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ABSTRACT

Molecular docking in materials is important for creating geometries for down-
stream computations such as structure optimization and transition-state finding.
In this work, we present the first use of generative models for multi-molecule
docking in periodic materials. MatDock uses flow matching to dock multiple
molecules of the same identity in periodic materials. We illustrate its use in dock-
ing molecules in porous materials (zeolites) and compare between uniform sam-
pling and Voronoi-based sampling methods. MatDock can be extended beyond
just docking to generating energy-optimized docked structures, thus bypassing
the key computational bottleneck in creating material-molecule complexes.

1 INTRODUCTION

Heterogenous catalysis and adsorption drives much of industrial reactions and separations to pro-
duce essential chemicals for society. To investigate these processes, the determination of an accurate
material-molecule structure is critical. Computationally, molecular docking in periodic materials is
used to create initial structures that are then optimized structurally or used in transition-state find-
ing to generate accurate structures for analysis. Good initial structures speed up convergence and
also converge to more accurate structures. Furthermore, for both molecular adsorption on mate-
rial surfaces and occlusion within porous material pores, a distribution of possible docked poses
can exist for a given crystal-molecule pair (Hoffman et al. (2020)). Automated enumeration of ge-
ometries risks both excluding poses overlooked by the docking algorithm and including redundant
or irrelevant poses. Computational cost also limits the number of poses for downstream computa-
tions. Generative models tackle these problems by drawing multiple, representative samples from
the learned distribution during inference simultaneously.
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Figure 1: Multi-molecule docking in nanoporous materials with MatDock. The dotted lines indicate
the periodic boundaries of the material.
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While generative models for docking are numerous in the protein-ligand binding literature, to our
knowledge no work exists for generative molecular docking in periodic materials, much less multi-
ligand docking. In this work, we showcase MatDock, which uses flow matching (FM) Lipman
et al. (2023) for blind docking of multiple molecules simultaneously within periodic materials.
We illustrate its use in multi-molecule docking in porous materials called zeolites and investi-
gate the effect of different sampling strategies. Formally, using fractional coordinates fmols =
[f1, . . . ,fM ] = [f1, . . . , fMN ] ∈ F = [0, 1)MN×3 with a loading of M docked molecules
with N heavy atoms each, lattice parameters l, molecular graph Gmol (constructed using SMILES
strings), crystal elements acrys and crystal fractional coordinates fcrys, we fit a generative model
p(fmols|l,Gmol,acrys,fcrys). For the rest of this paper, assume f ≡ fmols for brevity.

1.1 RELATED WORK

Traditional high-throughput methods for multi-molecule docking in zeolites sequentially place
molecule conformers in the unit cell, check for validity and repeat this process until a stopping
criterion is reached. Schwalbe-Koda & Gómez-Bombarelli (2021b;a) integrate prior knowledge
about the pore space to speed up the sampling of valid poses, and we use their method to generate
the datasets used in this work.

While many data-driven molecular docking models exist in the protein-ligand docking space, most
of them focus on single molecule docking Corso et al. (2023); Lu et al. (2022); Cao et al. (2024)
with the notable exception of FlowSite (Stärk et al. (2024)). FlowSite docks multiple ligands of dif-
fering identities in a single, predefined protein pocket. However, all protein-ligand docking models,
FlowSite included, do not account for periodic boundary conditions. Furthermore, multiple docking
sites can exist in a periodic crystal. On the other hand, recent generative models for crystals such
as DiffCSP(Jiao et al. (2024)), MatterGen (Zeni et al. (2024)), and FlowMM (Miller et al. (2024))
successfully model periodicity by leveraging the topology of the torus, but have not been used for
molecular docking which breaks the symmetries of the crystalline structure.

We combine ideas from both generative models for materials and multi-ligand docking in proteins
to build a generative model for docking in periodic structures. MatDock adapts the Riemannian FM
model FlowMM Miller et al. (2024) for blind docking of multiple ligands with the same molecular
graph Gmol simultaneously in a periodic crystal with multiple available binding sites.

2 METHODS

2.1 RIEMANNIAN FLOW MATCHING

Materials modeling relies on incorporating periodic boundary conditions: particles on one side of the
bounding cell are neighbors of particles on the opposite side. We leverage the structure of the torus
- a Riemannian manifold - to naturally model periodicity. Riemannian manifolds M are defined by
local coordinate systems that continuously transform into each other, and their Riemannian metric
g (choice of inner product). Geometric variables on Riemannian manifolds like distances, volumes,
and minimum length curves (geodesics) can then be defined via the inner product ⟨u, v⟩ for u, v ∈
TpM, where TpM is the tangent space at point p ∈ M. In this work, we consider F , a set of
MN × 3 flat tori equipped with the (local) Euclidean inner product.

Let i = i(m,n) be the global index in f for atom n in molecule m. Given samples from the
true distribution f1 ∼ q(f ; l,Gmol,acrys,fcrys) we aim to define a conditional vector field (VF)
ut(·|f1) that can cross the periodic boundary for FM (Chen & Lipman (2024)). Using the atom-
wise wrapping function w(f i) := f i − ⌊f i⌋ ∈ [0, 1)3 which returns only the fractional part of its
argument, the exponential and logarithmic maps on tori are defined as

expfi(ḟ i) := w(f i + ḟ i), (1)

logfi
0
(f i1) :=

1

2π
atan2

[
sin(2π(f i1 − f i0)), cos(2π(f

i
1 − f i0))

]
(2)

with ḟ i ∈ TfiF i for i = 1, . . . ,MN . Intuitively, the logarithmic map logfi
0
(f i1) is the vector on

the tangent space Tfi
0
F i at f i0 pointing towards f i1, whereas applying the exponential map results in
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walks on the torus respecting periodicity. We then define our conditional VF as

ut(f |f1) =
logf (f1)

1− t
. (3)

which can point across the periodic boundary and is translation equivariant. Translating the molecule
positions f (relative to fcrys) hence results in a different VF - a desirable property for docking.
The VF should handle atoms close to pore spaces differently than atoms close to material atoms.
A conceptualization of this property and the difference to FlowMM can be found in C. The flow
ψt(f |f1) is generated by ut and pushes f towards f1. During training, we will use ψt to obtain
ft = ψt(f0|f1), which for simple geometries like tori have the closed form

f it := expfi
0
(t logfi

0
(f i1)). (4)

Finally, we train a graph neural network vθt as described in B minimizing the following loss

LRFM (θ) = Et,q(f1),p(f0)

∥∥∥∥vθt (ft)−
logft

(f1)

1− t

∥∥∥∥2 . (5)

2.2 BASE DISTRIBUTIONS

We choose to independently draw one uniformly distributed reference point µm ∼ Uniform(0, 1) ∈
[0, 1)3 for each molecule M . Afterwards, we sample N corresponding atoms from a Gaussian
centered at µm, and wrap everything back to the unit cell (henceforth called ”Uniform-Gaussian” or
”U-G”). Then the base density is the product of molecule densities p(f) =

∏M
m=1 p(f

m), where
p(fm) :=

∏N
n=1 w

(
N

(
f i|µm,Σ

))
. We set σ̃2 = (3 Å)2I ∈ R3×3 in Cartesian coordinates and

transform back to fractional coordinates with the lattice matrix l̃ ∈ R3×3, i.e. Σ = l̃−1σ̃2(l̃−1)⊤.

Similar to Schwalbe-Koda & Gómez-Bombarelli (2021b), we further leverage prior information
about the topology of the material by computing the set of Voronoi nodes V = {v1, . . . , vK}. Intu-
itively, Voronoi nodes vk lie within zeolite pores and could serve as an informative prior for the task
of docking molecules within the same void spaces. They are computed using Voronoi tessellation
based on fcrys, i.e. vk = f(fcrys) ∈ [0, 1)3. We can express distributions using Voronoi nodes
like Uniform-Gaussian distributions by simply exchanging µm with µ̃m ∼ Uniform(V ) (henceforth
called ”Voronoi-Gaussian” or ”V-G”).

2.3 EVALUATION METRICS

In protein-ligand docking, performance is typically evaluated by the top-5 % RMSD < 2 Å, where
RMSD is the root mean squared deviation of atomic positions. Given 5 samples generated at in-
ference for a particular data point, generation is considered successful if at least one sample has a
RMSD< 2 Å. Performance is then evaluated by the percentage of successful generations. However,
zeolite-molecule complexes exhibit both pore symmetry (docking one molecule within either of two
equivalent pores constitutes a valid pose) and molecule permutation symmetry (swapping the order
of two docked molecules remains valid since the molecules have the same identity). Thus, our focus
is on 1) reasonable reconstruction of the molecule and physical clashes 2) between molecules or 3)
between molecule(s) and zeolite.

We assess molecule reconstruction by calculating the RMSD between each generated molecule and
each target conformer after rotational and translational alignment with the Kabsch algorithm, and
take the lowest RMSD for each molecule. The average of RMSDs in a multi-molecule pose is taken
as the final reconstruction error. As MatDock generates only the heavy atoms of the molecules, a
pose is deemed to have a molecule-molecule clash if any atoms from the first molecule are closer
than 2.25 Å (roughly twice the C-H bond length) to the second molecule, and to have a zeolite-
molecule clash if any molecule atoms are closer than 2.0 Å (approximately C-H bond length + O-H
bond length) to the zeolite. We note that the distance cutoffs are chosen conservatively and that
performance could vary with the cutoffs.

2.4 DATA

We train MatDock on 5,948 datapoints including zeolite-molecule pairs of different loadings, gen-
erated with the VOID library (Schwalbe-Koda & Gómez-Bombarelli (2021b)) (details in Appendix
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Voronoi-GaussianUniform-Gaussian

Test 1 Test 2 Test 3

Figure 2: Percentage of successfully docked poses across top 5 samples for different molecular load-
ings/ zeolite unit cell, for held out datasets Tests 1 - 3 (left to right), comparing between Uniform-
Gaussian and Voronoi-Gaussian sampling.

A). Performance is measured on three held out datasets of increasing difficulty: Test 1 - seen zeolites
and unseen molecules, Test 2 - unseen zeolites and seen molecules, and Test 3 - unseen zeolites and
unseen molecules.

3 RESULTS

Test 1 Test 2 Test 3
Evaluation U-G V-G U-G V-G U-G V-G

% No mol-mol
clash (↑) 72.95± 1.2 76.26 ± 1.3 83.63 ± 2.0 82.89± 2.6 79.25 ± 0.5 78.06± 1.7

% No zeolite-
mol clash (↑) 37.56 ± 1.4 39.17 ± 1.2 33.78± 3.6 38.15 ± 2.4 13.28± 1.4 19.69 ± 0.9

% RMSD < 2 Å(↑) 63.86 ± 1.3 62.64± 1.4 42.22 ± 2.1 40.67± 0.7 49.31± 1.0 50.78 ± 1.0
% Success (↑) 21.22± 1.1 21.77 ± 1.4 10.74± 1.7 14.15 ± 1.8 7.75± 0.9 10.31 ± 1.1

% Top-5 success (↑) 28.15 30.51 14.41 19.26 10.31 13.44

Test 1: seen zeolites, unseen mols; Test 2: unseen zeolites, seen mols; Test 3: unseen zeolites, unseen mols
U-G: Uniform-Gaussian, V-G: Voronoi-Gaussian.

Table 1: Performance metrics for Uniform-Gaussian sampling and Voronoi-Gaussian sampling.
”Success” is defined as fulfillment of all three criteria from Section 2.3: reasonable reconstruc-
tion of molecule and no molecule-molecule or zeolite-molecule clashes.

Across performance metrics listed in Table 1, V-G sampling generally outperforms U-G sampling.
Especially for unseen zeolites in held out datasets Tests 2 and 3, V-G sampling provides helpful
priors about molecule-occupiable void spaces in the zeolite and reduces the percentage of zeolite-
molecule clashes, with an improvement of 4 - 6% compared to uniform sampling. However,
molecule-molecule clashes are more frequent with V-G sampling; we hypothesize that this might
be due to the possibility of sampling Voronoi nodes too close to each other.

When broken down by loading, V-G sampling generally outperforms U-G sampling across all load-
ings, with the difference increasing as the test sets become more out-of-distribution (Fig. 2). We
note that the cutoffs for determining a successful docked pose can affect the relative performance of
the two sampling methods, but the improved performance of V-G sampling in the more difficult Test
3 dataset can be seen with more lenient cutoffs as well (Appendix D).

4 DISCUSSION

Our current method does not penalize overly high loadings as the number of molecules is provided
as user input. However, it is straightforward to compute the maximum loading from the molecular
volume and the molecule-occupiable pore volume (Willems et al. (2012)). Studies for optimizing
the loading will be covered in future work.

We also observed that atoms sampled far away from zeolite pores sometimes struggle to reach the
pores. This could be a limitation of the current architecture, which captures strictly local information

4



Published as a tiny paper at AI4Mat-ICLR 2025

through edge creation with only neighboring atoms within a radius cutoff. However, fully connected
networks are prohibitively expensive due to the hundreds of atoms in the zeolite-molecule complex.
Encoding of long-range interactions remains an active area of research.

MatDock can be extended to generation of optimized structures from the same inputs with the ap-
propriate datasets. We envision the use of MatDock to produce an ensemble of good initial guesses
for transition states, intermediates adsorbed on or in other materials, and other systems of interest
that can be further refined with simulations.
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A DATA

For each zeolite-molecule pair, molecules are docked using either the Voronoi or the Monte Carlo
algorithm with default settings through the VOID library (Schwalbe-Koda & Gómez-Bombarelli
(2021b)). For each docking, molecules are added to the unit cell of the zeolite sequentially until no
further molecules can be added without physical clashes. Two poses for each of the top 5 loadings
are saved to create the dataset. Hence, each zeolite-molecule pair can have up to 20 distinct poses.
We curated the set of zeolites and molecules from experimentally synthesized zeolites and molecules
that are known to act as structure-directing templates for synthesizing zeolites. We also selected
frameworks with the following characteristics to cut down on computational cost due to large system
sizes but ensure sufficiently large zeolite pores are represented: 1) unit cell only; 2) number of atoms
less than 200; 3) unit cell volume less than 6000 Å3; 4) largest included sphere diameter greater than
4 Å; and 5) at least 1-D pore dimensionality.

Figure 3: Distributions of loading (number of molecules per zeolite) for each dataset.

B MODEL ARCHITECTURE

Similar to FlowMM, we use an adapted version of EGNN by Jiao et al. (2024) to parametrize the
vector field vθt :

hi
(0) = ϕh(0)

(ai), (6)

mij
(s) = φm

(
hi
(s−1),h

j
(s−1), l, e

i,j ,SinusoidalEmbedding
(
f j − f i

))
, (7)

mi
(s) =

N∑
j=1

mij
(s), (8)

hi
(s) = hi

(s−1) + φh

(
hi
(s−1),m

i
(s)

)
, (9)

ḟ i = φḟ

(
hi
(max s)

)
(10)

where hi are hidden node representations, mij denotes the message between nodes i and j, and
ϕ, φi are neural networks. Furthermore, the SinusoidialEmbedding is periodic with respect to global
translation and is defined by

SinusoidalEmbedding(x) := (sin(2πkx), cos(2πkx))
T
k=0,...,nfreq

, (11)

with hyperparameter nfreq . We train all models for 3500 epochs with the hyperparameters shown
in Tab. 2.

We use Euler’s method with 50 integration steps during inference.
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Parameter Value
Hidden Dimension 128

Time Embedding Dimension 64
Number of Layers 6

Activation Function silu
nfreq 64

Table 2: Model hyperparameters.

C TRANSLATION EQUIVARIANT VECTOR FIELD

We highlight a key difference to FlowMM in the construction of the target VF. In FlowMM, to
obtain a solution in the equivalence class of lattice translations, the target VF is made translation
invariant by removing the mean velocity 1

N

∑n
i=1 logfif i1. In Fig. 4, we show conceptually that

a translation invariant VF is undesirable for the molecular docking task defined in this work, and
motivate keeping the VF translation equivariant.

Translation equivariant

·τ

MatDockFlowMM

·τ

Translation invariant

log𝒇 𝒇1

−
1
𝑁

log𝑓𝑖 𝑓1
𝑖

𝑛

𝑖=1

=

Figure 4: Difference between FlowMM and MatDock in translation symmetry. FlowMM removes
the mean target VF, leading to a translationally invariant target VF. MatDock leaves ut translation
equivariant.

D SUCCESSFUL POSES BY LOADING

We show the performance of MatDock when relaxing the docking success definition to more per-
missible values.

Voronoi-GaussianUniform-Gaussian

Test 1 Test 2 Test 3

Figure 5: Percentage of successfully docked poses across top 5 samples for different molecular
loadings/ zeolite, for test sets Tests 1 - 3 (left to right), comparing between Uniform-Gaussian and
Voronoi-Gaussian sampling. In contrast to Fig. 2, this plot uses a molecule-molecule clash threshold
of 1.75 Å, a zeolite-molecule clash threshold of 1.50 Å, and an RMSD threshold of 2 Åfor the
definition of docking success.
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Comparison between Fig. 2 and Fig. 5 reveals that loosening the physical clash thresholds boosts
both sampling methods’ performance and can change their relative performance. However, V-G
sampling’s relative performance to U-G sampling still improves with increasing difficulty of the
tests sets, supporting the hypothesis that explicitly providing information about empty pore space
through Voronoi nodes is useful for the docking task.

E SAMPLING CONFORMERS

Instead of sampling from a Gaussian distribution, we can utilize prior knowledge of the molecular
conformation to bias the distribution towards more molecule-like structures. We can model such
distribution as p(fm) := w

(
(x̃iRT )l̃−1 + µm

)
with random rotation matrix R ∈ R3×3, and

mean-free random conformer in Cartesian coordinates x̃i ∈ RN×3. We show preliminary results
for both Uniform-Conformer and Voronoi-Conformer sampling below.

Uniform-GaussianUniform-Conformer

Test 1 Test 2 Test 3

Figure 6: Percentage of successfully docked poses across top 5 samples for different molecular
loadings/ zeolite, for test sets Tests 1 - 3 (left to right), comparing between Uniform-Gaussian and
Uniform-Conformer sampling.

Test 1 Test 2 Test 3
Evaluation U-G U-C U-G U-C U-G U-C

% No mol-mol
clash (↑) 72.95 ± 1.2 69.29 ± 1.3 83.63 ± 2.0 78.81 ± 2.3 79.25 ± 0.4 73.72 ± 2.5

% No zeolite-
mol clash (↑) 37.56 ± 1.4 30.94 ± 2.1 33.78 ± 3.6 25.78 ± 1.2 13.28 ± 1.4 8.84 ± 0.8

% < 2 Å(↑) 63.86 ± 1.3 69.92 ± 1.1 42.22 ± 2.1 42.07 ± 1.6 49.31 ± 1.0 46.81 ± 2.0
% Success (↑) 21.22 ± 1.1 19.88 ± 2.3 10.74 ± 1.7 7.56 ± 0.7 7.75 ± 0.9 4.66 ± 0.9

% Top-5 success (↑) 28.15 28.35 14.81 9.63 10.31 5.0

U-G: Uniform-Gaussian, U-C: Uniform-Conformer.

Table 3: Performance metrics for Uniform-Gaussian sampling and Uniform-Conformer sampling.

Voronoi-GaussianVoronoi-Conformer

Test 1 Test 2 Test 3

Figure 7: Percentage of successfully docked poses across top 5 samples for different molecular
loadings/ zeolite, for test sets Tests 1 - 3 (left to right), comparing between Voronoi-Gaussian and
Voronoi-Conformer sampling.

The results in Tables 3 and 4 show superior performance of Gaussian sampling over sampling ran-
dom conformers in almost all categories. Inspecting individual generated trajectories, we find that
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Test 1 Test 2 Test 3
Evaluation V-G V-C V-G V-C V-G V-C

% No mol-mol
clash (↑) 76.26 ± 1.3 58.82 ± 6.1 82.89 ± 2.6 63.48 ± 1.0 78.06 ± 1.7 55.06 ± 0.8

% No zeolite-
mol clash (↑) 39.17 ± 1.2 35.43 ± 1.1 38.15 ± 2.4 26.07 ± 2.9 19.69 ± 0.9 17.59 ± 1.0

% < 2 Å(↑) 62.64 ± 1.4 59.41 ± 5.9 40.67 ± 0.7 35.56 ± 1.5 50.78 ± 1.0 34.62 ± 1.3
% Success (↑) 21.77 ± 1.4 17.64 ± 2.5 14.15 ± 1.8 8.37 ± 0.6 10.31 ± 1.1 8.66 ± 1.0

% Top-5 success (↑) 30.51 23.82 19.26 11.48 13.44 11.72

V-G: Voronoi-Gaussian, V-C: Voronoi-Conformer.

Table 4: Performance metrics for Voronoi-Gaussian sampling and Voronoi-Conformer sampling.

conformers are often split during integration and hence do not stay a coherent molecule. We hy-
pothesize that, in comparison to Gaussian sampling, randomly sampling a conformer leads to lower
variance during training , which combined with our (local) message-passing model leads to a smaller
receptive field. Therefore, the model perceives less empty pore space and has a harder time finding
a valid pose, resulting in worse performance. Further studies could investigate this hypothesis by
employing fully-connected graphs or other long-distance message-passing schemes.
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F EXAMPLES OF GENERATED SAMPLES

Figure 8: Docked structures created with MatDock with Uniform-Gaussian sampling on test set 1.
For each of the 5 docking runs over the test set, we randomly draw 5 examples. Light orange = Si;
dark red = O; grey = C; blue = N. Hydrogens are not shown.
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Figure 9: Docked structures created with MatDock with Uniform-Gaussian sampling on test set 2.
For each of the 5 docking runs over the test set, we randomly draw 5 examples. Light orange = Si;
dark red = O; grey = C; blue = N. Hydrogens are not shown.
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Figure 10: Docked structures created with MatDock with Uniform-Gaussian sampling on test set 3.
For each of the 5 docking runs over the test set, we randomly draw 5 examples. Light orange = Si;
dark red = O; grey = C; blue = N. Hydrogens are not shown.
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Figure 11: Docked structures created with MatDock with Voronoi-Gaussian sampling on test set 1.
For each of the 5 docking runs over the test set, we randomly draw 5 examples. Light orange = Si;
dark red = O; grey = C; blue = N. Hydrogens are not shown.
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Figure 12: Docked structures created with MatDock with Voronoi-Gaussian sampling on test set 2.
For each of the 5 docking runs over the test set, we randomly draw 5 examples. Light orange = Si;
dark red = O; grey = C; blue = N. Hydrogens are not shown.
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Figure 13: Docked structures created with MatDock with Voronoi-Gaussian sampling on test set 3.
For each of the 5 docking runs over the test set, we randomly draw 5 examples. Light orange = Si;
dark red = O; grey = C; blue = N. Hydrogens are not shown.
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