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Abstract

Algorithmic fairness literature presents numerous mathematical notions and metrics, and
also points to a tradeoff between them while satisficing some/all of them simultaneously.
Furthermore, the contextual nature of fairness notions makes it difficult to automate bias
evaluation in diverse algorithmic systems. Therefore, in this paper, we propose a novel
model called latent assessment model (LAM) to characterize binary feedback provided by
human auditors, by assuming that the auditor compares the classifier’s output to his/her own
intrinsic judgment for each input. We prove that individual and/or group fairness notions are
guaranteed as long as the auditor’s intrinsic judgments inherently satisfy the fairness notion
at hand, and are relatively similar to the classifier’s evaluations. We also demonstrate this
relationship between LAM and traditional fairness notions on three well-known datasets,
namely COMPAS, German credit and Adult Census Income datasets. Furthermore, we also
derive the minimum number of feedback samples needed to obtain probably approximately
correct (PAC) learning guarantees to estimate LAM for black-box classifiers. Moreover, we
propose a novel multi-attribute reputation measure to evaluate auditor’s preference towards
various fairness notions as well as sensitive groups. These guarantees are also validated
using standard machine learning algorithms, which are trained on real binary feedback
elicited from 400 human auditors regarding COMPAS.

1 Introduction

Several machine learning (ML) based systems have recently been reported as being discriminatory with
respect to the sensitive attributes (e.g. race and gender) in a variety of application domains, such as recom-
mender systems in criminal justice (Angwin et al., 2016), e-commerce services in online markets (Fisman &
Luca, 2016), and life insurance premiums (Waxman, 2018). Most of these applications have outcomes that
depend on subjective human judgements which vary drastically across different people. Typically, these out-
come labels are obtained on a case-by-case basis from different types of individuals (typically subject matter
experts who have rich experience in their respective fields.). However, experts also exhibit biases especially
when it comes to subjective judgements. For instance, in criminal justice applications, one may argue that
a ‘just’ outcome for a parole application by a Black applicant is to deny the bail since he/she has a high
chance to recidivate back to crime since the applicant lives in an unsafe neighborhood. On the other hand,
the same applicant could be presented with a bail if he/she has no prior counts and has a clean record in the
past. This idea of justice where everyone should be treated fairly based on their own features/merit, and
independent of how others are treated, is called non-comparative fairness (Feinberg, 1974). In a practical
data collection process, outcome labels are elicited from a non-comparative fairness standpoint since each
person is presented with one case at a time (for example, readers may refer to (Goel & Faltings, 2019)).
However, these judgements are usually subjective and even experts may not always arrive at a consensus on
one correct verdict. Since the labelers suffer from inherent biases, their labels are often subject to inquisition
(Cooper et al., 2021). This dearth of correct labels invalidates the quantification of ML performance using
accuracy, which measures the alignment of classifier’s outcome with the correct label found in training data.

On the contrary, algorithmic fairness literature do not question the fidelity of training data and discusses the
quantification of biases and tradeoffs with accuracy using comparative fairness notions (Mehrabi et al., 2021).
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Comparative fairness notions primarily focus on issues such as equality, similarity and proportionality, which
questions whether an individual is treated/serviced ‘justly’ in comparison to that received by others. Biases
measured by comparative notions can be broadly classified into two types, namely disparate treatment, where
different groups of people are treated differently; and disparate impact, where different groups of people obtain
different proportions of outcomes. Individual fairness (Dwork et al., 2012) quantifies disparate treatment
via comparing the similarity between two individuals based on a task-specific distance metric. On the other
hand, group fairness notions (Caton & Haas, 2020; Chouldechova & Roth, 2018; Hardt et al., 2016b) quantify
disparate impact by comparing the differences in outcome proportions (e.g. true positive, false positive rates,
predictive positive value) across different sensitive groups. In addition to measuring comparative fairness
in ML systems, various mitigation techniques have been proposed to alleviate these biases in the literature.
These mechanisms are typically categorized into three types: (i) pre-processing techniques that modifies
the input to the ML model (Kamiran & Calders, 2012), (ii) in-processing techniques that retrain the ML
model (Kamishima et al., 2012; Zafar et al., 2017), and (iii) post-processing techniques that modify the
output labels (Hardt et al., 2016b; Corbett-Davies et al., 2017). Each of these approaches either maximize
accuracy (or some loss function) under prescribed comparative fairness constraints, or maximize comparative
fairness under tolerable constraints on accuracy loss. Finally, a fundamental tradeoff between comparative
fairness and accuracy has also been investigated based on which, a compromise in accuracy was proposed
to obtain fairness improvements in the system. However, comparative fairness notions cannot be completely
automated and demands human feedback to identify appropriate fairness notions for system evaluation.
Heterogeneous stakeholders compete against each other to enforce their preferred fairness notions, all of
which cannot be satiated simultaneously due to a fundamental tradeoff that exists between comparative
fairness notions (Chouldechova, 2017; Kleinberg et al., 2016). This dogfight between various stakeholders
regarding the selection of an appropriate comparative fairness metric is also context-dependent (Binns, 2018),
due to differences in protected groups across applications. Therefore, several researchers have attempted to
explore human perception of fairness to identify the appropriate comparative fairness notion. For more
details, the reader may refer to Section 1.2.

The inability of comparative notions to enable a reliable algorithmic fairness analysis, combined with the
desertion of non-comparative fairness perspective in the past, leads to a major predicament in the design of
fair ML algorithms. To the best of our knowledge, this paper makes the first attempt to address this gap via
modeling human auditors from a non-comparative fairness perspective, and develop a scalable method to
evaluate high-dimensional ML algorithms. Furthermore, this paper also assumes that the auditor provides a
binary feedback regarding system fairness since the auditor’s intrinsic evaluation of labels is a subconscious
phenomenon and is practically difficult to quantify in most applications.

1.1 Technical Contributions

The main contributions of the paper are four-fold. Firstly, a novel latent assessment model (LAM) was
proposed to represent binary human feedback regarding the fairness of the system, from a noncomparative
perspective. Unlike most of the past literature on human perception of fairness, the proposed model allows
human auditors to provide their feedback at will, without enforcing any specific fairness notion artificially
(Gillen et al., 2018). Secondly, we emphasize that the availability of non-comparative fairness does not
necessarily dispense with the need of comparative fairness. We prove that a system/entity satisfies individual
and/or group fairness notions if the auditor exhibits LAM in his/her fairness evaluations. We also show that
converse holds true in the case of individual fairness. Since both the system and auditor rules are hidden, we
compute PAC learning guarantees on algorithmic auditing based on binary feedback obtained from human
auditors. Third, we introduce a novel multi-attribute reputation measure to evaluate auditor’s inherent
biases based on various comparative fairness notions as well as sensitive attributes. Lastly, we validate
the relationships with comparative fairness notions on three real datasets, namely COMPAS, Adult Income
Census and German credit datasets. Using the feedback data of 400 crowd workers collected by (Dressel &
Farid, 2018), we compare various learning frameworks such as logistic regression, support vector machines
(SVM) and decision trees to estimate auditor’s intrinsic judgements and their feedback. We also measure
the reputation of the crowd workers to evaluate auditor’s preference towards various comparative fairness
notions.
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Figure 1: A Map of Technical Contributions

1.2 Related Work on Human Perception of Fairness and Worker Reputation

In the past, several researchers have attempted to model human perception of fairness, but have always tried
to fit their revealed feedback to one of the existing fairness notions. For instance, task-based similarity metric
used in individual fairness notion (Dwork et al., 2012) were estimated by (Jung et al., 2019) based on feedback
elicited from auditors regarding how a given pair of individuals have been treated. Similarly, the work of
(Gillen et al., 2018) assumes the existence of an auditor who is capable of identifying unfairness given pair of
individuals when the underlying similarity metric is Mahalanobis distance. Saxena investigated how people
perceive the fitness of three different individual fairness notions in the context of loan decisions (Saxena
et al., 2019). The three notions are: (1) treat similar individuals similarly (Dwork et al., 2012), (2) Never
favor a worse individual over a better one (Joseph et al., 2016), and (3) the probability of approval should
be equal to the reward being the greatest (Liu et al., 2017). They show that people exhibit a preference for
the last fairness definition.

From the perspective of group fairness notions, an experiment performed by (Srivastava et al., 2019) asks
participants to choose among two different models to identify which notion of fairness (demographic parity
or equalized odds) best captures people’s perception in the context of both risk assessment and medical
applications. Likewise, another team surveyed 502 workers on Amazon’s Mturk platform and observed a
preference towards equal opportunity in (Harrison et al., 2020). Note that both papers asked participants
to reveal their analysis concerning a specific fairness notion in the context of given sensitive attributes (e.g.
race, gender) which was clearly pointed out as a limitation of their work. On the contrary, in this paper,
we impose no such restrictions on the auditor in constructing their feedback with respect to satiating any
specific fairness notion. Instead, we assume that the expert auditor employs an intrinsic fair decision rule
(which is unknown) to evaluate a given data tuple. Dressel and Farid in (Dressel & Farid, 2018) showed
that COMPAS is as accurate and fair as that of untrained human auditors regarding predicting recidivism
scores. On the other hand, (Yaghini et al., 2021) proposed a novel fairness notion, equality of opportunity
(EOP), which requires that the distribution of utility should be the same for individuals with similar desert.
Based on eliciting human judgments, they learned the proposed EOP notion in terms of criminal risk as-
sessment context. Results show that EOP performs better than existing notions of algorithmic fairness in
terms of equalizing utility distribution across groups. Another interesting work is by (Grgic-Hlaca et al.,
2018), who discovered that people’s fairness concerns are typically multi-dimensional (relevance, reliability,
and volitionality), especially when binary feedback was elicited. This means that modeling human feedback
should consider several factors beyond social discrimination. A major drawback of these approaches is that
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the demographics of the participants involved in the experiments (Yaghini et al., 2021; Grgic-Hlaca et al.,
2018; Harrison et al., 2020; Saxena et al., 2019) are not evenly distributed. For instance, the conducted ex-
periments ask how models treated Caucasians and African-Americans. However, non-Caucasian participants
were insufficient to assess the relationship between the participant’s own demographics and the group that
was disadvantaged by the model. Moreover, the participants are presented with multiple questions in the
existing literature which cannot be scaled for larger decision-based models (Yaghini et al., 2021).

The problem of evaluating the biases of auditors/workers is also studied in crowdsourcing literature. Typ-
ically, auditors’ reliability is also measured by comparing their responses with majority vote (Jamaludeen
et al., 2019) or ground truth (Le et al., 2010). Since majority vote assumes that every auditor has same ex-
pertise, it cannot be applied to our framework as the biases of the auditors vary from one another. Moreover,
due to the absence of ground truth, it is not possible to compare auditor responses. Recently, the work of
Ghai et al. (2020) introduced a novel method of measuring worker’s biases based on counterfactual fairness -
a worker is considered to be fair if he/she provides the same label for an individual and its counterfactual. On
the other hand, this paper proposed a novel reputation mechanism accounting various comparative fairness
notions across different sensitive attributes.

2 Preliminaries: Traditional Fairness Notions

In most practical systems, two types of discrimination exist: (i) disparate treatment, where an individual is
intentionally treated differently based on his/her membership in a protected class; and (ii) disparate impact,
where members of a protected class are more negatively impacted than others. However, algorithmic fairness
literature has studied a different set of fairness notions (ref. (Caton & Haas, 2020; Chouldechova & Roth,
2018; Mehrabi et al., 2021; Pessach & Shmueli, 2020)). Let g(·) be a ML system which predicts an outcome
y = g(x), where x is the (multi-attribute) input variable and y∗ be the true label.

2.1 Group Fairness Notions

The notion of group fairness seek for parity of some statistical measure across all the protected attributes
present in the data. Different versions of group-conditional metrics led to different group definitions of
fairness. Let A be the set of protected attributes, where a ∈ A is the privileged group and a′ ∈ A is the
underprivileged group.

Statistical Parity: This measures seeks to compute the probability difference of individuals who are
predicted to be positive across different sensitive groups. Formally, it can be defined as followed.

P[y = 1 | A = a]− P[y = 1 | A = a′] ≤ δ (1)

Since statistical parity aims for equal proportions of positive outcomes, the ideal value of probability difference
should be 0. Specifically, if the difference is greater than 0, privileged group is benefited. Whereas, if the
difference is less than 0, the underprivileged group is benefited. A major disadvantage of statistical parity is
when the base rates (ratio of actual positive outcomes) are significantly different for various groups.

Equal Opportunity: To overcome the drawbacks in statistical parity, (Hardt et al., 2016a) introduced
the notion of equalized odds which computes the difference between the true positive rates (TPR) of two
protected groups.

P[y = 1 | y∗ = 1, A = a]− P[y = 1 | y∗ = 1, A = a′] ≤ δ. (2)

Smaller differences between groups indicate better fairness. Since this notion considers the true label y∗, it
assumes that the base rates of the two groups are representative and were not obtained in a biased manner.

Calibration: The measures computed the difference between positive predictive value of two groups. Pos-
itive predictive value represents the probability of an individual with a positive prediction actually experi-
encing a positive outcome. This notion is mathematically formulated as follows.

P[y∗ = 1 | y = 1, A = a]− P[y∗ = 1 | y = 1, A = a′] ≤ δ. (3)
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Figure 2: Latent Assessment Model of the Expert Auditor

Although in some cases equal calibration may be the desired measure, it has been shown that it is incompat-
ible with equalized odds (Pleiss et al., 2017) and is insufficient to ensure accuracy (Corbett-Davies & Goel,
2018).

Equal Accuracy: This requires similar accuracy across groups (Berk et al., 2018).

P[y = y∗ | A = a]− P[y = y∗ | A = a′] ≤ δ. (4)

2.2 Individual Fairness

Individual fairness assessments, rather than measuring discrimination across different sensitive groups, con-
sider fairness for each individual, with the assumption that similar individuals should be treated as similarly
as feasible (Dwork et al., 2012). Formally, given any two individuals xi, xj ∈ X and for some κ, δ ≥ 0, the
ML system g is (κ, δ)-individually fair if

d(yi, yj) ≤ δ, if D (xi, xj) ≤ κ, (5)

where yi = g(xi) and yj = g(xj) are the system’s outputs for the inputs xi and xj respectively.

Note that the above definition contains a slack in the bound presented in Equation 5. Since the original
definition of individual fairness directly compares the two similarlity metrics d(yi, yj) and D(xi, xj), it be-
comes very challenging to find appropriate distance metrics in practice. Furthermore, this relaxed definition
enables us to evaluate a relationship between our fairness model and individual fairness. Such relaxations
have also been considered in the past for rigorous analysis John et al. (2020).

Unfortunately, in most practical applications, the similarity metric D(xi, xj) is task-specific and is typically
unknown, which causes a severe restraint on our ability to ensure individual fairness. As a solution, metric
learning was proposed to discern a task-specific similarity metric by evaluating the relative distance between
human judgements (Ilvento, 2019) for any given pair of inputs. On the other hand, (Mukherjee et al., 2020)
utilizes Mahalanobis distance as a fair metric and proposed EXPLORE, an algorithm to learn similarity
between individuals from pairs of comparable and incomparable samples. It learns similarity such that the
logistic regression predicts “comparable" when the fair distance is short, and “incomparable" when the fair
distance is large. Interested readers can refer to (Fleisher, 2021) which discussed various inefficiencies of
individual fairness in detail.

3 Latent Assessment Model and Non-Comparative Evaluation of Human Auditors

Consider an expert auditor who is presented with a data tuple (x, y), where x ∈ X is the input given to ML
model g and y = g(x) ∈ Y is the output label as shown in Figure 2. Let f denote the expert auditor’s latent
decision rule, z = f(x) be the latent subjective label for the input x, and s(x, y, z) represent the auditor’s
binary feedback regarding the input-output pair (x, y). In this paper, we model auditor’s judgments from a
non-comparative perspective as follows:
Definition 1 (ε-Latent Assessment Model). An auditor is said to satisfy ε-LAM if there exists a tuple
(X ,Y, d, f, ε) such that the auditor compares the system’s output y = g(x) with the latent subjective label
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Figure 3: Auditor Evaluation Framework based on ε-LAM

z = f(x) using a distance metric d and reveal his/her binary feedback as

s
(
x, y, z

)
=
{

1, if d
(
y, z
)
≥ ε,

0, otherwise.
(6)

Furthermore, we say the auditor f is ε-LAM with respect to the system g if d
(
y, z
)
< ε for all x ∈ X .

We also say that the auditor f is ε-LAM with respect to the system g with high probability, if P
(
d
(
y, z
)
<

ε
)
≥ 1− δ, for some small ε > 0 and δ > 0.

In other words, if the distance between the output label y = g(x) and the latent subjective label z = f(x)
is greater than ε, the auditor will deem the system label y = g(x) as unfair. For the sake of illustration,
consider an individual who committed felony and has multiple prior offences, received low recidivism score
from a risk assessment tool. The expert auditor evaluates the individual intrinsically and may decide that
he/she should receive a higher recidivism score. Then, the auditor judges the tool’s output as unfair. In
this paper, we assume the fair relation f employed by the expert auditor is unknown. Therefore, we need to
learn the proposed ε-LAM using statistical learning techniques. This will be discussed in Section 4 in detail.
Although ε-LAM comprises of three unknowns in practice, namely d, f and ε, we assume that the distance
metric d used by the auditor is known.
Remark 1. In the case of binary classification, the Hamming distance between g and f , denoted as dH

(
y =

g(x), z = f(x)
)
, takes a binary value of 0 or 1. Therefore, for any 0 < ε < 1, ε-LAM model in Definition

1 reduces to s = y ⊕ z, where ⊕ denotes the XOR operation. Since the XOR function is reversible, we can
infer the latent subjective label z = y ⊕ s exactly from elicited feedback.

Note that auditors exhibit different types of biases in the real-world. Examples include confirmation bias,
hindsight bias, anchoring bias, racial and gender bias. Every auditor is susceptible to biases which are
shaped by their prior experiences and/or knowledge about various social groups within the community.
Consequently, it is not reasonable to accept any auditor’s feedback blindly without evaluating their inherent
biases. Our proposed model, LAM, captures auditor’s biases through the latent subjective label z = f(x) in
Equation 6. However, in order to quantify auditor biases, we need to investigate the relationship between
LAM and comparative fairness notions. By doing so, we can estimate any given auditor’s performance in
terms of diverse fairness notions that do not necessarily align with each other.

In this paper, we propose a novel auditor evaluation framework for high-dimensional ML systems in Figure
3 to quantify his/her biases across diverse comparative fairness notions. Since it is impractical to elicit
feedback that spans entirely across the high-dimensional input space, there is a need to estimate LAM for
a given auditor to predict his/her fairness evaluation for any input-output pair (x, y) ∈ X × Y. In this
paper, we assume that the distance function d(·) and ε are known and restrict our attention to learning
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the auditor’s latent decision rule f from limited elicited feedback. In practice, human auditors are typically
incapable of expressing their intrinsic evaluations f formally in functional form. Therefore, we predict
auditor’s latent subjective labels ẑ = f̂(x) on any input x ∈ X using a learning algorithm A (e.g. logistic
regression, random forests, and support vector machines), which is trained using elicited feedback samples{

(x1, y1, s1), · · · , (xn, yn, sn)
}
. Furthermore, most ML-based systems are not revealed to fairness evaluators,

and need to be assessed as black-box models. For example, the model used to develop COMPAS is proprietary
and is not revealed to any criminal justice evaluator. In other words, it is also essential to estimate the system
model ĝ from available data

{
(x1, y1), · · · , (xn, yn)

}
, and predict its output label ŷ = ĝ(x).

Using the two predictions ŷ and ẑ, we can now predict the binary feedback

ŝ
(
x, ŷ, ẑ

)
=
{

1, if d
(
ŷ, ẑ
)
≥ ε,

0, otherwise.
(7)

Then, we measure the overall bias in the system from a noncomparative fairness perspective as defined below.
Definition 2 (Fairness Measure). The direct empirical fairness measure (DEFM) from a noncomparative
fairness perspective is defined formally as the average feedback obtained directly from the original auditor,
i.e.

µ = E(s) = 1
n

n∑
i=1

si. (8)

On the other hand, the indirect empirical fairness measure (IEFM) from a noncomparative fairness perspec-
tive is given by the empirical estimate of the true bias, i.e.

µ̂ = E(ŝ) = 1
n

n∑
i=1

ŝi, (9)

where ŝ is computed according to Equation 7.

The following section evaluates theoretical guarantees in terms of sample complexity and fundamental limits
of the proposed auditor evaluation framework due to the two predictors f̂ and ĝ.

4 PAC Guarantees

Most ML systems map high-dimensional input spaces to low-dimensional outcomes. For example, in criminal
justice or banking applications, input space spans across the entire population of individuals serviced by the
ML system, while the outcome space is finite (e.g. binary decisions such as approval/disapproval of bails
or loans.). In such a scenario, feedback elicitation from human auditors is extremely challenging due to
the large number of feasible input-output pairs, which cannot be evaluated by any one human auditor.
Therefore, there is a need for human-system teaming for a practically scalable fairness evaluation, wherein
human auditors give feedback for a small subset of input-output pairs and the system learns their LAM
from elicited feedback and scales it across all other possibilities for a wholesome evaluation. This section
investigates the fundamental limits of such fairness evaluation systems in terms of sample complexity (i.e. the
minimum number of feedback samples needed to effectively learn auditor’s LAM with prescribed guarantees)
as well as the evaluation performance.

Let C be a class of auditor’s decision rules f : X → Y where X is the set of all possible individuals
serviced by the ML system and Y is the set of output labels of the ML system. Let A denote a learning
algorithm that identifies a hypothesis f̂n ∈ H that minimizes the loss d(f, f̂n), based on n observations
{(xi, yi, si)}ni=1 ∈ Xn ×Yn ×{0, 1}n, which follow some data distribution D. Note that the hypothesis class
H is not necessarily equal to the original class of decision rules C due to our inability to mathematically
characterize C exactly, especially due to the complexities in human decision making. The PAC model provides
guarantees for minimum number of such instances needed to obtain a hypothesis f̂n with error no more than
ε with probability 1− δ. Formally,
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Definition 3 (PAC Learnability of f). We say that the auditor’s latent decision rule f is PAC-learnable (in
both realizable and non-realizable settings) if there exists numbers εf > 0, 0 < δf < 1, Nf (εf , δf ) > 0, and
an algorithm Af which receives n ≥ Nf (εf , δf ) i.i.d. samples (drawn from some distribution D) as input,
and outputs an estimated classifier f̂n such that

P
(
d(f, f̂n) ≤ εf

)
≥ 1− δf .

Similarly, the ML-based system is unavailable to the evaluation platform i.e. g in unknown.
Definition 4 (PAC Learnability of g). We say that the ML-based system g is PAC-learnable (in both realizable
and non-realizable settings) if there exists numbers εg > 0, 0 < δg < 1, Ng(εg, δg) > 0, and an algorithm
Ag which receives n ≥ Ng(εg, δg) i.i.d. samples (drawn from some distribution D) as input, and outputs an
estimated classifier ĝn such that

P
(
d(g, ĝn) ≤ εg

)
≥ 1− δg.

As discussed earlier, the auditor’s intrinsic rule f is not directly revealed, while eliciting his/her feedback
regarding biases in the system-of-interest. Therefore, we need to compute the intrinsic rule f̂n in order to
reproduce auditor’s judgements for other input possibilities. At the same time, the classifier is typically
unavailable to the bias-evaluation platform, i.e., g is also unknown to the bias-evaluation platform. In other
words, a practical bias-evaluation platform is expected to learn (f, g) to obtain a model (f̂n, ĝn), and identify
an appropriate fairness notion for the given context so that the bias evaluation platform can algorithmically
evaluate bias in a system with a large input space. In the following theorem, we provide guarantees for the
algorithmic ε− LAM evaluations, based on estimated rules f̂n and ĝn.
Theorem 1. Let N denote the minimum number of samples needed to guarantee ε−LAM empirically, i.e.
P
(
d(ĝn, f̂n) < ε

)
> 1− δ for some ε > 0 and δ > 0. Then, for any auditor’s intrinsic rule f and classifier

g, there exists some 0 < Nf , Ng < N , εg, εf , ε, δ̃, δg, δf > 0 such that εg + εf + ε < ε̃ and δg + δf + δ < 2 + δ̃,
and an algorithm A that receives i.i.d. samples {(xi, yi, zi)}ni=1 as input, and outputs rules f̂n and ĝn with a
probability of d(f(x), g(x)) < ε being at least 1− δ̃, only when

n ≥ N , min
ε1,ε2,δ1,δ2

(max{Ng, Nf}), (10)

where Nf and Ng satisfy PAC learning bounds for f and g.

Proof. In this proof, we will show that f is ε-LAM with respect to g with high probability, i.e.

P
(
d(f(x), g(x)) < ε

)
≥ 1− δ (11)

for some small ε > 0 and δ > 0. Assuming that both f and g are PAC-learnable functions (as stated in
Definitions 3 and 4 respectively), we evaluate the triangle inequality between the labels z = f(x), y = g(x),
ẑ = f̂n(x) and ŷ = ĝn(x), as shown below:

d(g(x), f(x)) ≤ d(g(x), ĝn(x)) + d(ĝn(x), f(x)) (due to ∆ ineq. between y, ŷ and z)

≤ d(g(x), ĝn(x)) + d(ĝn(x), f̂n(x)) + d(f̂n(x), f(x)) (due to ∆ ineq. between ŷ, ẑ and z).
(12)

Note that f and g are PAC-learnable functions with parameters (εf , δf , Nf ) and (εg, δg, Ng) respectively.
Let f̂ be ε̂-LAM with respect to ĝ with high probability, i.e.

P
(
d(f̂(x), ĝ(x)) < ε̂

)
≥ 1− δ̂, (13)
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Figure 4: The interaction between the learning algorithms of f and g.

for some ε̂ > 0 and δ̂ > 0. Then, we can always find some number ε > 0 such that εg + ε̂ + εf ≤ ε. In
other words, if we define three events: Eg

.= {d(g(x), ĝn(x)) < εg}, ELAM
.= {d(ĝn(x), f̂n(x)) < ε̂} and

Ef
.= {d(f(x), f̂n(x)) < εf}, the intersection of these events will guarantee

d(g(x), f(x)) ≤ d(g(x), ĝn(x)) + d(ĝn(x), f̂n(x)) + d(f̂n(x), f(x))

≤ εg + ε̂+ εf

< ε.

(14)

Therefore, from Frechet’s lower bound on the probability of intersection of events, we obtain

P
(
d(g(x), f(x)) < ε

)
≥ P

(
Eg ∧ ELAM ∧ Ef

)
≥ P(Eg) + P(ELAM ) + P(Ef )− 2, (due to Frechet’s lower bound)

≥ (1− δg) + (1− δ̂) + (1− δf )− 2

> 1− δ,

(15)

where δ is some number such that δg + δ̂ + δf < δ.

Let Ng(εg, δg) and Nf (εf , δf ) denote the minimum samples needed to guarantee PAC learnability at g and
f respectively. In other words, the maximum of the two numbers will guarantee PAC learnability of both
g and f , i.e. N(εg, εf , δg, δf ) = max{Ng(εg, δg), Nf (εf , δf )}. However, there are several possible ways to
split the prescribed tolerance ε and δ across the terms (εf , εg, ε̂) and (δf , δg, δ̂) such that the two inequalities
εg + ε̂ + εf < ε and δg + δ̂ + δf < δ hold true. In other words, the minimum number of samples needed to
achieve prescribed guarantees (ε, δ) as stated in Equation 11 is given by Equation 10.

Note that IEFM µ̂ cannot be better than DEFM µ due to the estimation errors in f̂n and ĝn. In other
words, there is no free lunch in terms of fairness measurement when auditor and/or system are replaced by
digital twins. However, if the learning errors in both f̂n and ĝn are small, we demonstrate that there is a
tolerable gap between the direct and indirect fairness measurement in Section 8 (ref. to Figure 6). Since the
problem of finding the gap between DEFM and IEFM remained intractable, we present an upper bound on
the distance d(f̂n(x), ĝn(x)) in terms of d(f(x), g(x)), as a surrogate analysis.

Theorem 2. If A is a learning algorithm which receives a training set of size n ≥ N ,
min

ε1,ε2,δ1,δ2
(max{Ng, Nf}), there always exists a distribution D over X such that

9
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d(f̂n(x), ĝn(x)) ≤ εf + εg + d(f(x), g(x)),
for any x ∈ X .

Proof. We illustrate this result based on the following scenario. Consider that the true LAM and the
estimated LAM have opposing opinion regarding an input x, i.e., s(x, y, ŷ) = 1 and ŝ(x, z, ẑ) = 0. In other
words, we assume that d(f(x), g(x)) ≥ ε and d(f̂n(x), ĝn(x)) < ε. The objective is to measure the deviation
between the auditor’s true LAM and the estimated auditor twin’s LAM. Figure 4 depicts this scenario, where
F and G denote the realizable function spaces from which we choose the estimates f̂n ∈ F and ĝn ∈ G of
the auditor’s intrinsic rule f and the black-box classifier g respectively. Since f and g are unknown, it is
reasonable to assume that the two functions do not belong to the function spaces F and G respectively. Let
εf and εg denote the errors in estimating the functions f̂n and ĝn respectively.

Based on triangle inequality, the following can be inferred.

d(f̂n(x), ĝn(x)) ≤ d(f(x), f̂n(x)) + d(f(x), ĝn(x)) ≤ εf + d(f(x), ĝn(x)), (16)

since the learning algorithm used to estimate f comes with a bias of εf , i.e. we have d(f, f̂n) ≤ εf . Similarly,
we have

d(f̂n(x), ĝn(x)) ≤ d(g(x), ĝn(x)) + d(f̂n(x), g(x)) ≤ εg + d(f̂n(x), g(x)). (17)

Adding above two equations we obtain

d(f̂n(x), ĝn(x)) ≤ 1
2

(
εf + εg + d(f̂n(x), g(x)) + d(f(x), ĝn(x))

)
. (18)

Furthermore, we have
d(f(x), ĝn(x)) ≤ εg + d(f(x), g(x))

d(f̂n(x), g(x)) ≤ εf + d(f(x), g(x)).
(19)

Substituting Equation 19 in Equation 18, we obtain

d(f̂n(x), ĝn(x)) ≤ 1
2 (εf + εg + εg + d(f(x), g(x)) + εf + d(f(x), g(x))) ≤ εf + εg + d(f(x), g(x)). (20)

5 Relationship Between Non-Comparative and Comparative Fairness Notions

Although comparative and non-comparative fairness notions are fundamentally different from each other,
this section discusses their mutual relationship formally.

5.1 Relation with Individual Fairness

In the following proposition, we show how the system g can be evaluated based on the notion of (κ, δ)-
individual fairness, when the auditor f is ε-LAM with respect to the system g.
Proposition 1. A system g is (κ, 2ε + δ)-individually fair, if its auditor f is (κ, δ)-individually fair and
satisfies ε-LAM with respect to the system g.

Proof. Given (xi, yi) and (xj , yj) ∈ X ×Y such that D (xi, xj) ≤ κ (the two individuals are κ-similar), then
f is (κ, δ)-individually fair if d

(
f(xi), f(xj)

)
< δ. However, note that if g is ε-LAM with respect to f , then

10
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d
(
g(xi), f(xi)

)
< ε and d

(
g(xj), f(xj)

)
< ε. Therefore, by applying a chain of triangle inequalities, we

obtain

d
(
g(xi), g(xj)

)
≤ d

(
g(xi), f(xi)

)
+ d
(
f(xi), f(xj)

)
+ d
(
f(xj), g(xj)

)
< 2ε+ δ,

(21)

for all xi, xj such that D(xi, xj) ≤ κ.

Remark 2. In the case of binary classifiers, if the auditor f is κ-individually fair, we have f(xi) = f(xj)
for all xi, xj whenever D(xi, xj) ≤ κ. Furthermore, if the auditor f is ε-LAM with respect to the system
g for any ε ∈ (0, 1), we have g(x) = f(x) for all x ∈ X . Combining the above two properties, we get
g(xi) = f(xj) = f(xi) = g(xj) for all xi, xj such that D(xi, xj) ≤ κ.

We illustrate this result using the following example from the banking domain. Consider two individuals
who are looking to apply for a loan. A banking system would evaluate both the applications via collecting
information such as gender, race, address, credit history, collateral, and his/her ability to pay back. At the
same time, consider an auditor who makes fairness judgements based on the rule: "If he/she has cleared
all the debts and possesses reasonably valued collateral, the loan must be granted". Given that the auditor
treats any two similar individuals similarly, the auditor satisfies individual fairness. Hence, if the evaluation
of the banking system is relatively similar to the auditor’s fair relation, from Proposition 1, the banking
system is also individually fair.

Proposition 2. If an auditor f is not (κ, δ)-individually fair, but satisfies ε-LAM with respect to the system
g, then the system is not (κ, δ − 2ε)-individually fair as well.

Proof. If f is not individually fair, then for some input pair (xi, xj) such that D(xi, xj) < κ, we have
d (f(xi), f(xj)) > δ for all κ, δ ∈ R. However, note that if g is ε-LAM with respect to f , then d (g(xi), f(xi)) <
ε and d (g(xj), f(xj)) < ε. Therefore, by applying a chain of triangle inequalities, we have

d (f(xi), f(xj)) ≤ d (g(xi), f(xi)) + d (g(xj), f(xj)) + d (g(xi), g(xj)) (22)

Substituting the bounds of d (g(xj), f(xj)) and d (g(xi), g(xj)) we get

2ε+ d (g(xi), g(xj)) > d (g(xi), f(xi)) + d (g(xj), f(xj)) + d (g(xi), g(xj))

≥ d (f(xi), f(xj))

> δ

(23)

for all δ ∈ R. Therefore, we also have d (g(xi), g(xj)) > δ − 2ε.

Remark 3. For binary classification, Proposition 2 can be reduced as follows. Note that if f is not κ-
individually fair, we have f(xi) 6= f(xj) even though D(xi, xj) ≤ κ. Furthermore, if g is ε − LAM with
respect to f for any ε ∈ (0, 1), we have g(x) = f(x) for all x ∈ X . Combining the above two properties, we
get g(xi) = f(xj) 6= f(xi) = g(xj) for all xi, xj such that D(xi, xj) ≤ κ.

Consider the earlier example of banking where, there are two individuals, A and B, who possess the same
degree of merit. Imagine that the bank approves A’s loan application and denies B. This outcome remains
the same as per the auditor’s fair relation. Imagine further that neither A nor B merits the outcome.
Though both banking’s evaluation and auditor’s judgements seem to be similar, they violate the precept,
"treat similar individuals similarly". Moreover, A is treated in a way that A does not merit. Hence, we can
assert that banking evaluation does not satisfy individual fairness.

11
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5.2 Relation with Group Fairness Notions

As discussed earlier, group fairness notions compare certain probabilistic measure across two protected
groups. In the remaining section, we will focus on the relationship between group fairness notions and our
proposed LAM. For the sake of convenience, let us denote px,y(g, a) = P[g(x) = y | A = a].
Proposition 3. Given that the probability distributions are M -Lipschitz continuous over all possible f and g
functions, g satisfies (2Mε+ δ)-statistical parity, if g is ε-LAM with respect to f , and f satisfies δ-statistical
parity.

Proof. Given the set of protected attributes A, since f satisfies δ-statistical parity, we have ||px,y(f, a) −
px,y(f, a′)|| < δ for all a, a′ ∈ A. Then, we have

px,y(g, a)− px,y(g, a′) = [px,y(g, a)− px,y(f, a)] + [px,y(g, a′)− px,y(f, a′)]

+ [px,y(f, a)− px,y(f, a′)]
(24)

Assuming M -Lipschitz continuity over all f(x), g(x), we have ||px,y(g, a) − px,y(f, a)|| < M · ε, since
d(g(x), f(x)) < ε. Combining all the inequalities, we have

||px,y(g, a)− px,y(g, a′)|| < 2Mε+ δ. (25)

Again, consider the earlier example of loan approvals to illustrate the above proposition. Consider that there
exists two groups which are classified based income - low and high. The banking system builds a credit model
based purely. Moreover, the system may decide to use different requirement levels - low interest or default
to low income group, so that the percentage of people getting a loan in low-income group is equal to the
percentage of people getting a loan in high-income group. Now, suppose an auditor presents fair judgements
based on the rule: “If Group A has a FICO credit score of 550 and cleared all the debts, the loan must be
granted. If Group B has a FICO score of 700 and has valuable collateral, grant the loan”. Note that, the
auditor’s fair relation is somewhat similar to that of the bank’s policy. Since the bank’s policy is known to
be statistically fair, the auditor is also unbiased from a group fairness perspective.

Similarly, the following three propositions identify the relationship between our proposed ε−LAM and three
other group fairness notions, namely equal opportunity, calibration, and equal accuracy.
Proposition 4. Given that the probability distributions are M -Lipschitz continuous over all possible f and
g functions, g satisfies (2Mε+ δ)-equal opportunity, if g is ε-LAM with respect to f , and f satisfies δ-equal
opportunity.

Proof. The proof is similar to that of Proposition 3. Therefore, for the sake of brevity, the proof is not
included.

Proposition 5. Given that the probability distributions are M -Lipschitz continuous over all possible f and
g functions, g satisfies (2Mε+ δ)-calibration, if g is ε-LAM with respect to f , and f satisfies δ-calibration.

Proof. The proof is similar to that of Proposition 3. Therefore, for the sake of brevity, the proof is not
included.

Proposition 6. Given that the probability distributions are M -Lipschitz continuous over all possible f and
g functions, g satisfies (2Mε + δ)-equal accuracy, if g is ε-LAM with respect to f , and f satisfies δ-equal
accuracy.

Proof. The proof is similar to that of Proposition 3. Therefore, for the sake of brevity, the proof is not
included.

12
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6 Comprehensive Reputation of Human Auditors

Given the auditor’s intrinsic labels {ẑ1, · · · , ẑK}, we can compute the auditor’s performance for a given
sensitive/protected group in terms of various fairness notions such as statistical parity (ref. Equation equa-
tion 1), equal opportunity (ref. Equation equation 2), calibration (ref. Equation equation 3) and individual
fairness (ref. Section 2.2). Furthermore, note that this multi-dimensional fairness evaluation is different for
different sensitive groups. For example, in the United States, protected groups are typically defined based
on race, gender, religion or any combination of these attributes. Such multi-attribute fairness evaluations
across different sensitive/protected groups naturally steers us towards defining a multi-attribute reputation
matrix

R(ẑ1, · · · , ẑK) =


r1,1(ẑ1, · · · , ẑK) · · · r1,L(ẑ1, · · · , ẑK)

...
. . .

...

rM,1(ẑ1, · · · , ẑK) · · · rM,L(ẑ1, · · · , ẑK)

 , (26)

where M is the total number of fairness notions and L is the total number of sensitive groups. For example,
if we are evaluating the auditor based on statistical parity (SP) with respect to the sensitive attribute race,
then rSP, race = P[f(x) = 1 | race = a]− P[f(x) = 1 | race = a′].

Although we propose a multi-dimensional fairness evaluation in a matrix format R, it is necessary to represent
auditor’s biases as a one-dimensional score ν signifying his/her overall performance with respect to various
fairness notions. Therefore, we apply Frobenius norm of the reputation matrix R to compute the auditor’s
scalar reputation score as follows.

ν(ẑ1, · · · , ẑK) = ||R(ẑ1, · · · , ẑK)||F =

√√√√ M∑
i=1

L∑
j=1

∣∣ri,j(ẑ1, · · · , ẑK)
∣∣2. (27)

We choose this reputation score due to the following axiomatic properties:

• Perfect Fairness: A utopian auditor satisfies all the fairness notions, i.e. every entry in R becomes
zero. Consequently, ||R||F → 0.

• Lipschitz-Boundedness: Consider any deviation ∆ from R. Then, we have ||R+ ∆||F ≤ ||R||F +
||∆||F , due to triangle inequality. In other words, the Frobenius norm based score satisfies Lipschitz
property, since

||R+ ∆||F − ||R||F
||∆||F

≤ 1.

Lipschitz property is a particularly important since there is a bound to the change in score, even
though the auditor exhibits dynamic preferences regarding fairness notions.

• Equal Treatment of Fairness Notions: Frobenius norm of the matrix R can also be represented
as follows.

||R||F =
√

Tr(RTR) (28)

Let R, UR, and RV be the reputation matrices of three different auditors. Then, we have

||UR||F = ||RV ||F =
√

Tr(RTR) = ||R||F . (29)

In other words, the three auditors with reputation matrices which differ by orthogonal transforma-
tions have the reputation score. For the sake of illustration, consider two auditors: (i) one who
complies with statistical parity, but not with calibration, and (ii) another who satisfies calibration
but not statistical parity. Assuming that both (i) and (ii) treats all the remaining fairness notions
identically, the Frobenius norm of their reputation matrices would be same. In other words, our
reputation score treats all fairness notions equally.

13



Under review as submission to TMLR

7 Evaluation Methodology

In this section, we discuss different methodologies used to evaluated our proposed ε-LAM based on simulation
as well as real human audit data.

7.1 Datasets

We validate our theoretical findings using the following datasets, each of which are pre-processed as follows:

1. ProPublica’s COMPAS dataset (Larson et al., 2016): In this paper, we perform same preprocess-
ing procedure as done by ProPublica in their analysis in (Larson et al., 2016). The races in the dataset
are only restricted to African-American, Caucasian, and other. We consider females and Caucasians as
privileged groups (Bellamy et al., 2019). We consider the binary attribute called two-year recidivism
(with labels being most likely or least likely) within the dataset as the output label in our analysis. If
the two-year recidivism attribute is least likely, we deem the outcome as a favorable one. Furthermore,
we discretize age into three age-groups (i.e. < 25, 25-45, > 45) and relabel this feature as age category.
Similarly, prior count feature is also discretized into three discrete bins (i.e. 0, 1-3, > 3) as well.

2. German credit data (Merz & Murphy, 1996): In this dataset, we consider credit history, savings,
employment, sex, and age as input features. Moreover, we categorize age into two groups: young (< 26)
and old (>=26). We assume that males and older individuals as privileged groups and credit risk value
of 1 (i.e. good credit risk) as the favourable outcome.

3. Adult income dataset (Kohavi & Becker, 1994): The objective is to predict whether the income
of an individual is > $50K or < $50K. The input features include age, sex, race, and education. In the
pre-processing phase, the continuous feature age is transformed into different groups of ages (0-10, 11-20,
and so on). For the feature race, we limited the labels to binary by mapping ‘White’ to 1 and all other
races to 0. We have 32561 data tuples in total.

4. Real human feedback data (Dressel & Farid, 2018): This data acquisition experiment consists of
a short description of the defendant (gender, age, race, and previous criminal history) is provided to the
human auditor. A total of 1000 defendant descriptions are used that are drawn randomly from the original
ProPublica’s COMPAS dataset. Furthermore, these descriptions were divided into 20 subsets of 50 each.
The experiment consisted of 400 different crowd workers and each one of them was randomly assigned to
see one of these 20 subsets. The participants predicted whether a particular individual would recidivate
within 2 years of their most recent crime. The original data consists whether a crowd worker predicted
correctly or not compared to the original classification in the COMPAS dataset. We preprocessed this
dataset and obtained the true prediction given by the crowd workers.

7.2 Evaluation of Comparative and Noncomparative Fairness Notions from Data

Comparative fairness notions provide a benchmark for fairness evaluation in today’s ML-based systems. The
evaluation of these comparative fairness notions, be it group fairness or individual fairness, have been studied
extensively in the literature. This paper uses state-of-the-art approaches to evaluate comparative fairness of
both ML-based system as well as the auditor in our simulation experiments and our analysis on real datasets.
Furthermore, non-comparative fairness is also evaluated using the proposed LAM on the same datasets, and
is compared with the empirical comparative fairness evaluations as demonstrated in Section 5.

The evaluation of individual fairness notion relies on a similarity metric D that quantifies the (dis)similarity
between input profiles representing different individuals. The exact choice of similarity metric D is highly
contextual to the ML-based system and the environment in which it is deployed. However, in a complex
application setting, it is impractical to characterize D formally due to limited knowledge about the system
and its environment. Nonetheless, one can learn the similarity metric D from observed participants in this
system. Inspired from prior work (Zemel et al., 2013; Lahoti et al., 2019; John et al., 2020), we adopt
an unsupervised learning algorithm based on clustering, where we construct context-dependent clusters of
similar individuals using non-sensitive attribute features from respective datasets. For illustrative purposes,
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Sex Age Race Prior Offenses Charge Degree

Female 25-45 Caucasian 1 to 3 Misdemeanor

Male 25-45 Other 0 Felony

Female Greater than 45 African-American 0 Felony

Male 25 - 45 Other More than 3 Misdemeanor

Male Greater than 45 Other 1 to 3 Misdemeanor

Table 1: Example of 5 different clusters present in COMPAS dataset

Table 1 presents 5 different clusters based on various attributes available within the COMPAS dataset. A
family of similarity metrics based on Mahalanobis distance D(C) =

√
(xi − xj)TC−1(xi − xj) is used, where

xi,xj are input profiles in a dataset. The parameter C is a positive semi-definite covariance matrix that is
learned from data. For COMPAS, the features juvenile counts (both misdemeanor and felony counts), prior
offences and charge degree are used to construct clusters based on estimated Mahalanobis distance. Similarly,
for German credit dataset, we consider the following features credit history, employment and savings. Lastly,
for the Adult income dataset, we use education years and age to measure similarity. A cluster is labeled
as being violated by a given entity (be it the ML-based system, or the auditor) if all output labels are not
identical. Therefore, we say an entity is individually fair if it has no cluster violations. Furthermore, in
binary classification settings, the number of mismatches between the output labels at the ML-based system
and the auditor can be evaluated within each cluster. We say that the auditor is ε-LAM with respect to the
ML-based system (i.e., a measure for non-comparative fairness evaluation) if there exists at most ε input
profiles across all clusters, whose outcome labels at both the ML-based system and the auditor mismatches.

Group fairness notions rely on the difference between the probability of favorable outcomes at the unprivileged
group to that of the privileged group. This paper evaluates the group fairness notions for the digital twins of
both ML-based system (ĝn) and the auditor (f̂n) which are designed using standard ML algorithms - logistic
regression, random forest, and support vector machine (SVM). However, in the context of equalized odds
and calibration, the probabilities are evaluated conditioned on the true outcome labels. This paper assumes
that these true labels are the original outcomes from the ML-based system (g) and the human auditor (f)
respectively that are available from the simulated entities or real datasets.

7.3 Simulated Auditor Models

Real datasets are typically small in size ranging around 50 feedback samples per auditor, collected from about
100-500 auditors in total. Such data collection exercises are extremely expensive and are not always available
in a timely manner. As a result, validation on real data does not provide a comprehensive evaluation of
the proposed methodology. In order to address this issue, this paper also considers three simulated auditors
based on decision trees to mimic human auditor’s behavior on COMPAS, German credit, and Adult income
datasets respectively. Although these decision trees are manually chosen by the authors and cannot be
guaranteed to exist in real-world, their designs are inspired from relevant and contextual features that are
not sensitive in terms of any protected attributes.

For COMPAS, the decision rule s1 is defined below, using three input features, namely number of prior
offences and degree of the offence (felony or misdemeanor), and a binary output label based on the attribute
two year recidivism (most likely or least likely):

s1
(
x, y, z

)
=


0, if x.priors-count ∈ [1, 3] and x.charge-degree = Felony

OR
if x.priors-count > 3 and x.charge-degree = Misdemeanor

1, otherwise.

(30)
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Figure 5: Accuracy of respective learning models while predicting the simulated auditor responses across
different training set sizes.

Since the task of the Adult income dataset is to predict whether yearly income of an individual is > 50K or
<= 50K, the decision rule s2 is constructed based on the feature education as shown below:

s2
(
x, y, z

)
=
{

0, if x.education ∈ [Bachelors, Masters, School Professor, Doctorate]

1, otherwise.
(31)

Similarly, for German credit dataset, the decision rule s3 is defined based on input features savings, credit
history and employment are considered while designing the auditor’s relation.

s3
(
x, y, z

)
=
{

0, if x.savings > 500, x.credit-history = Paid, and x.employment > 2 years

1, otherwise.
(32)

8 Experimental Results and Discussion

This section evaluates the proposed fairness evaluation methodology using three different experiments.
Firstly, standard learning algorithms (e.g. logistic regression, support vector machine, and random for-
est) trained to mimic the auditor responses are evaluated in terms of learning accuracy and absolute error
|µ−µ̂| in Section 8.1. Secondly, the digital twins of both the ML-based system and the auditor designed based
on standard learning algorithms are evaluated in terms of both comparative and non-comparative fairness
notions in Section 8.2. Lastly, the empirical distribution of the Frobenius norm based auditor reputation
score is depicted and compared with other scoring functions on real human feedback data in Section 8.3.

8.1 Auditor Twin Evaluation

Auditor twins are evaluated in two ways, namely learning performance in terms of accuracy and fairness
evaluation error in terms of absolute error |µ − µ̂|, on the four datasets listed in Section 7.1 in the context
of binary classification. While the labels y = g(x), z = f(x) and s(x, y, z) are available in simulation
experiments, the real human feedback data (Dressel & Farid, 2018) does not contain the latent subjective
label z = f(x) explicitly. However, as stated in Remark 1, the auditor’s latent subjective label z can be
inferred from the system’s true label y and elicited feedback s using the XOR relation z = y ⊕ s in binary
classification settings. In each experiment, 25 random train-test splits are performed on all four datasets
and average performance metrics are used to gain insights into the performance evaluation of the proposed
auditor twin algorithms.

Simulated Auditor on COMPAS, Adult and German Credit Datasets: The training set size is varied from
10 to 100 data samples and the accuracy in predicting the simulated auditor’s responses is recorded for
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Figure 6: Absolute error between DEFM and IEFM across varied training set sizes.

Figure 7: Number of auditor twins achieving a prescribed accuracy as a function of training set size, for
different learning models.

each training size. Figure 5 shows that the accuracy in predicting ẑ = f̂(x) increases with training set
size. More specifically, the random forest algorithm outperforms both logistic regression and SVM in terms
of both accuracy and absolute error |µ − µ̂|. This is because the three simulated auditors s1, s2 and s3
resemble that of a decision tree which makes random forest algorithm into a realizable learning framework.
In addition, the absolute error between DEFM and IEFM (ref. to Figure 6) is close to zero across all three
learning algorithms. This signifies that auditor’s responses can be efficiently learned even with small number
of samples. Note that evaluators typically incur a very high price for eliciting a large number of feedback
samples. For all practical purposes, since eliciting more than 100 feedback samples per auditor is infeasible,
the x-axis in Figures 5 and 6 is limited to at most 100 training samples.

Real Human Feedback Data: Similar to the earlier experiment, the accuracies in predicting real human
responses is recorded for different training set sizes varying from 10 to 40 samples. Figure 7 shows that the
number of crowd auditors whose twins’ responses have an accuracy of at least 90% (blue bars) increases
with the training set size across all three learning algorithms. Although random forest outperformed other
learning algorithms in reliably mimicking the simulated auditors, logistic regression outperforms random
forest based twin in real human feedback data. However, SVM recorded low accuracy performance in a
majority of real human auditors. Figure 8 depicts the histogram of the absolute error |µ − µ̂| observed on
real human feedback data, as well as the best fitting gamma distribution that minimizes the negative log-
likelihood function (for more details, refer to Virtanen et al. (2020)). Regardless of the learning algorithm,
Figure 8 illustrates the absolute error between DEFM and IEFM to be smaller than 0.2 with high probability
amongst real crowd auditors.
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Figure 8: Distribution of crowd auditors in terms of error between DEFM and IEFM.

Dataset # Test
Samples

Total
# Clusters

# Clusters
Violated
by System

# Clusters
Violated

by Auditor

# LAM-based
Mismatches

COMPAS 1543 70 30 0 57

German credit 250 25 21 0 25

Adult income 8141 62 55 0 59

Table 2: Comparison between individual fairness evaluations at system and auditor, and their LAM mis-
matches for three simulated auditor twins across various datasets.

8.2 Demonstrating the Relationship between Non-Comparative and Comparative Notions

In this section, the digital twins of both ML-based system and the auditor are evaluated in terms of com-
parative and non-comparative fairness notions. In terms of comparative fairness, both individual fairness
and group fairness are evaluated as per the methodology discussed in Section 7.2. The labels of both the
ML-based system and the auditor are learned using standard learning algorithms (e.g. logistic regression,
SVM, and random forest). The results are averaged across 25 random train-test splits.

Simulated Auditor on COMPAS, Adult and German Credit Datasets: The training set size is considered as
50 samples, since it incurs a very high price for eliciting a large number of samples. The respective entity’s
(the ML-based system or the auditor) biases are evaluated on remaining test set predictions. In terms
of individual fairness, Table 2 shows that the simulated auditor is individually fair (0 violated clusters).
However, the auditor does not satisfy ε-LAM with respect to all three ML-based systems due to a large
number of LAM-based output label mismatches between the twins of the simulated auditor f̂n(x) and that
of the system ĝ(x) shown in Table 2. In other words, even though the simulated auditor is individually
fair, the system is not individually fair in practice, if the auditor is not ε-LAM with respect to the system.
However, the fairness of the simulated auditor is heteroskedastic in terms of group fairness notions. We
measure the simulated auditor’s biases with respect to three group fairness notions (statistical parity, equal
opportunity and calibration) based on different sensitive attributes (gender and race/age). Based on our
insights from Section 8.1, the fairness evaluations due to random forest classifer are treated as a benchmark
for auditor performance. Note that both COMPAS and German credit datasets exhibit biases in fairness
evaluation in both logistic regression as well as SVM models. However, as observed in Figure 9b, the Adult
income dataset seems to be robust to ML models in terms of any group fairness notion since all ML models
have similar learning performance, as shown in Figure 5. Such behavior is consistent with Theorem 2.
Furthermore, note that if the auditor is fair with respect to any group fairness notion (e.g. refer to equalized
opportunity value for the auditor’s twin in COMPAS dataset in Figure 9a), the system is not fair if the
auditor’s twin is not ε-LAM with respect to the system’s twin.
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(a) COMPAS

(b) Adult income

(c) German credit
Figure 9: Evaluation of real-world classifiers and the simulated auditor twin for statistical parity (SP), equal
opportunity (EO) and calibration (C), with respect to different protected attributes.

Real Human Feedback Data: Based on earlier results (Figure 7), the choice of ML algorithm varies from one
auditor to another, as well as the application context. Therefore, we train each crowd auditor’s responses
using all three ML algorithms (logistic regression, SVM, and random forest) and select the one which yields
in highest accuracy in predicting their responses. Specifically, logistic regression predicted 57.5% of crowd
auditors’ responses with high accuracy. Whereas, SVM and random forest classifiers predicted 25% and
17.5% of crowd auditor’s responses with high accuracy respectively. In terms of individual fairness, Figure
10 shows that only 20 auditors (in a total of 400 auditors) are individually fair (0 violated clusters). The
majority of the crowd auditors violate 5% to 20% of the clusters present in the subset given to them. Figure
10 presents the best-fit gamma distribution of individually fair auditors whose parameters are estimated as
α = 12.75 and β = 0.0187. Furthermore, we evaluate the crowd auditors by varying the threshold δ in the
definition of group fairness notions (statistical parity, equalized odds, calibration, and equal accuracy), as
stated in Section 2.1. Each crowd auditor’s performance is assessed based on the four group fairness notions
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Figure 10: The distribution of crowd auditors as a function of fraction of clusters violating individual fairness.

Figure 11: Number of crowd auditors satisfying different group fairness notions across varied probabilistic
bias with respect to race and gender.
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Figure 12: Reputation Matrices for the Three Simulated Auditors s1, s2 and s3 on COMPAS, Adult Income
and German Credit Datasets respectively

by varying the threshold δ from 0 to 0.5. Figure 11 shows that crowd auditors are typically more fair with
respect to race than gender based on the shift in distribution.

8.3 Reputation Scores Interpretation and its Relation with Learning Performance

In this section, auditor reputation scores are interpreted using simulation experiments and then evaluated
on real experiments. The results are discussed below in the following two subsections respectively. Note that
lower reputation scores correspond to lower biases, which can be attributed to higher audit reliability.

Simulated Auditor on COMPAS, Adult and German Credit Datasets: As discussed in simulation results in
Section 8.2, random forest classifier is considered the benchmark in this analysis. Figure 12 shows reputation
matrices of the simulated auditors on COMPAS, Adult income and German credit across three learning
algorithms. The rows in the reputation matrix R represent different comparative fairness notions in the
following top-down order: statistical parity, equal opportunity, calibration, and individual fairness. Whereas,
the columns represent different sensitive attributes as shown in Figure 12. Note that the null attribute φ
is included in the attribute-set since individual fairness is agnostic to sensitive attributes. The reputation
scores of all twins for the Adult dataset is similar due to their identical learning performance. However, this
is not the same for other datasets. For instance, random forest classifier outperforms logistic regression and
SVM in COMPAS and German credit datasets, even in terms of their reputation scores as well. Another
interesting observation to note is that learning errors do not increase biases identically across all fairness
notions. For example, in the case of R3, statistical parity and equal opportunity notions are similar, but the
logistic regression model registered a significant chance in calibration in logistic regression and SVM models.
This is automatically reflected in their reputation scores as well.
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Figure 13: The Frobenius reputation score distribution of 400 crowd workers.

(a) Distribution of crowd auditors’ Frobenius
reputation vs. Eigenvalues reputation

(b) Distribution of crowd auditors’ Frobenius norm
reputation vs. spectral norm reputation

Figure 14: A comparison of different reputation scoring functions

Real Human Feedback Data: The histogram of reputation scores based on real data elicited from 400 crowd
workers is plotted in Figure 13. A best-fit gamma distribution is also evaluated via minimizing the negative
log-likelihood function, whose parameters were found to be α = 31.25 and β = 0.04. Note that the repu-
tation scores range between 0.16 and 1.67, with a significant majority of them lying between 0.5 and 1.0.
Furthermore, we compare the proposed Frobenius norm reputation of the auditor with two different scoring
functions i.e., eigenvalues and spectral norm of the reputation matrix R. On the final note, Figure 14 de-
picts a monotonic relationship between Frobenius norm based reputation score and eigenvalue/spectral-norm
based scoring mechanisms. However, the other scoring mechanisms do not necessarily follow the axiomatic
properties of fairness as stated in Section 6.
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9 Conclusion and Future Work

We developed a novel latent assessment model to characterize human auditor feedback and demonstrated
its relationship with traditional fairness notions both theoretically and on real datasets. We obtained PAC
learning guarantees on learning auditor’s intrinsic fairness assessments, and demonstrated the learning per-
formance of three learning algorithms on a real human feedback dataset. Consequently, this paper enabled us
to accomplish two important challenges in the design of a crowd-auditing platform: (i) we can learn/mimic
auditor’s intrinsic evaluations using little elicited feedback and automate the evaluation on the remaining
possibilities especially in high-dimensional learning algorithms, and (ii) we can also evaluate auditor biases
with respect to diverse traditional fairness notions. In addition, we use the relationship between LAM and
traditional fairness notions to identify reliable auditors for feedback elicitation based on their reputation
scores.

In future, we will address all the other challenges in the design of crowd-auditing platforms. Since feedback
elicitation is an expensive process, we will improve our LAM model to account for feedback for data bundles,
as opposed to our current feedback model for singleton data tuples. Furthermore, we will also investigate
appropriate fusion rules to aggregate feedback collected from multiple auditor with heterogeneous opinions
based on their reputation.
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