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ABSTRACT

The proliferation of realistic deepfakes has driven the development of numerous
benchmark datasets to support detection research. Despite their increasing vol-
ume and diversity, no prior effort has systematically consolidated these resources
into a unified framework for large-scale model training, nor has there been a mas-
sively pre-trained model tailored to deepfake detection. In this work, we intro-
duce MMI-DD (Multi-modal Multi-type Integrated Deepfake Dataset), a large-
scale resource containing 3.6 million facial images, the largest collection to date.
It unifies diverse benchmarks with uniform preprocessing, and further provides
fine-grained annotations across four deepfake types, as well as VLM-generated
descriptions capturing both facial and environmental attributes for each image. By
leveraging this comprehensive multi-modal dataset, we construct a foundational
deepfake knowledge space that empowers our model to discern a broad spectrum
of synthetic media. Our method, SD? (Scalable Deepfake Detection), refines
CLIP for deepfake detection, optimizing image-text classification with rich, type-
specific labels. We enhance this with intermediate visual features capturing low-
level cues and text label separation loss for stability. We further leverage VLM-
generated descriptions and contrastive learning to expand the scope of forgery
knowledge, reducing overfitting and enhancing generalization. Extensive experi-
ments on challenging deepfake datasets and AIGC benchmark demonstrate the ef-
fectiveness, scalability, and real-world applicability of our approach. Our dataset
and code will be available at https://anonymous.4open.science/r/

SDD/.

1 INTRODUCTION

Over the past decade, significant advancements
in deep learning have enabled the creation of
highly realistic synthetic media, often mis-
used for malicious purposes (Patrini, 2019;
Donie, 2019; Rachel & Donie, 2019; Romano,
2019). The proliferation of user-friendly, open-
access deepfake tools (DeepFacelab, 2023;
FaceSwap, 2016; Siarohin et al., 2019) has
further exacerbated and accelerated the rapid
spread of such content across the digital land-
scape. This trend has raised profound societal
concerns regarding its implications for secu-
rity, privacy, and trust in digital media (Federal
Bureau of Investigation (FBI), 2022; Li et al.,
2022). Consequently, detecting deepfake me-
dia has emerged as a critical challenge in com-
puter vision, necessitating the development of
robust solutions supported by large-scale re-
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Figure 1: Scalability and goal of our approach.
(Left) As training data grows, baseline detectors
reach genflimits and saturate, unable to exploit larger
datasets, while our SD? steadily improves detection
performance, overcoming these constraints. (Right)
SD? aims to forge a foundational deepfake knowl-
edge space that effectively leverages large-scale, di-
verse datasets.

sources (Yan et al., 2024; Dolhansky et al., 2020).

Researchers have actively pursued the development of robust deepfake detection models, spurred
by the emergence of deep learning. These methods scrutinize various dimensions of synthesis ar-
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tifacts, such as spatial inconsistencies (Nguyen et al., 2019; Le & Woo, 2023; Tariq et al., 2021),
frequency-domain irregularities (Qian et al., 2020; Song et al., 2022; Le & Woo, 2022), and tempo-
ral anomalies (Wang et al., 2023b; Zheng et al., 2021; Gu et al., 2021), and perceptually trace those
artifacts (Tan et al., 2023; Lin et al., 2023). In parallel, worldwide research groups have developed
forensic datasets to support both the training and evaluation of detectors, encompassing enterprise-
led efforts (Dolhansky et al., 2020; Dufour & Gully, 2019; Kwon et al., 2021), as well as academic
contributions (Rossler et al., 2019; Cho et al., 2023; Yan et al., 2024). Nevertheless, most prior
work (Zhao et al., 2021; Wang et al., 2023b; Zheng et al., 2021; Shiohara & Yamasaki, 2022; Ni
et al., 2022; Cao et al., 2022; Dong et al., 2023; Dat et al., 2024) adheres to conventional practices,
training on a single dataset (e.g., FaceForensics++) and validating on others (e.g., DFDC). However,
such training paradigm poses three fundamental limitations: (i) the model sees only a narrow range
of forensic artifacts, restricting its ability to detect more advanced manipulations; (ii) it becomes
biased toward the source dataset, reducing robustness on unseen data with varying demographic
groups, capture conditions, or post-processing; and (iii) a single-dataset training setup conceals the
model’s limitations in heterogeneous contexts and misleads about its practical applicability where
training data naturally arise from multiple sources. Hence, there is an urgent need to leverage the full
spectrum of available resources to develop detectors that enhance both robustness and knowledge,
establishing practical benchmarks and applicability in real-world scenarios.

Nevertheless, training models on large-scale, heterogeneous datasets remains challenging due to dis-
tributional shifts and the risk of poor generalization. To explore this, we investigate three CLIP (Rad-
ford et al., 2021)-adapted baselines commonly used for deepfake detection as illustrated in Fig. 1
(left). Each model is progressively trained on our large-scale dataset (Sec. 3), scaling from 100K to
3M images sourced from 11 distinct datasets. Models are then evaluated on cross-domain bench-
marks (see Sec. 5.2.1). Surprisingly, even with these state-of-the-art (SOTA) CLIP adaptation meth-
ods, we observe a notable performance decline as training data size increases. This finding highlights
the difficulty of maintaining generalization across massive, diverse data, and motivates our proposed
approach. Our method directly addresses these limitations through multi-modal supervision with
carefully designed training objectives.

In this research, we propose a novel CLIP-based visual-language learning strategy for deepfake
detection that unifies representations across diverse deepfake datasets with varying distributions,
dubbed SD? (Scalable Deepfake Detection). Our approach consolidates multiple datasets, incorpo-
rating a broad spectrum of forgery knowledge. To this end, we construct MMI-DD (Multi-modal
Multi-type Integrated Deepfake Dataset) by integrating a broad range of deepfake sources. Our
dataset has three key features: (i) it incorporates diverse sources and manipulation types with uni-
form pre-processing; (ii) each image is meticulously annotated into one of five types; and (iii) each
image is paired with VLM-based text descriptions capturing facial attributes and environmental con-
text, resulting in a large-scale multi-modal dataset for unified visual-language learning. Leveraging
this dataset, our model builds a comprehensive knowledge base (Fig. 1 (right)).

We first propose Cross-Layer Attention Module (CLAM), which fuses visual features from the
final and intermediate layers of CLIP. It captures multi-level forgery cues to support our learning
strategies: classification and contrastive learning. For classification, we leverage type-specific text
labels matched to images, enabled by our detailed annotations. Using these labels, we introduce
our Fine-Grained Image-Text Classification Loss that distinguishes real from four forgery types
in the embedding space, extending the detector’s knowledge beyond a binary decision. Also, we
add Text Label Separation Loss to stabilize training by explicitly separating text label embeddings
associated with each type. Moreover, we propose Dual Image-Text Contrastive Loss, which aligns
each image with two types of VLM-generated descriptions to enhance semantic-visual coherence.
This objective mitigates overfitting to dataset-specific artifacts arising from solely relying on cross-
entropy loss, as observed by Wang et al. (2024b) and Sun et al. (2023).

Finally, we conduct extensive experiments to validate our SD? on intra- and cross-domain datasets
from popular benchmarks. We show that our model accommodates a broader range of training data
and achieves superior generalization performance on challenging real-world datasets. Additionally,
we demonstrate that the CLIP image encoder, fine-tuned with our strategies, achieves SOTA results
on non-facial AI-Generated Content (AIGC) benchmark, highlighting its applicability.

Our main contributions are summarized as follows: (i) we introduce MMI-DD, a multi-modal inte-
grated dataset by collecting deepfake datasets annotated with five categories, along with two types
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of text descriptions, enabling effective utilization of a broad range of resources for training. By
releasing MMI-DD, we provide the community with a large-scale, multi-modal resource, fostering
broader exploration and study in deepfake detection; (ii) we propose SD?, a novel visual-language
learning framework that not only captures rich semantic attributes through textual information but
also demonstrates unprecedented scalability, consistently improving with data volume, unlike prior
methods that saturate or degrade; and (iii) we demonstrate that our approach outperforms existing
SOTA baselines on both real-world deepfake benchmarks and AIGC detection benchmark.

2 RELATED WORK

2.1 CONVENTIONAL DEEPFAKE DETECTION

With the advent of deep learning, CNN-based models (He et al., 2016; Chollet, 2017; Tan & Le,
2019) and Transformer-based architectures (Vaswani et al., 2017) have dominated the field of face
forensics detection, leveraging large-scale datasets to enhance classification performance. Many
approaches improve generalization to unseen benchmark datasets through architectural innova-
tions (Rossler et al., 2019; Zhao et al., 2021; Zheng et al., 2021) and augmentation strategies (Sh-
iohara & Yamasaki, 2022; Dat et al., 2024). However, most studies (Zhao et al., 2021; Wang et al.,
2023b; Zheng et al., 2021; Shiohara & Yamasaki, 2022; Ni et al., 2022; Cao et al., 2022; Dong et al.,
2023; Dat et al., 2024) adhere to a conventional paradigm, training on a single dataset and validating
on others. While methodologically advanced, this approach limits the diversity of knowledge mod-
els can acquire and their practical utility due to constrained training data. To address this challenge,
several works have expanded training data volume (Lai et al., 2024; Amin et al., 2023) by integrating
multiple benchmark datasets, yet these efforts remain limited by the scope and modality of available
deepfake datasets.

2.2 DEEPFAKE DETECTION VIA MULTI-MODAL MODELS

The rapid progress of Vision-Language Models (VLMs) has demonstrated impressive visual under-
standing and natural language interaction capabilities. Particularly, CLIP (Radford et al., 2021) has
emerged as a promising foundation model for deepfake detection (Ojha et al., 2023), which lever-
ages its frozen image embeddings for classification. Subsequent studies (Baraldi et al., 2024; Koutlis
& Papadopoulos, 2024; Yan et al., 2025a; Cui et al., 2024) also utilize the frozen CLIP encoder, fo-
cusing on extracting fine-grained forgery cues suitable for deepfake detection tasks. Recent research
has expanded the use of CLIP to improve generalization by incorporating not only its visual part but
also its textual part (Wu et al., 2023; Khan & Dang, 2024). Further extending beyond simple text
labels, natural language in incorporated to provide detailed supervision for CLIP fine-tuning (Sun
et al., 2023), and class-aware deepfake classification objectives are introduced through prompt de-
sign (Wang et al., 2024b). Despite these advancements, most studies still adhere to the traditional
single-dataset training paradigm, failing to fully exploit the scalability of pre-trained models from
a data-centric perspective. In this work, we propose a methodology that integrates heterogeneous
training datasets, harnessing the capacity of the CLIP for generalizable deepfake detection.

3 LARGE-SCALE DEEPFAKE DETECTION DATASET

3.1 DATASET COLLECTION

We collect and preprocess diverse deepfake benchmark datasets to facilitate joint training across
multiple datasets, which are summarized in Tab. 1. The recently introduced DF40 (Yan et al., 2024)
known for its extensive data diversity, has primarily been used for evaluation. In contrast, we are the
first to leverage all training sets from DF40 for model training, integrating them with six additional
popular deepfake datasets: DFF (Song et al., 2023), DFFD (Dang et al., 2019), DFDCP (Dolhansky
et al., 2020), KoDF (Kwon et al., 2021), FF++ (c40) (Rossler et al., 2019), and TIMIT (Korshunov
& Marcel, 2018) (including high-quality (HQ) and low-quality (LQ) variants). To balance the ratio
of real and fake images, we further incorporate four additional real datasets: CelebA (Liu et al.,
2015), CelebA-HQ (Karras et al., 2017), CelebV-HQ (Zhu et al., 2022), and FFHQ (Karras et al.,
2019). This results in a large-scale facial image dataset comprising a total of 3.6 million images.
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Table 1: Summary of our integrated dataset, MMI-DD, includ- & 3 6mMulti-modal Dataset

ing the numbers of real/fake images and their type annotations. Dataset: Colaborative-Diffusion
Dataset | Forgery Types | Real Images Fake Images |  Total

Source: CelebA

DF40 FS, FR, EFS, FE 77,200 1,613,000 | 1,690,200
DFF EFS 24,200 57,500 81,700 Type: GO EE)
DFFD FE 20,000 136,000 156,000 Face: 7 3 o Db Bt )
DFDCP FS 11’700 38’800 50’500 [ ace: woman Wi alr skin, wavy blonde hair, and ... J
KoDF FS 11,500 28,200 39,700 ‘ i A blurred bluish-gray background with ... J
FF++ (c40) FS, FR 32,000 160,000 192,000
TIMIT (LQ) FS _ 10’240 107240 Human-Annotated Q VLM-Generated
TIMIT (HQ) FS . 10,240 10,240 r J
CelebA - 202,600 - 202,600 E}h VLM Prompts
CelebA-HQ - 30,000 - 30,000 Ql. Describe the face including age, gender, expression, ...
g;ﬁgV_HQ - 1’03(1)’(1)88 : 1’03(1)’(1)88 Q2. Describe the environment including background, ...
Overall | - | 1530300  2,053980 | 3,584,280 Figure 2: Integrated dataset annotation

details.

All deepfake datasets are preprocessed in a consistent manner by cropping face regions. Dataset and
preprocessing details are provided in Sec. A of the Appendix.

Categorical Annotation with Text Augmentation. Our six researchers independently and man-
ually categorize images from the datasets, and cross check one another. Following prior works (Yan
et al., 2024; Mirsky & Lee, 2021), each image is labeled as either REAL or one of four deep-
fake types: Face Swapping (FS), Face Reenactment (FR), Entire Face Synthesis (EFS), and Face
Editing (FE). For each type, we construct a set of fext labels. During training, text labels cor-
responding to each image type serve as anchors for fine-grained deepfake classification based on
image-text similarity. Unlike previous works (Khan & Dang, 2024; Wu et al., 2023) that use
simple text labels such as "a photo of a [real/fake] image", we augment text la-
bels from a simple label to about 30 comprehensive labels using GPT-ol (OpenAl, 2024) and
human feedback. For example, for the Face Swapping, we generate a range of diverse labels,
including the simple label "a photo of a Face Swapping" as well as more detailed la-
bels such as "a deepfake-crafted photo replacing one individual’s face
with another’ s". This augmentation encourages the model to develop a deeper semantic un-
derstanding of each type and can enhance its ability to distinguish different types of deepfakes.
Please visit Sec. E of the Appendix for more details of text annotations and their augmentation.

3.2 DATASET ANNOTATION

Contextual Text Generation. While traditional categorical labels suffice for training a deepfake
classifier, portrait images contain not only forensic cues, but also unrelated details such as demo-
graphic traits or background contexts. Recent work by (Wang et al., 2025) empirically and theo-
retically demonstrates that when spurious features such as background or lighting strongly correlate
with the training data’s text descriptions, CLIP’s contrastive objective aligns image embeddings with
these features. Consequently, when repurposed for deepfake detection, this leads the model to focus
more on such spurious correlations rather than forensic signals, resulting in a less robust detector.
To address this vulnerability, we propose generating comprehensive text descriptions for all images
to disentangle forensic cues from contextual elements, enhancing the model’s understanding be-
yond binary classification. Our ablation studies (Sec. 5.3) further show that including contextual
descriptions improves performance on unseen datasets. To generate these auxiliary descriptions, we
leverage InternVL (Chen et al., 2024) in a Visual Question Answering setting. Specifically, we use
two distinct prompts to obtain different aspects of the images: 1) facial that captures facial attributes
and 2) environmental that describes background context. Examples of our annotated data are shown
in Fig. 6 (Appendix) and more details are provided in Sec. F of the Appendix.

Our dataset annotation procedure, combining human and VLM-generated annotations, is illustrated
in Fig. 2. To the best of our knowledge, MMI-DD is among the largest and most diverse collections
available for training deepfake detection models. It enables the construction of a comprehensive
knowledge space and a more diverse foundation for face forensics, in contrast to conventional ap-
proaches that train models on a single dataset.
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Figure 3: Overview of our SD? training framework. SD? employs CLIP text and image encoders, both fine-
tuned with LoRA. The Cross-Layer Attention Module (CLAM) enhances visual features by fusing low-to-high-
level information. The model is optimized with three objectives: Classification Loss (Lc¢) to distinguish real
and four fake types, Text Label Separation Loss (Ls) to enforce separation among types, and Dual Contrastive
Loss (Lp) to align image-text pairs.

4 SD?: VISUAL-LANGUAGE LEARNING FOR DEEPFAKE DETECTION

We propose a novel multi-modal learning framework for deepfake detection based on CLIP (Radford
et al., 2021), which integrates image and text modalities. Figure 3 illustrates our overall proposed
training framework. We define a data format S = {(2,,, c,, df,d%)}Y_,, where x € X’ is an image
in a batch B and ¢ € C = {REAL,FS,FR,EFS, FE} is the type of the image. Here, d/ and d°
represent text descriptions of the facial and environment attributes of x, respectively. &1 and £ are

the CLIP image and text encoders.

4.1 ENHANCED CLIP VisiON EMBEDDINGS

Cross-Layer Attention Module. Although previous studies leverage the final layer’s output from
the CLIP vision encoder for image representation, our investigation (Sec. 5.3) reveals that relying
solely on the final representation is suboptimal. It struggles to capture low-level artifacts critical to
distinguish fake images (Koutlis & Papadopoulos, 2024; Yan et al., 2025a). To address this, we intro-
duce the Cross-Layer Attention Module (CLAM), which offers two significant advantages for visual
representation: (i) it fuses multi-level features from all encoder layers, capturing both high-level se-
mantics and low-level artifacts to construct a richer visual representation than using the final layer
alone; and (ii) it adopts a self-attention mechanism that dynamically highlights the most relevant
lower-level features and guide them to achieve the objective ealier, benefiting detector’s generaliza-
tion (Zhang et al., 2022). Specifically, we first gather the CLS token from each of the L transformer

layers within the CLIP image encoder &7, denoted as fc(lls) € RP forlayer [ € {1,...,L}. This col-

lection of tokens, fus = [f, (11)7 fe (2), e le)] € RE¥*P, forms a sequence of hierarchical features.

We then employ a multihead self- attentlon mechanism (Vaswani et al., 2017) over these features to
capture the inter-dependencies across all transformer encoder blocks:

s(a’ll) = Attn(fclsWéh)7 fclsW}((h)v fclsW\(/h))a fsat = COHCBI([ s(a}tl)] = ) WO7 (1)

where ng), W1(<h), W‘(/h), and Wy are learnable projection matrices, and H is the number of atten-

tion heads. The resulting feature sequence fy, is first aggregated into a single vector, f7,, via global
average pooling. This single vector f7,, is then concatenated with the model’s final representation,
fiinal> to leverage both low-level and high-level information. The combined vector is further refined
using a lightweight adapter, composed of two linear layers with a GELU activation (Hendrycks &
Gimpel, 2016), to produce the final visual representation f as follows:

f =W, - GELU(W; - Concat ([f{y. fana) ), ()

where W7 and W5 are learnable weights.
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4.2 FINE-GRAINED DEEPFAKE CLASSIFICATION

Image-Text Classification Loss. During the training phase, we randomly sample the set of text
labels T = {tgear, trs, trr, ters, tre} for each type once per batch. After extracting the text
embedding u., = Er(t.,) from text label ¢.,, we compute the cosine similarity between the image
and the text embeddings. The similarity score serves as a logit and is passed to the cross-entropy
loss as follows:

|B] .
exp (7 - sim( f;, ue,
LC:_Zk,g< (7 -sim(f ) ) .
i >y exp (7 - sim(fi, uc,))
where sim(a,b) = m and 7 is a learnable logit scaling parameter initialized following

CLIP (Radford et al., 2021).

Text Label Separation Loss. While humans can distinguish our manually curated text labels,
they may not be sufficiently separated in the CLIP embedding space. We observe that the cosine
similarities among different text label embeddings remain high, which can hinder classification. To
address this, we introduce a separation loss that enforces greater distinctiveness among text label
embeddings, thereby improving classification. We compute the cosine similarity between each pair
of text label embeddings and enforce the similarity matrix to be closer to the identity matrix. This
separation loss is formulated as:

Ls = ||sim(u,u”) = 1||%, 4)

where I is the identity matrix and || - ||  the Frobenius norm.

4.3 DUAL IMAGE-TEXT CONTRASTIVE LEARNING

Multi-Aspect Semantic Alignment. We employ a dual contrastive loss to align each image with
both its corresponding facial and environmental descriptions. For each image, we construct two dis-
tinct positive pairs: one with its facial description and the other with its environmental description.
All other text descriptions within the batch serve as negatives for both alignment objectives. This
dual supervision provides two key advantages: (i) it encourages the model to jointly attend to de-
tailed human appearance and expression cues, as well as to broader contextual elements within the
scene; and (ii) it encourages disentanglement between forensic signals and non-forensic contextual
elements, helping the model avoid spurious forgery cues.

Efficient Contrastive Learning with SigLIP Loss. For our image-text alignment, we adopt the
SigLIP loss (Zhai et al., 2023) to avoid the substantial computational cost of conventional softmax-
based losses (e.g., InfoNCE), which demand massive batch sizes (32K in CLIP (Radford et al.,
2021)). SigLIP utilizes a sigmoid-based binary cross-entropy loss and efficiently gathers negative
samples by swapping text embeddings across GPUs, enabling strong performance without relying
on large-scale batches. Given a text description df, where x € {f, e}, we extract the corresponding
text embedding vf = Ep(df). The SigLIP loss between image and text embeddings is:

[B| [Bal

Lo=->>" [1oga(zij(7 -sim(f;, v]) +b)) —&-loga(zij(T - sim( fi, v$) +b))], (5)

i=1 j=1

where f; denotes the image embedding for the i-th sample in the local mini-batch 3, while v! and
v§ denote text embeddings in By, the global batch formed by gathering text embeddings from all

GPUs. Specifically, v}c and v§ are derived from d;-c and dj, respectively. The similarity between
image and text embeddings is scaled by reusing the logit scaling parameter 7 from the classification
loss, along with a bias term b initialized to —7. The binary indicator z;; € {—1,+1} specifies
whether the image-text pair ( f;, v;) is positive or negative, thereby determining the direction of the
logit. The final logit is then passed through a sigmoid function o (-) to compute the contrastive loss.
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4.4 OVERALL OBJECTIVE FUNCTION

The overall loss combines the classification and regularization terms, promoting both accurate clas-
sification and meaningful image-text alignment. The loss is defined as:

ACSDQ :a'£C+£S+£D7 (6)

where « is a hyperparameter controlling the contribution of the classification loss term. We present
the pseudo-code for the SD? implementation in Alg. 1 of the Appendix.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Training Details. For training our large-scale multi-modal dataset, we adopt CLIP-ViT-L/14 (Il-
harco et al., 2021) as the backbone for visual-language training. The model is optimized using
AdamW (Loshchilov & Hutter, 2017) at a learning rate of Se-7 and a batch size of 512 over 4
epochs. To efficiently fine-tune the model, we apply Low-Rank Adaptation (LoRA) (Hu et al., 2022)
to both the image and text encoders, with hyperparameters set as follows: 7o, = 8, qora = 32, and
Ddropout-lora = 0.1. We employ data augmentation techniques from CLIP training for deepfake de-
tection (Yan et al., 2024), including random rotation, isotropic resizing, brightness and contrast
adjustments, and compression. The overall objective function uses a hyperparameter o = 2.0. Our
method is implemented in PyTorch (Paszke et al., 2019) on 8 NVIDIA GeForce RTX 3090 GPUs.

Testing Details. During testing, we use the most straightforward text label from the predefined text
label set for each of the five types (e.g., Face Swapping: "a photo of a Face Swapping").
The image feature is then matched with the most similar text feature based on cosine similarity to
compute the logits. The final classification is based on the logits corresponding to each label. If the
logit for real is the highest, the image is classified as real. Otherwise, it is classified as fake.

5.2 EXPERIMENTAL RESULTS

5.2.1 FACIAL DEEPFAKE DETECTION

Evaluation Protocols. We adopt six baseline models: 1) Xception (Chollet, 2017), a CNN detect-
ing subtle distortions with separable convolutions, 2) RECCE (Cao et al., 2022), a spatial-domain
method tracing forgery via reconstruction, 3) SPSL (Liu et al., 202 1a), a frequency-domain approach
finding artifacts with phase-based learning, 4) CLIP (Radford et al., 2021), a vision foundation
model, fully fine-tuned with a linear head for classification, 5) CLIP-LoRA (Radford et al., 2021;
Hu et al., 2022), a CLIP adaptation with our LoRA settings, and 6) CLIP-SVD (Effort) (Yan et al.,
2025b), a SOTA method employing Singular Vector Decomposition (SVD) for CLIP adaptation.

We conduct two evaluations to assess facial deepfake detection performance. (i) Intra-domain
evalutaion: 7o ensure the fairness, all baselines are trained on our integrated dataset, MMI-DD,
and then evaluated across seven datasets, including DF40 (Yan et al., 2024), DFF (Song et al.,
2023), DFFD (Dang et al., 2019), DFDCP (Dolhansky et al., 2020), KoDF (Kwon et al., 2021),
FF++ (c40) (Rossler et al., 2019), and TIMIT (Korshunov & Marcel, 2018). Specifically, we devide
DF40 into six subsets: FF, CDF, FS, FR, EFS, and FE. Both FF and CDF (32 fake types each)
are derived from FaceForensics++ (Rossler et al., 2019) and Celeb-DF (Li et al., 2020) domain,
respectively. FS, FR, EFS, and FE are organized based on manipulation types, irrespective of source
domains. FS, FR, EFS, and FE subsets include 9, 12, 10, and 1 manipulation types, respectively.
This evaluation assesses model effectiveness within the training domain and measures how well each
method leverages large-scale training data. (ii) Cross-domain evaluation: We use the same trained
models and test them on challenging real-world benchmarks, including WildDeepFake (Zi et al.,
2020), UADFV (Li et al., 2018), DFDC (Dolhansky et al., 2020), and DF40-Test subset from the
DF40 (Yan et al., 2024). Among these DF40-Test subsets, F'S and FR include fake data from a single
manipulation type, while EFS and FE contain 2 and 4 types of fake data, respectively. A detailed
description of DF40-Test is provided in Sec. A.2 of the Appendix. This experiment measures the
generalization ability of each method to unseen distributions.
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Table 2: Intra-domain detection performance (AUC). The best results are highlighted in bold.

Methods ‘ Detector Type ‘ DF40 ‘ DFF DFFD DFDCP KoDF FF++ (c40) ‘ mAUC
| | FF CDF FS FR EFS FE | |
Xception Naive 97.15 9339 91.87 95.66 96.29 99.28 | 91.25 96.73 97.43 96.53 78.63 94.02
RECCE Spatial 9523 92.08 90.81 94.18 96.14 99.69 | 89.01 94.93 98.21 92.28 78.27 92.80
SPSL Frequency 97.59 9398 9345 95.62 9726 99.63 | 9250 95.70 98.71 95.59 80.40 94.58
CLIP CLIP-based 61.72 5728 5561 6758 5450 6539 | 6232 73.55 79.61 59.05 52.84 62.68
CLIP-LoRA CLIP-based 71.86 69.16 6584 7586 66.37 91.69 | 86.66 86.30 91.90  95.30 57.35 78.03
CLIP-SVD (Effort) | CLIP-based 88.54 87.53 8430 86.50 9257 9553 | 8433 97.74 90.95 81.84 72.52 87.48
SD? (ours) \ CLIP-based \ 97.52 96.66 97.61 94.23 98.94 99.73 \ 98.02 99.88 99.66  97.08 74.09 95.76

Table 3: Cross-domain detection performance (AUC).

Methods ‘ Detector Type ‘ UADFV  WildDeepFake DFDC ‘ DF40-Test ‘ mAUC
\ | F'S FR EFS FE |
Xception Naive 69.40 70.43 60.46 | 96.76 9297 44.63 7604 | 72.67
RECCE Spatial 58.78 64.62 60.04 | 9434 90.59 4727 8022 | 70.84
SPSL Frequency 60.37 69.61 60.11 | 9592 9551 64.55 83.71 | 75.68
CLIP CLIP-based 54.98 58.08 5577 | 9639 87.96 5944 7622 | 69.83
CLIP-LoRA CLIP-based 66.55 69.41 69.44 | 9274 8433 4075 8162 | 72.12
CLIP-SVD (Effort) | CLIP-based 95.47 75.89 69.57 | 97.07 78.88 60.60 9641 | 81.98
SD? (ours) CLIP-based | 96.44 82.80 80.36 9929 8449 74.06 97.13 | 87.79

Results. Experimental results reveal two key strengths of our approach. As shown in Tab. 2,
SD? achieves superior overall intra-domain detection, with mAUC of 95.76%, outperforming all
baselines in the majority of the 11 subsets. Additionally, Tab. 3 highlights robust cross-domain
generalization, with mAUC of 87.79%, surpassing baselines on challenging unseen datasets. These
results confirm SD?’s capacity to generalize without overfitting, excelling in both settings.

5.2.2 GENERAL SYNTHETIC IMAGE DETECTION

Although our model is primarily trained on facial image-text pairs, we explore its ability to detect
synthetic content beyond facial manipulations.

Evaluation Protocols. We utilize only the vision encoder of our model and perform linear probing
for binary classification. All other components are frozen, and only the linear layer is trained. This
setup follows the same approach as UnivFD (Ojha et al., 2023), which uses linear probing with
frozen CLIP for synthetic image detection. To ensure a fair comparison, our model and all baselines
follow the same protocol (Zhu et al., 2023b), fine-tuning on SD v1.4 fake images and ImageNet real
images. Generalization performance is then evaluated on test sets containing 8 generative models.
We measure performance using accuracy (ACC), consistent with (Yan et al., 2025a; Zhu et al.,
2023a), with a classification threshold of 0.5 for fair comparison.

Table 4: Cross-model evaluation performance (ACC) on the Genlmage dataset. While the results are directly
sourced from (Yan et al., 2025a), we additionally implement CLIP-SVD, a.k.a. Effort, from (Yan et al., 2025b)
following its official code.

Method | Midjourney SDvl.4 SDvl.5 ADM GLIDE Wukong VQDM BigGAN | mACC
ResNet-50 (He et al., 2016) 54.90 99.90 99.70  53.50  61.90 98.20 56.60 52.00 72.09
DeiT-S (Touvron et al., 2021) 55.60 99.90 99.80  49.80  58.10 98.90 56.90 53.50 71.56
Swin-T (Liu et al., 2021b) 62.10 99.90 99.80  49.80  67.60 99.10 62.30 57.60 74.78
CNNSpot (Wang et al., 2020) 52.80 96.30 9590  50.10  39.80 78.60 53.40 46.80 64.21
Spec (Zhang et al., 2019) 52.00 99.40 99.20  49.70  49.80 94.80 55.60 49.80 68.79
F3Net (Qian et al., 2020) 50.10 99.90 99.90  49.90  50.00 99.90 49.90 49.90 68.69
GramNet (Liu et al., 2020) 54.20 99.20 99.10 5030  54.60 98.90 50.80 51.70 69.85
DIRE (Wang et al., 2023a) 60.20 99.90 99.80  50.90  55.00 99.20 50.10 50.20 70.66
UnivED (Ojha et al., 2023) 73.20 84.20 84.00 5520  76.90 75.60 56.90 80.30 73.29
GenDet (Zhu et al., 2023a) 89.60 96.10 96.10  58.00  78.40 92.80 66.50 75.00 81.56
PatchCraft (Zhong et al., 2023) 79.00 89.50 89.30 7730  78.40 89.30 83.70 72.40 82.30
AIDE (Yan et al., 2025a) 79.38 99.74 99.76  78.54  91.82 98.65 80.26 66.89 86.88
CLIP-SVD (Effort) (Yan et al., 2025b) 71.70 99.90 99.71 63.35  66.64 99.20 86.19 52.84 79.94

SD? (ours) ‘ 85.76 98.45 98.23 6825 8859 98.27 91.15 79.34 88.50

Results. Results on the Genlmage dataset are presented in Tab. 4. Our method achieves mACC
of 88.50% across 8 test sets. Compared to other CLIP-based baselines UnivFD and CLIP-SVD
(Effort), our approach surpasses by 15.21% and 8.56%, respectively. Furthermore, when compared
to the SOTA method AIDE, our method outperforms AIDE by 1.62%. This highlights the superior
generalization capabilities of SD? for synthetic image detection.
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5.3 ABLATION STUDY

Table 5: Ablation studies analyzing the impact of Table 6: Performance (mAUC) across training
key components. All models are trained on our data scales, from /00K to 3M (full dataset).
integrated dataset and tested on four cross-domain —
datasets in Sec. 5.2.1. Methods | Scale of Training Data
\ 100K M M
Lc CLAM  Lp-Face Lp-Env | mAUC Xception 7111 7169 72.96
RECCE 69.71 69.28 70.84
v - - - 80.24 SPSL 71.56 73.84 75.68
CLIP 69.82 69.74 69.83
v v ) ) 81.54 CLIP-LoRA 78.84 78.40 72.12
v v v - 84.34 CLIP-SVD (Effort) | 82.27 82.00 81.98
v v 4 v 87.79 SD? (ours) | 82.90 84.85 87.79

Classification Loss. The classification loss, comprising image-text classification and text label
separation objectives (Sec. 4.2), is critical for training convergence. Without enforcing the orthog-
onality among the text label embeddings, training fails to stabilize. Thus, we jointly term these
as classification loss here. As shown in the first row of Tab. 5, applying our classification loss yields
80.24% AUC, significantly enhancing performance. Comparisons to cross-domain evaluation re-
sults in Tab. 3, our method outperforms baselines such as Xception, RECCE, and SPSL. Notably, it
also improves performance over CLIP and CLIP-LoRA, even though they share the same backbone.
This result suggests that pre-trained backbones require tailored objectives for deepfake detection.

Leveraging Intermediate Features. We further assess the impact of incorporating intermediate
features from the CLIP image encoder through our proposed CLAM (Sec. 4.1). The second row of
Tab. 5 shows a 1.6% AUC increase, emphasizing the benefit of leveraging multi-level features.

Contrastive Loss. Our dual image-text contrastive loss with VLM-generated descriptions (Sec. 4.3),
significantly boosts detection performance. As detailed in Tab. 5 (rows 3—4), jointly leveraging two
contrastive losses: Lp-Face using facial descriptions and Lp-Env using environmental descriptions
achieves the highest performance gain of 5.95%. While individual semantic cues are beneficial, their
joint application proves optimal for robust generalization.

Combining All Components. Combining all components yields the highest AUC of 87.79%, as
shown in the final row of Tab. 5. Each component contributes incrementally, with their synergy
maximizing performance. Thus, we adopt this configuration as our final model.

Scale of Training Dataset. We train our proposed SD? and baselines with 100K, 1M, and 3M im-
ages from our integrated dataset, assessing cross-domain performances as in Sec. 5.2.1 with mAUC
reported in Tab. 6. Our findings reveal that dataset scale alone does not guarantee performance
gains. Conventional methods such as Xception, RECCE, and SPSL exhibit early saturation. Simi-
larly, strong vision foundation models like CLIP, CLIP-LoRA, and CLIP-SVD (Effort) also struggle
to scale, with performance plateauing or even degrading as data increases. In contrast, SD? not only
outperforms all baselines but also continues to improve with more data. This suggests our multi-
modal strategy is key to leveraging large-scale datasets, addressing a limitation of prior approaches.

6 CONCLUSION

In many cases, existing deepfake detectors remain tied to single-dataset training, limiting their abil-
ity to leverage diverse available data resources and build comprehensive knowledge. Additionally,
as training data scales up, they struggle to consolidate heterogeneous distributions, leading to per-
formance drop. To address these challenges, we unify 3.6M facial images from 11 datasets, namely
MMI-DD, enriched with fine-grained type annotation and VLM-generated descriptions. Building on
this, we propose SD?, a scalable vision-language framework for deepfake detection. SD? enhances
CLIP with Cross-Layer Attention Module (CLAM) to capture multi-level visual features, and is op-
timized with three complementary objectives: type-aware classification, type embedding separation,
and semantic alignment. Extensive experiments show that SD? achieves SOTA performance across
facial and non-facial domains, while exhibiting strong scalability as data volume increases.
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APPENDIX

GENAI USAGE DISCLOSURE

We employed GPT-5 for text rephrasing, grammar checking, and code debugging. The authors
reviewed and modified all outputs. All ideas and content were originally written and verified by the

authors.

A DATASETS

Here, we describe the various benchmark deepfake datasets that we have integrated. These datasets
are utilized to train and evaluate our proposed model. We also detail the preprocessing steps applied
to the collected datasets.

A.1 TRAINING DATASETS

DF40. DF40 (Yan et al., 2024) is a comprehensive deepfake dataset proposed by Yan et
al., incorporating a variety of the latest forgery techniques. It features 40 distinct deep-
fake generation and editing methods, making it a valuable resource for evaluating detection
performance. The dataset is created from popular real image datasets, including Face-
Forensics++ (Rossler et al., 2019) and Celeb-DF (Li et al., 2020), ensuring diverse and rep-
resentative content. These deepfake samples are categorized into four manipulation types:
Face Swapping (FS), Face Reenactment (FR), Entire Face Synthesis (EFS), and Face Edit-
ing (FE). The DF40 dataset consists of a total of 77,200 real images and 1,613,000 fake
images, providing a robust and extensive collection for evaluation.

DFF. DeepFakeFace (DFF) (Song et al., 2023) consists of 30,000 real images and 90,000
fake images. The real images are collected by sorting celebrity face photos extracted from
the IMDB-WIKI (Rothe et al., 2018) dataset using RetinaFace (Deng et al., 2019), en-
suring high-quality and diverse real samples. The fake images are generated using three
different techniques: Stable Diffusion v1.5 (Rombach et al., 2022), Stable Diffusion In-
painting (Rombach et al., 2022), and InsightFace (Ren et al., 2023), representing a variety
of deepfake generation methods.

DFFD. Diverse Fake Face Dataset (DFFD) (Dang et al., 2019) consists of 58,703 real
images, 240,336 fake images, 1,000 real video clips, and 3,000 fake video clips. The
real images in DFFD are sourced from the FFHQ (Karras et al., 2019) and CelebA (Liu
et al., 2015) datasets, while both real and fake videos are derived from the FaceForen-
sics++ (Rossler et al., 2019) dataset. The dataset includes fake videos generated using four
distinct categories of methods: identity swap, expression swap, attribute manipulation, and
entire face synthesis.

DFDCP. DFDCP (Dolhansky et al., 2020) is a preview version of the DeepFakes Detec-
tion Challenge (DFDC) dataset, consisting of approximately 5,000 videos, including both
original and manipulated content. The dataset is constructed with careful consideration of
diversity across various aspects such as gender, skin color, and age. The original videos
encompass a wide range of lighting environments and head poses.

KoDF. Korean DeepFake Detection Dataset (KoDF) (Kwon et al.,, 2021) consists of
62,166 real video clips of 90 seconds and 175,776 fake clips of 15 seconds or longer.
The fake clips in the KoDF dataset are generated using six distinct forgery methods:
FaceSwap (FaceSwap, 2016), DeepFaceLab (DeepFacelLab, 2023), FSGAN (Nirkin et al.,
2019), FOMM (Siarohin et al., 2019), ATFHP (Yi et al., 2020), and Wav2Lip (Prajwal
et al., 2020). Specifically, FaceSwap, DeepFaceLab, and FSGAN are face-swapping mod-
els, while FOMM is a video-driven face-reenactment model. ATFHP and Wav2Lip are
audio-driven face-reenactment models.

FF++ (c40). FaceForensics++ (FF++) (Rossler et al., 2019) is a widely used face forgery
detection dataset consisting of 1,000 real videos and 4,000 fake videos. The fake videos
are generated using both graphics-based manipulation techniques (Face2Face (Thies et al.,
2016), FaceSwap (FaceSwap, 2016)) and learning-based methods (DeepFakes (DeepFakes,
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2017), FaceShifter (Li et al., 2019), and NeuralTextures (Thies et al., 2019)). FF++ is
provided in three versions based on the compression level: raw, lightly compressed (c23),
and heavily compressed (c40). Since the aforementioned DF40 dataset includes the c23
version, we add the c40 version for our experiments.

o TIMIT. DeepfakeTIMIT (TIMIT) (Korshunov & Marcel, 2018) consists of fake videos
generated from the real video sequences of the VidTIMIT (Sanderson & Lovell, 2009)
dataset using a GAN-based face-swapping method. The authors of the TIMIT dataset
trained two types of fake video generation models: one using a GAN model to generate
low-quality fake videos (LQ) and another using a GAN model to generate high-quality
fake videos (HQ). The dataset contains a total of 640 fake videos, with 320 videos of low
quality and 320 videos of high quality.

* CelebA. CelebA (Liuetal., 2015) is a large-scale face attributes dataset containing 202,599
images of 10,177 celebrities. Each image is meticulously labeled by a professional team,
providing 40 binary attributes and 5 facial landmarks (both eyes, nose, and the corners of
the mouth).

* CelebA-HQ. CelebA-HQ (Karras et al., 2017) is a high-quality version of the widely used
CelebA dataset. The CelebA-HQ dataset consists of 30,000 images selected from the orig-
inal CelebA dataset, which have been enhanced to a resolution of 1,024 x1,024. The image
enhancement process begins with enlarging the original CelebA images to 4,096 x4,096
using the mirror padding method, followed by Gaussian filtering to smooth the image.
The enlarged image is then cropped to a size of 1,024 1,024, centered on the face, using
landmark positions from the CelebA dataset. This process is applied to a total of 202,599
images from the original CelebA dataset, with the top 30,000 images selected based on a
frequency-based quality metric to form the CelebA-HQ dataset.

e CelebV-HQ. CelebV-HQ (Zhu et al., 2022) consists of 35,666 video clips, totaling approx-
imately 65 hours of footage, sourced from 15,653 unique individuals. All videos maintain
a minimum resolution of 512x512 and have durations ranging from 3 to 20 seconds. The
dataset is curated with 83 manually labeled facial attributes, covering aspects of appear-
ance, behavior, and emotion, ensuring a diverse and well-annotated collection.

 FFHQ. FFHQ (Karras et al, 2019) consists of 70,000 high-resolution images of
1024 %1024, providing a diverse set of human faces with variations in age, ethnicity, and
accessories such as glasses and hats. The images are sourced from https://www.
flickr.com/ and are automatically aligned and cropped using dlib (King, 2009).

A.2 EVALUATION DATASETS

* WildDeepFake. WildDeepFake (Zi et al., 2020) is a dataset designed to address the limi-
tations of existing deepfake detection models in real-world scenarios. It consists of 7,314
face images extracted from 707 fake videos, providing a diverse and challenging bench-
mark for evaluating detection performance. Unlike prior datasets with limited diversity
and low image quality, WildDeepFake captures a wide range of deepfake variations by
collecting videos from the Internet.

» UADFYV. UADFV (Li et al., 2018) consists a total of 96 videos, including 49 real and 49
fake videos, providing a balanced set for evaluating detection models. The average duration
of videos in the dataset is approximately 11.14 seconds, ensuring a consistent temporal
structure across samples.

* DFDC. DFDC (Dolhansky et al., 2020) is introduced as part of the DeepFake Detection
Challenge (DFDC), consisting of 128,154 video clips. It encompasses a diverse range of
deepfake generation techniques along with refinement methods to enhance the realism of
manipulated content. To further increase the complexity and robustness of the data set, the
validation and test sets incorporate additional augmentations such as distractor, which over-
lays various objects, and augmenter, which applies geometric and color transformations as
well as frame rate modifications.

* DF40-Test. DF40-Test (Yan et al., 2024) is a specialized evaluation dataset created by
aggregating the test-only subsets defined in DF40 (Yan et al., 2024). To ensure a compre-
hensive assessment of deepfake detection models, the original authors curated distinct test
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sets for each manipulation type. We combine these test-only datasets into a unified version,
which is utilized for our evaluation. This dataset includes fake images generated using var-
ious state-of-the-art methods, such as DeepFaceLab (DeepFacel.ab, 2023) (for FS type),
HeyGen (HeyGen., 2020) (for FR type), MidJourney6 (MidJourney., 2022) and Whichis-
Real (WhichFaceisReal., 2019) (for EFS type), and CollabDiff (Huang et al., 2023), Star-
GAN (Choi et al., 2018), StarGANv2 (Choi et al., 2020), and StyleCLIP (Patashnik et al.,
2021) (for FE type). The real images are sourced from UADFV (Li et al., 2018), VFHQ
(Xie et al., 2022), and FFHQ (Karras et al., 2019), consisting of a total of 17,065 real
images and 14,164 fake images.

A.3 PREPROCESSING

We apply the following preprocessing steps to the collected datasets. First, we detect faces in the im-
ages (frames) using a Multi-task Cascaded Convolutional Networks (MTCNN) (Zhang et al., 2016).
To reduce noise and ensure reliable face detection, we select only bounding boxes with a confidence
score greater than 0.9. We then crop the images into square regions centered on the detected bound-
ing boxes. For image datasets, all cropped images are used for training and evaluation. For video
datasets, we sample 32 frames evenly spaced from the entire video. When the original dataset is al-
ready split into training, validation, and test sets, we use the training and validation sets for training.
In cases where the dataset is not pre-split, we randomly shuffle the images (or video frames) in a 9:1
ratio and then sample them to form the training and test sets.

Table 7: Intra-domain detection performance (ACC).

DF40

Methods ‘ Detector Type ‘ ‘ DFF DFFD DFDCP KoDF FF++(c40) TIMIT (HQ) TIMIT (LQ) ‘ mACC
‘ ‘ FF CDF FS FR EFS FE ‘ ‘
Xception Naive 97.16 97.15 92.01 9495 93.81 75.06 | 82.37 93.17 89.77 87.28 84.04 100.0 100.0 91.29
RECCE Spatial 97.02 97.04 9137 93.86 9270 69.14 | 79.52 88.78 92.96 85.00 82.81 100.0 100.0 90.02
SPSL Frequency 97.32 97.13 9123 9343 91.88 64.37 | 8555 89.62 94.93 88.59 84.35 100.0 100.0 90.65
CLIP CLIP-based 94.80 96.07 88.06 91.62 87.93 56.22 | 37.73 84.61 54.52 52.96 82.43 97.11 97.89 78.61
CLIP-LoRA CLIP-based 96.12 96.85 89.09 91.94 89.93 56.89 | 80.22 88.72 84.68 89.80 83.14 100.0 100.0 88.26
CLIP-SVD (Effort) | CLIP-based 94.85 9591 89.01 91.34 90.84 64.36 | 66.99 93.85 80.18 71.37 82.28 99.06 100.0 86.77
SD? (ours) ‘ CLIP-based 9751 97.51 9289 9442 9391 7320 90.69 98.21 96.39 90.53 82.89 100.0 100.0 92.93
Table 8: Cross-domain detection performance (ACC).
Methods | Detector Type | UADFV WildDeepFake DFDC | DF40-Test | macc
| | Fs FR EFS FE |
Xception Naive 52.58 65.14 5201 | 90.78 89.42 8248 66.88 | 71.33
RECCE Spatial 53.76 61.00 51.96 | 84.15 8275 75.62 7220 | 68.78
SPSL Frequency 54.66 63.15 5498 | 87.20 8599 7892 76.14 | 71.58
CLIP CLIP-based 53.38 59.35 5171 | 86.24 83.71 77.64 69.80 | 68.83
CLIP-LoRA CLIP-based 55.90 55.31 60.84 | 7636 7379 6642 7459 | 66.17
CLIP-SVD (Effort) | CLIP-based 90.98 66.05 63.61 | 88.16 8321 81.24 8798 | 80.I8
SD? (ours) | CLIP-based 89.62 69.16 73.66 | 91.95 85.67 84.25 90.43 | 83.53

B ACCURACY RESULTS FOR DEEPFAKE DETECTION

In Sec. 5.2.1 of our main paper, we report deepfake detection performance using Area Under the
Curve (AUC). Here, we additionally present accuracy (ACC) results for a comprehensive analysis.
For a fair comparison, we apply a classification threshold of 0.5 for all datasets. As shown in
Tab. 7 and 8, our model exhibits superior overall performance (mACC) in both intra- and cross-
domain evaluations, demonstrating its robust learning capacity on diverse training sets and strong
generalization.
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C MORE ABLATION STUDIES

C.1 TEXT LABEL SEPARATION LOSS

To analyze the impact of the proposed text label separation loss (Ls) in Sec. 4.2, we conduct an
ablation study on text label embeddings across the five defined types. We first compute the mean
embeddings of text labels for each type and measure the cosine similarity between types. As shown
in Fig. 4 (a), using the original CLIP text encoder results in high inter-type similarity (depicted in
darker blue), indicating poor separability among manipulation types. In contrast, Fig. 4 (b) demon-
strates that after applying the separation loss, our optimized model produces text embeddings that are
nearly orthogonal across different types (with similarity approaching 0), leading to well-separated
representations. These results highlight the effectiveness of our loss function in enforcing a more
structured and discriminative embedding space.

Moreover, we measure the intra-type cosine similarity by randomly sampling five text labels from
each type. Fig. 5 shows that intra-type cosine similarity is significantly higher (depicted in darker
blue) when using our model’s text encoder (b) compared to the original CLIP text encoder (a). This
demonstrates that augmenting each type with semantically similar text labels enhances the model’s
semantic understanding of each manipulation type.

D PSEUDOCODE

We present the pseudocode implementation of our SD? objective in Alg. 1.

Algorithm 1 SD? Pseudocode

f_final = E_TI
f_sat = CLAM(
f_sat_prime =
f = adapter ([

AP (f_sat)
f_final, f_sat_prime])

u_c = E_T(c)

v_f, v_e = E_T(d_f), E_T(d_e)

logits = dot (f, u_c.T)

loss_c = cross_entropy_loss (logits, y)

u_n = 12_normalize (u_c)

loss_s = mean (power (dot (u_n, u_n.T)-np.eye(B), 2)

loss_d = siglip(f, v_£f) + siglip(f, v_e)

def siglip(img, txt):

t = exp(t_prime)

z_1i = 12_normalize (img)

z_t = 12_normalize (txt)

logits = dot(z_i, z_t.T) = t + b
labels = 2 % eye(B) - ones(B)

return -sum(log_sigmoid(labels * logits)) / B
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E TEXT LABELS CONSTRUCTION

We manually curate text labels for five types: REAL, Face Swapping, Face Reenactment, Entire
Face Synthesis, and Face Editing. Specifically, we input their definitions, descriptions, and a simple
prompt, "a photo of a {type}" into GPT-ol (OpenAl, 2024) to generate 64 text labels per
type. However, these generated text labels may misrepresent the type, lack sufficient coverage, or
overlap ambiguously with other types. To refine them, we embed the text labels using the pre-trained
CLIP text encoder (Radford et al., 2021) and compute the mean vector for each type. We then filter
out half of the labels farthest from the mean vector. Subsequently, researchers manually inspect the
remaining text labels, removing those with inadequate descriptions or redundancy across types. The
final text labels used in training are listed in Tabs. 9—13.

F TEXT DESCRIPTION DETAILS

In this section, we describe the process of generating text descriptions for deepfake datasets, includ-
ing detailed information on facial attributes and environmental factors. We also detail the design
of the prompts used to generate these descriptions and describe the generation process. Finally, we
present examples of the text descriptions from our datasets.

F.1 PROMPT DESIGN FOR TEXT DESCRIPTIONS

Recent work (Wang et al., 2024a) leverages text descriptions tailored to Face Anti-Spoofing (FAS).
Instead of relying on coarse-grained prompts, the authors improve generalization by aligning the
visual and language components. Inspired by this approach, we generate text descriptions based on
two key factors: facial attributes (age, gender, expression, and facial features) and environmental
aspects (background and lighting). We directly adopt the facial and environmental prompts used in
the referenced work to extract these features. The following prompts are used in our experiments:

 Facial Description Prompt:
"Please describe the face (including age, gender,
expression, appearance, etc.) of the person in one
sentence."

¢ Environmental Description Prompt:
"Please describe the environment (including background,
lighting intensity, etc.) in one sentence."

F.2 TEXT DESCRIPTION GENERATION VIA VLM

For generating text descriptions, we utilize InternVL2.5 (Chen et al., 2024), a open-source vision-
language model with 1 billion parameters. We perform inference using the two aforementioned
prompts for all images used in joint training and store the resulting responses. In line with findings
from previous work (Zhang et al., 2024), we recognize that CLIP’s effective token length often falls
below 20 tokens, even though it is limited to 77 tokens. To mitigate this, we append the phrase "in
one sentence" to each prompt and set the maximum length of the textual token sequence to
60. Our VQA inference using InternVL is implemented in PyTorch and performed on 4 NVIDIA
GeForce RTX 3090 GPUs. Examples of our annotated data are visualized in Fig. 6.
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(a) Inter-type Similarities in Original CLIP
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Figure 4: Cosine similarity between text labels across different types. (a) Using the original CLIP,
the text labels across different types exhibit high similarity in the embedding space, preventing effec-
tive convergence of the intended type-guided separation. (b) With the application of our separation
loss, we successfully enforce separation between different types, thereby optimizing the classifica-
tion objective.
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Figure 5: Cosine similarity between text labels within the same type. (a) In the original CLIP
embedding space, our carefully crafted text labels exhibit low similarity with other text labels of the
same type. (b) After optimization with our separation loss, the similarity between text labels of the
same type increases significantly, demonstrating that the model has learned to capture the semantics
of each type effectively.
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Type: REAL

Face: The individual appears to be middle-aged, male, wearing glasses, and has a professional appearance in a
well-lit news broadcast studio with a background of monitors.

Environment: The environment has a busy television studio background with various lights and screens, likely
from a news broadcast. The lighting appears to be well-lit, illuminating the man clearly for his report.

Type: Face Swapping

Face: The woman in the portrait has fair complexion, light skin, shoulder-length wavy hair, light pink blush on
her cheeks, full lips, and a friendly, radiant smile.

Environment: In the photo, the background is an indoor setting with light-colored walls and a door visible, and
natural light is illuminating the scene.

Type: Face Reenactment

Face: The person appears to be middle-aged with short, graying hair. They have a serious or neutral expression,
wearing a suit.

Environment: The man is in a newsroom with a blurred background. The lighting is typical for an indoor news
setting, creating soft lighting.

Type: Entire Face Synthesis

Face: The person in the image is a young adult female with shoulder-length brown hair, a gentle expression, and
light, expressive eyes, and is dressed in a white garment.

Environment: The image has an outdoor setting with green foliage in the background, possibly in a park or
garden, with soft, natural lighting illuminating the face.

Type: Face Editing
Face: The image shows a young woman with long, straight hair, wearing makeup and a slight smile on her face.

Environment: The background is blurred with abstract red and white designs, and the lighting is soft and evenly
illuminates the face.

Figure 6: Visualizations of annotated data. Each image in our unified dataset is labeled in two ways.
First, we assign one of five types through human annotation. Then, we generate two distinct text
descriptions related to facial attributes and environmental factors using VLM-based VQA.
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Table 9: Text label for REAL type. The first simple text label, highlighted in bold, is used in the
image-text classification evaluation. The remaining augmented labels provide a range of descriptive
variations that enhance the model’s understanding of REAL images.

Set of Text Labels Assigned to tggar,

“a photo of a real face.”

“a naturally captured image, preserving the individual’s real identity.”
“an untainted photograph showing the person in their true essence.”

“a legitimate image capturing the subject’s natural essence.”

“a real and unedited portrayal of the subject’s appearance.”

“a natural image displaying the individual in their genuine state.”

“a true photographic capture of the person in their real form.”

“a completely original image capturing the real essence of the individual.”
“a true photograph of the individual, free of any artificial influence.”

“a true-to-life image portraying the individual as they are.”

“an unmanipulated photo reflecting the subject’s true identity.”

“an unembellished image depicting the subject’s true self.”

“a raw image that genuinely reflects the person’s appearance.”

“a photo that faithfully represents the subject’s true face.”

“a legitimate image preserving the subject’s true form.”

“a naturally captured photograph preserving the person’s identity.”

“a true-to-life depiction of the subject as they exist.”

“an unprocessed representation of the subject’s natural form.”

“a natural photo, free from the influence of any digital technology.”

“a pristine image that genuinely reflects the subject’s features.”

“a truthful and unaltered photo of the subject’s face.”

“an unaltered photograph revealing the person’s authentic appearance.”
“a straightforward image emphasizing the individual’s genuine identity.”
“a straightforward, unedited photograph of the person.”

“a clear, natural portrayal of the individual’s features.”

“an unaltered capture of the subject’s genuine features.”

“an unprocessed image portraying the subject as they naturally appear.”
“a genuine photo capturing the true identity of the individual.”

“a raw depiction of the subject’s natural traits.”

“a pure, unaltered depiction of the individual’s face.”
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Table 10: Text label for Face Swapping type. The first simple text label, highlighted in bold, is
used in the image-text classification evaluation. The remaining augmented labels provide a range of
descriptive variations that enhance the model’s understanding of Face Swapping images.

Set of Text Labels Assigned to tgg

“a photo of a face swapping.”’
“a synthetic image where the face transition appears imperceptible.”

“a manipulated image where one individual’s face has been seamlessly replaced with
another.”

“a synthesized image featuring the flawless substitution of one face for another.”

“an example of face transposition where two identities are seamlessly integrated.”

“a seamless face overlay creating the illusion of identity transference.”

“an edited photo blending two identities through advanced facial synthesis.”

“a reimagined image where one person’s face has been digitally replaced with another’s.”
“a realistic visualization of one face superimposed onto another individual.”

“a deepfake alteration creating the illusion of the source face belonging to the target.”
“a face-swapped image retaining the natural appearance of the overall photograph.”
“a computational synthesis of one person’s face overlaid onto another’s body.”

“a deepfake-crafted photo replacing one individual’s face with another’s.”

“a deepfake showcasing the complete substitution of the original face.”

“an altered image with a flawlessly transplanted face from another source.”

“a face-swapped image designed to merge two identities into a convincing portrayal.”
“an expertly replaced face that merges the identities of two individuals.”

“a digitally altered face that replaces the original while retaining realism.”

“a photo demonstrating the realistic substitution of one face for another.”

“a synthetic rendering that replaces the original face with a new, realistic identity.”
“a hybridized photo where the facial features of two people are merged.”

“a realistic depiction of face replacement using cutting-edge Al algorithms.”

“a digital transition of one face into another’s context, creating a cohesive visual.”

“a visually realistic replacement of one face with another using Al techniques.”

“a creative deepfake, blending two distinct facial identities in one frame.”

“a reconfigured image where the original identity has been replaced with a new face.”

“a photograph that combines the facial identity of the source with the context of the tar-
get.”

“a synthetic face replacement that mimics the appearance of another individual.”
“an altered image with a flawlessly exchanged face, keeping the target’s proportions.”
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Table 11: Text label for Face Reenactment type. The first simple text label, highlighted in bold, is
used in the image-text classification evaluation. The remaining augmented labels provide a range of
descriptive variations that enhance the model’s understanding of Face Reenactment images.

Set of Text Labels Assigned to tpg

“a photo of a face reenactment.”
“a dynamic synthesis combining source facial expressions with a target’s identity.”

“a manipulated image where source-driven behaviors redefine the target’s facial anima-
tions.”

“a synthetic face combining the target’s features and the source’s expressive cues.”

“a dynamic facial synthesis that animates the target with the source’s emotional at-
tributes.”

“a synthesized depiction of a target face animated by the source’s emotional behavior.”

“a reenacted face, maintaining the target’s appearance while expressing the source’s ges-
tures.”

“a manipulated target face enhanced with external expressive characteristics.”

“a synthesized face showcasing transferred expressions while preserving the target’s iden-
tity.”

“a target face retaining its identity but animated by the source’s expressive behavior.”

“a synthetic animation that mimics the source’s expressions on the target’s features.”

“a motion-transferred facial image, preserving the target’s look but expressing the
source’s feelings.”

“a facial synthesis driven by the source’s emotive and dynamic behaviors.”

“a synthesis of dynamic expressions from a source, applied to a target’s visage.”

“a synthetic reenactment combining the source’s emotive characteristics with the target’s
identity.”

“a face manipulation highlighting the dynamic interplay of source emotions on the target.”

“a dynamically altered image where the expressions of a source person have been imposed
on the target’s face.”

“a reenacted depiction where the source’s emotional gestures guide the target’s behavior.”
“a manipulation that transfers source emotive behavior onto the target with realism.”

“a synthesized animation, infusing source emotions into a preserved target identity.”

“a synthetic reenactment image that transfers the essence of source movements.”

“a reenactment image that synchronizes the source’s emotional expression onto the tar-
get.”

“a deepfake creation where the source’s expressions animate the target’s face.”

“a reenactment-based image, preserving the target’s static identity while adding source
movements.”

“a reenacted target face enriched with the emotive characteristics of the source individ-
ual.”
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Table 12: Text label for Entire Face Synthesis type. The first simple text label, highlighted in bold,
is used in the image-text classification evaluation. The remaining augmented labels provide a range
of descriptive variations that enhance the model’s understanding of Entire Face Synthesis images.

Set of Text Labels Assigned to tgrs

“‘a photo of a entire face synthesis.”

“a digital portrayal of a human face, generated entirely by deep learning.”

“an artificial human visage created with advanced machine learning tools.”

“an ai-generated facial image designed to mimic natural human appearance.”

“a generative model’s output of a human face, appearing lifelike but not real.”

“a completely synthesized human face, crafted using deep learning algorithms.”

“a simulated human face created by neural networks to appear authentic.”

“an artificial face image generated to exhibit human-like detail and emotion.”

“a synthetic facial image where every element is the product of ai model.”

“a representation of a human face that is a digital construct, not a real person.”

“a high-resolution image of a face that is completely ai-generated.”

“a face generated from a neural network trained to create photorealistic human features.”
“a fully artificial human face crafted by advanced ai technologies.”

“a non-real facial image created entirely through ai-driven synthesis techniques.”

“a photorealistic face that showcases ai’s ability to generate human-like features.”

“a digital face image, where every aspect is synthesized.”

“an example of ai-driven facial synthesis, where the face is purely artificial.”

“an ai-crafted face, where realism is achieved through advanced neural techniques.”

“a digital creation of a face, formed entirely by deep learning synthesis.”

“a neural network-generated face that appears entirely plausible.”

“a computer-generated human face that mirrors the natural variation of real individuals.”
“a fabricated face image, where every detail is the result of neural network generation.”
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Table 13: Text label for Face Editing type. The first simple text label, highlighted in bold, is used
in the image-text classification evaluation. The remaining augmented labels provide a range of
descriptive variations that enhance the model’s understanding of Face Editing images.

Set of Text Labels Assigned to tzg

“a photo of a face editing.”

“a deepfake face with modified visual characteristics while preserving the original iden-
tity.”

“an altered face image with adjustments to specific attributes such as age and gender.”
“a synthetically enhanced face with refined or transformed facial features.”

“an edited portrait where certain aspects of the face have been subtly or significantly
changed.”

“a manipulated face that showcases alterations in appearance without changing the core
identity.”

“a modified facial image that presents adjusted traits while maintaining recognizable fea-
tures.”

“a deepfake-generated face with enhanced or altered attribute details.”

“an ai-edited face image focusing on the transformation of facial characteristics.”

“a synthetically modified face exhibiting adjusted features while retaining its essence.”
“a digitally enhanced face displaying changes to key appearance attributes.”

“an adjusted portrait that demonstrates transformations in facial aspects while remaining
authentic.”

“a modified face image that retains overall identity while refining selected attributes.”
“an altered image where specific facial details have been modified to achieve a desired

look.”
“a manipulated portrait with tailored changes to improve or transform visual features.”

“an ai-processed face displaying modified traits while keeping the original structure in-
tact.”

“a face image where certain attributes have been altered while preserving overall facial
identity.”

“an edited facial image that reflects changes in specific visual features without affecting
recognition.”

“a modified portrait that presents an adjusted version of the original face.”

“a transformed facial image that showcases refinements in appearance while maintaining
a natural look.”

“an adjusted face that highlights changes in selected attributes while retaining key facial
features.”

“a synthetically altered portrait where facial details have been subtly enhanced or modi-
fied.”

“an ai-edited face image with visible improvements or changes to certain characteristics.”

“a deepfake face showing controlled modifications in appearance while keeping identity
consistent.”

“a processed face that reflects tailored adjustments to achieve a refined appearance.”

“a modified image where selective facial attributes have been enhanced or transformed.”
“an edited portrait that demonstrates a balance between original structure and refined
details.”

“a transformed face where visual attributes have been modified while maintaining real-
ism.”
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