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Abstract

Natural language understanding (NLU) using neural network
pipelines often requires additional context that is not solely
present in the input data, such as external knowledge graphs.
Through prior research, it has been evident that NLU bench-
marks are susceptible to manipulation by neural models -
these models exploit statistical artifacts within the encoded
external knowledge to artificially inflate performance metrics
for downstream tasks. Our proposed approach, known as the
Recap, Deliberate, and Respond (RDR) paradigm, addresses
this issue by incorporating three distinct objectives within the
neural network pipeline. The Recap objective involves para-
phrasing the input text using a paraphrasing model in order
to summarize and encapsulate salient information of the in-
put. Deliberate refers to encoding the external graph informa-
tion that is relevant to entities in the input text using a graph
embedding model. Finally, Respond employs a classification
head model that integrates representations from the Recap
and Deliberate steps to generate the final prediction. By cas-
cading these three models and minimizing a combined loss,
we mitigate the potential of the model gaming the benchmark,
while establishing a robust method for capturing the under-
lying semantic patterns to achieve accurate predictions. We
conduct tests on multiple GLUE benchmark tasks to evaluate
the effectiveness of the RDR method. Our results demonstrate
improved performance compared with competitive baselines,
with an enhancement of up to 2% on standard evaluation met-
rics. Furthermore, we analyze the observed behavior of se-
mantic understanding of the RDR models, emphasizing their
ability to avoid gaming the benchmark while accurately cap-
turing the true underlying semantic patterns.

Introduction
Previous research in the field of natural language under-
standing (NLU) and neural network pipelines has acknowl-
edged the necessity of incorporating additional context be-
yond the input data (Sheth et al. 2021). To address this lim-
itation, one well-established approach is to integrate exter-
nal knowledge graphs as supplementary context (Zhu et al.
2023). These knowledge graphs contain structured informa-
tion about entities, relationships, and concepts. This exter-
nal information enables the neural network to infer semantic
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connections between entities, even when such relations are
not explicitly stated in the data alone. Thus, the neural net-
work is able to uncover implicit or missing contextual asso-
ciations.

However, a notable concern has been raised by previous
research on the vulnerability of NLU benchmarks when fac-
ing manipulation by neural models (Bender and Koller 2020;
McCoy, Pavlick, and Linzen 2019). This issue casts doubt
on the reliability and generalizability of the performance
metrics reported by neural models on benchmark datasets,
and has undergone extensive scrutiny within the NLU com-
munity. Researchers have explored various methods to mit-
igate benchmark gaming to ensure the NLU models exhibit
authentic language understanding. These methods include
introducing more comprehensive evaluation protocols, em-
ploying adversarial testing, and integrating external knowl-
edge into training. However, the first two approaches do not
redesign the training pipeline to enhance the model’s lan-
guage understanding capability. Although the knowledge in-
tegration method does modify the training procedure, it re-
mains unclear whether the external knowledge is factually
and sufficiently enforced into the integration process.

We propose a novel approach called the Recap, Deliber-
ate, and Respond (RDR) paradigm, which addresses these
limitations by integrating three distinct objectives within the
neural network pipeline. The first objective, Recap, involves
paraphrasing the input text using a dedicated model. This
process captures the essential and salient information in the
input. The second objective, Deliberate, focuses on encod-
ing external graph information that relates to the entities ap-
peared in the input text. This step utilizes a graph embed-
ding model to leverage the knowledge within the knowl-
edge graphs. By integrating this external context into the
neural network pipeline, the Deliberate objective enhances
the model’s capability of comprehending relationships be-
tween entities and extract relevant information for down-
stream tasks. The final objective in the RDR paradigm is
Respond, which employs a classification head model. This
model utilizes representations from the Recap and Deliber-
ate modules to generate the final prediction. By incorporat-
ing insights from the Recap and Deliberate stages, the Re-
spond objective enables more accurate and informed pre-
dictions. The cascading structure of these three objectives,
along with minimizing a combined loss, prevents the model



from artificially inflate performance metrics through exploit-
ing statistical artifacts. Our robust methodology facilitates
the capturing of the true underlying semantic patterns of the
input data with the assistance of external knowledge, which
lead to more reliable and accurate predictions.

To evaluate the effectiveness of the RDR paradigm, we
test our method on multiple GLUE benchmark tasks that in-
volve sentence similarity, textual entailment, and natural lan-
guage inference (Wang et al. 2018; Sharma et al. 2019; Dem-
szky, Guu, and Liang 2018; Dolan and Brockett 2005; Poliak
2020). The results demonstrate superior performance com-
pared to competitive baselines, with improvements of up to
2% on standard evaluation metrics. These findings highlight
the capability of the RDR approach to enhance NLU perfor-
mance of neural models. Furthermore, with inference exam-
ples from the RDR models, we discuss the model’s robust-
ness for semantic understanding against statistical artifacts.
We find that the introduction of the Recap and Deliberate
objectives leads to better comprehension of the underlying
semantic patterns in both data and external knowledge.

RDR-Methodology
Figure 1 shows an overview of the traditional training
pipeline for integrating external knowledge within neural
networks, and our RDR method.

Traditional Method
Notations: Functions, and their Inputs and Outputs
• Input Text: x, Tokenized Text: T (x)
• Language Model, Input, Function and Output: x′ =
f(T (x), θ)

• Subgraph Extractor, Input, Function, and Output:
KGx = subgraph extract(T (x),KG), here KG is a
large knowledge graph (e.g., ConceptNet).

• Graph Embedding Model, Input, Function and Output:
ex = Aggr(g(KGx, i ∈ KGx, θ

′)), here Aggr is an ag-
gregation function (e.g., average of all node embeddings
in KGx), i ∈ KGx denotes the nodes in subgraph KGx.

• Embedding Fusion Model with Classification Head, In-
put, Function, and Output: z = h(ex, x

′, θ
′′
)

• Loss: Cross Entropy (CE) loss with ground truth denoted
as y, CE(z, y).

Forward Pass and Loss Calculation During Training
The steps for the traditional method are as follows:

1. Feed the tokenized text T (x) into a language model, ob-
taining the embedding x′.

2. Apply an off-the-shelf graph extraction method to extract
a subgraph KGx from the larger knowledge graph KG.

3. Apply a graph embedding model Aggr(g(KGx, θ
′)) to

obtain the graph embedding for x, denoted as ex.
4. Pass the language model embedding x′ and the subgraph

embedding ex into an embedding fusion model with a
classification head h(ex, x

′, θ
′′
) to obtain the logits z.

Compute the loss using logits z and ground truth y.

The RDR Method
Notations: Functions, and their Inputs and Outputs
• Input Text: x, Tokenized Text: T (x)
• Paraphrasing Model, Input, Function and Output: x′ =
f(T (x), θ)

• Paraphrasing Loss: The discrepancy between the para-
phrased text x′ and the original text x is measured using
cross entropy loss between the logits from the model f
and the ground truth distribution of tokens in x. We de-
note this loss as PL(x′, x).

• Subgraph Extractor, Input, Function, and Output:
KGx = subgraph extract(T (x),KG), here KG is a
large knowledge graph (e.g., ConceptNet).

• Graph Embedding Model, Input, Function and Output:
ex = Aggr(g(KGx, i ∈ KGx, θ

′)), here Aggr is an ag-
gregation function (e.g., average of all node embeddings
in KGx), i ∈ KGx denotes the nodes in subgraph KGx.

• Embedding Loss Calculator: First, all links in KGx are
predicted using the model Aggr(g(KGx, i ∈ KGx, θ

′)).
We define a link between two nodes i and j to be exist
if ||g(KGx, i, θ

′) − g(KGx, j, θ
′)|| ≤ τ , where tau is

a “closeness” threshold set empirically. Then, we calcu-
late link prediction metrics, e.g., mean reciprocal rank
(MRR), hits@k, etc, and denote as GEL(x,KGx).

• Embedding Fusion Model with Classification Head, In-
put, Function, and Output: z = h(ex, x

′, θ
′′
)

• Response Loss: Cross Entropy (CE) loss with ground
truth denoted as y, RL(z, y).

• Total Loss: L = PL(x′, x)+GEL(x,KGx)+RL(z, y).

Forward Pass and Loss Calculation During Training
We describe the steps of our RDR method:

1. Fed the tokenized text T (x) into a language model, ob-
taining the embedding x′. Calculate the paraphrasing loss
PL(x′, x).

2. Apply an off-the-shelf graph extraction method to extract
a subgraph KGx from the larger knowledge graph KG.

3. Apply a graph embedding model Aggr(g(KGx, θ
′)) to

obtain the graph embedding for x, denoted as ex. Com-
pute the link prediction loss as GEL(x,KGx).

4. Pass the language model embedding x′ and the subgraph
embedding ex into an embedding fusion model with a
classification head h(ex, x

′, θ
′′
) to obtain the logits z.

Compute the response loss as RL(z, y)

5. Compute the total loss as L = PL(x′, x) +
GEL(x,KGx) +RL(z, y).

Experiments and Results
Our implementation utilizes task-specific hyperparameters,
previously identified as optimal for the GLUE benchmark,
except that we train for 1 epoch instead of 3. Throughout
the training and evaluation process, a batch size of 8 is em-
ployed. We also integrate task-specific knowledge graphs
or subgraph representations, amounting to up to 10% of
the total knowledge graph triples. Our approach adheres
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Figure 1: (a) A traditional neural network pipeline which is enhanced with external knowledge to handle GLUE tasks such as
entailment, similarity, and other types of natural language inference tasks. Initially, the tokenized text undergoes encoding by
a language model, which outputs an embedding. Following that, a method based on graph embedding is employed to extract
and embed a subgraph that is relevant to the input text. This involves extracting entities within a certain distance threshold from
the entities present in the text. Subsequently, the two embeddings - the language model embedding and the graph embedding,
are merged and passed through a classification head to obtain the predicted logits. To train this model, the cross-entropy loss
between the predicted logits and the actual output is minimized. (b) The RDR paradigm. The tokenized input goes through
a paraphrasing model, and a paraphrasing loss is calculated. Additionally, the graph-embedding-based subgraph extraction
method is compared against a ground truth subgraph, then a graph embedding loss is computed. The total loss is the sum of the
losses from the paraphrasing loss, graph embedding loss, and classification head loss.

to the predefined train-validation split established by the
GLUE benchmark. The reported results (Table 1) represent
the average of two independent runs. The knowledge graphs
utilized in this study include DBPedia, ConceptNet, Wik-
tionary, WordNet, and the OpenCyc Ontology. These knowl-
edge graphs consist of interconnected objects and their rela-
tionships, forming semantic associations (Auer et al. 2007;
Speer, Chin, and Havasi 2017; Matuszek et al. 2006). Fig-
ure 2 illustrates the process of extracting subgraphs from the

input text.

Approximately 300K subgraphs are obtained from the
knowledge graphs across all inputs. The relationships in-
clude Antonym, DistinctFrom, EtymologicallyRelatedTo,
LocatedNear, RelatedTo, SimilarTo, Synonym, AtLocation,
CapableOf, Causes, CausesDesire, CreatedBy, DefinedAs,
DerivedFrom, Desires, Entails, ExternalURL, FormOf,
HasA, HasContext, HasFirstSubevent, HasLastSubevent,
HasPrerequisite, HasProperty, InstanceOf, IsA, MadeOf,
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Figure 2: Illustration of the process of extracting subgraphs from the knowledge graph given an input instance. For the pre-
trained Graph Encoder Network, we use ConceptNet’s Numberbatch embeddings and use a span length of three in our experi-
ments.

MannerOf, MotivatedByGoal, ObstructedBy, PartOf, Re-
ceivesAction, SenseOf, SymbolOf, and UsedFor.

We experiment with the best-performing models from
huggingface with ≤ 500 million parameters, i.e., BERT,
RoBERTa, and ALBERT. We note that RoBERTa is espe-
cially suited for entailment tasks (Devlin et al. 2018; Liu
et al. 2019; Lan et al. 2019). Table 1 shows the accuracies for
all the models with and without the RDR training method.
For the graph embedding model in the RDR model, we use
the TransE algorithm (Bordes et al. 2013). The RDR method
shows significant improvements over the baselines, with just
10% of the knowledge graph. We choose a random 10% of
the knowledge graph triples for each training run to avoid
the observed phenomenon of gaming of evaluation bench-
marks by language understanding models, i.e., to avoid the
model fitting spurious patterns in the additional knowledge
as a means to achieve high accuracy scores.

Conclusion and Future Work
This paper presents the formalization and initial experimen-
tal outcomes of a new training approach known as ”Re-
cap, Deliberate, and Respond” (RDR). We demonstrate that
RDR achieves superior performance compared with base-
line methods. RDR also shows resilience against manipula-
tion of benchmarks (as evidenced by observing performance
improvements when using only a random 10% of the avail-
able knowledge during each training iteration). Subsequent

M MNLI-
M

MNLI-
MM

QNLI QQP WNLI MRPC RTE

B 82.44 83.52 90.49 90.1 54.92 82.11 66.06
RB 83.31 84.47 91.25 90.78 56.33 82.86 67.87
R 85.07 85.19 91.06 90.17 56.33 86.03 62.81
RR 85.78 85.95 91.85 90.96 57.75 86.76 63.53
A 84.34 85.32 90.6 90.25 57.75 86.27 66.06
RA 85.03 85.82 91.18 90.74 59.15 87 66.43

Table 1: RB: RDRB, RA: RDRA, RR: RDRR, M:
MODEL, MNLI-M: MNLI-MATCHED, MNLI-MM:
MNLI-MISMATCHED, B: BERT-BASE, R: ROBERTA-
BASE, A: ALBERT-BASE-V2. Results for RDR method
compared to models that do not use the RDR method. We
see improvements of up to 2%, on average 1% using only
10% of the knowledge graphs triples showing promise of the
RDR methodology for improved language understanding.

research will explore the utilization of diverse knowledge
sources, including domain-specific knowledge, broader gen-
eral knowledge (e.g., from Wiki, Unified Medical Languag-
ing System), and others. We will also experiment using large
SOTA models (e.g., LLMs such as mistral, llama, falcon,
and ChatGPT) and diverse geometrical embeddings (e.g.,
CompIEx, HolE, DistMult) within the RDR framework.
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