performance on adversarial benchmarks.

• Similar to the observations in Jaiswal et al. (2023a), we found the existence of a sharp
drop point for the robust performance, which we term as Essential Sparsity for Ro-
bustness (ESrobust). High Spearman’s rank co-relation between true performance and
robust performance unveils a two-in-one favourable quality of subnetworks identified
by free-of-cost one-shot low-magnitude pruning.

• Our experiments across carefully selected distribution shifts (e.g. back-translation,
deletion, character swap, etc.) illustrate that ESrobust remains consistent across down-
stream tasks but the performance can vary depending on the strength of distribution
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shift. This highlights the unique ability of subnetworks identified below ESrobust to
be resistant to various distribution shifts.

• Based on our extended experiments beyond one-shot low-magnitude pruning to re-
cent other weight-importance based one-shot criteria like SparseGPT (Frantar and
Alistarh, 2023) and Wanda (Sun et al., 2023), we found that a carefully selected
importance criteria can push ESrobust to significantly non-trivial high sparsity ratio
(50-55% sparsity).

2 Experimental Setting

Datasets and Models: We engage with a diverse array of models for our analysis, includ-
ing {BERTBase(Devlin et al., 2018), Vicuna7B(Chiang et al., 2023) Llama7B(Touvron et al.,
2023a), and Llama27B(Touvron et al., 2023b)}. For downstream NLP tasks, we select {SST-
2, QNLI, and QQP} from the GLUE benchmark (Wang et al., 2018) as our clean dataset.
To assess the vulnerability of language models under robust adversarial attacks in varied
settings, we employ AdvGLUE++ (Wang et al., 2023), a dataset of challenging adversar-
ial texts generated against open-source autoregressive models including Alpaca-7B (Taori
et al., 2023), Vicuna-13B (Chiang et al., 2023), and StableVicuna-13B (Sta, 2023). We
measure the model’s accuracy on AdvGLUE++ data to determine its ESrobust, considering
different adversarial text generation strategies. Additionally, we evaluate the ES on the
corresponding benign data from GLUE, and measure the performance drop in comparison
to the dense counterpart for various downstream tasks.

Pruning Method: We consider two types of sparsities: (1) Unstructured Sparsity : in-
dividual weights in the model are zeroed out independently, leading to irregular zero pat-
terns (Han et al., 2015a); (2) Structured N:M Sparsity : a fine-grained sparsity pattern in
which only N weights are non-zero for every continuous M weights (Zhou et al., 2021).
We additionally include two more SoTA LLM pruning methods: SparseGPT (Frantar and
Alistarh, 2023), and Wanda (Sun et al., 2023) to investigate how better weight importance
criteria can benefit robustness of compressed models.

3 Existence of Essential Sparsity for Robustness

3.1 Revisiting Robustness for Pre-trained Language Models

The robustness of pre-trained language models has been a paramount concern, particularly
when these systems are deployed in safety-critical applications such as autonomous vehicles
(Roh et al., 2019; Yang et al., 2023), healthcare (Hu et al., 2023; Jaiswal et al., 2021a; Li
et al., 2023), and cyber-security systems (Motlagh et al., 2024). LLMs have achieved state-
of-the-art performance in a series of high-level natural language understanding (NLU) tasks,
but the superior performance has only been observed in the benchmark test data that have
the same distribution as the training set. Recent studies (Du et al., 2021; Niven and Kao,
2019; Utama et al., 2020) indicate that these LLMs are not robust and that the models do
not remain predictive when the distribution of inputs changes. Specifically, these LLMs have
low generalization performance when applied to out-of-distribution (OOD) test data and
are also vulnerable to carefully crafted adversarial examples, which can fool the models to
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output arbitrarily wrong answers by perturbing input sentences in a human-imperceptible
way. To this end, various methods (Jiang et al., 2019; Liu et al., 2020; Wang et al., 2020a;
Zhu et al., 2019) have explored imporving the adversarial robustness of language models.
However, with increasing demand for model compression due to exponential growth of model
size, it is surprising that robustness of compressed language models has been significantly
overlooked. Our work delve into this underexplored direction and studies how language
model compression using pruning impact the robustness of the model and its performance
under distribution shifts.

3.2 Essential Sparsity for Robustness

The weights of a pruned language model can be depicted as m ⊙ θ, where m ∈ {0, 1}|θ|
is a binary mask with the same dimensionality as θ and ⊙ is the elment-wise product.
Let ET (f(x; θ)) denotes the robust performance of model f(x; θ) on the corresponding
adverserial task T . Pρ(·) is the sparsification algorithm which turns a portion ρ of “1”
elements in the sparse mask m into “0”s. We extend the essential sparsity definition from
Jaiswal et al. (2023a) to is a formal definition of essential sparsity for robustness (ESrobust)
as following:

Essential Sparsity for Robustness. If ET (f(x;m ⊙ θ)) ≥ ET (f(x; θ)) − ϵ, and
ET (f(x;Pρ(m) ⊙ θ)) < ET (f(x; θ)) − ϵ where the value of ρ and ϵ are small. Then,

the according sparsity 1− ∥m∥0
|m| is named as Essential Sparsity for Robustness of the

model f on adversarial task T .

As detailed above, the robust performance of model at ESrobust usually has a turning
point performance, which means further pruning even a small portion ρ of weights leads to
at least ϵ performance drop on the adversarial dataset, compared to its dense counterpart
ET (f(x, θ)). Note that in our work, we do not perform any adverserial training and all the
performance is calculated using the clean pre-trained weights. In our case, ϵ is set as 1%.

Figure 1 presents the effect of pruning x% low-magnitude weights on the robust per-
formance of four popular language models: BERT-base, Vicuna, Llama 1 & 2. Yellow
bars indicate the performance of pruned models on the clean GLUE dataset while dashed
lines indicate the robust performance on AdvGLUE++ (Wang et al., 2023), a dataset of
challenging adversarial texts generated against open-source autoregressive models including
Alpaca-7B (Taori et al., 2023), Vicuna-13B (Chiang et al., 2023), and StableVicuna-13B
(Sta, 2023). Our observations include: 1 we found that free-of-cost one-shot magnitude
pruning to be a highly effective tool which can generate subnetworks that are highly robust
to adversarial datasets, 2 surprisingly, pruning language models seems to positively bene-
fit improving robustness on our candidate adversarial datasets sometimes up to 30-40%, 3
across all our experiments, we found the existence of sharp turning point (ESrobust) which
is downstream task-dependent and can vary depending on the task complexity, 4 we found
a strong positive Spearman’s rank co-relation between the clean performance and robust
performance which indicate robustness is free byproduct while compressing language with
simple models magnitude-based criterion, 5 it can be also observed that ESrobust is slightly
higher than ES.
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Figure 1: Performance drop estimated with respect to dense counterpart on downstream
tasks using clean GLUE dataset and AdvGLUE++(Wang et al., 2023).

4 How does SoTA Weight-Importance Criterion impact ESrobust?

In modern LLMs, the presence of billions scale parameters restrict the adaptation of it-
erative prune-retrain-prune algorithms. To this end, SparseGPT (Frantar and Alistarh,
2023) and Wanda (Sun et al., 2023) are two new popular one-shot pruning algorithms with
carefully crafted weight importance using calibration data. In this section, we analyze how
a improved weight importance selection can benefit the robustness of the pruned subnet-
work. Figure 3 presents the performance comparison of low-magnitude, sparsegpt, and
wanda on our candidate adversarial datasets for N:M sparsity patterns and unstructured
sparsity. Note that no fine-tuning has been performed for our results after pruning the
model. Our observations can be summarized as: 1 careful weight importance selection
can significantly push the boundaries of ESrobust, 2 we uniquely observe no performance
degradation in robust performance up to a remarkable sparsity of 50%, 3 in comparison
with wanda, we found sparsegpt to be more robustness friendly pruning method, 4 lastly,
it is interesting to observe that Vicuna-7B can be pruned up to 40% with N:M sparsity with
≤ 5% performance drop on some adversarial datasets.

5 Understanding ESrobust under various Distribution Shifts

Recently, some work (Niven and Kao, 2019; Utama et al., 2020) identified that LLMs
are highly sensitive for changes in the distribution of inputs, and their predictive behavior
changes under distribution shifts. However, it is still underexplored how pruned models react
to distribution shifts. In this section, we ask an important question: How do different types
of distribution shifts impact ESrobust? To this end, we crafted 7 different distribution shifts
(e.g. backtranslation, character swap, embedding-based transformation, wordnet synonyms
replacement, etc.) from the GLUE benchmark. More details with examples can be found
in Appendix A. We summarize our observations as follows: 1 across all our candidate
distribution shifts, we find the existence of essential sparsity for robustness and a common
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Figure 2: Performance drop estimated with respect to dense counterpart (Vicuna-7B) on
downstream tasks using clean GLUE dataset and AdvGLUE++(Wang et al.,
2023). Candidate models are compressed in one-shot using different weight im-
portance criterions (low-magnitude, sparsegpt, wanda).

sharp turning point of the sparsity-performance curve, 2 despite having a common ESrobust,
performance of the compressed models can vary depending on the type of distribution shift,
3 both, sparsegpt and wanda pushes the ESrobust from ∼20% sparsity to ∼30%, which
send a strong single that simple one-shot pruning with careful weight importance estimation
technique can be highly effective to retain the robustness of compressed models at higher
sparsity ratios.

6 Impact of pruning calibration data on ESrobust

Many recent LLM pruning methods rely on calibration data to determine weight importance
which form the basis of pruning. Among them, SparseGPT and Wanda are two popular
methods which rely on C4 (Raffel et al., 2019) instances. In this section, we investigated
how the selection of the calibration dataset relates to the robust performance of the iden-
tified subnetwork. Figure 4 presents our experimental results for using calibration dataset
from original C4, clean GLUE, and AdvGLUE++ for pruning the dense Vicuna-7B. Our
results bring forth an interesting observation that selecting a calibration set from a similar
distribution as the test set plays a vital role in retaining the robustness of the pruned model.
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Figure 3: Performance drop estimated with respect to dense counterpart under different
crafted distribution shifts from clean GLUE dataset. Candidate models are com-
pressed in one shot using different weight importance criterions (low-magnitude,
sparsegpt, wanda). Yellow bars indicate the performance on clean GLUE dataset.

0 10 20 30 40 50 60 70 80 90
0

10
20
30
40
50
60
70
80
90

W
an

da
Ad

vG
LU

E+
+ 

Ac
cu

ra
cy

c4
GLUE
AdvGLUE++

0 10 20 30 40 50 60 70 80 90
0

10
20
30
40
50
60
70
80
90

Sp
ar

se
GP

T
Ad

vG
LU

E+
+ 

Ac
cu

ra
cy

c4
GLUE
AdvGLUE++

Figure 4: The performance of Vicuna-7B on AdvGLUE++ using different calibration data
(c4, GLUE, AdvGLUE++) on Wanda and SparseGPT pruning method.

Contrary to the claim of insensitivity to calibration dataset in (Frantar and Alistarh, 2023;
Sun et al., 2023) for clean performance, we observed both pruning algorithms have high sen-
sitivity to selection of calibration dataset. Note that usage of AdvGLUE++ have slightly
higher performance benefits than clean use for robust performance. Moreover, it can be
observed that Wanda performance is comparatively less sensitive to calibration dataset in
comparison with SparseGPT, despite they perform similarly using the C4 dataset.

7 Related Work

7.1 Sparsity in Neural Networks.

Pruning LeCun et al. (1990); Han et al. (2015a) in deep neural networks, serves to sim-
plify network architecture and enhance computational efficiency while aiming to preserve
accuracy. This process can be categorized based on the sparsity patterns it introduces-
unstructured sparsity Han et al. (2015a,b), which provides irregular distribution of non-zero
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elements, and structured sparsity Liu et al. (2017); He et al. (2017); Zhou et al. (2016), where
entire parameter groups, such as convolutional kernels or attention heads, are eliminated.
While unstructured sparsity generally achieves superior performance due to its flexibility,
structured sparsity tends to be more hardware-friendly. These sparsity patterns can be
applied at various stages of the neural network’s life cycle: post-training, during-training,
and prior-training. Post-training sparsification, aimed at inference time efficiency, allows for
significant pruning with minimal performance loss, often utilizing weight magnitude-based
approaches as popularized by the Lottery Ticket Hypothesis Frankle and Carbin (2018).
During-training sparsification Finnoff et al. (1993); Luo and Wu (2020); Savarese et al.
(2020); Sehwag et al. (2020), on the other hand, aims for computational savings during the
model training process itself, gradually introducing sparsity and potentially re-activating
pruned connections later in training. Prior-training sparsity Lee et al. (2018); Tanaka et al.
(2020); De Jorge et al. (2020); Wang et al. (2020b) involves identifying crucial sparse con-
nectivities at the network’s initialization.

7.2 Sparsity in LLM.

Pre-trained Transformers have solidified their status as the predominant choice across a
wide array of natural language processing (NLP) applications (Yang et al., 2019b; Liu
et al., 2019; Talmor et al., 2018; Chowdhery et al., 2022; Wei et al., 2022). Nonetheless,
the computational cost of training these models is substantial, often requiring thousands
of GPUs for extended periods (Brown et al., 2020). To mitigate these resource demands,
extensive research efforts (Kurtic et al., 2022; Liu et al., 2023; Yin et al., 2023b,c; Lagunas
et al., 2021; Jaiswal et al., 2023b) have been undertaken. In the realm of Large Language
Models (LLMs), traditional pruning has faced challenges due to the necessity of re-training
rounds to restore performance. However, recent advancements in LLM-specific pruning
algorithms, such as SparseGPT (Frantar and Alistarh, 2023) and Wanda (Sun et al., 2023),
have shown substantial progress. Moreover, a recent study (Jaiswal et al., 2023a) reveals the
advantageous effects of essential sparsity induced during pre-training, demonstrating how
we can leverage it to efficiently prune large pre-trained models without incurring additional
computational costs. In this work, we aim to investigate whether essential sparsity correlates
with adversarial robustness. The relationship remains unclear, particularly regarding which
sparsity ratios are insensitive to significant drops in robustness. Therefore, understanding
essential sparsity from the perspective of robustness is crucial.

8 Conclusion

In this comprehensive study, we have explored the relationship between ESrobust and ES

across a spectrum of model sizes, ranging from BERT to Vicuna. Our investigation delved
into the effects of multiple one-shot pruning methods with different weight importance cri-
teria, including N:M sparsity patterns. We found that carefully designed weight-importance
criteria can further push the ESrobust to non-trivial sparsity ratios (e.g. 40-50%). Moreover,
we also extended our experiments across popular textual attacks (e.g., deletion, character
swap, etc.) for distribution shifts, and found our observations related to ESrobust holds. Our
future work includes extending our study beyond robustness to other settings like fairness,
interpretability, and bias.
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Appendix A. Example of Distribution Shifts

Original sentence
“What I cannot create, I do not understand.”

Backtranslate
“What you can’t create, you don’t understand.”
Sentence level augmentation that uses MarianMTModel to back-translate.
Romance language (French, Italian, Portuguese, Spanish etc) to English

Charswap
“What I cLnnot create, I do not understand.”
Augments words by swapping characters out for other characters.

EasyData
“What I cannot create, I do understand.’
“create I cannot What”
“I do not understand.”
“What I cannot create, I ane do not understand.”
“What I cannot create, I do not see.”
An implementation of Easy Data Augmentation, which combines:

• WordNet synonym replacement (Randomly replace words with their synonyms.)

• Word deletion (Randomly remove words from the sentence.)

• Word order swaps (Randomly swap the position of words in the sentence.)

• Random synonym insertion (Insert a random synonym of a random word at a random
location.)

Embedding
“Whereof I cannot create, I do not understand.”
Augments text by transforming words with their embeddings.

WordNet
“What I cannot create, I do not empathise.”
Augments text by replacing with synonyms from the WordNet thesaurus.

CLARE
“What I cannot create, I purposely do not understand.”
CLARE builds on a pre-trained masked language model and modifies the inputs in
a contextaware manner. Three contextualized perturbations, Replace, Insert and
Merge, allowing for generating outputs of varied lengths.
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