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Abstract

The emergence of large-scale pre-trained lan-
guage models, such as ChatGPT, has revolu-
tionized various research fields in artificial in-
telligence. Transformers-based large language
models (LLMs) have gradually replaced CNNs
and RNNs to unify fields of computer vision
and natural language processing. Compared
with the data that exists relatively indepen-
dently such as images, videos or texts, graph
is a type of data that contains rich structural
and relational information. Meanwhile, natural
language, as one of the most expressive medi-
ums, excels in describing complex structures.
However, existing work on incorporating graph
learning problems into the generative language
modeling framework remains very limited. As
the importance of LLMs continues to grow, it
becomes essential to explore whether LLMs
can also replace GNNs as the foundation model
for graphs. In this paper, we propose Instruct-
GLM (Instruction-finetuned Graph Language
Model), systematically design highly scalable
prompts based on natural language instructions,
and use natural language to describe the geo-
metric structure and node features of the graph
for instruction tuning an LLM to perform learn-
ing and inference on graphs in a generative
manner. Our method exceeds all competi-
tive GNN baselines on ogbn-arxiv, Cora and
PubMed datasets, which demonstrates the ef-
fectiveness of our method and sheds light on
generative large language models as the foun-
dation model for graph machine learning. Our
code will be released once published.

1 Introduction

Before the advent of Transformers (Vaswani et al.,
2017), various artificial intelligence domains with
different inductive biases had diverse foundational
model architectures. For instance, CNNs (He et al.,
2016; Szegedy et al., 2016) were designed with con-
siderations for spatial invariance in images, leading
to superior performance in computer vision tasks

(Deng et al., 2009; Lin et al., 2014). Memory-
enhanced models like RNNs (Elman, 1990) and
LSTM (Hochreiter and Schmidhuber, 1997; Cho
et al., 2014) were widely used for handling sequen-
tial data such as natural language (Sarlin et al.,
2020) and audio (Chen et al., 2021). Graph Neural
Networks (GNNs) excel in capturing topological
information by employing message passing and ag-
gregation mechanisms, making them a preferred
choice in the field of graph learning for a long time
(Kipf and Welling, 2016; Velickovié et al., 2017;
Hamilton et al., 2017; Han et al., 2023a).

In recent years, the Al community has witnessed
the emergence of numerous powerful pre-trained
Large Language Models (LLMs) (Devlin et al.,
2018; Raffel et al., 2020; Brown et al., 2020; Tou-
vron et al., 2023; Ouyang et al., 2022), which are
driving huge advancements and lead to the pursuit
of possible Artificial General Intelligence (AGI)
(Bubeck et al., 2023). Under this background, there
is a trend towards unification in model architectures
across different domains. Specifically, pre-trained
Transformers have demonstrated remarkable per-
formance on various modalities, such as images
(Dosovitskiy et al., 2020) and videos (Arnab et al.,
2021) in computer vision, text in natural language
processing (Singh et al., 2021), structured data in
graph machine learning (Ying et al., 2021), person-
alized data in recommender systems (Geng et al.,
2022), decision sequences in reinforcement learn-
ing (Di Palo et al., 2023), and visual-text pairs in
multimodal tasks (Radford et al., 2021). There has
even been Transformers capable of handling twelve
modalities (Zhang et al., 2023b).

Besides model architecture, the unification of
processing method in handling multimodal data is
also a significant trend worth attention. T5 (Raffel
et al., 2020) established a text-to-text framework,
unifying all NLP tasks as a sequence generation
problem. Moreover, models like CLIP (Radford
et al., 2021) utilize image-text pairs to accomplish



1-hop prompt with meta node feature

Categorize the central node: (<node_4>, ‘toward cloud computing evolution’)
is connected with (<node_76>, [title_76]), (<node_21>, [title_21]), ... within
one hop. \n

Which category should <node_4> be classified as?

3-hop prompt with intermediate paths

Categorize the central node: <node_17> is connected with <node_909>,
<node_1682>, ... within three hops through (<node_32>, and <node_561>),
(<node_16980> and <node_98>), ..., respectively. \n

Which category should <node_17> be classified as?

structure-free prompt

title: ‘unsupervised attention guided image to image translation’
and abstract: ‘Current unsupervised image-to-image translation

distributed computing

software engineering J

techniques struggle to focus their attention on individual objects
without altering the background. ...". \n

Categorize the central node: <node_169341> is featured with its W
Which category should <node_169341> be classified as? J

Multi-task Multi-prompt Instruction Tuning

2-hop prompt with meta node feature & intermediate nodes
Perform link prediction for the central node: (<node_0>, ‘difference
target propogation’) is connected with (<node_511>, [title_511]),
(<node_6>, [title_6]), ... within two hops through (<node_49>,[title_49]),
(<node_12>, [title_12]), ..., respectively. \n
Which other node will be linked to <node_0> within two hops through
<node_2001>?

1-hop prompt without meta node feature

Perform link prediction for the central node: <node_2867> is connected
with <node_48605>, <node_609>, <node_656>, <node_1998>, ... within
one hop. \n

Will <node_174> be connected with <node_2867> within one hop?

InstructGLM |

computer vision

Node Classification

Link Prediction

<node_1006>

Figure 1: Illustration of the InstructGLM Framework. We fine-tune InstructGLM under a Multi-task Multi-prompt
instruction tuning framework, enabling it to solve various graph machine learning tasks with the structure information

purely described by natural language.

multimodal tasks with the images captioned by
natural language. As for reinforcement learning,
Di Palo et al. (2023) employs natural language to
describe environmental states for the agent which
successfully solves many reinforcement learning
(RL) problems. P5 (Geng et al., 2022) further con-
tributes to this trend by reformulating all personal-
ized recommendation tasks as language modeling
tasks via prompts. The aforementioned works col-
lectively demonstrate that employing natural lan-
guage for multimodal information representation
has emerged as a prominent and promising trend.
However, in graph machine learning, such an
exploration still remains limited. Existing methods
that utilize large language models for graph tasks
can be roughly categorized into two types: 1) Com-
bining LLMs and GNNs, where the LLM acts as
a feature extractor or data augmentation module
to enhance the downstream GNNs’ performance
(He et al., 2023; Mavromatis et al., 2023; Zhao
et al., 2023). Such kind of methods often require
training multiple models, incurring significant com-
putational overhead and tend to easily inherit draw-
backs of GNNs such as over-smoothing (Cai and
Wang, 2020). 2) Only relying on Transformers but
necessitating novel designs of token embedding
for nodes and edges (Kim et al., 2022) or creating
complex graph attention module to learn structural
information (Dwivedi and Bresson, 2020; Nguyen
et al., 2022). This type of method demands local
attention calculation on every node during each
optimization step, leading to considerable compu-
tation costs and thus limiting each node’s scope

to only 1-hop neighbors. Meanwhile, the com-
plex pipeline with special attention mechanisms or
token representations prevents the model from di-
rectly observing and learning structural information
like GNNgs, thus restricting further improvement on
performance.

To address the issues present in LLM-based
graph learners and bridge the gap of natural lan-
guage based graph learning, we propose Instruct-
GLM (Instruction-finetuned Graph Language
Model). Given that LLLMs have been dominant in
many Al domains, we aim to answer the question:
Can LLMs also replace GNNs as the foundation
model in graph machine learning? Intuitively,
as one of the most expressive medium, natural lan-
guage is adept at describing complex structures
such that InstructGLM owns following advantages
over GNNs:

1) Flexibility. A natural language sentence is
capable of effectively describing the connec-
tivity at any desired hop levels and interme-
diate paths without iterative message passing
and aggregation. Even multimodal features of
the nodes and edges can be directly integrated
into natural language prompts, making natu-
ral language a very flexible medium to convey
both structural and content information on the
graph.

2) Scalability. Injecting graph structure into mul-
tiple natural language sentences enables mini-
batch training and independent gradient prop-
agation, which further allows easy scalability



to distributed training and inference on mas-
sive graphs with low machine communication
overhead.

3) Compatibility. Aided by structure descrip-
tions, InstructGLM can consistently refor-
mulate various graph learning pipelines as
language modeling tasks, thus fits well into
the LLM-based multimodal processing frame-
work, paving the way to integrate graph learn-
ing with other Al tasks such as vision, lan-
guage and recommendation to construct uni-
fied Al systems.

In this paper, we focus on tackling node classi-
fication, while augmenting it with self-supervised
link prediction to enhance the performance. We
design a series of scalable graph prompts for gener-
ative LLMs (Wei et al., 2021; Chung et al., 2022).
Specifically, we systematically employ natural lan-
guage to describe the graph’s topology according
to the prompts. The graph structure is clearly
and intuitively provided to LLMs without com-
plex pipelines tailored to graphs. Therefore, we
can handle graph tasks efficiently and succinctly by
the vanilla Transformer architecture (Vaswani et al.,
2017) and language modeling objective (Zhang and
Sabuncu, 2018) in a generative manner. Overall,
our contributions can be summarized by the follow-
ing four points:

* To the best of our knowledge, we are the first
propose to purely using natural language for
graph structure representation and perform in-
struction tuning on a generative LLM to solve
graph-related problems. We eliminate the re-
quirement of designing specific complex atten-
tion mechanisms tailored for graphs. Instead,
we offer a concise and efficient natural language
processing interface for graph machine learning,
which exhibits high scalability to a unified mul-
timodal and multitask framework, aligning with
the current trend in other AI domains.

* Inspired by various message passing mechanisms
in GNNs, we have designed a series of rule-based,
highly scalable instruction prompts for general
graph structure representation and graph machine
learning. Although in this paper, our focus lies
in exploring instruction tuning on large language
models, these prompts can also be used for zero-
shot experiments on LLMs.

* We conduct self-supervised link prediction as an
generic auxiliary task and further investigate its

influence on the primary task under a multitask
instruction tuning framework. This exploration
holds valuable insights for future LLM-based
multitask graph learning, demonstrating the sig-
nificance of self-supervised link prediction for
large language models’ better structure under-
standing on graphs.

* We implement extensive experiments on three
widely used datasets: ogbn-arxiv, Cora, and
PubMed. The results demonstrate our Instruct-
GLM outperforms previous competitive GNN
baselines and Transformer-based methods across
all three datasets, achieving the top-ranked perfor-
mance. These findings validate the effectiveness
of our method and underscore the trend of lever-
aging generative large language models as the
foundation model for graph machine learning.

2 Related Work

2.1 GNN-based Methods

Graph Neural Networks (GNNs) (Zhou et al., 2020;
Wu et al., 2020; Han et al., 2023a; Wu and Wang,
2022) have been dominant in graph machine learn-
ing for a long period. Leveraging message passing
and aggregation, GNNs excel in simultaneously
learning node features and graph topology. Overall,
GNNss with various message passing mechanisms
can be categorized as spatial-based ones (Hamil-
ton et al., 2017; Velickovic¢ et al., 2017; Xu et al.,
2018a; Monti et al., 2017) and spectral-based ones
(Kipf and Welling, 2016; Defferrard et al., 2016;
Yadati et al., 2019). Inherently, GNNs easily suf-
fer from over-smoothing (Cai and Wang, 2020),
with various regularization techniques like Mix-
Hop, Jump Knowledge and EdgeDrop (Xu et al.,
2018b; Abu-El-Haija et al., 2019; Rong et al., 2019)
proposed to mitigate such an overfitting. Another
major drawback of GNNs is their inability to di-
rectly process non-numeric raw data like text or
images, requiring additional feature engineering
techniques like BoW, TF-IDF, or Skip-gram as a
preprocessing step (Wang et al., 2021). Its lack of
compatibility with existing large-scale generative
models presents a significant challenge for inte-
gration with other Al domains such as vision and
language into a unified intelligent system.

2.2 Transformers-based Methods

Attention-based Transformer models can be uti-
lized for graph processing by representing nodes
and edges as distinct tokens (Miiller et al., 2023).



However, it is computationally intensive for han-
dling large-scale graphs and the global weighted
average of attention mechanism can not effectively
capture the graph’s topology (Kim et al., 2022).
To mitigate the issue, some methods incorporate
graph structure information into attention matrices
(Ying et al., 2021; Park et al., 2022), while others
restrict attention to local subgraphs (Nguyen et al.,
2022) or ingeniously design graph orthogonal vec-
tors for node and edge tokens(Kim et al., 2022).
These newly designed complex pipelines result in
indirect representation of graph structure and sig-
nificantly increasing the learning difficulty. The
only work similar to ours is Zhang et al. (2021a),
which utilizes natural language templates tailored
to biological concept linking (Sokal and Crovello,
1970; Wang et al., 2023b). However, it is difficult
for extension beyond classification due to the use
of encoder-only model (Liu et al., 2019). Addition-
ally, its natural language templates are not designed
for general graph learning thus not as expressive
and flexible as ours.

2.3 Fuse GNN and Transformers

GNNss excel at learning structure, while Transform-
ers are proficient in capturing multi-modality fea-
tures. To combine the advantages of both, Chien
et al. (2021) and Duan et al. (2023) utilizes multi-
neighbor prediction and LoRa (Hu et al., 2021),
respectively, to incorporate graph structure into
language models, generating enhanced feature for
downstream GNNs. Mavromatis et al. (2023) em-
ploys GNNs to perform knowledge distillation on
LMs, Zhao et al. (2023) trains GNNs and LMs iter-
atively in a variational inference framework, while
Rong et al. (2020) attempts to replace attention
heads with GNNs to better capture global informa-
tion. The main drawback of the aforementioned
methods is the lack of decoupling between Trans-
formers and GNNs, results in training multiple
models and incurs significant computational over-
head (Nguyen et al., 2022). Moreover, the model
performance is still susceptible to inherent issues of
GNNs, such as over-smoothing (Yang et al., 2020)
and the pipeline of multi-model training is usually
very complex compared to the simplicity of a single
generative LLM framework.

2.4 Large Language Model based Methods

Inspired by the remarkable zero-shot capabilities,
leveraging LLMs in graph problems has attracted
considerable attention. Existing works have in-

cluded utilizing LLM to select the most suitable
graph processor based on the query (Zhang, 2023),
employing LLM’s zero-shot explanations for data
augmentation to obtain advanced graph features
(He et al., 2023), generating prompts and bench-
marks for graph construction, evaluation, biology
and structural reasoning (Han et al., 2023b; Jiang
et al., 2023; Qian et al., 2023; Guo et al., 2023).
There are three works sharing similarities with ours.
Guo et al. (2023) attempts to complete graph tasks
by describing graphs. However, it uses complex for-
mal languages like (Brandes et al., 2013; Himsolt,
1997) but not flexible natural language. Wang et al.
(2023a) and Chen et al. (2023) both explore using
natural language with LLM for graph problems,
with (Wang et al., 2023a) focusing on mathemat-
ical problems on small graphs while (Chen et al.,
2023) concentrating on node classification in Text-
Attributed Graphs (TAGs) (Hu et al., 2020). In com-
parison, our natural language instruction prompts
exhibit better scalability, applicable to both small
and large graphs and not limited to specific graph
type. Besides, the three related works only ex-
plored the basic capability of LLM for graph tasks
in a zero-shot setting. Their performance does not
surpass GNN baselines for the most of time with
the model freezed, merely demonstrating the po-
tential of LLM as an option for graph tasks. By
contrast, we successfully bridge this gap by con-
ducting instruction tuning on generative LLMs with
simple prompts, achieving experimental results that
surpass all competitive GNN baselines.

3 InstructGLM

In this section, we introduce our proposed Instruct-
GLM, a framework utilizing natural language for
both graph structure and node features description
to a generative LLM and further addresses graph-
related problems by instruction-tuning. We start
with notation setup, followed by an introduction
to the instruction prompts’ design principles, and
then we illustrate the pipeline with further details.

3.1 Preliminary

Formally, a general graph can be represented as
G = (V, A E AN, ey, {EctecE), where V is
the set of nodes, £ C V x V is the edge set,
A € {0,1}VI*V is the adjacent matrix, A, is the
node feature of v € V and &, is the edge feature of
e € E. It is worth noting that the node feature and
edge feature can be various modalities in diverse



forms. For example, node feature can be textual
information in citation networks or social networks,
visual images in photography graphs, user profile
in customer systems, and even video or audio sig-
nals in movie networks, while edge feature can be
product reviews in user-item interaction graph of
recommender systems.

3.2 Instruction Prompt Design

In order to comprehensively convey the structural
information of a graph and ensure the adaptability
of the created instruction prompts to various types
of graphs, we have systematically designed a set
of graph description prompts centered around an
central node. These prompts can be differentiated
based on the following three questions: i) What
is the largest hop level of neighbor information
about the central node in the prompt? ii) Does the
prompt include node features or edge features? iii)
For prompts with large (> 2) hop level neighbors
about the central node, does the prompt encompass
information about the intermediate nodes or paths
along the corresponding connecting route?
Regarding the first question, prompts can be clas-
sified into two types: those exclusively contain
1-hop connection information, and those with a
maximum of 2-hop or 3-hop connection details.
Prior works have shown that utilizing up to 3-hop
connectivity is sufficient for excellent performance
(Hamilton et al., 2017; Velickovi¢ et al., 2017; Kipf
and Welling, 2016), while information beyond 3-
hop typically owns a minor impact on improvement
and might even lead to negative effects (Zhang
et al., 2021b; Cai and Wang, 2020). Therefore, the
maximum level of neighbor information included
in the prompts is up to three. However, benefit-
ing from the flexibility of natural language, our
designed prompts can actually accommodate struc-
tural information of any hop level. As for the latter
two questions, there are two possible scenarios for
each question, i.e., if or not to include the node or
edge features in the prompt, and if or not to include
the connecting route information in the prompt.
We then denote an instruction prompt as 7 (+)
such that Z = T (v, A, {N, }vey, {E: teck) is the
input natural language sentence to LLM and v is
the central node of this prompt. For instance, the
simplest form of a graph description prompt con-
taining at most 2-hops neighbor information is:

T (v, A) ={v} is connected with

{[v2]uyeay } within two hops.

while its most detailed form which includes node
features, edge features and corresponding interme-
diate paths should be:

T (A AN vy {€e}eer) = {(v,Ny)} is
connected with {[(v2, Ny, )]vpeas }
within two hops through {[(v1, Ny, )]v,cav }
and featured paths {[(E(v,v,)5 E(v1,00))]

V€AY vy AV }, respectively.

where A} represents the list of node v’s k-hop
neighbor nodes. Essentially, the above prompt
should contain all 2-hop paths with node and

& v, £ v,V
edge features like (v, N,) ¥ (v1,N,,) 2%
(v2, Ny, ) centering at node v. All our instruction
prompts are summarized in Appendix F.

3.3 Generative Instruction Tuning for Node
Classification

In prompt engineering (Li and Liang, 2021; Lester
et al., 2021; Shin et al., 2020) or in-context learning
(Dong et al., 2022), pretrained models are usually
frozen. Instruction Tuning (Wei et al., 2021; Chung
et al., 2022), however, directly conveys the require-
ments of downstream tasks to pretrained models by
fusing the original input data with task-specific in-
structional prompts under the framework of multi-
prompt training. This facilitates remarkably ef-
fective fine-tuning, especially when coupled with
human feedback (RLHF) (Ouyang et al., 2022). In-
struction Tuning has already become an indispens-
able technique for fine-tuning the most powerful
large language models.

In this paper, we introduce InstructGLM as
a multi-prompt instruction-tuning framework for
graph learning. Specifically, we employ a genera-
tive large language model with an encoder-decoder
or decoder-only architecture as the backbone, then
fuse all of our designed instruction prompts, which
are spanning at different hop levels with diverse
structural information, together as input to LLM,
enabling mutual enhancement among the instruc-
tions. By exclusively using natural language to
depict graph structures, we succinctly present the
graph’s geometry to the LLM and provide a pure
NLP interface for all graph-related tasks, make
them solvable through a unified pipeline in genera-
tive manner. Worth noting that we concentrate on
solving node classification task in this study. We
train InstructGLM to strictly generate the category



label in natural language, and the prevalent Nega-
tive Log-Likelihood (i.e. NLL) Loss in language
modeling are selected as our objective function.
Given G = (V, A, E,{N,}vev, {Ec}ecr) and
a specific instruction prompt 7 € {7(-)}, we de-
note x and y as LLM’s input and target sentence,
respectively. Then our pipeline can be formed as:

P9 (YJ ‘ X7y<j) = LLM9 (X7y<_]) )
x = Concatenate(P;Z; Q)

ly|
Ly=—=> logPy(y; | %,y<;)

j=1
where 7 = T (v, A {Ny}tvev, {€}eck) is the
graph structure description centering at node v € V,
L denotes the NLL loss, P and Q are the task-
specific instruction prefix and query. Specifically,
for node classification, we design P and Q for node
classification as follows: P = ‘Classify the central
node into one of the following categories: [<All
category>]. Pay attention to the multi-hop link re-
lationships between the nodes.” and @ = “Which
category should {v} be classified as?’. More de-
tails of the pipeline are depicted in Figure 2.

Our InstructGLM actually shares essential simi-
larities in mechanism with various GNNs, and thus
covering their advantages. First, we mix prompts
with diverse hop-level information together dur-
ing training, which is akin to MixHop (Abu-El-
Haija et al., 2019) in performing graph convo-
lutions on subgraphs extracted at different hop
levels. Second, Jumping Knowledge (Xu et al.,
2018b) combines outcomes from different convolu-
tion layers via jump connections, which is aligned
with our prompts featuring intermediate informa-
tion and high-hop-level neighbors. Additionally,
due to LLM’s input length limit, similar to Graph-
SAGE (Hamilton et al., 2017), we conduct neigh-
bor sampling for the central node when filling the
prompts to form a mini-batch training. This op-
eration also resembles graph regularization tech-
niques like DropEdge (Rong et al., 2019) for pre-
venting over-smoothing (Chen et al., 2020a). Fur-
thermore, compared to GNNs, our InstructGLM
exhibits stronger expressive capabilities. Even a
single graph description that contains intermediate
paths and k-hop neighbor information is equiva-
lent to a k-layer GNN in expressiveness. There-
fore, InstructGLM can readily accommodate the
inductive bias of graph tasks without any alterations
on LLLM’s architecture and pipeline. For instance,

since our inputs are centralized graph descriptions
that directly exhibit the corresponding multi-hop
neighbors, self-attention (Vaswani et al., 2017) ap-
plied on such inputs can be seen as an advanced
weighted average aggregation mechanism of GAT's
(Velickovié et al., 2017; Li et al., 2021), facilitating
InstructGLM to effectively grasp different neigh-
bors’ varying importance to the central node.

3.4 Auxiliary Self-Supervised Link Prediction

Both SuperGAT (Kim and Oh, 2022) and DiffPool
(Ying et al., 2018) introduce auxiliary link predic-
tion task, thus successfully obtain better node rep-
resentations and performance for node or graph
classification, demonstrating that model’s compre-
hension of graph structure can be significantly en-
hanced by such an auxiliary task. Inspired by them,
also to remove the restriction that our instruction
prompts can only treat labeled training nodes as
central nodes in single-task semi-supervised learn-
ing, we introduce self-supervised link prediction
as a foundational auxiliary task for InstructGLM.
Given arbitrary hop level and central node, we ran-
domly select a neighbor or non-neighbor at this hop
level as the candidate. Then we instruct our model
to either discriminate whether there is a connec-
tion at this hop level between the central node and
the candidate node (discriminative prompt) or di-
rectly generate the correct neighbor in a generative
manner (generative prompt).

Given G = (V, A, E,{N,}vev, {€}ecE), the
pipeline of link prediction aligns exactly with node
classification. The only distinction lies in the
newly designed task-specific prefix and two dif-
ferent query templates for it. Specifically, we de-
sign P and Q for link prediction as follows: P =
‘Perform link prediction for the central node. Pay
attention to the multi-hop link relationships be-
tween the nodes.’, Qgenerative = “Which other
node will be connected to {v} within {h} hop?’
and Qg;scriminative = Will {0} be connected to
{v} within {h} hop?’, where v is the central node,
© is the candidate node and h is the specified hop
level. We enable arbitrary node to act as central
node via self-supervised link prediction and ensure
a multi-task multi-prompt framework.

4 Experiments

4.1 Experimental Setup

In this paper, we primarily utilize InstructGLM for
node classification, also conduct self-supervised



link prediction as an auxiliary task. Specifically, we
select the following three popular citation graphs:
ogbn-arxiv (Hu et al., 2020), Cora, and PubMed
(Yang et al., 2016), in which every node represents
an academic paper on a specific topic, with its title
and abstract included in raw text format. All of
our experiments report test accuracy as our met-
rics and employ the dataset’s default numerical
node embedding to extend the LLM’s vocabulary
by adding node-wise new tokens. Implementation
details and elaborated dataset-specific statistics are
summarized in Appendix C and D.

4.2 Main Results

Our results achieve single-model state-of-the-art
performance, surpassing all single graph learners
across all three datasets, including both representa-
tive GNN models and graph Transformer models,
which demonstrates the promising trend for large
language models to serve as the foundation model
for graph learning.

4.2.1 ogbn-arxiv

For the ogbn-arxiv, we adopt same dataset splits
as in the OGB open benchmark (Hu et al., 2020),
i.e. 54%/18%/28%. We select top-ranked GNNs

from the OGB Leaderboard’, including DRGAT,
RevGAT and etc., as the baselines (Zhang et al.,
2022a; Hamilton et al., 2017; Kipf and Welling,
2016; Li et al., 2020; Han et al., 2023a; Shi et al.,
2020; Yu et al., 2022a; Velickovic et al., 2017; Sun
et al., 2020; Li et al., 2021; Zhang et al., 2023a).
Several most powerful Transformer-based single-
model graph learners like Graphormer are also con-
sidered as compared methods against our Instruct-
GLM. (Kuang et al., 2021; Wu et al., 2023; Ying
et al., 2021; Dinh et al., 2022)

We instruction-finetune Flan-T5 (Chung et al.,
2022) and Llama-v1 (LoRA) (Touvron et al., 2023;
Hu et al.,, 2021) as the backbone for our In-
structGLM. The experimental results in Table 1
demonstrate that both models outperform all the
GNNs and Transformer-based methods. Particu-
larly, when using Llama-v1-7b as the backbone on
the OGB feature, our InstructGLM attains a 1.54 %
improvement over the best GNN method and a
2.08% improvement over the best Transformer-
based method. Meanwhile, we also obtain new
SoTA performance on the GIANT feature.

4.2.2 Cora & PubMed

Method OGB GIANT
MLP 55.50+£0.23 73.06+0.11
GAMLP 56.53+0.16 73.35+0.08
GraphSAGE 71.19£0.21 74.35+0.14
GCN 71.74 £0.29 73.29 £0.01
DeeperGCN 71.92 +0.16 -
ALT-OPT 72.76 £ 0.00 -
UniMP 73.11 £0.20 -
LEGNN 73.37 £ 0.07 -

GAT 73.66 £0.11 74.15£0.05
AGDN 73.75+0.21 76.02+0.16
RvGAT 74.02+0.18 75.90+£0.19
DRGAT 74.16 £0.07 76.11 £ 0.09
CoarFormer 71.66 +£0.24 -
SGFormer 72.63 +0.13 -
Graphormer 72.81 +£0.23 -
E2EG 73.62£0.14 -
Flan-T5-base 73.51 £0.16 74.45+0.11
Flan-T5-large 74.67 £0.08 74.80+0.18
Llama-7b 7570 £0.12 76.42 = 0.09

Table 1: Results on ogbn-arxiv. We report accuracy
on GNNs (Top), Graph Transformers (Middle) and our
InstructGLM with different backbones (Bottom).

Method Cora PubMed

MixHop 75.65+1.31 90.04 £1.41
GAT 76.70 £ 0.42 83.28 £0.12
Geom-GCN 85.27+1.48 90.05+0.14
SGC-v2 85.48 +1.48 85.36+0.52
GraphSAGE 86.58 £0.26 86.85+0.11
GCN 87.78 £0.96 88.90 + 0.32
BernNet 88.52£0.95 88.48+0.41
FAGCN 88.85+1.36 89.98 +0.54
GCNII 88.93+£1.37 89.80+0.30
RevGAT 89.11 £0.00 88.50 +0.05
Snowball-V3 89.59+£1.58 91.44+0.59
ACM-GCN+ 89.75+£1.16 90.96 + 0.62
Graphormer 80.41 £0.30 88.24 +1.50
GT 86.42+£0.82 88.75+0.16
CoarFormer 88.69 £0.82 89.75+0.31
Llama-7b 87.08 £0.32 93.84 +0.25
Flan-TS5-base  90.77 £ 0.52 94.45 +£0.12
Flan-T5-large 88.93+1.06 94.62 +0.13

Table 2: Results on Cora and PubMed. We report accu-
racy on GNNs (Top), Graph Transformers (Middle) and
our InstructGLM with different backbones (Bottom).

1https://ogb.stanford.edu/docs/leader_
nodeprop/
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Hop Info Link Prediction ogbn-arxiv Cora PubMed
Llama-v1-7b Flan-T5-base Flan-T5-base

Multi-hop w/ 75.70% 90.77 % 94.45%

Multi-hop w/o 75.37% 87.27% 94.35%

1-hop w/o 75.25% 86.90% 94.30%

Structure-Free-Tuning w/o 74.97% 75.65% 94.22%

Table 3: Ablation Study Results. In particular, since Cora is equipped with the sparsest semantic feature (Bag of
Words) among the three datasets (ogbn-arxiv with Skip-gram and PubMed with TF-IDF.), we can observe that
introducing multi-hop structural information provides the greatest performance gain on Cora.

In terms of the compared methods for Cora and
PubMed datasets (He et al., 2023), we select those
top-ranked GNNs from the two corresponding
benchmarks?® 3 with 60%/20%/20% train/val/test
splits, including Snowball, RevGAT and etc. (Abu-
El-Haija et al., 2019; Pei et al., 2020; Wu et al.,
2019; He et al., 2021; Bo et al., 2021; Chen et al.,
2020b; Luan et al., 2022). Besides, the three most
powerful Transformer-based single-model graph
learners on these 2 benchmarks, i.e., CoarFormer,
Graphormer, and GT (Dwivedi and Bresson, 2020),
are also considered.

We instruction-finetune Flan-T5 and Llama-v1
(LoRA) as the backbone for our InstructGLM.
The experimental results in Table 2 show that
our InstructGLM outperforms all the GNNs and
Transformer-based methods. Specifically, Instruct-
GLM achieves a 1.02% improvement over the best
GNN method and a 2.08% improvement over the
best Transformer-based method on Cora dataset,
while also achieves a 3.18% improvement over the
best GNN and a 4.87 % improvement over the best
Transformer-based method on PubMed dataset.

4.3 Ablation Study

In our experiments, two crucial operations that
contributes to the remarkable performance of In-
structGLM in node classification are multi-prompt
instruction-tuning, which provides multi-hop graph
structure information to the LLM, and the utiliza-
tion of self-supervised link prediction as an aux-
iliary task. To validate the impact of the two key
components on model performance, we conduct ab-
lation experiments on all three datasets, the results
are shown in Table 3.

Regarding the Hop Info column, Structure-Free-
Tuning indicates fine-tuning the model on titles and
abstracts of the nodes. While /-hop and Multi-hop
mean that we utilize prompts that merely include

Zhttps://paperswithcode.com/sota/
node-classification-on-cora-60-20-20-random

3https://paperswithcode.com/sota/
node-classification-on-pubmed-60-20-20-random

information from 1-hop neighbors and prompts that
include information from neighbors with higher
hop levels, respectively. The experimental results
show that incorporating multi-hop information and
including link prediction task can both enhance the
model’s performance for node classification.

4.4 Instruction Tuning at Low Label Ratio

In previous experiments, our data splits all ensured
a relatively high ratio of labeled training nodes. To
further investigate the robustness of our Instruct-
GLM, we conduct experiments on the PubMed
dataset using its another widely-used splits with
extremely low label ratio. Specifically, we have
only 60 training nodes available in this setting thus
the label ratio is 0.3%. Despite the challenge, our
InstructGLM successfully achieve new SoTA per-
formance with 89.6% test accuracy on the corre-
sponding leaderboard*. Detailed comparison with
all competitive baselines and more results analysis
under this setting are summarized in Appendix B

5 Conclusions

To the best of our knowledge, this paper is the
first one that purely represents graph structure via
natural language description then further perform
instruction-tuning on generative LLMs to effec-
tively solve graph learning problems, demonstrat-
ing the huge potential of LLMs as the founda-
tional model for graphp machine learning. Our
InstructGLM outperforms all single-model GNNs
and Transformer-based graph learners on ogbn-
arxiv, Cora, and PubMed datasets. Overall, In-
structGLM provides a powerful natural language
processing interface for graph machine learning,
with Transformer-based generative LLM and nat-
ural language as the driving force, it further con-
tributes to the trend of unifying foundational model
architecture and pipeline across multiple areas for
the AGI pursuit in the future.

4https://paperswithcode.com/sota/
node-classification-on-pubmed-with-public
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Limitations

The primary limitation of our InstructGLM lies in
the input token limit of the large language model
(LLM). For example, Flan-T5 can only accept
a maximum sentence input length of 512, while
Llama allows for 2048. When dealing with large-
scale graphs, the instruction prompts we construct
may not encompass all high-order neighbors within
a single natural language sentence due to the lim-
itations of sentence length. The simplest solution
to this problem is to construct multiple graph de-
scription sentences for each training node (central
node) to enumerate all possible neighbors at corre-
sponding hop level. However, this leads to a rapid
increase in the training data volume. In this work,
learning from GraphSAGE (Hamilton et al., 2017),
we repeatedly perform random sampling from the
multi-hop neighbor lists of the central node until
the sentence length reaches the input token limit
to mitigate this issue. Despite our implementation
achieving impressive results, we believe that im-
proved neighbor sampling and selection strategies
can help InstructGLM better address graph-related
tasks, especially in the context of applications in-
volving extremely large-scale graphs like knowl-
edge graphs (Pan et al., 2023). Also, many valu-
able works about employing InstructGLM beyond
node classification and link prediction are still un-
der exploration, more potential future directions
are discussed in Appendix E.

Ethics Statement

Our method is proposed to provide a powerful nat-
ural language processing interface for graph ma-
chine learning tasks. Under normal and appropriate
usage circumstances, there is no obvious evidence
or tendency that our method will lead to significant
negative societal impacts.
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A Detailed Pipeline Illustration

Further detailed pipeline is depicted in Figure 2.

B Instruction Tuning at Low Label Ratio

Method Accuracy
GraphSAGE 76.8 +0.9
GAT 79.0+1.4
Snowball 79.2+0.3
GCN 80.4 +0.4
SuperGAT 81.7+0.5
ALT-OPT 82.5+1.7
GRAND 82.7+0.6
SAIL 83.8+0.1
ANS-GT 79.6+1.0
NodeFormer 799 +1.0
SGFormer 80.3+0.6
Llama-7b 85.1+0.6
Flan-T5-base 88.2+0.3
Flan-T5-large 89.6 + 0.4

Table 4: Results on PubMed with 60 training nodes. We
report accuracy on GNNs (Top), Graph Transformers
(Middle) and our InstructGLM with different backbones
(Bottom).

To further investigate the scalability and robust-
ness of our InstructGLM, we conduct experiments



Flan-T5/ LLaMA

machine
learning

[ | [

Categorize the central node: (<node_1>, Title_1) is connected to (<node_2>, Title_2), (<node_4>, Title_4), (<node_5>, Title_5),
(<node_7>, Title_7), (<node_8>, Title_8) within one hop. Which category should (<node_1>, Title_1, Abstract_1 ) be classified as?

Perform link prediction for the central node: <node_1> is connected with <node_5>,<node_6>,<node_7> within two hops through
<node_7>,<node_4>,<node_5> respectively. Which other node will be connected to <node_1> within two hops through <node_4>?

Token: <node_1>

1-hop neighborinfo:[2,4,5,7,8]

Title_1: Lifelong Learning of Discriminative Representatiions

Abstract_1: We envision a service provider facing a continuous stream of problems with the same domain...
2-hop neighborinfo: [(1,4,9),(1,4,6),(1,5,7),(1,7,5)]1
3-hop neighborinfo: [(1,4,9,0), (1,4,6,3)]

Figure 2: Illustration of InstructGLM. We use graph prompts to describe each node’s multi-hop connectivity and
meta features in a scalable mini-batch manner, conveying graph structure concisely and intuitively by pure natural
language for learning. Subsequently, we instruct LLM to generate responses for various graph learning tasks in a
unified language modeling pipeline. We also expand LLM’s vocabulary by creating a new and unique token for
every node. More specifically, we set the graph’s inherent node feature vectors (e.g. Bow, OGB) as the embedding
for these new tokens (depicted as red vectors in the figure) and employ LLM’s pre-trained embedding (depicted as

blue vectors in the figure) for natural language tokens.

on the PubMed dataset using its another widely-
used splits with extremely low label ratio. Specifi-
cally, we have only 60 training nodes available in
this setting thus the label ratio is 0.3%.

We consider top-ranked GNNs from the corre-
sponding leaderboard?, including SAIL, ALT-OPT,
GRAND etc., as the GNN baselines. (Luan et al.,
2019; Kim and Oh, 2022; Feng et al., 2020; Han
et al., 2023a; Yu et al., 2022b) We also include the
three most outstanding Transformer-based graph
learners under this dataset setting, i.e. ANS-GT,
NodeFormer and SGFormer. (Zhang et al., 2022b;
Wu et al., 2022, 2023) We then instruction-finetune
Flan-T5 and Llama as the backbone for our Instruct-
GLM. The experimental results in Table 4 demon-
strate that InstructGLM outperforms all the GNNs
methods with an improvement of 5.8% against
the best GNN baseline, while also surpassing the
best Transformer-based model by 9.3%, success-
fully achieve new SoTA performance on the leader-
board.

C Implementation Details

We employ a multi-prompt instruction-tuning
framework for all of our experiments and report
test accuracy as our metric. Also, we employ a
simple MLP over the default feature embedding
of the node tokens to align their dimension with
the natural language word token embeddings. All
of all our experiments are conducted on four 40G

5https://paperswithcode.com/sota/
node-classification-on-pubmed-with-public
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A100 GPUs.

For ogbn-arxiv dataset, we adopt the same
dataset splits as in the OGB open benchmark (Hu
et al., 2020), which is 54%/18%/28%. It takes 3.5
hours per epoch for Flan-T5-Large and 6 hours per
epoch for Llama-7b during training. For Cora and
PubMed datasets, we use the version that contains
raw text information proposed in (He et al., 2023)
and employ a 60%/20%/20% train/val/test splits for
our experiments. It takes about 1.5 hours per epoch
for Flan-T5-Large (770M) and 2.5 hours per epoch
for Llama-v1-7b-LoRA (18M) during training.

To investigate InstructGLM’s performance un-
der low-label-ratio training setting, following Yang
et al. (2016), we conduct further experiments on
the PubMed dataset with the fixed 20 labeled train-
ing nodes per class at a 0.3% label ratio, and it
takes about 5 minutes per epoch for Flan-T5-Large
and 15 minutes per epoch for Llama-v1-7b during
training due to limited labeled data.

For both normal setting and low-label-ratio set-
ting, the inference time is about 35ms on Flan-T5-
Large and 450ms on Llama-7b per graph prompt
sentence.

In terms of hyper-parameter selection, we per-
form grid search within the specified range for the
following parameters: (learning rate: le-5, 3e-5,
8e-5, le-4, 3e-4, 1e-3), (batch size: 32, 64, 128,
256, 512). We employed the AdamW (Loshchilov
and Hutter, 2017) optimizer with a weight decay at
0. All experiments are conducted with 4 epochs.


https://paperswithcode.com/sota/node-classification-on-pubmed-with-public
https://paperswithcode.com/sota/node-classification-on-pubmed-with-public

Dataset #Node #Edge #Class Default Feature #Features
ogbn-arxiv 169,343 1,166,243 40 Skip-gram / GIANT 128 /768
Cora 2,708 5,429 7 Bag of Words 1433

PubMed 19,717 44,338 3 TF-IDF 500

Table 5: Dataset Statistics

D Dataset Statistics

The detailed statistics of the datasets are shown in
Table 5.

E Detailed Discussions on Future Work

In this paper, we conduct extensive experiments
on Text-Attributed Graphs (TAG) to showcase the
powerful capabilities of our proposed InstructGLM
in solving graph machine learning problems. Our
instruction prompts designed to describe graph
structures in natural language demonstrate high
generality and scalability, making them applicable
to almost all types of graphs. Potential valuable fu-
ture work can be explored along three dimensions:
* For TAGs, our experiments only used the de-
fault OGB-feature embeddings. Future work can
consider using more advanced TAG-related em-
bedding features such as LLM-based features
like TAPE (He et al., 2023) and SimTeG (Duan
et al., 2023). Additionally, leveraging LLM for
Chain-of-Thought (Wei et al., 2022), structure in-
formation summary, and other data augmentation
techniques to generate more powerful instruction
prompts will be a promising research direction
for graph language models.

InstructGLM can be integrated into frameworks
like GAN and GLEM (Goodfellow et al., 2014,
Zhao et al., 2023) for multi-model iterative train-
ing, or utilize off-the-shelf GNNs for knowl-
edge distillation (Mavromatis et al., 2023). Also,
classic graph machine learning techniques like
label reuse, Self-Knowledge Distillation (Self-
KD), Correct & Smooth can further enhance the
model’s performance.

Benefiting from the powerful expressive ability
of natural language and the highly scalable de-
sign of our instruction prompts, InstructGLM can
be easily extended within a unified generative lan-
guage modeling framework to various kinds of
graphs, addressing a wide range of graph learning
problems. For instance, our designed instruction
prompts can be further used for link prediction
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and inductive node classification tasks. And only
with slight modifications to our prompts, tasks
such as graph classification, intermediate node
& path prediction and even relation-based ques-
tion answering tasks in knowledge graphs with
rich edge features are potentially to be effectively
deployed.

F Instruction Prompts

In this appendix, we present all our designed in-
struction prompts. It is worth noting that we fol-
low the following conventions when numbering the
prompts:

* The length of each prompt number is 4.

* The first digit represents the task index, where
1 represents the node classification task and 2
represents the link prediction task.

* The second digit represents whether node fea-
tures or edge features (such as text information)
other than numerical feature embedding are used
in the prompt. 1 means not used and 2 means
used.

* The third digit represents the maximum hop or-
der corresponding to the structural information
considered in this prompt. 1 represents only the
1-hop neighbors are included, while 2 and 3 rep-
resent the structural information including 2-hop
and 3-hop neighbors, respectively.

* The fourth digit represents whether the interme-
diate node information (i.e. the path) in the high-
order connection is considered in this prompt. If
the digit is even, it means that the intermediate
node is considered, while an odd digit indicates
otherwise.

Specially, in node classification task, we de-
signed a graph-structure-free prompt and num-
bered it as 1-0-0-0.



F.1 Node Classification
Task-specific prefix:

Classify the paper according to its topic into
one of the following categories:{{All Category
List}}.\n Node represents academic paper with a
specific topic, link represents a citation

between the two papers. Pay attention to the
multi-hop link relationship between the nodes.

Prompt ID: 1-1-1-1

Input template:

{{central node}} is connected with {{1-hop
neighbor list}} within one hop. Which category
should {{central node}} be classified as?
Target template: {{category}}

Prompt ID: 1-1-2-1

Input template:

{{central node}} is connected with {{2-hop
neighbor list}} within two hops. Which category
should {{central node}} be classified as?
Target template: {{category}}

Prompt ID: 1-1-2-2

Input template:

{{central node}} is connected with {{2-hop
neighbor list}} within two hops through {{the
corresponding 1-hop intermediate node list}},
respectively. Which category should {{central
node}} be classified as?

Target template: {{category}}

Prompt ID: 1-1-3-1

Input template:

{{central node}} is connected with {{3-hop
neighbor list}} within three hops. Which category
should {{central node}} be classified as?
Target template: {{category}}

Prompt ID: 1-1-3-2

Input template:

{{central node}} is connected with {{3-hop
neighbor list}} within three hops through {{the
corresponding 2-hop intermediate path list}},
respectively. Which category should {{central

node}} be classified as?

Target template: {{category}}

Prompt ID: 1-2-1-1
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Input template:

({{central node}},{{text feature}}) is connected
with {{1-hop neighbor list attached with text
feature}} within one hop. Which category should
({{central node}},{{text feature}}) be classified
as?

Target template: {{category}}

Prompt ID: 1-2-2-1
Input template:

({{central node}},{{text feature}}) is connected
with {{2-hop neighbor list attached with text
feature}} within two hops. Which category should
({{central node}},{{text feature}}) be classified
as?

Target template: {{category}}

Prompt ID: 1-2-2-2
Input template:

({{central node}},{{text feature}}) is connected
with {{2-hop neighbor list attached with text
feature}} within two hops through {{the
corresponding 1-hop intermediate node list
attached with text feature}}, respectively.
Which category should ({{central node}},{{text
feature}}) be classified as?

Target template: {{category}}

Prompt ID: 1-2-3-1
Input template:

({{central node}},{{text feature}}) is connected
with {{3-hop neighbor list attached with text
feature}} within three hops. Which category
should ({{central node}},{{text feature}}) be
classified as?

Target template: {{category}}

Prompt ID: 1-2-3-2
Input template:

({{central node}},{{text feature}}) is connected
with {{3-hop neighbor list attached with text
feature}} within three hops through {{the
corresponding 2-hop intermediate path list
attached with text feature}}, respectively.
Which category should ({{central node}},{{text
feature}}) be classified as?

Target template: {{category}}

Prompt ID: 1-0-0-0

Input template:

{{central node}} is featured with its {{text
feature}}. Which category should {{central node}}

be classified as?

Target template: {{category}}



F.2 Link Prediction
Task-specific prefix:

Perform Link Prediction for the central node:\n
Node represents academic paper with a specific
topic, link represents a citation between the two
papers. Pay attention to the multi-hop link
relationship between the nodes.

Prompt ID: 2-1-1-1

Input template:

{{central node}} is connected with {{1-hop
neighbor list}} within one hop. Will {{candidate
node}} be connected with {{central node}} within

one hop?

Target template: {{yes/no}}

Prompt ID: 2-1-1-2

Input template:

{{central node}} is connected with {{1-hop
neighbor list}} within one hop. Which other node
will be connected to {{central node}} within one
hop?

Target template: {{node_id}}

Prompt ID: 2-1-2-1

Input template:

{{central node}} is connected with {{2-hop
neighbor list}} within two hops. Will {{candidate
node}} be connected to {{central node}} within

two hops?

Target template: {{yes/no}}

Prompt ID: 2-1-2-2
Input template:

{{central node}} is connected with {{2-hop
neighbor list}} within two hops through {{the
corresponding 1-hop intermediate node list}},
respectively. Will {{candidate node}} be
connected to {{central node}} within two hops
through {{the specified 1-hop intermediate
node}}?

Target template: {{yes/no}}

Prompt ID: 2-1-2-3

Input template:

{{central node}} is connected with {{2-hop
neighbor list}} within two hops. Which other node
will be connected to {{central node}} within two
hops?

Target template: {{node_id}}

Prompt ID: 2-1-2-4
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Input template:

{{central node}} is connected with {{2-hop
neighbor list}} within two hops through {{the
corresponding 1-hop intermediate node list}},
respectively. Which other node will be connected
to {{central node}} within two hops through {{the
specified T1-hop intermediate node}}?

Target template: {{node_id}}

Prompt ID: 2-1-3-1

Input template:

{{central node}} is connected with {{3-hop
neighbor list}} within three hops. Will
{{candidate node}} be connected with {{central
node}} within three hops?

Target template: {{yes/no}}

Prompt ID: 2-1-3-2

Input template:

{{central node}} is connected with {{3-hop
neighbor list}} within three hops through {{the
corresponding 2-hop intermediate path list}},
respectively. Will {{candidate node}} be
connected to {{central node}} within three hops
through {{the specified 2-hop intermediate
path}}?

Target template: {{yes/no}}

Prompt ID: 2-1-3-3

Input template:

{{central node}} is connected with {{3-hop
neighbor list}} within three hops. Which other
node will be connected to {{central node}} within
three hops?

Target template: {{node_id}}

Prompt ID: 2-1-3-4

Input template:

{{central node}} is connected with {{3-hop
neighbor list}} within three hops through {{the
corresponding 2-hop intermediate path list}},
respectively. Which other node will be connected
to {{central node}} within three hops through
{{the specified 2-hop intermediate path}}?

Target template: {{node_id}}

Prompt ID: 2-2-1-1

Input template:

({{central node}},{{text feature}}) is connected
with {{1-hop neighbor list attached with text
feature}} within one hop. Will ({{candidate
node}},{{candidate text feature}}) be connected
to ({{central node}},{{text feature}}) within
one hop?

Target template: {{yes/no}}



Prompt ID: 2-2-1-2
Input template:

({{central node}},{{text feature}}) is connected
with {{1-hop neighbor list attached with text
feature}} within one hop. Which other node will
be connected to ({{central node}},{{text
feature}}) within one hop?

Target template: {{node_id}}

Prompt ID: 2-2-2-1
Input template:

({{central node}},{{text feature}}) is connected
with {{2-hop neighbor list attached with text
feature}} within two hops. Will ({{candidate
node}},{{candidate text feature}}) be connected
to ({{central node}},{{text feature}}) within
two hops?

Target template: {{yes/no}}

Prompt ID: 2-2-2-2
Input template:

({{central node}},{{text feature}}) is connected
with {{2-hop neighbor list attached with text
feature}} within two hops through {{the
corresponding 1-hop intermediate node list
attached with text feature}}, respectively. Will
({{candidate node}},{{candidate text feature}})
be connected to ({{central node}}, {{text
feature}}) within two hops through ({{the
specified 1-hop intermediate node attached with
text feature}})?

Target template: {{yes/no}}

Prompt ID: 2-2-2-3
Input template:

({{central node}},{{text feature}}) is connected
with {{2-hop neighbor list attached with text
feature}} within two hops. Which other node will
be connected to ({{central node}}, {{text
feature}}) within two hops?

Target template: {{node_id}}

Prompt ID: 2-2-2-4
Input template:

({{central node}},{{text feature}}) is connected
with {{2-hop neighbor list attached with text
feature}} within two hops through {{the
corresponding 1-hop intermediate node list
attached with text feature}}, respectively.

Which other node will be connected to ({{central
node}},{{text feature}}) within two hops through
({{the specified T1-hop intermediate node attached
with text feature}})?

Target template: {{node_id}}
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Prompt ID: 2-2-3-1
Input template:

({{central node}},{{text feature}}) is connected
with {{3-hop neighbor list attached with text
feature}} within three hops. Will ({{candidate
node}},{{candidate text feature}}) be connected
with ({{central node}},{{text feature}}) within
three hops?

Target template: {{yes/no}}

Prompt ID: 2-2-3-2
Input template:

({{central node}},{{text feature}}) is connected
with {{3-hop neighbor list attached with text
feature}} within three hops through {{the
corresponding 2-hop intermediate path list
attached with text feature}}, respectively. Will
({{candidate node}},{{candidate text feature}})
be connected to ({{central node}},{{text
feature}}) within three hops through {{the
specified 2-hop intermediate path attached with
text feature}}?

Target template: {{yes/no}}

Prompt ID: 2-2-3-3
Input template:

({{central node}},{{text feature}}) is connected
with {{3-hop neighbor list attached with text
feature}} within three hops. Which other node
will be connected to ({{central node}},{{text
feature}}) within three hops?

Target template: {{node_id}}

Prompt ID: 2-2-3-4
Input template:

({{central node}},{{text feature}}) is connected
with {{3-hop neighbor list attached with text
feature}} within three hops through {{the
corresponding 2-hop intermediate path list
attached with text feature}}, respectively.
Which other node will be connected to ({{central
node}},{{text feature}}) within three hops
through {{the specified 2-hop intermediate path
attached with text feature}}?

Target template: {{node_id}}
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