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Abstract

The emergence of large-scale pre-trained lan-001
guage models, such as ChatGPT, has revolu-002
tionized various research fields in artificial in-003
telligence. Transformers-based large language004
models (LLMs) have gradually replaced CNNs005
and RNNs to unify fields of computer vision006
and natural language processing. Compared007
with the data that exists relatively indepen-008
dently such as images, videos or texts, graph009
is a type of data that contains rich structural010
and relational information. Meanwhile, natural011
language, as one of the most expressive medi-012
ums, excels in describing complex structures.013
However, existing work on incorporating graph014
learning problems into the generative language015
modeling framework remains very limited. As016
the importance of LLMs continues to grow, it017
becomes essential to explore whether LLMs018
can also replace GNNs as the foundation model019
for graphs. In this paper, we propose Instruct-020
GLM (Instruction-finetuned Graph Language021
Model), systematically design highly scalable022
prompts based on natural language instructions,023
and use natural language to describe the geo-024
metric structure and node features of the graph025
for instruction tuning an LLM to perform learn-026
ing and inference on graphs in a generative027
manner. Our method exceeds all competi-028
tive GNN baselines on ogbn-arxiv, Cora and029
PubMed datasets, which demonstrates the ef-030
fectiveness of our method and sheds light on031
generative large language models as the foun-032
dation model for graph machine learning. Our033
code will be released once published.034

1 Introduction035

Before the advent of Transformers (Vaswani et al.,036

2017), various artificial intelligence domains with037

different inductive biases had diverse foundational038

model architectures. For instance, CNNs (He et al.,039

2016; Szegedy et al., 2016) were designed with con-040

siderations for spatial invariance in images, leading041

to superior performance in computer vision tasks042

(Deng et al., 2009; Lin et al., 2014). Memory- 043

enhanced models like RNNs (Elman, 1990) and 044

LSTM (Hochreiter and Schmidhuber, 1997; Cho 045

et al., 2014) were widely used for handling sequen- 046

tial data such as natural language (Sarlin et al., 047

2020) and audio (Chen et al., 2021). Graph Neural 048

Networks (GNNs) excel in capturing topological 049

information by employing message passing and ag- 050

gregation mechanisms, making them a preferred 051

choice in the field of graph learning for a long time 052

(Kipf and Welling, 2016; Veličković et al., 2017; 053

Hamilton et al., 2017; Han et al., 2023a). 054

In recent years, the AI community has witnessed 055

the emergence of numerous powerful pre-trained 056

Large Language Models (LLMs) (Devlin et al., 057

2018; Raffel et al., 2020; Brown et al., 2020; Tou- 058

vron et al., 2023; Ouyang et al., 2022), which are 059

driving huge advancements and lead to the pursuit 060

of possible Artificial General Intelligence (AGI) 061

(Bubeck et al., 2023). Under this background, there 062

is a trend towards unification in model architectures 063

across different domains. Specifically, pre-trained 064

Transformers have demonstrated remarkable per- 065

formance on various modalities, such as images 066

(Dosovitskiy et al., 2020) and videos (Arnab et al., 067

2021) in computer vision, text in natural language 068

processing (Singh et al., 2021), structured data in 069

graph machine learning (Ying et al., 2021), person- 070

alized data in recommender systems (Geng et al., 071

2022), decision sequences in reinforcement learn- 072

ing (Di Palo et al., 2023), and visual-text pairs in 073

multimodal tasks (Radford et al., 2021). There has 074

even been Transformers capable of handling twelve 075

modalities (Zhang et al., 2023b). 076

Besides model architecture, the unification of 077

processing method in handling multimodal data is 078

also a significant trend worth attention. T5 (Raffel 079

et al., 2020) established a text-to-text framework, 080

unifying all NLP tasks as a sequence generation 081

problem. Moreover, models like CLIP (Radford 082

et al., 2021) utilize image-text pairs to accomplish 083
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Figure 1: Illustration of the InstructGLM Framework. We fine-tune InstructGLM under a Multi-task Multi-prompt
instruction tuning framework, enabling it to solve various graph machine learning tasks with the structure information
purely described by natural language.

multimodal tasks with the images captioned by084

natural language. As for reinforcement learning,085

Di Palo et al. (2023) employs natural language to086

describe environmental states for the agent which087

successfully solves many reinforcement learning088

(RL) problems. P5 (Geng et al., 2022) further con-089

tributes to this trend by reformulating all personal-090

ized recommendation tasks as language modeling091

tasks via prompts. The aforementioned works col-092

lectively demonstrate that employing natural lan-093

guage for multimodal information representation094

has emerged as a prominent and promising trend.095

However, in graph machine learning, such an096

exploration still remains limited. Existing methods097

that utilize large language models for graph tasks098

can be roughly categorized into two types: 1) Com-099

bining LLMs and GNNs, where the LLM acts as100

a feature extractor or data augmentation module101

to enhance the downstream GNNs’ performance102

(He et al., 2023; Mavromatis et al., 2023; Zhao103

et al., 2023). Such kind of methods often require104

training multiple models, incurring significant com-105

putational overhead and tend to easily inherit draw-106

backs of GNNs such as over-smoothing (Cai and107

Wang, 2020). 2) Only relying on Transformers but108

necessitating novel designs of token embedding109

for nodes and edges (Kim et al., 2022) or creating110

complex graph attention module to learn structural111

information (Dwivedi and Bresson, 2020; Nguyen112

et al., 2022). This type of method demands local113

attention calculation on every node during each114

optimization step, leading to considerable compu-115

tation costs and thus limiting each node’s scope116

to only 1-hop neighbors. Meanwhile, the com- 117

plex pipeline with special attention mechanisms or 118

token representations prevents the model from di- 119

rectly observing and learning structural information 120

like GNNs, thus restricting further improvement on 121

performance. 122

To address the issues present in LLM-based 123

graph learners and bridge the gap of natural lan- 124

guage based graph learning, we propose Instruct- 125

GLM (Instruction-finetuned Graph Language 126

Model). Given that LLMs have been dominant in 127

many AI domains, we aim to answer the question: 128

Can LLMs also replace GNNs as the foundation 129

model in graph machine learning? Intuitively, 130

as one of the most expressive medium, natural lan- 131

guage is adept at describing complex structures 132

such that InstructGLM owns following advantages 133

over GNNs: 134

1) Flexibility. A natural language sentence is 135

capable of effectively describing the connec- 136

tivity at any desired hop levels and interme- 137

diate paths without iterative message passing 138

and aggregation. Even multimodal features of 139

the nodes and edges can be directly integrated 140

into natural language prompts, making natu- 141

ral language a very flexible medium to convey 142

both structural and content information on the 143

graph. 144

2) Scalability. Injecting graph structure into mul- 145

tiple natural language sentences enables mini- 146

batch training and independent gradient prop- 147

agation, which further allows easy scalability 148
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to distributed training and inference on mas-149

sive graphs with low machine communication150

overhead.151

3) Compatibility. Aided by structure descrip-152

tions, InstructGLM can consistently refor-153

mulate various graph learning pipelines as154

language modeling tasks, thus fits well into155

the LLM-based multimodal processing frame-156

work, paving the way to integrate graph learn-157

ing with other AI tasks such as vision, lan-158

guage and recommendation to construct uni-159

fied AI systems.160

In this paper, we focus on tackling node classi-161

fication, while augmenting it with self-supervised162

link prediction to enhance the performance. We163

design a series of scalable graph prompts for gener-164

ative LLMs (Wei et al., 2021; Chung et al., 2022).165

Specifically, we systematically employ natural lan-166

guage to describe the graph’s topology according167

to the prompts. The graph structure is clearly168

and intuitively provided to LLMs without com-169

plex pipelines tailored to graphs. Therefore, we170

can handle graph tasks efficiently and succinctly by171

the vanilla Transformer architecture (Vaswani et al.,172

2017) and language modeling objective (Zhang and173

Sabuncu, 2018) in a generative manner. Overall,174

our contributions can be summarized by the follow-175

ing four points:176

• To the best of our knowledge, we are the first177

propose to purely using natural language for178

graph structure representation and perform in-179

struction tuning on a generative LLM to solve180

graph-related problems. We eliminate the re-181

quirement of designing specific complex atten-182

tion mechanisms tailored for graphs. Instead,183

we offer a concise and efficient natural language184

processing interface for graph machine learning,185

which exhibits high scalability to a unified mul-186

timodal and multitask framework, aligning with187

the current trend in other AI domains.188

• Inspired by various message passing mechanisms189

in GNNs, we have designed a series of rule-based,190

highly scalable instruction prompts for general191

graph structure representation and graph machine192

learning. Although in this paper, our focus lies193

in exploring instruction tuning on large language194

models, these prompts can also be used for zero-195

shot experiments on LLMs.196

• We conduct self-supervised link prediction as an197

generic auxiliary task and further investigate its198

influence on the primary task under a multitask 199

instruction tuning framework. This exploration 200

holds valuable insights for future LLM-based 201

multitask graph learning, demonstrating the sig- 202

nificance of self-supervised link prediction for 203

large language models’ better structure under- 204

standing on graphs. 205

• We implement extensive experiments on three 206

widely used datasets: ogbn-arxiv, Cora, and 207

PubMed. The results demonstrate our Instruct- 208

GLM outperforms previous competitive GNN 209

baselines and Transformer-based methods across 210

all three datasets, achieving the top-ranked perfor- 211

mance. These findings validate the effectiveness 212

of our method and underscore the trend of lever- 213

aging generative large language models as the 214

foundation model for graph machine learning. 215

2 Related Work 216

2.1 GNN-based Methods 217

Graph Neural Networks (GNNs) (Zhou et al., 2020; 218

Wu et al., 2020; Han et al., 2023a; Wu and Wang, 219

2022) have been dominant in graph machine learn- 220

ing for a long period. Leveraging message passing 221

and aggregation, GNNs excel in simultaneously 222

learning node features and graph topology. Overall, 223

GNNs with various message passing mechanisms 224

can be categorized as spatial-based ones (Hamil- 225

ton et al., 2017; Veličković et al., 2017; Xu et al., 226

2018a; Monti et al., 2017) and spectral-based ones 227

(Kipf and Welling, 2016; Defferrard et al., 2016; 228

Yadati et al., 2019). Inherently, GNNs easily suf- 229

fer from over-smoothing (Cai and Wang, 2020), 230

with various regularization techniques like Mix- 231

Hop, Jump Knowledge and EdgeDrop (Xu et al., 232

2018b; Abu-El-Haija et al., 2019; Rong et al., 2019) 233

proposed to mitigate such an overfitting. Another 234

major drawback of GNNs is their inability to di- 235

rectly process non-numeric raw data like text or 236

images, requiring additional feature engineering 237

techniques like BoW, TF-IDF, or Skip-gram as a 238

preprocessing step (Wang et al., 2021). Its lack of 239

compatibility with existing large-scale generative 240

models presents a significant challenge for inte- 241

gration with other AI domains such as vision and 242

language into a unified intelligent system. 243

2.2 Transformers-based Methods 244

Attention-based Transformer models can be uti- 245

lized for graph processing by representing nodes 246

and edges as distinct tokens (Müller et al., 2023). 247
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However, it is computationally intensive for han-248

dling large-scale graphs and the global weighted249

average of attention mechanism can not effectively250

capture the graph’s topology (Kim et al., 2022).251

To mitigate the issue, some methods incorporate252

graph structure information into attention matrices253

(Ying et al., 2021; Park et al., 2022), while others254

restrict attention to local subgraphs (Nguyen et al.,255

2022) or ingeniously design graph orthogonal vec-256

tors for node and edge tokens(Kim et al., 2022).257

These newly designed complex pipelines result in258

indirect representation of graph structure and sig-259

nificantly increasing the learning difficulty. The260

only work similar to ours is Zhang et al. (2021a),261

which utilizes natural language templates tailored262

to biological concept linking (Sokal and Crovello,263

1970; Wang et al., 2023b). However, it is difficult264

for extension beyond classification due to the use265

of encoder-only model (Liu et al., 2019). Addition-266

ally, its natural language templates are not designed267

for general graph learning thus not as expressive268

and flexible as ours.269

2.3 Fuse GNN and Transformers270

GNNs excel at learning structure, while Transform-271

ers are proficient in capturing multi-modality fea-272

tures. To combine the advantages of both, Chien273

et al. (2021) and Duan et al. (2023) utilizes multi-274

neighbor prediction and LoRa (Hu et al., 2021),275

respectively, to incorporate graph structure into276

language models, generating enhanced feature for277

downstream GNNs. Mavromatis et al. (2023) em-278

ploys GNNs to perform knowledge distillation on279

LMs, Zhao et al. (2023) trains GNNs and LMs iter-280

atively in a variational inference framework, while281

Rong et al. (2020) attempts to replace attention282

heads with GNNs to better capture global informa-283

tion. The main drawback of the aforementioned284

methods is the lack of decoupling between Trans-285

formers and GNNs, results in training multiple286

models and incurs significant computational over-287

head (Nguyen et al., 2022). Moreover, the model288

performance is still susceptible to inherent issues of289

GNNs, such as over-smoothing (Yang et al., 2020)290

and the pipeline of multi-model training is usually291

very complex compared to the simplicity of a single292

generative LLM framework.293

2.4 Large Language Model based Methods294

Inspired by the remarkable zero-shot capabilities,295

leveraging LLMs in graph problems has attracted296

considerable attention. Existing works have in-297

cluded utilizing LLM to select the most suitable 298

graph processor based on the query (Zhang, 2023), 299

employing LLM’s zero-shot explanations for data 300

augmentation to obtain advanced graph features 301

(He et al., 2023), generating prompts and bench- 302

marks for graph construction, evaluation, biology 303

and structural reasoning (Han et al., 2023b; Jiang 304

et al., 2023; Qian et al., 2023; Guo et al., 2023). 305

There are three works sharing similarities with ours. 306

Guo et al. (2023) attempts to complete graph tasks 307

by describing graphs. However, it uses complex for- 308

mal languages like (Brandes et al., 2013; Himsolt, 309

1997) but not flexible natural language. Wang et al. 310

(2023a) and Chen et al. (2023) both explore using 311

natural language with LLM for graph problems, 312

with (Wang et al., 2023a) focusing on mathemat- 313

ical problems on small graphs while (Chen et al., 314

2023) concentrating on node classification in Text- 315

Attributed Graphs (TAGs) (Hu et al., 2020). In com- 316

parison, our natural language instruction prompts 317

exhibit better scalability, applicable to both small 318

and large graphs and not limited to specific graph 319

type. Besides, the three related works only ex- 320

plored the basic capability of LLM for graph tasks 321

in a zero-shot setting. Their performance does not 322

surpass GNN baselines for the most of time with 323

the model freezed, merely demonstrating the po- 324

tential of LLM as an option for graph tasks. By 325

contrast, we successfully bridge this gap by con- 326

ducting instruction tuning on generative LLMs with 327

simple prompts, achieving experimental results that 328

surpass all competitive GNN baselines. 329

3 InstructGLM 330

In this section, we introduce our proposed Instruct- 331

GLM, a framework utilizing natural language for 332

both graph structure and node features description 333

to a generative LLM and further addresses graph- 334

related problems by instruction-tuning. We start 335

with notation setup, followed by an introduction 336

to the instruction prompts’ design principles, and 337

then we illustrate the pipeline with further details. 338

3.1 Preliminary 339

Formally, a general graph can be represented as 340

G = (V,A, E, {Nv}v∈V , {Ee}e∈E), where V is 341

the set of nodes, E ⊆ V × V is the edge set, 342

A ∈ {0, 1}|V|×|V| is the adjacent matrix, Nv is the 343

node feature of v ∈ V and Ee is the edge feature of 344

e ∈ E. It is worth noting that the node feature and 345

edge feature can be various modalities in diverse 346
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forms. For example, node feature can be textual347

information in citation networks or social networks,348

visual images in photography graphs, user profile349

in customer systems, and even video or audio sig-350

nals in movie networks, while edge feature can be351

product reviews in user-item interaction graph of352

recommender systems.353

3.2 Instruction Prompt Design354

In order to comprehensively convey the structural355

information of a graph and ensure the adaptability356

of the created instruction prompts to various types357

of graphs, we have systematically designed a set358

of graph description prompts centered around an359

central node. These prompts can be differentiated360

based on the following three questions: i) What361

is the largest hop level of neighbor information362

about the central node in the prompt? ii) Does the363

prompt include node features or edge features? iii)364

For prompts with large (≥ 2) hop level neighbors365

about the central node, does the prompt encompass366

information about the intermediate nodes or paths367

along the corresponding connecting route?368

Regarding the first question, prompts can be clas-369

sified into two types: those exclusively contain370

1-hop connection information, and those with a371

maximum of 2-hop or 3-hop connection details.372

Prior works have shown that utilizing up to 3-hop373

connectivity is sufficient for excellent performance374

(Hamilton et al., 2017; Veličković et al., 2017; Kipf375

and Welling, 2016), while information beyond 3-376

hop typically owns a minor impact on improvement377

and might even lead to negative effects (Zhang378

et al., 2021b; Cai and Wang, 2020). Therefore, the379

maximum level of neighbor information included380

in the prompts is up to three. However, benefit-381

ing from the flexibility of natural language, our382

designed prompts can actually accommodate struc-383

tural information of any hop level. As for the latter384

two questions, there are two possible scenarios for385

each question, i.e., if or not to include the node or386

edge features in the prompt, and if or not to include387

the connecting route information in the prompt.388

We then denote an instruction prompt as T (·)389

such that I = T (v,A, {Nv}v∈V , {Ee}e∈E) is the390

input natural language sentence to LLM and v is391

the central node of this prompt. For instance, the392

simplest form of a graph description prompt con-393

taining at most 2-hops neighbor information is:394

T (v,A) ={v} is connected with

{[v2]v2∈Av
2
} within two hops.

395

while its most detailed form which includes node 396

features, edge features and corresponding interme- 397

diate paths should be: 398

T (v,A, {Nv}v∈V , {Ee}e∈E) = {(v,Nv)} is

connected with {[(v2,Nv2)]v2∈Av
2
}

within two hops through {[(v1,Nv1)]v1∈Av
1
}

and featured paths {[(E(v,v1), E(v1,v2))]

v1∈Av
1 , v2∈A

v1
1
}, respectively.

399

where Av
k represents the list of node v’s k-hop 400

neighbor nodes. Essentially, the above prompt 401

should contain all 2-hop paths with node and 402

edge features like (v,Nv)
E(v,v1)−→ (v1,Nv1)

E(v1,v2)−→ 403

(v2,Nv2) centering at node v. All our instruction 404

prompts are summarized in Appendix F. 405

3.3 Generative Instruction Tuning for Node 406

Classification 407

In prompt engineering (Li and Liang, 2021; Lester 408

et al., 2021; Shin et al., 2020) or in-context learning 409

(Dong et al., 2022), pretrained models are usually 410

frozen. Instruction Tuning (Wei et al., 2021; Chung 411

et al., 2022), however, directly conveys the require- 412

ments of downstream tasks to pretrained models by 413

fusing the original input data with task-specific in- 414

structional prompts under the framework of multi- 415

prompt training. This facilitates remarkably ef- 416

fective fine-tuning, especially when coupled with 417

human feedback (RLHF) (Ouyang et al., 2022). In- 418

struction Tuning has already become an indispens- 419

able technique for fine-tuning the most powerful 420

large language models. 421

In this paper, we introduce InstructGLM as 422

a multi-prompt instruction-tuning framework for 423

graph learning. Specifically, we employ a genera- 424

tive large language model with an encoder-decoder 425

or decoder-only architecture as the backbone, then 426

fuse all of our designed instruction prompts, which 427

are spanning at different hop levels with diverse 428

structural information, together as input to LLM, 429

enabling mutual enhancement among the instruc- 430

tions. By exclusively using natural language to 431

depict graph structures, we succinctly present the 432

graph’s geometry to the LLM and provide a pure 433

NLP interface for all graph-related tasks, make 434

them solvable through a unified pipeline in genera- 435

tive manner. Worth noting that we concentrate on 436

solving node classification task in this study. We 437

train InstructGLM to strictly generate the category 438
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label in natural language, and the prevalent Nega-439

tive Log-Likelihood (i.e. NLL) Loss in language440

modeling are selected as our objective function.441

Given G = (V,A, E, {Nv}v∈V , {Ee}e∈E) and442

a specific instruction prompt T ∈ {T (·)}, we de-443

note x and y as LLM’s input and target sentence,444

respectively. Then our pipeline can be formed as:445

Pθ (yj | x,y<j) = LLMθ (x,y<j) ,446

447
x = Concatenate(P; I;Q)448

449

Lθ = −
|y|∑
j=1

logPθ (yj | x,y<j)450

where I = T (v,A, {Nv}v∈V , {Ee}e∈E) is the451

graph structure description centering at node v ∈ V ,452

L denotes the NLL loss, P and Q are the task-453

specific instruction prefix and query. Specifically,454

for node classification, we design P and Q for node455

classification as follows: P = ‘Classify the central456

node into one of the following categories: [<All457

category>]. Pay attention to the multi-hop link re-458

lationships between the nodes.’ and Q = ‘Which459

category should {v} be classified as?’. More de-460

tails of the pipeline are depicted in Figure 2.461

Our InstructGLM actually shares essential simi-462

larities in mechanism with various GNNs, and thus463

covering their advantages. First, we mix prompts464

with diverse hop-level information together dur-465

ing training, which is akin to MixHop (Abu-El-466

Haija et al., 2019) in performing graph convo-467

lutions on subgraphs extracted at different hop468

levels. Second, Jumping Knowledge (Xu et al.,469

2018b) combines outcomes from different convolu-470

tion layers via jump connections, which is aligned471

with our prompts featuring intermediate informa-472

tion and high-hop-level neighbors. Additionally,473

due to LLM’s input length limit, similar to Graph-474

SAGE (Hamilton et al., 2017), we conduct neigh-475

bor sampling for the central node when filling the476

prompts to form a mini-batch training. This op-477

eration also resembles graph regularization tech-478

niques like DropEdge (Rong et al., 2019) for pre-479

venting over-smoothing (Chen et al., 2020a). Fur-480

thermore, compared to GNNs, our InstructGLM481

exhibits stronger expressive capabilities. Even a482

single graph description that contains intermediate483

paths and k-hop neighbor information is equiva-484

lent to a k-layer GNN in expressiveness. There-485

fore, InstructGLM can readily accommodate the486

inductive bias of graph tasks without any alterations487

on LLM’s architecture and pipeline. For instance,488

since our inputs are centralized graph descriptions 489

that directly exhibit the corresponding multi-hop 490

neighbors, self-attention (Vaswani et al., 2017) ap- 491

plied on such inputs can be seen as an advanced 492

weighted average aggregation mechanism of GATs 493

(Veličković et al., 2017; Li et al., 2021), facilitating 494

InstructGLM to effectively grasp different neigh- 495

bors’ varying importance to the central node. 496

3.4 Auxiliary Self-Supervised Link Prediction 497

Both SuperGAT (Kim and Oh, 2022) and DiffPool 498

(Ying et al., 2018) introduce auxiliary link predic- 499

tion task, thus successfully obtain better node rep- 500

resentations and performance for node or graph 501

classification, demonstrating that model’s compre- 502

hension of graph structure can be significantly en- 503

hanced by such an auxiliary task. Inspired by them, 504

also to remove the restriction that our instruction 505

prompts can only treat labeled training nodes as 506

central nodes in single-task semi-supervised learn- 507

ing, we introduce self-supervised link prediction 508

as a foundational auxiliary task for InstructGLM. 509

Given arbitrary hop level and central node, we ran- 510

domly select a neighbor or non-neighbor at this hop 511

level as the candidate. Then we instruct our model 512

to either discriminate whether there is a connec- 513

tion at this hop level between the central node and 514

the candidate node (discriminative prompt) or di- 515

rectly generate the correct neighbor in a generative 516

manner (generative prompt). 517

Given G = (V,A, E, {Nv}v∈V , {Ee}e∈E), the 518

pipeline of link prediction aligns exactly with node 519

classification. The only distinction lies in the 520

newly designed task-specific prefix and two dif- 521

ferent query templates for it. Specifically, we de- 522

sign P and Q for link prediction as follows: P = 523

‘Perform link prediction for the central node. Pay 524

attention to the multi-hop link relationships be- 525

tween the nodes.’, Qgenerative = ‘Which other 526

node will be connected to {v} within {h} hop?’ 527

and Qdiscriminative = ‘Will {ṽ} be connected to 528

{v} within {h} hop?’, where v is the central node, 529

ṽ is the candidate node and h is the specified hop 530

level. We enable arbitrary node to act as central 531

node via self-supervised link prediction and ensure 532

a multi-task multi-prompt framework. 533

4 Experiments 534

4.1 Experimental Setup 535

In this paper, we primarily utilize InstructGLM for 536

node classification, also conduct self-supervised 537
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link prediction as an auxiliary task. Specifically, we538

select the following three popular citation graphs:539

ogbn-arxiv (Hu et al., 2020), Cora, and PubMed540

(Yang et al., 2016), in which every node represents541

an academic paper on a specific topic, with its title542

and abstract included in raw text format. All of543

our experiments report test accuracy as our met-544

rics and employ the dataset’s default numerical545

node embedding to extend the LLM’s vocabulary546

by adding node-wise new tokens. Implementation547

details and elaborated dataset-specific statistics are548

summarized in Appendix C and D.549

4.2 Main Results550

Our results achieve single-model state-of-the-art551

performance, surpassing all single graph learners552

across all three datasets, including both representa-553

tive GNN models and graph Transformer models,554

which demonstrates the promising trend for large555

language models to serve as the foundation model556

for graph learning.557

4.2.1 ogbn-arxiv558

For the ogbn-arxiv, we adopt same dataset splits559

as in the OGB open benchmark (Hu et al., 2020),560

i.e. 54%/18%/28%. We select top-ranked GNNs

Method OGB GIANT

MLP 55.50 ± 0.23 73.06 ± 0.11
GAMLP 56.53 ± 0.16 73.35 ± 0.08
GraphSAGE 71.19 ± 0.21 74.35 ± 0.14
GCN 71.74 ± 0.29 73.29 ± 0.01
DeeperGCN 71.92 ± 0.16 –
ALT-OPT 72.76 ± 0.00 –
UniMP 73.11 ± 0.20 –
LEGNN 73.37 ± 0.07 –
GAT 73.66 ± 0.11 74.15 ± 0.05
AGDN 73.75 ± 0.21 76.02 ± 0.16
RvGAT 74.02 ± 0.18 75.90 ± 0.19
DRGAT 74.16 ± 0.07 76.11 ± 0.09

CoarFormer 71.66 ± 0.24 –
SGFormer 72.63 ± 0.13 –
Graphormer 72.81 ± 0.23 –
E2EG 73.62 ± 0.14 –

Flan-T5-base 73.51 ± 0.16 74.45 ± 0.11
Flan-T5-large 74.67 ± 0.08 74.80 ± 0.18
Llama-7b 75.70 ± 0.12 76.42 ± 0.09

Table 1: Results on ogbn-arxiv. We report accuracy
on GNNs (Top), Graph Transformers (Middle) and our
InstructGLM with different backbones (Bottom).

from the OGB Leaderboard1, including DRGAT, 561

RevGAT and etc., as the baselines (Zhang et al., 562

2022a; Hamilton et al., 2017; Kipf and Welling, 563

2016; Li et al., 2020; Han et al., 2023a; Shi et al., 564

2020; Yu et al., 2022a; Veličković et al., 2017; Sun 565

et al., 2020; Li et al., 2021; Zhang et al., 2023a). 566

Several most powerful Transformer-based single- 567

model graph learners like Graphormer are also con- 568

sidered as compared methods against our Instruct- 569

GLM. (Kuang et al., 2021; Wu et al., 2023; Ying 570

et al., 2021; Dinh et al., 2022) 571

We instruction-finetune Flan-T5 (Chung et al., 572

2022) and Llama-v1 (LoRA) (Touvron et al., 2023; 573

Hu et al., 2021) as the backbone for our In- 574

structGLM. The experimental results in Table 1 575

demonstrate that both models outperform all the 576

GNNs and Transformer-based methods. Particu- 577

larly, when using Llama-v1-7b as the backbone on 578

the OGB feature, our InstructGLM attains a 1.54% 579

improvement over the best GNN method and a 580

2.08% improvement over the best Transformer- 581

based method. Meanwhile, we also obtain new 582

SoTA performance on the GIANT feature. 583

4.2.2 Cora & PubMed 584

Method Cora PubMed

MixHop 75.65 ± 1.31 90.04 ± 1.41
GAT 76.70 ± 0.42 83.28 ± 0.12
Geom-GCN 85.27 ± 1.48 90.05 ± 0.14
SGC-v2 85.48 ± 1.48 85.36 ± 0.52
GraphSAGE 86.58 ± 0.26 86.85 ± 0.11
GCN 87.78 ± 0.96 88.90 ± 0.32
BernNet 88.52 ± 0.95 88.48 ± 0.41
FAGCN 88.85 ± 1.36 89.98 ± 0.54
GCNII 88.93 ± 1.37 89.80 ± 0.30
RevGAT 89.11 ± 0.00 88.50 ± 0.05
Snowball-V3 89.59 ± 1.58 91.44 ± 0.59
ACM-GCN+ 89.75 ± 1.16 90.96 ± 0.62

Graphormer 80.41 ± 0.30 88.24 ± 1.50
GT 86.42 ± 0.82 88.75 ± 0.16
CoarFormer 88.69 ± 0.82 89.75 ± 0.31

Llama-7b 87.08 ± 0.32 93.84 ± 0.25
Flan-T5-base 90.77 ± 0.52 94.45 ± 0.12
Flan-T5-large 88.93 ± 1.06 94.62 ± 0.13

Table 2: Results on Cora and PubMed. We report accu-
racy on GNNs (Top), Graph Transformers (Middle) and
our InstructGLM with different backbones (Bottom).

1https://ogb.stanford.edu/docs/leader_
nodeprop/
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Hop Info Link Prediction
ogbn-arxiv Cora PubMed

Llama-v1-7b Flan-T5-base Flan-T5-base

Multi-hop w/ 75.70% 90.77% 94.45%
Multi-hop w/o 75.37% 87.27% 94.35%

1-hop w/o 75.25% 86.90% 94.30%
Structure-Free-Tuning w/o 74.97% 75.65% 94.22%

Table 3: Ablation Study Results. In particular, since Cora is equipped with the sparsest semantic feature (Bag of
Words) among the three datasets (ogbn-arxiv with Skip-gram and PubMed with TF-IDF.), we can observe that
introducing multi-hop structural information provides the greatest performance gain on Cora.

In terms of the compared methods for Cora and585

PubMed datasets (He et al., 2023), we select those586

top-ranked GNNs from the two corresponding587

benchmarks2 3 with 60%/20%/20% train/val/test588

splits, including Snowball, RevGAT and etc. (Abu-589

El-Haija et al., 2019; Pei et al., 2020; Wu et al.,590

2019; He et al., 2021; Bo et al., 2021; Chen et al.,591

2020b; Luan et al., 2022). Besides, the three most592

powerful Transformer-based single-model graph593

learners on these 2 benchmarks, i.e., CoarFormer,594

Graphormer, and GT (Dwivedi and Bresson, 2020),595

are also considered.596

We instruction-finetune Flan-T5 and Llama-v1597

(LoRA) as the backbone for our InstructGLM.598

The experimental results in Table 2 show that599

our InstructGLM outperforms all the GNNs and600

Transformer-based methods. Specifically, Instruct-601

GLM achieves a 1.02% improvement over the best602

GNN method and a 2.08% improvement over the603

best Transformer-based method on Cora dataset,604

while also achieves a 3.18% improvement over the605

best GNN and a 4.87% improvement over the best606

Transformer-based method on PubMed dataset.607

4.3 Ablation Study608

In our experiments, two crucial operations that609

contributes to the remarkable performance of In-610

structGLM in node classification are multi-prompt611

instruction-tuning, which provides multi-hop graph612

structure information to the LLM, and the utiliza-613

tion of self-supervised link prediction as an aux-614

iliary task. To validate the impact of the two key615

components on model performance, we conduct ab-616

lation experiments on all three datasets, the results617

are shown in Table 3.618

Regarding the Hop Info column, Structure-Free-619

Tuning indicates fine-tuning the model on titles and620

abstracts of the nodes. While 1-hop and Multi-hop621

mean that we utilize prompts that merely include622

2https://paperswithcode.com/sota/
node-classification-on-cora-60-20-20-random

3https://paperswithcode.com/sota/
node-classification-on-pubmed-60-20-20-random

information from 1-hop neighbors and prompts that 623

include information from neighbors with higher 624

hop levels, respectively. The experimental results 625

show that incorporating multi-hop information and 626

including link prediction task can both enhance the 627

model’s performance for node classification. 628

4.4 Instruction Tuning at Low Label Ratio 629

In previous experiments, our data splits all ensured 630

a relatively high ratio of labeled training nodes. To 631

further investigate the robustness of our Instruct- 632

GLM, we conduct experiments on the PubMed 633

dataset using its another widely-used splits with 634

extremely low label ratio. Specifically, we have 635

only 60 training nodes available in this setting thus 636

the label ratio is 0.3%. Despite the challenge, our 637

InstructGLM successfully achieve new SoTA per- 638

formance with 89.6% test accuracy on the corre- 639

sponding leaderboard4. Detailed comparison with 640

all competitive baselines and more results analysis 641

under this setting are summarized in Appendix B 642

5 Conclusions 643

To the best of our knowledge, this paper is the 644

first one that purely represents graph structure via 645

natural language description then further perform 646

instruction-tuning on generative LLMs to effec- 647

tively solve graph learning problems, demonstrat- 648

ing the huge potential of LLMs as the founda- 649

tional model for graphp machine learning. Our 650

InstructGLM outperforms all single-model GNNs 651

and Transformer-based graph learners on ogbn- 652

arxiv, Cora, and PubMed datasets. Overall, In- 653

structGLM provides a powerful natural language 654

processing interface for graph machine learning, 655

with Transformer-based generative LLM and nat- 656

ural language as the driving force, it further con- 657

tributes to the trend of unifying foundational model 658

architecture and pipeline across multiple areas for 659

the AGI pursuit in the future. 660

4https://paperswithcode.com/sota/
node-classification-on-pubmed-with-public
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Limitations661

The primary limitation of our InstructGLM lies in662

the input token limit of the large language model663

(LLM). For example, Flan-T5 can only accept664

a maximum sentence input length of 512, while665

Llama allows for 2048. When dealing with large-666

scale graphs, the instruction prompts we construct667

may not encompass all high-order neighbors within668

a single natural language sentence due to the lim-669

itations of sentence length. The simplest solution670

to this problem is to construct multiple graph de-671

scription sentences for each training node (central672

node) to enumerate all possible neighbors at corre-673

sponding hop level. However, this leads to a rapid674

increase in the training data volume. In this work,675

learning from GraphSAGE (Hamilton et al., 2017),676

we repeatedly perform random sampling from the677

multi-hop neighbor lists of the central node until678

the sentence length reaches the input token limit679

to mitigate this issue. Despite our implementation680

achieving impressive results, we believe that im-681

proved neighbor sampling and selection strategies682

can help InstructGLM better address graph-related683

tasks, especially in the context of applications in-684

volving extremely large-scale graphs like knowl-685

edge graphs (Pan et al., 2023). Also, many valu-686

able works about employing InstructGLM beyond687

node classification and link prediction are still un-688

der exploration, more potential future directions689

are discussed in Appendix E.690

Ethics Statement691

Our method is proposed to provide a powerful nat-692

ural language processing interface for graph ma-693

chine learning tasks. Under normal and appropriate694

usage circumstances, there is no obvious evidence695

or tendency that our method will lead to significant696

negative societal impacts.697
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A Detailed Pipeline Illustration 1168

Further detailed pipeline is depicted in Figure 2. 1169

B Instruction Tuning at Low Label Ratio 1170

Method Accuracy

GraphSAGE 76.8 ± 0.9
GAT 79.0 ± 1.4
Snowball 79.2 ± 0.3
GCN 80.4 ± 0.4
SuperGAT 81.7 ± 0.5
ALT-OPT 82.5 ± 1.7
GRAND 82.7 ± 0.6
SAIL 83.8 ± 0.1

ANS-GT 79.6 ± 1.0
NodeFormer 79.9 ± 1.0
SGFormer 80.3 ± 0.6

Llama-7b 85.1 ± 0.6
Flan-T5-base 88.2 ± 0.3
Flan-T5-large 89.6 ± 0.4

Table 4: Results on PubMed with 60 training nodes. We
report accuracy on GNNs (Top), Graph Transformers
(Middle) and our InstructGLM with different backbones
(Bottom).

To further investigate the scalability and robust- 1171

ness of our InstructGLM, we conduct experiments 1172
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Figure 2: Illustration of InstructGLM. We use graph prompts to describe each node’s multi-hop connectivity and
meta features in a scalable mini-batch manner, conveying graph structure concisely and intuitively by pure natural
language for learning. Subsequently, we instruct LLM to generate responses for various graph learning tasks in a
unified language modeling pipeline. We also expand LLM’s vocabulary by creating a new and unique token for
every node. More specifically, we set the graph’s inherent node feature vectors (e.g. BoW, OGB) as the embedding
for these new tokens (depicted as red vectors in the figure) and employ LLM’s pre-trained embedding (depicted as
blue vectors in the figure) for natural language tokens.

on the PubMed dataset using its another widely-1173

used splits with extremely low label ratio. Specifi-1174

cally, we have only 60 training nodes available in1175

this setting thus the label ratio is 0.3%.1176

We consider top-ranked GNNs from the corre-1177

sponding leaderboard5, including SAIL, ALT-OPT,1178

GRAND etc., as the GNN baselines. (Luan et al.,1179

2019; Kim and Oh, 2022; Feng et al., 2020; Han1180

et al., 2023a; Yu et al., 2022b) We also include the1181

three most outstanding Transformer-based graph1182

learners under this dataset setting, i.e. ANS-GT,1183

NodeFormer and SGFormer. (Zhang et al., 2022b;1184

Wu et al., 2022, 2023) We then instruction-finetune1185

Flan-T5 and Llama as the backbone for our Instruct-1186

GLM. The experimental results in Table 4 demon-1187

strate that InstructGLM outperforms all the GNNs1188

methods with an improvement of 5.8% against1189

the best GNN baseline, while also surpassing the1190

best Transformer-based model by 9.3%, success-1191

fully achieve new SoTA performance on the leader-1192

board.1193

C Implementation Details1194

We employ a multi-prompt instruction-tuning1195

framework for all of our experiments and report1196

test accuracy as our metric. Also, we employ a1197

simple MLP over the default feature embedding1198

of the node tokens to align their dimension with1199

the natural language word token embeddings. All1200

of all our experiments are conducted on four 40G1201

5https://paperswithcode.com/sota/
node-classification-on-pubmed-with-public

A100 GPUs. 1202

For ogbn-arxiv dataset, we adopt the same 1203

dataset splits as in the OGB open benchmark (Hu 1204

et al., 2020), which is 54%/18%/28%. It takes 3.5 1205

hours per epoch for Flan-T5-Large and 6 hours per 1206

epoch for Llama-7b during training. For Cora and 1207

PubMed datasets, we use the version that contains 1208

raw text information proposed in (He et al., 2023) 1209

and employ a 60%/20%/20% train/val/test splits for 1210

our experiments. It takes about 1.5 hours per epoch 1211

for Flan-T5-Large (770M) and 2.5 hours per epoch 1212

for Llama-v1-7b-LoRA (18M) during training. 1213

To investigate InstructGLM’s performance un- 1214

der low-label-ratio training setting, following Yang 1215

et al. (2016), we conduct further experiments on 1216

the PubMed dataset with the fixed 20 labeled train- 1217

ing nodes per class at a 0.3% label ratio, and it 1218

takes about 5 minutes per epoch for Flan-T5-Large 1219

and 15 minutes per epoch for Llama-v1-7b during 1220

training due to limited labeled data. 1221

For both normal setting and low-label-ratio set- 1222

ting, the inference time is about 35ms on Flan-T5- 1223

Large and 450ms on Llama-7b per graph prompt 1224

sentence. 1225

In terms of hyper-parameter selection, we per- 1226

form grid search within the specified range for the 1227

following parameters: (learning rate: 1e-5, 3e-5, 1228

8e-5, 1e-4, 3e-4, 1e-3), (batch size: 32, 64, 128, 1229

256, 512). We employed the AdamW (Loshchilov 1230

and Hutter, 2017) optimizer with a weight decay at 1231

0. All experiments are conducted with 4 epochs. 1232

14
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Dataset #Node #Edge #Class Default Feature #Features

ogbn-arxiv 169,343 1,166,243 40 Skip-gram / GIANT 128 / 768
Cora 2,708 5,429 7 Bag of Words 1433

PubMed 19,717 44,338 3 TF-IDF 500

Table 5: Dataset Statistics

D Dataset Statistics1233

The detailed statistics of the datasets are shown in1234

Table 5.1235

E Detailed Discussions on Future Work1236

In this paper, we conduct extensive experiments1237

on Text-Attributed Graphs (TAG) to showcase the1238

powerful capabilities of our proposed InstructGLM1239

in solving graph machine learning problems. Our1240

instruction prompts designed to describe graph1241

structures in natural language demonstrate high1242

generality and scalability, making them applicable1243

to almost all types of graphs. Potential valuable fu-1244

ture work can be explored along three dimensions:1245

• For TAGs, our experiments only used the de-1246

fault OGB-feature embeddings. Future work can1247

consider using more advanced TAG-related em-1248

bedding features such as LLM-based features1249

like TAPE (He et al., 2023) and SimTeG (Duan1250

et al., 2023). Additionally, leveraging LLM for1251

Chain-of-Thought (Wei et al., 2022), structure in-1252

formation summary, and other data augmentation1253

techniques to generate more powerful instruction1254

prompts will be a promising research direction1255

for graph language models.1256

• InstructGLM can be integrated into frameworks1257

like GAN and GLEM (Goodfellow et al., 2014;1258

Zhao et al., 2023) for multi-model iterative train-1259

ing, or utilize off-the-shelf GNNs for knowl-1260

edge distillation (Mavromatis et al., 2023). Also,1261

classic graph machine learning techniques like1262

label reuse, Self-Knowledge Distillation (Self-1263

KD), Correct & Smooth can further enhance the1264

model’s performance.1265

• Benefiting from the powerful expressive ability1266

of natural language and the highly scalable de-1267

sign of our instruction prompts, InstructGLM can1268

be easily extended within a unified generative lan-1269

guage modeling framework to various kinds of1270

graphs, addressing a wide range of graph learning1271

problems. For instance, our designed instruction1272

prompts can be further used for link prediction1273

and inductive node classification tasks. And only 1274

with slight modifications to our prompts, tasks 1275

such as graph classification, intermediate node 1276

& path prediction and even relation-based ques- 1277

tion answering tasks in knowledge graphs with 1278

rich edge features are potentially to be effectively 1279

deployed. 1280

F Instruction Prompts 1281

In this appendix, we present all our designed in- 1282

struction prompts. It is worth noting that we fol- 1283

low the following conventions when numbering the 1284

prompts: 1285

• The length of each prompt number is 4. 1286

• The first digit represents the task index, where 1287

1 represents the node classification task and 2 1288

represents the link prediction task. 1289

• The second digit represents whether node fea- 1290

tures or edge features (such as text information) 1291

other than numerical feature embedding are used 1292

in the prompt. 1 means not used and 2 means 1293

used. 1294

• The third digit represents the maximum hop or- 1295

der corresponding to the structural information 1296

considered in this prompt. 1 represents only the 1297

1-hop neighbors are included, while 2 and 3 rep- 1298

resent the structural information including 2-hop 1299

and 3-hop neighbors, respectively. 1300

• The fourth digit represents whether the interme- 1301

diate node information (i.e. the path) in the high- 1302

order connection is considered in this prompt. If 1303

the digit is even, it means that the intermediate 1304

node is considered, while an odd digit indicates 1305

otherwise. 1306

• Specially, in node classification task, we de- 1307

signed a graph-structure-free prompt and num- 1308

bered it as 1-0-0-0. 1309
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F.1 Node Classification1310

Task-specific prefix:1311

Classify the paper according to its topic into
one of the following categories:{{All Category
List}}.\n Node represents academic paper with a
specific topic, link represents a citation
between the two papers. Pay attention to the
multi-hop link relationship between the nodes.

Prompt ID: 1-1-1-11312

Input template:

{{central node}} is connected with {{1-hop
neighbor list}} within one hop. Which category
should {{central node}} be classified as?

Target template: {{category}}

Prompt ID: 1-1-2-11313

Input template:

{{central node}} is connected with {{2-hop
neighbor list}} within two hops. Which category
should {{central node}} be classified as?

Target template: {{category}}

Prompt ID: 1-1-2-21314

Input template:

{{central node}} is connected with {{2-hop
neighbor list}} within two hops through {{the
corresponding 1-hop intermediate node list}},
respectively. Which category should {{central
node}} be classified as?

Target template: {{category}}

Prompt ID: 1-1-3-11315

Input template:

{{central node}} is connected with {{3-hop
neighbor list}} within three hops. Which category
should {{central node}} be classified as?

Target template: {{category}}

Prompt ID: 1-1-3-21316

Input template:

{{central node}} is connected with {{3-hop
neighbor list}} within three hops through {{the
corresponding 2-hop intermediate path list}},
respectively. Which category should {{central
node}} be classified as?

Target template: {{category}}

Prompt ID: 1-2-1-11317

Input template:

({{central node}},{{text feature}}) is connected
with {{1-hop neighbor list attached with text
feature}} within one hop. Which category should
({{central node}},{{text feature}}) be classified
as?

Target template: {{category}}

Prompt ID: 1-2-2-1 1318

Input template:

({{central node}},{{text feature}}) is connected
with {{2-hop neighbor list attached with text
feature}} within two hops. Which category should
({{central node}},{{text feature}}) be classified
as?

Target template: {{category}}

Prompt ID: 1-2-2-2 1319

Input template:

({{central node}},{{text feature}}) is connected
with {{2-hop neighbor list attached with text
feature}} within two hops through {{the
corresponding 1-hop intermediate node list
attached with text feature}}, respectively.
Which category should ({{central node}},{{text
feature}}) be classified as?

Target template: {{category}}

Prompt ID: 1-2-3-1 1320

Input template:

({{central node}},{{text feature}}) is connected
with {{3-hop neighbor list attached with text
feature}} within three hops. Which category
should ({{central node}},{{text feature}}) be
classified as?

Target template: {{category}}

Prompt ID: 1-2-3-2 1321

Input template:

({{central node}},{{text feature}}) is connected
with {{3-hop neighbor list attached with text
feature}} within three hops through {{the
corresponding 2-hop intermediate path list
attached with text feature}}, respectively.
Which category should ({{central node}},{{text
feature}}) be classified as?

Target template: {{category}}

Prompt ID: 1-0-0-0 1322

Input template:

{{central node}} is featured with its {{text
feature}}. Which category should {{central node}}
be classified as?

Target template: {{category}}
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F.2 Link Prediction1323

Task-specific prefix:1324

Perform Link Prediction for the central node:\n
Node represents academic paper with a specific
topic, link represents a citation between the two
papers. Pay attention to the multi-hop link
relationship between the nodes.

Prompt ID: 2-1-1-11325

Input template:

{{central node}} is connected with {{1-hop
neighbor list}} within one hop. Will {{candidate
node}} be connected with {{central node}} within
one hop?

Target template: {{yes/no}}

Prompt ID: 2-1-1-21326

Input template:

{{central node}} is connected with {{1-hop
neighbor list}} within one hop. Which other node
will be connected to {{central node}} within one
hop?

Target template: {{node_id}}

Prompt ID: 2-1-2-11327

Input template:

{{central node}} is connected with {{2-hop
neighbor list}} within two hops. Will {{candidate
node}} be connected to {{central node}} within
two hops?

Target template: {{yes/no}}

Prompt ID: 2-1-2-21328

Input template:

{{central node}} is connected with {{2-hop
neighbor list}} within two hops through {{the
corresponding 1-hop intermediate node list}},
respectively. Will {{candidate node}} be
connected to {{central node}} within two hops
through {{the specified 1-hop intermediate
node}}?

Target template: {{yes/no}}

Prompt ID: 2-1-2-31329

Input template:

{{central node}} is connected with {{2-hop
neighbor list}} within two hops. Which other node
will be connected to {{central node}} within two
hops?

Target template: {{node_id}}

Prompt ID: 2-1-2-41330

Input template:

{{central node}} is connected with {{2-hop
neighbor list}} within two hops through {{the
corresponding 1-hop intermediate node list}},
respectively. Which other node will be connected
to {{central node}} within two hops through {{the
specified 1-hop intermediate node}}?

Target template: {{node_id}}

Prompt ID: 2-1-3-1 1331

Input template:

{{central node}} is connected with {{3-hop
neighbor list}} within three hops. Will
{{candidate node}} be connected with {{central
node}} within three hops?

Target template: {{yes/no}}

Prompt ID: 2-1-3-2 1332

Input template:

{{central node}} is connected with {{3-hop
neighbor list}} within three hops through {{the
corresponding 2-hop intermediate path list}},
respectively. Will {{candidate node}} be
connected to {{central node}} within three hops
through {{the specified 2-hop intermediate
path}}?

Target template: {{yes/no}}

Prompt ID: 2-1-3-3 1333

Input template:

{{central node}} is connected with {{3-hop
neighbor list}} within three hops. Which other
node will be connected to {{central node}} within
three hops?

Target template: {{node_id}}

Prompt ID: 2-1-3-4 1334

Input template:

{{central node}} is connected with {{3-hop
neighbor list}} within three hops through {{the
corresponding 2-hop intermediate path list}},
respectively. Which other node will be connected
to {{central node}} within three hops through
{{the specified 2-hop intermediate path}}?

Target template: {{node_id}}

Prompt ID: 2-2-1-1 1335

Input template:

({{central node}},{{text feature}}) is connected
with {{1-hop neighbor list attached with text
feature}} within one hop. Will ({{candidate
node}},{{candidate text feature}}) be connected
to ({{central node}},{{text feature}}) within
one hop?

Target template: {{yes/no}}
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Prompt ID: 2-2-1-21336

Input template:

({{central node}},{{text feature}}) is connected
with {{1-hop neighbor list attached with text
feature}} within one hop. Which other node will
be connected to ({{central node}},{{text
feature}}) within one hop?

Target template: {{node_id}}

Prompt ID: 2-2-2-11337

Input template:

({{central node}},{{text feature}}) is connected
with {{2-hop neighbor list attached with text
feature}} within two hops. Will ({{candidate
node}},{{candidate text feature}}) be connected
to ({{central node}},{{text feature}}) within
two hops?

Target template: {{yes/no}}

Prompt ID: 2-2-2-21338

Input template:

({{central node}},{{text feature}}) is connected
with {{2-hop neighbor list attached with text
feature}} within two hops through {{the
corresponding 1-hop intermediate node list
attached with text feature}}, respectively. Will
({{candidate node}},{{candidate text feature}})
be connected to ({{central node}},{{text
feature}}) within two hops through ({{the
specified 1-hop intermediate node attached with
text feature}})?

Target template: {{yes/no}}

Prompt ID: 2-2-2-31339

Input template:

({{central node}},{{text feature}}) is connected
with {{2-hop neighbor list attached with text
feature}} within two hops. Which other node will
be connected to ({{central node}},{{text
feature}}) within two hops?

Target template: {{node_id}}

Prompt ID: 2-2-2-41340

Input template:

({{central node}},{{text feature}}) is connected
with {{2-hop neighbor list attached with text
feature}} within two hops through {{the
corresponding 1-hop intermediate node list
attached with text feature}}, respectively.
Which other node will be connected to ({{central
node}},{{text feature}}) within two hops through
({{the specified 1-hop intermediate node attached
with text feature}})?

Target template: {{node_id}}

Prompt ID: 2-2-3-1 1341

Input template:

({{central node}},{{text feature}}) is connected
with {{3-hop neighbor list attached with text
feature}} within three hops. Will ({{candidate
node}},{{candidate text feature}}) be connected
with ({{central node}},{{text feature}}) within
three hops?

Target template: {{yes/no}}

Prompt ID: 2-2-3-2 1342

Input template:

({{central node}},{{text feature}}) is connected
with {{3-hop neighbor list attached with text
feature}} within three hops through {{the
corresponding 2-hop intermediate path list
attached with text feature}}, respectively. Will
({{candidate node}},{{candidate text feature}})
be connected to ({{central node}},{{text
feature}}) within three hops through {{the
specified 2-hop intermediate path attached with
text feature}}?

Target template: {{yes/no}}

Prompt ID: 2-2-3-3 1343

Input template:

({{central node}},{{text feature}}) is connected
with {{3-hop neighbor list attached with text
feature}} within three hops. Which other node
will be connected to ({{central node}},{{text
feature}}) within three hops?

Target template: {{node_id}}

Prompt ID: 2-2-3-4 1344

Input template:

({{central node}},{{text feature}}) is connected
with {{3-hop neighbor list attached with text
feature}} within three hops through {{the
corresponding 2-hop intermediate path list
attached with text feature}}, respectively.
Which other node will be connected to ({{central
node}},{{text feature}}) within three hops
through {{the specified 2-hop intermediate path
attached with text feature}}?

Target template: {{node_id}}
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