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Abstract

Controlling fairness in machine learning (ML) model outputs is challenging due to
complex, unstable and computationally expensive techniques for bias estimation
on finite data samples. We propose a simple in-processing method to control group
fairness during training by penalizing statistical dependence between model outputs

Y and a sensitive attribute .S. Our approach instantiates the Cramér—von Mises

(CvM) dependence coefficient &(.5, f’) as a bounded, differentiable regularizer
that integrates seamlessly with stochastic optimization. The resulting objective
L+ XE(S, )7) positions models along a fairness—utility Pareto frontier through a
single multiplier A. Our experiments demonstrate the effectiveness of this method
for controlling the fairness-utility trade-off in both small fairness-aware and large
tabular datasets. In order to control the compromise between fairness metrics and
utility metrics, we propose a task-agnostic hyperparameter tuning pipeline and
showcase its effectiveness in a large tabular dataset. In practice, we have observed
that controlling for CvM leads to lower demographic-parity (DP) scores, providing
a tractable and computationally efficient methodology, bridging the gap between
policy requirements on DP and a scalable training procedure for ML models.

1 Introduction

ML models often inherit biases from historical data (through selection effects, under-representation,
or label bias) yielding unreliable outcomes for protected groups [5]. High-profile failures in hiring and
criminal justice illustrate how models can encode disparities even without explicit access to sensitive
attributes .S [4} [12]. This reality has led to growing legal and regulatory pressure for model deployers
to demonstrate and control fairness, as seen in the EU Al Act and New York City’s bias-audit duties.
This makes the ability to control fairness, i.e achieving a target level with minimal utility loss, a
critical objective for modern ML.

Controlling fairness under biased data is challenging for two reasons. First, population-level fairness
objectives, such as disparities in error rates, are often hard to estimate from finite, biased samples,
which can lead to wrongly estimated risks. Second, many existing fairness-inducing methods rely on
computationally intensive techniques like constrained optimization with expensive projections [2]
or adversarial training [21]]. These approaches do not scale to the massive datasets and models now
common in modern training regimes, e.g. in vision, language, and recommendation systems. A
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practical solution must therefore (i) account for data bias when estimating fairness-relevant quantities
and (ii) integrate with standard stochastic training so it scales with dataset and model size.

Our approach. We introduce a simple in-processing method that augments standard training
losses L with a bounded and differentiable regularizer based on the CvM dependence coefficient
(S, Y), which measures how conditioning on sensitive attribute S shifts the distribution of pre-
dictions Y [[10L[13]]. To make & trainable, we leverage differentiable ranking [7] to backpropagate
through the rank-based estimator introduced in Chatterjee [[10], enabling end-to-end optimization
of a regularized objective L + A¢(.S, Y) We study how X positions models along this trade-off
and maintain reliable levels of fairness without excessively compromising the model’s utility. We
provide an analysis on how to perform this adjustment and report results in both standard fairness
(Adults [1]) and a larger non-fairness specific (Weather Forecasting [24]) datasets. Our contributions
are three-fold:

1. A CvM-based regularizer that promotes independence between Y and S on biased datasets,
improving the reliability of predictions for protected groups.

2. A differentiable implementation based on soft-ranking with clear stability/complexity prop-
erties, exposing a single trade-off parameter A and a smoothness control .

3. A scalable training and tuning protocol on small and large tabular workloads that enables
practitioners to adjust the fairness-utility trade-offs when training models.

2 Method

While many independence measures exist (see discussion in Appendix [A.2), they often suffer
from estimation difficulty, gradient instability, or interpretability issues. We introduce and study a
CvM-based regularizer that measures and minimizes statistical dependence between model outputs
Y and sensitive attributes S, see Appendix |B|for more details. The CvM dependence coefficient
provides a normalized, interpretable scalar in [0, 1] that equals zero iff independence holds and one
iff the target is a measurable function of the selected sensitive attribute. It aggregates the variance of
conditional expectations of thresholded outcomes, thereby capturing non-linear dependencies without
hand-enumerating slices or thresholds. We adopt a finite-sample estimator for the coefficient that is
O(nlogn) via sorting and ranking, and we show how to embed it directly in modern optimizers. The
CvM coefficient and its estimator are the following:
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The technical challenge in using this estimation for training deep learning models is that ranking
is a discrete operation, making it infeasible for gradient—based optimization. We overcome this by
leveraging fast and differentiable soft ranking as projections onto the permutahedron from Blondel
et al. [7]], yielding order-preserving almost-everywhere differentiable operators with exact Jacobians
via isotonic optimization. Plugging these operators into the estimator produces a differentiable CvM
penalty term that integrates seamlessly with deep learning frameworks and preserves the statistical
relevance of the original coefficient.

(D)
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Crucially for scalability, the proposed objective is minibatch-friendly. The estimator’s behavior is
especially well-conditioned when the model outputs are continuous (e.g., regression or probabilities
in classification), which we recommend in practice. Under continuity, the sample—based coefficient
is stable to small perturbations (as described in Proposition[I)), improving optimization under SGD
noise and batch shuffling.

Proposition 1 (Robustness to perturbations). Let (X,,,Y,,) be n i.i.d. samples from p(X,Y"). Let Y
be continuous and let Z}, Z2 contain n i.i.d. samples from a continuous real-valued noise variable.

no

Define X" := X +nZ' and Y" := Y + nZ?>. Then, with probability 1,
lim &,(X,Y") =¢&,(X,Y),
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where the expectations are with respect to the perturbation noise and any uniformly random tie-
breaking mechanism for the right-most term.

The method integrates into existing training procedures as a single regularization term, with two
practical hyperparameters: (i) the soft-ranking smoothness ¢ (controls bias—variance of the gradient
signal) and (ii) the multiplier A (controls the utility—fairness trade-off). In the experiments section,
we provide usage guidance based on our practical results: prefer Ly regularization over L; on the
CvM penalty to increase robustness; when needed, fine-tune from an unregularized checkpoint, while
geometrically increasing A to trace a stable Pareto frontier; and we provide a 3 stage method for
hyperparameter optimization. These practices aim at preserving accuracy while steadily reducing
dependence on sensitive attributes.

3 Experiments

We focus on two datasets: (i) Adult [[1], a canonical fairness benchmark to sanity-check group
metrics. We also stress-test by treating education as a sensitive attribute (highly correlated with
income) to probe the fairness—utility frontier; (ii) Weather (TabReD, Rubachev et al. [24]]), a large
tabular regression benchmark with deep-learning baselines chosen to test our method’s scalability .
For more details on the dataset choice and their limitations, we refer to Appendix [A.T]

3.1 Adult dataset

Setup. We consider binary income prediction with sensitive attributes comprising (i) a weakly
correlated attribute (gender) and (ii) a strongly correlated attribute (education). Utility is measured
via accuracy/F1-score; fairness via DP/EO and CvM. A detailed per-attribute analysis, pre-processing
choices and discussion are referred to Appendix [E]

Results. We (i) demonstrate how adding our CvM-based regularizer translates to decreases in
group-based fairness metrics such as DP, and (ii) study the role of the penalty form and fine-tuning.

* Multiplier control. Increasing A monotonically reduces CvM and typically shrinks DP/EO
gaps. For weakly correlated attributes, these improvements incur modest utility loss; for
highly correlated attributes, utility drops are sharper, consistent with a steeper trade-off

frontier, see |Figure ]

e Penalty form. Applying an Lo penalty on the CvM term yields reduced sensitivity
to small coefficient changes and increased robustness when compared to L regularization
(Figure 9). We adopt the L, formulation henceforth to improve the control over the adjusting
of A\. We refer to Appendix [E]for more details.

* Fine-tuning. The presented regularization can also be introduced as a fine-tuning method.
Experimentally, introducing A post-hoc and ramping it geometrically stabilizes training and
yields gradual fairness gains with limited utility degradation.
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3.2 Weather forecasting dataset
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Setup. We study large-scale temperature pre-
diction using the Weather Forecasting dataset
processed per Rubachev et al. [24]. Utility is
tracked by (Neg)MSE; fairness by the CvM co-
efficient (and, where relevant, group-based sum-
maries). Extended discussion is referred to Ap-
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Results. We (i) visualize the effect of A on the
CvM-utility frontier, and (ii) study the role of
the smoothness controller € in the soft-ranking
operator (iii) demonstrate how adding our
CvM-based regularizer translates to decreases
in group-based fairness metrics such as DP.
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Figure 1: Adult dataset: Plot of utility (accuracy
and F1) and fairness (DP, EoO, CvM, MI, Dif-
ferentiable CvM) metrics. Values of fair MLPs
(A € [1,5,10,15,20,25], with Ly penalty) nor-
malized by the values of the unfair MLP (\ = 0).



* )\ e-tuning. CvM decreases predictably as A increases, exposing a Pareto-like frontier
against (Neg)MSE (see and [TT). Within practical ranges, ¢ exhibits negligible
impact on both utility and CvM in this setting (see discussion in Appendix [F).

* Impact of A on DP: We observe a clear relation between decreasing CvM and lower DP.
Since often regulatory policies for fairness in ML focuses on DP, this provides a strategy
for determining an appropriate value of A via the reasoning chain “regulations — DP —
&, — A7, bridging the gap between regulation and the training of deep models.

3.3 Hyperparameter strategy

Based on our experiments on the weather forecasting
dataset, we propose a scalable and dataset-agnostic hy-
perparameter tuning pipeline consisting of 3 steps: o

Step 1 (utility-only baseline). Tune non-fairness hyperpa-
rameters with A = 0 (architecture, optimizer, regulariza-
tion,...) to confirm task learnability and provide an initial oo
performance baseline.
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Step 2 (fairness-specific tuning). Fix the baseline hy- Multplier
perparameters that maximize utility, then sweep the CvM  Figure 2: Weather dataset: CvM (S, Y)
multiplier A and the smoothness controller € via random- g, regularization multiplier \. Increas-
ized search over wide ranges. This provides an initial ing A reduces £(S, f/).

reference point that enables to shrink down to the regions

of A and e that are most promising to perform hyperparameter search in step 3.

10" 102

Step 3 (penalized-utility selection). Guide the exploration of hyperparameter space based on a
fairness-penalized utility U (1, ¢, ;) . In our experiments we define it as:

l c<,
L—alc—7), c>7,

Ut = {

where / is the utility (to maximize), c is the CvM (to minimize), -y is a cutoff, and « is a penalty slope.
This methodology applies directly to other large tabular datasets beyond weather, and it concentrates
the search on desirable regions of the Pareto frontier. The value of the cutoff v should be determined
to accomplish the desired levels of group fairness as discussed in[F.2]

3.4 Discussion

With our experiments we (i) demonstrate controllability of ~ °
the trade-off via the multiplier A, (ii) assess robustness and
scalability of the differentiable CvM term on large tabular
data, (iii) provide a minibatch-friendly tuning methodol- ¢,
ogy suitable for modern optimizers, and (iv) show strong
correlation between DP and CvM providing a reference to
determine A, bridging a gap between DP-based Al regu-
lations and in-training practices.
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Figure  3: Weather  dataset
4 Conclusion and future work (sun_elevation binned): rela-
tionship between CvM and the relative
DP gap across A; lower CvM aligns with

This work introduces a CvM-based regularizer that makes smaller DP disparitics.

fairness controllable both during training and as a model
fine-tuning method. The CvM term is computed via a
finite-sample, rank-based estimator made trainable by replacing non-differentiable ranks with a
smooth, order-preserving soft ranking which yields stable gradients that backpropagate efficiently in
modern ML training regimes. The approach exposes a single training-time control A for positioning
models along the fairness—utility frontier. We also observe a consistent alignment between CvM
reductions and reduction in demographic-parity gaps, providing a direct connection between DP-
focused policy and training-time decisions via the CvM regularization. Overall, the method offers
a lightweight, scalable mechanism to control fairness within modern ML training regimes offering



a practical path for deploying models that are both accurate and equitable even when the available
data is imperfect. Future work will extend experiments in the same datasets and to fairness-specific
large-scale datasets as well as develop stronger experimental and theoretical connections between
CvM and established fairness metrics such as DP and EO.
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A Related works

A.1 Datasets

Fairness evaluation and method design have over-relied on tiny, aging benchmarks (e.g., Adult,
COMPAS). We explicitly lean into larger tabular settings: alongside standard Adult experiments,
we scale to a processed Weather benchmark from TabReD [24] to emulate real training loads and
hyperparameter search, precisely because fairness-aware, open, large tabular datasets are scarce.
Using this non-fairness-specific but sizable corpus stresses training throughput and stability in ways
small datasets cannot.

FairJob [27] targets fairness in online systems and offers a valuable, real-world dataset and highlights
the lack of open-source large fairness-aware datasets. Our present study focuses on supervised tabular
tasks with standard deep-learning training loops and widely adopted metrics/APIs (Fairlearn [6]).
Aligning protocols and baselines across online/interactive settings is non-trivial and would require
additional engineering (ranking/replay, exposure bias control) beyond scope for the workshop draft;
we therefore leave a Fairjob-style recsys evaluation to future work.

A.2 Methods

Fairness in ML is a rapidly evolving field, with mitigation strategies broadly categorized into pre-
processing, in-processing, and post-processing methods. This work focuses on the in-processing
paradigm, where the fairness objective is integrated directly into the model training process. Our
approach, which uses the CvM statistic for regularization, sits at the intersection of two key research
areas: dependence-based fairness methods and the use of integral probability metrics in ML.

A.2.1 In-processing fairness methods

In-processing methods modify the learning algorithm to enforce fairness constraints or penalties
during training [23} [30]]. One of the most prominent approaches is adversarial debiasing, where a
model’s representation is trained to be predictive of the target label while simultaneously being unable
to predict the sensitive attribute. This is often achieved by training an adversary network to predict
the sensitive attribute from the model’s latent representation [[15, 33]]. Another common approach
is constrained optimization, which formulates the fairness objective as a constraint on the model’s
predictions. These methods often use convex optimization techniques to satisfy fairness criteria like
demographic parity or equalized odds [31}132].

Our method differs from these approaches by framing fairness as a direct independence objective
between the model’s output and the sensitive attribute, and achieving this through a novel regularizer
derived from a statistical test, rather than an adversarial game or a hard constraint.

A.2.2 Dependence-based fairness regularization

A large body of work has sought to achieve fairness by minimizing the statistical dependence

between the model’s predictions Y and the sensitive attribute S. This is often achieved by adding a
regularization term to the standard loss function with a penalty as a measure of dependence. Classic
dependence measures used for this purpose include mutual information (MI), which quantifies the
information shared between two variables [[18, [19]. Other work has explored maximal correlation
[22]] and measures of covariance [9].

More recently, research has leveraged kernel-based independence measures, which can capture
non-linear dependencies. The Hilbert-Schmidt Independence Criterion (HSIC) and Maximum Mean
Discrepancy (MMD) are two prominent examples. HSIC is a powerful non-parametric measure
of dependence that has been widely used in ML for feature selection and independent component
analysis [[L6]. In the context of fairness, it can be used to regularize a model to make its representations
independent of the sensitive attribute [25]. MMD is an integral probability metric that measures the
distance between two probability distributions and has also been applied to fairness, particularly in
fair representation learning [17, 20].

Our work contributes to this line of research by proposing a novel dependence regularizer based
on the CvM statistic, a classic goodness-of-fit test. While similar in spirit to MMD as an integral



probability metric, the CvM statistic has distinct properties and provides a new perspective on
measuring distributional discrepancy for fairness applications.

A.2.3 The CvM statistic in ML

The CvM statistic is a well-established tool in classical statistics used to test the goodness-of-fit of
a sample’s empirical distribution to a given reference distribution [[L1, 28]. Its use in ML has been
more limited but has appeared in contexts such as evaluating user simulations in dialogue systems
[29] or as a general-purpose distance for hyperparameter tuning [8].

To the best of our knowledge, the application of the CvM statistic as a direct regularizer for achieving
independence-based fairness is a novel contribution. Unlike HSIC and MMD which are based on
kernel inner products, the CvM statistic directly compares the cumulative distribution functions
(CDFs) of the model outputs across different sensitive groups. This provides a different theoretical
foundation and may offer computational or statistical advantages in certain settings.

B The CvM dependence coefficient

The CvM coefficient has appeared numerous times in the literature, including [[13} [14]. In this
appendix we provide an explanation of the CvM dependence coefficient for the purposes of motivating
its use for dependence measuring and fairness.

B.1 Derivation

Assumptions. We assume Y is continuous and that measurability/integrability conditions hold,
so that changes of integration order (Fubini/Tonelli) are valid. All distribution functions are right-
continuous and non-decreasing.

The coefficient takes inspiration of the CvM distance. Given CDFs F' and G on R, the CvM distance
is defined as

BlF.G) = [ (F() - G(0)* dGo). @)
R

Measuring the discrepancy between the conditional and marginal laws of Y leads to the dependence
functional

= // (Fyx(t | z) — Fy(t))” dFy (t) dFx (x). @)

which equals zero iff Fy | x (- | #) = Fy(-) Fx-as.,i.e., when X and Y are independent [13].

This coefficient, which we refer to as the CvM coefficient, allows for a variance-based formulation.
Let p;(X) := E[l{y>4 | X]. For continuous Y, p;(X) = 1 — Fyx(t | X) and E[p;(X)] =
P(Y > t) = 1 — Fy(t). Expanding the square in () and using E[Fy|x (¢ | X)] = Fy (t) yields

= /RVar(pt(X )) dFy (t /Var ]l{Y>t} | X]) dFy (t). Q)]

Normalizing by the unconditional variability of the threshold indicators we redefine the coefficeint

/ Var(E[]l{yzt} | X]) dFy (1)
EX,Y) = =8 : (6)

/R Var(]l{yzt}) dFy (t)

which is a form more commonly used in the literature. By the law of total variance applied to 1y >},
the numerator is bounded above by the denominator for every ¢, hence 0 < £(X,Y) < 1.

If Y is continuous, then with uw = Fy (¢) and U := Fy (Y)) ~ Unif(0, 1),

/R Var(Liysy ) dFy () = / (1 Fy(8))Fy (1) dFy (t) = E[U(1 - U)] = é %

R

Thus, for continuous Y, the normalizing term in () is a constant 1/6.



B.2 Interpreting the CvM Coefficient

In this section we aim to provide an intuitive explanation of what is being measured by the CvM
coefficient. We provide intuitions both from a variance explanation point of view and from a
perspective of measuring differences between distributions. We maintain the continuity assumptions
from the previous subsection: Y is continuous, measurability/integrability conditions hold, and
changes of integration order are valid.

Consider the normalized dependence coefficient defined in (6). Fix a threshold ¢ € R and define
the Bernoulli variable 1ty >, with mean py () := P(Y > t), and its conditional counterpart
Pyle(t) == P(Y >t | X = x). When X is informative about Y, the function 2 +— py|,(t) varies
across z; when X and Y are nearly independent, this variation is small. The numerator in (6)
aggregates this signal as

/Var(]E[]l{th} | X]) dFy (t) = /Var(py|X(t)) dFy (1),
so larger values indicate that X explains more of the thresholded behavior of Y across many ¢.

Ilustrative example

Consider the simple function Y = sin(7X) and an added noise component (0, o2) for different
values of o as shown infd] Fix ¢ = 0 for illustration purposes.

Thenz — P(Y > 0| X = x) is close to {0, 1} for most = when o is small, becomes less extreme
but still variable for moderate o, and is almost constant at 1/2 for large o. This differences mean
that Var(py| x (t)) decreases with o, lowering the CvM numerator. As discussed, the denominator
stays constant at % for all values of . The heatmap over ¢ in shows the same pattern persists
across thresholds; integrating over ¢ therefore preserves this effect, leading to lower noise levels being
associated to higher CvM values.
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°
°

-1.00 -075 -050 -025 000 025 050 075 100 -100 -075 -0.50 -0.25 000 025 050 075 100 -100 -075 -0.50 -0.25 000 025 050 075 100
X

Figure 4: Function Y = sin(7z) + N(0, o2) for different o values.
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Figure 5: Heatmap encoding the values of P(Y > ¢ | X = z) for different cutoffs ¢ (in the Y axes)
and different noise levels.

Expandmg on this variance-based explanatlon by the law of total variance applied to 1y >y, the
numerator in (6)) measures the component of variance explained by X, while the denominator captures



the total variance of the threshold indicators. Thus, the coefficient admits the interpretation

€(X,Y) = J variability in 1 {y >y explained by X

J total variability of 1 y->

The coefficient allows an alternative interpretation. Going back to (@), one can view the numerator as
the average (over x) squared difference between the conditional CDF Fy|x (- | ) and the marginal
Fy (-), integrated over the different values of X. This viewpoint emphasizes that £(X,Y") is large
when conditioning on X substantially deforms the distribution of Y, and small when Fy-|x remains
close to Fy for most x.

B.3 Connection to group-fairness metrics

Many group-fairness metrics allow an independence based interpretation. The expectation being that
enforcing some type of (conditional) independence between the sensitive attribute and the model’s
predictions will prevent the sensitive attribute from having a disproportionate effect on the outputs of
the model.

Let S be a sensitive attribute and Y a (continuous) model output. The independence target of
demographic parity (DP), Y L S, is satisfied when

Var(E[Ly+,, | S]) dFy(t)

Equalized odds (EO), which requires Y.1S | Y, can be addressed by applying the same construction
within each outcome stratum (i.e., replacing Fy- with FY’lY:y and averaging over y). We adopt (8) as
a differentiable penalty during training; practical estimators are discussed in appendix

C Properties of the estimation &,,

In this section we explore some properties of the sample-based estimation of the CvM coefficient
&,. An important result is discussed in the following subsection and relates to the connection
between the theoretical and sample-based coefficients. Continuity properties in terms of robustness
to perturbations are also discussed.

C.1 Asymptotic Consistency

The following theorem, presented in Chatterjee [[LO] provides asymptotic guarantees on the asymptotic
accuracy of the estimation:

Proposition 2 (Theorem 1 in Chatterjee [10]). IfY is not almost surely constant, as n — oo,
/Var(IE[]l{yzt} |X]> dFy (t)

/ Var (]l{YZf}) dFY (t)

E(X)Y) = LX)Y) = €[0,1].

A proof is provided in Chatterjee [10].

C.2 Robustness to perturbations (continuity)

We use the estimator presented in Chatterjee [10]:

n SR ren — |
230 Li(n—1;) 7

i.e., &, depends only on the relative orderings of {z;} and {y;} (max-ranks), not on their magnitudes.

fnzl_

ri=#{j iy <a}, L=#jy;>ut )
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Proposition 3 (Robustness to perturbations restated). Let (X,,,Y,,) be n i.i.d. samples from p(X,Y).
Let'Y be continuous and let Z}, Z?2 contain n i.i.d. samples from a continuous real-valued noise

variable. Define X" := X +nZ" and Y" :=Y + nZ? for some 1. Then, with probability 1,
li X, YN =¢,(X,Y
nli% fn( Y €n( ) )’

(10)
%13% E[gn(Xn’Y)] = %13% E[gn(XTI’YTI)] = E[&n(X’ Y)]a

where the expectations are with respect to the perturbation noise. If X is also continuous, the
expectations can be removed.

Proof. Fix arealized sample (z1,...,Zn, Y1, -, Yn)-

(i) Perturbing Y only. Since Y is continuous, with probability 1 there are no ties among {y; } and the
minimum spacing Ay := min;; |y; — y;| is strictly positive. Because Z? takes finite values, there
exists some 79 > 0 such that for all n € [0, 70) we have max; |nZ?| < Ay /2, hence the ordering of
{y;} is unchanged. The ranks I; and r are also unchanged. By gn(X, Y =¢,(X,Y)
for all sufficiently small 7, yielding lim,, o &, (X,Y™) = &,(X,Y’) almost surely.

(ii) Perturbing X (and optionally Y'). If X is continuous, the same spacing argument applies to
{x;}, so for all sufficiently small 5 the X -order is unchanged and hence &, (X", Y) = £,(X,Y) and
En (XM Y = €,(X,Y) almost surely.

If X may have ties, adding arbitrarily small continuous noise acts as a random tie-breaker within
each tied block, producing—conditionally on the untied values—the same distribution over strict
total orders as uniform random tie-breaking. Taking expectations over the perturbation therefore
averages &,, over all consistent tie-breakings; this equals the corresponding (noise-free) expectation
of &,(X,Y’) computed with random tie-breaking. Hence

%%E[gn(XﬂvY)] =E[¢.(X,Y)], %%E[gn()(m}fn)} =E[6(X,Y)].
Combining (i) and (ii) proves the claim. L]

Implications. For continuous variables, &,, is insensitive to infinitesimal perturbations, which
supports stable training when used as a regularizer. When X is discrete, randomized (or noise-
induced) tie-breaking preserves &, in expectation, providing robustness at the level of average
behavior.

D Implementation of the differential CvM coefficient

Let 15 (0) denote the soft (differentiable) ranking operator defined via projections onto the permuta-
hedron, where ¢ > 0 is the smoothness controller that trades faithfulness to hard ranks for smoother
Jacobians [[7]]. Small ¢ yields near-exact ranks but poorly conditioned/less informative derivatives;
large ¢ produces well-behaved gradients but compresses the dynamic range of the ranks.

Note: The smoothness operator ¢ is referred to as regularization strength in the paper introducing this
soft ranking method. We chose to modify this naming to avoid confusion with the multiplier of the
CvM regularization \.

To showcase the role of this parameter we examine two toy inputs: (i) n = 15,000 i.i.d. N'(0,1)
samples and (ii) n = 2,000 equally spaced points on [0, 1] (shuffled). We compare the hard ranks
(NumPy) with g, for several € and sort both outputs for visualization. Perfect agreement would lie
on the 45° line. As shown in larger ¢ preserves order but visibly shrinks the rank spread.

Order-preserving shrinkage and a simple fix

Because 1y, is isotonic (order-preserving), the main distortion at larger € is magnitude shrinkage
rather than order mistakes. We therefore post-process the soft ranks with a monotone affine rescaling
to match the endpoints of the true rank range. Let s € R” be the soft ranks for a vector, and £ € R"
its hard ranks. Define

Smin = m,in Siy Smax — INax S;, tmin = m,in ti7 tmax = max ti;
i i i i
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Figure 6: Effect of soft-ranking smoothness € on ranks: larger € preserves order but shrinks rank
spread (Left: 15,000 i.i.d. A/(0,1). Right: 2,000 points in [0,1]).

and apply the mapping

Sy = m(sl) = m (tmax - tmin) + tmin~ (11)
Smax — Smin

This rescaling is strictly increasing, preserves the ordering, and matches boundary values

(Sargmins = Pmin» Sargmaxs = tmax)- 1ts Jacobian with respect to s is a constant scalar factor

(tmax — tmin)/(Smax — Smin )» SO gradients remain informative and are merely scaled, which improves

numerical conditioning without altering the rank-based structure.

Figure[7]shows that the affine correction restores near-linear alignment to the hard ranks for large-¢
soft ranks while retaining smooth derivatives. In all experiments where differentiability is required,
we compute 5, with a moderately large ¢ and then apply (1)) before using the ranks inside the
differentiable £ computation. When training models we suggest adjusting the value of ¢ to the dataset
and tuning it as part of the hyperparameter optimization process.

—— True ranking —— True ranking
14000 - Soft differentiable ranking 14000 - Modified soft differentiable ranking
12000 12000 A
10000 4 10000 -
~ 8000 8000
c
c
6000 q 6000
4000 - 4000 A
2000 4 2000 A
0 0
0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000

Figure 7: Affine rescaling in restores alignment between soft and hard ranks under large
¢ (before vs. after).

E Adult dataset: extended results and analysis

Setup. We analyze binary income prediction on Adult with two sensitive attributes of different
informativeness for the label: gender (weakly correlated) and education (strongly correlated). Models
are 3-layer MLPs with layers of sizes [64, 32, 16]; utility is tracked by accuracy/F1, and fairness by
(i) CvM and MI (ii) group gaps for DP/EO (max differences across groups). The displayed results
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correspond to the averages and statistics computed on 10 independent runs for each value of the
multiplier.

The CvM regularizer’s effectiveness varies when switching sensitive attributes, especially when the
attribute has imbalanced groups. For instance, when using "education" as the sensitive attribute,
groups with low counts (e.g., "Preschool” and "Doctorate") were merged into broader categories,
which led to more representative unfairness metrics. The reported results are based on this modified
education variable. "Preschool", "1st-4th", "5th-6th", "7th-8th", and "9th" were merged into "Less
than HS", while "Doctorate" and "Prof-school" were grouped as "High-income Edu", and the rest as
their original categories.

Multiplier effects and correlation regime. Increasing A lowers CvM and typically shrinks DP/EO
gaps, revealing a fairness—utility frontier whose steepness depends on the attribute—label correlation.
With gender, moderate A achieves noticeable fairness gains with modest accuracy cost; with education,
fairness improvements incur sharper utility drops, reflecting a harder trade-off. At A\ = 0, models
attain peak utility but exhibit higher dependence; as A grows, both unfairness and, eventually,
performance decrease. Specific values for the metrics and percentual changes can be observed
in Tables [T] and 2] respectively. The results corresponding to can be visualized with the

corresponding error bars in

Utility (maximize) Unfairness (minimize)
Accuracy (1)  F1 score (1) \ DP{) EoO{) CvwWM({) MI{) DiffCvM{)
A=0 0.8539 0.6665 0.7868 0.7424 0.2051 0.1468 0.1469
A=1 0.8530 0.6616 0.7304 0.6534 0.1428 0.0997 0.0990
A=5H 0.8450 0.6391 0.6153 0.5325 0.0974 0.0614 0.0599
A=10 0.8359 0.6069 0.4797 0.3568 0.0749 0.0444 0.0427
A=15 0.8261 0.5717 0.4059 0.2855 0.0622 0.0373 0.0349
A=20 0.8213 0.5494 0.3205 0.1965 0.0516 0.0315 0.0288
A=25 0.8177 0.5400 0.3308 0.2269 0.0291 0.0530 0.0262

Table 1: Utility (higher is better) and fairness (lower is better) metrics across regularization strengths \.
Best values are reported in bold.

Metrics
Il Accuracy B F1 score Il DP ll EoO I CvM Bl M| B Diff CvM

Metric Value
© © o o o o o
N w D [6,] o ~ [o5]

=4
o

0.0-
A=0 A=1 A=5 A=10 A=15 A=20 A=25

Models
Figure 8: Adult dataset utility (accuracy and F1) and fairness (DP, EoO, CvM, MI, Differentiable

CvM) metrics. Values of unfair MLP (A = 0) and fair MLPs (A € [1,5, 10,15, 20, 25], with Lo
penalty). Error bars indicate standard deviation computed over 10 runs.
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Utility (maximize) Unfairness (minimize)
Accuracy (1)  F1 score (1) ‘ DP () EoO () CvM ) MI () Diff CvM ({)

A=1 -0.10% -0.73% 117%  -11.99%  -30.36%  -32.09% -32.63%
A=5 -1.04% -4.11% -21.80%  -28.28%  -52.50%  -58.18% -59.23%
A=10 -2.11% -8.94% -39.04%  -51.94%  -63.48%  -69.76% -70.94%
A=15 -3.25% -14.22% -48.41%  -61.55%  -69.67%  -74.59% -76.25%
A =20 -3.82% -17.57% -59.27%  -73.53%  -74.84%  -78.55% -80.40%
A=25 -4.24% -18.98% -57.96%  -69.44% -80.18%  -74.15% -82.17%

Table 2: Relative metrics change with respect to the baseline (A = 0) across regularization strengths \.
Best values are reported in bold.

Metrics
Il Accuracy B F1 score ll DP Bl EoO m CVM B Ml Diff CVM

1.0

© o o©
I o 0

Normalized Metric Value

o
[N}

0.0
A=0.3 A=1.0 A=3.0 A=10.0 A=15.0

Models

Figure 9: Utility (accuracy, F1 score) and fairness (DP, EO, CvM, MI, Differentiable CvM) metrics
comparison of regularized models (\ € [1, 3,10, 15], with L penalty) normalized by values of unfair
model (A = 0). Compared to Lo regularization, we observe increased instability when training with
L1 loss for the regularizer.

Lq vs. Ly on the CvM term.  As observed in[Figure 9] the increased sensitivity on the A parameter
leads to models failing to learn the task and assigning almost all the labels to the majority class as
observed for A € {10, 15} in the plot. Even for small values of the multiplier (compared to those
used in [Figure T)) the decrease in performance is considerable. As observed in[Figure 9] in some
cases when the value of the multiplier is set too high (see A = 15) the regularizer term can take
over and the model fail to learn the task. A practical method to avoid this phenomenon is to use Lo
regularization instead of L;. Using Lo regularization makes the magnitude of the corresponding
gradient be proportional to the value of the CvM coefficient. More precisely, given a coefficient o
for L, regularization and 3 for L, regularization then the regularization strength is higher for L, if
€| < 55 and stronger for Ly if |€,,| > 55. Intuitively, L, penalizes small { more gently when its
value is close to 0 (which prevents collapse when A is large), while increasing pressure on clearly
unfair solutions as dependence increases. Empirically, Ly yields more stable training and preserves
utility more consistently than L; for comparable fairness gains (Figure 1| [Figure 9)). We therefore
adopt the following Ly formulation for subsequent runs:

0* = argmingeg L£(0) + AE3(S, Ye). (12)

Fine-tuning schedule. We also explore the possibility of using the regularizer for fine-tuning. We
start by training the model with no regularization and from that unregularized checkpoint progressively
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Metrics
I Accuracy B F1 score lll DP lll EoO B CvM B M| B Diff CvM

1.0

0 4 8 12 16 20 24 28 32 36

Fine-tuning Epoch x20

o o o
E o (o]

Normalized Metric Value

o
N

Figure 10: Utility (accuracy, F1 score) and fairness (DP, EO, CvM, MI, Differentiable CvM) metrics
comparison normalized by values of unfair model (A = 0). The unregularized model is trained for
20 epochs and then the value of A is geometrically increased every 80 epochs. It helps control the
stability of the optimization model and not crush into trivial solutions

increase the CvM multiplier to trace a controlled path toward fairness. The process is the following:
We train 20 epochs with A = 0, then introduce the CvM term and increase \ by v/3 every 80 epochs.
This schedule steadily reduces CvM and DP/EO gaps while maintaining competitive accuracy/F1,
avoiding the abrupt utility losses seen when starting with a large \.

Remark: Finite-sample rank-based estimates can be slightly negative under near-independence.
This is expected from sampling variability and is mitigated in practice by using continuous outputs
(probabilities) and an Ly penalty on the CvM term.

Takeaways. On Adult, the CvM regularizer enables calibrated movement along the fairness—utility
frontier; the effect is gentle for weakly correlated attributes and steeper for strongly correlated ones.
L, regularization and a staged fine-tuning schedule improve robustness, yielding smoother progress
toward lower dependence (CvM) and smaller DP/EO gaps with controlled utility cost.

F Weather forecasting dataset: extended results and analysis

We study large-scale temperature prediction using the Weather Forecasting dataset processed per
Rubachev et al. [24]]. Utility is tracked by (Neg)MSE; fairness by the CvM dependence coefficient
and MI. When the sensitive attribute is discrete fairness is also tracked by DP. Because the dataset
lacks informative categorical attributes, group structure is obtained by discretizing a continuous
variable via binning into subsets of equal size.

F.1 Hyperparameter tuning to control the fairness—performance trade-off

Tuning targets. We tune (i) the CvM multiplier A and (ii) the derivative smoothness controller
¢ of the soft-ranking operator. The initial A sweep spans [10~2, 10?]; subsequent sweeps adapt to
[10~!, 10?] based on observed frontiers. For e, we start with an initial wide sweep were no effect
is observed. After we reduce the search space to a narrow, practically stable band [10~°, 1073] to
prioritize budget on .
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Figure 11: Weather dataset: CvM &(S, Y) vs. NegMSE. This plot enables the visualization of the
fairness-utility frontier.

Optimization protocol. We use randomized search with Optuna 3 [26], maximizing a reported ob-
jective (see below) with early stopping (patience 16). Budgets: N =300 trials when using a discretized
(binned) sensitive attribute for group metrics, and N =100 trials when treating the sensitive signal as
continuous (CvM-only). We use the default train/val/test splits from the TabReD preprocessing and
take sun_elevation as the sensitive attribute, which is strongly correlated with the target (= 0.47).

F.1.1 Fairness-penalized hyperparameter selection

For generating the results, we follow the same method that we detail in the paper. Namely we conduct
the following 3 steps.

Step 1 (utility-only baseline). Tune non-fairness hyperparameters with A=0 (architecture, optimizer,
regularization, early stopping) to establish a performance baseline and confirm task learnability.

Step 2 (fairness-specific tuning). Fix the hyperparameters from the previous step that maximize
utility, then sweep the CvM multiplier A and the smoothness controller € via randomized search over
wide ranges. For this specific case, we identify that € has a negligible effect on the results so we keep
its range limited to [10~¢,10~3] and concentrate most of the exploration power to explore the effect
of A € [1071,103]. This initial search over the regularizer-specific hyperparameters provides an
initial reference point that enables us to shrink down to the regions of A and e that are most promising
for hyperparameter search in the following step.

Step 3 (penalized-utility selection). Report to Optuna a fairness-penalized utility score that preserves
utility when CvM is below a cutoff and subtracts a linear penalty otherwise:

Ul ;) = . =7 (13)
o f—a(c—y% c>7,

where ¢ is the utility to maximize (NegMSE), ¢ is the CvM value to minimize, and -y is a user-specified
cutoff reflecting the desired group-fairness regime (e.g., via the empirical relation between CvM and
DP). We fixed a=10 and note that other slopes can be explored to adjust selection pressure. This
pipeline is dataset-agnostic and directly applicable to other large tabular problems.

F.2 Choosing the cutoff v
The choice of the cutoff  will guide the hyperparameter exploration of the hyperparamter optimiza-

tion module. As seen in the values of the CvM (determined by the choice of ) will center
around the cutoff value.
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Figure 12: The cutoff determines what values of the CvM runs will be accumulated around and
guides the optimization process.

The choice for the value of the cutoff should be task-specific and can be oriented by the relationship
between the CvM and other fairness metrics via the discussed relationship between CvM and metrics
such as DP. Plots as the one observed in[Figure 3|can be useful to guide this choice.

F.3 Results
We conduct two complementary analyses:

(i) a continuous setting, using sun_elevation directly for CvM (no groups),

ii) a discrete setting, where the same variable is binned to form groups for DP evaluation.

—1.41

167 o0 cwe @ wWi@@®

—2.21

—2.41

1073 1072 1071 10° 10! 102
Multiplier

Figure 13: Effect of setting different values of )\ on the obtained NegMSE values. An incresase of
the multiplier leads to a deterioration of performance.
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Figure 14: Effect of setting different values of € on the obtained CvM values. There is a negligible
effect of € on the results.

In both settings, increasing A monotonically reduces CvM, yielding a Pareto-like frontier against
NegMSE, see Moreover, € exerts limited influence on the CvM-utility trade-off relative
to \, justifying a narrowed search space for e (Figure T4). In the binned (discrete) analysis, reductions
in CvM are accompanied by consistent decreases in DP gaps, enabling a practical mapping from

policy targets on DP to choices of A (Figure 3|f’| with model training.

Visualization. We summarize the trade-off via Pareto-like plots with utility on the horizontal axis
and fairness (CvM or DP) on the vertical axis as observed in [Figure 11} each point corresponds to a
distinct training with a different A value. To visualize the impact of the regularization parameter A on
the different metrics, Figure @ depicts the joint evolution of NegMSE, DP, CvM, and MI as \ varies.
For this analysis, the training runs were sorted by their corresponding A values and divided into eight
groups containing an equal number of runs, from which the statistics for each bin were computed.

G Additional experimental details

Resources. Experiments were conducted on internal cluster on instances with a RAM of 500Go
and 46 CPUs available and 2 GPUs V100.

Practical Guidance

 Use continuous outputs for stability; report DP/EO alongside CvM.

* Prioritize tuning A; treat € as a low-priority derivative smoothness controller (fix small
values unless instability is observed).

¢ Prefer Ly on the CvM term; consider ramping A for fine-tuning when utility is critical.

* For hyper parameter optimization, adopt a fairness-penalized utility to target the desired
region of the frontier.

*In figures involving NegMSE, two outlier runs were removed for visibility; both corresponded to very large
A yielding low CvM and very poor utility.

3Demographic parity can be thought of as a stronger version of the US Equal Employment Opportunity
Commission’s “four-fifths rule”, which requires that the “selection rate for any race, sex, or ethnic group [must
be at least] four-fifths (4/5) (or eighty percent) of the rate for the group with the highest rate”, see the Uniform
Guidelines on Employment Selection Procedures, 29 C.ER. §1607.4(D) (2015).
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Figure 15: Joint evolution of NegMSE, DP, CvM, and MI as the regularization strength \ varies. The
plot summarizes results from 300 training runs, which were sorted by their corresponding A values
and divided into eight groups with an equal number of runs. Dotted lines indicate the metric values
obtained from runs with A = 0.
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to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: the datasets are available, the code is not available (anonymized github is
experiencing issues) but will be made available upon acceptance

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer: [Yes]
Justification: In the experiment section in the main text and appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: details are explained in the experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Appendix[G]
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: [NA|
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We state a connection with Al regulations and improving methods in terms of
fairness.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the data, methods, packages we used.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: [NA]
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

24


paperswithcode.com/datasets

15.

16.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: [NA]
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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