
Under review as a conference paper at ICLR 2022

LEARNING GRAPH AUGMENTATIONS TO LEARN
GRAPH REPRESENTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Devising augmentations for graph contrastive learning is challenging due to their
irregular structure, drastic distribution shifts, and nonequivalent feature spaces
across datasets. We introduce LG2AR, Learning Graph Augmentations to Learn
Graph Representations, which is an end-to-end automatic graph augmentation
framework that helps encoders learn generalizable representations on both node and
graph levels. LG2AR consists of a probabilistic policy that learns a distribution over
augmentations and a set of probabilistic augmentation heads that learn distributions
over augmentation parameters. We show that LG2AR achieves state-of-the-art
results on 18 out of 20 graph-level and node-level benchmarks compared to previous
unsupervised models under both linear and semi-supervised evaluation protocols.

1 INTRODUCTION

Graph Neural Networks (GNNs) are a class of deep models that learn node representations over
order-invariant and variable-size data, structured as graphs, through an iterative process of transferring,
transforming, and aggregating the representations from topological neighbors. The learned represen-
tations are then summarized into a graph-level representation (Li et al., 2015; Gilmer et al., 2017;
Kipf & Welling, 2017; Veličković et al., 2018; Xu et al., 2019; Khasahmadi et al., 2020a). GNNs are
applied to non-Euclidean data such as point clouds (Hassani & Haley, 2019b), robot designs (Wang
et al., 2019b), physical processes (Sanchez-Gonzalez et al., 2020), molecules (Duvenaud et al., 2015),
social networks (Kipf & Welling, 2017), and knowledge graphs (Vivona & Hassani, 2019).

GNNs are mostly trained end-to-end with supervision from task-dependent labels. Nevertheless,
annotating graphs is more challenging compared to other common modalities because they usually
represent concepts in specialized domains such as biology where labeling through wet-lab experiments
is resource-intensive (You et al., 2020; Hu et al., 2020) and labeling them procedurally using domain
knowledge is costly(Sun et al., 2020). To address this, unsupervised objectives are coupled with
GNNs to learn representations without relying on labels which are transferable to a priori unknown
down-stream tasks. Reconstruction-based methods, i.e., Graph AutoEncoders (GAE), preserve
the topological closeness of the nodes in the representations by forcing the model to recover the
neighbors from the latent space (Kipf & Welling, 2016; Garcia Duran & Niepert, 2017; Pan et al.,
2018; Park et al., 2019). GAEs over-emphasize proximity information at the cost of structural
information (Veličković et al., 2019). Contrastive methods train graph encoders by maximizing the
Mutual Information (MI) between node-node, node-graph, or graph-graph representations achieving
state-of-the-art results on both node and graph classification benchmarks(Veličković et al., 2019; Sun
et al., 2020; Hassani & Khasahmadi, 2020; You et al., 2020; Zhu et al., 2021). For a review on graph
contrastive learning see (Wu et al., 2021; Xie et al., 2021; Liu et al., 2021a).

Contrastive learning is essentially learning invariances to data augmentations which are thoroughly
explored for Computer Vision (CV) (Shorten & Khoshgoftaar, 2019) and Natural Language Process-
ing (NLP) (Feng et al., 2021). Learning policies to sample dataset-conditioned augmentations is also
studied in CV (Hataya et al., 2020; Lim et al., 2019; Cubuk et al., 2019; Li et al., 2020). The irregular
structure of graphs complicates both adopting augmentations used on images and also devising
new augmentation strategies (Zhao et al., 2021). Unlike image datasets where the distribution is
mostly from natural images, graph datasets are abstractions diverse in nature and contain shifts on
marginal/conditional distributions and nonequivalent feature spaces across datasets. This implies that

1

Under review as a conference paper at ICLR 2022

the effect of augmentations is different across the datasets and hence both augmentations and their
selection policy should be learned from the data to adapt to new datasets.

Present Work. We introduce LG2AR, Learning Graph Augmentations to Learn Graph
Representations, a fully-automated end-to-end contrastive learning framework that helps encoders
learn transferable representations. Specifically, our contributions are as follows: (1) We introduce a
probabilistic augmentation selection policy that learns a distribution over the augmentation space
conditioned on the dataset to automate the combinatorial augmentation selection process. (2) We
introduce probabilistic augmentation heads where each head learns a distribution over the parameters
of a specific augmentation to learn better augmentations for each dataset. (3) We train the policy
and the augmentations end-to-end without requiring an outer-loop optimization and show that unlike
other methods, our approach can be used for both node-level and graph-level tasks. Finally, (4) we
exhaustively evaluate our approach under linear and semi-supervised evaluation protocols and show
that it achieves state-of-the-art results on 18 out of 20 graph and node level classification benchmarks.

2 RELATED WORK

Graph augmentations are explored in supervised settings to alleviate over-smoothing and over-fitting.
DropEdge (Rong et al., 2020) randomly drops a fraction of the edges during training. ADAEDGE
(Chen et al., 2020a) learns to perturb edges between based on the predicted node classes. BGCN
(Zhang et al., 2019) generates an ensemble of deonised graphs by perturbing edges. GAUG (Zhao
et al., 2021) trains a GAE to generate edge probabilities and interpolates them with the original
connectivity to sample a denoised graph. FLAG (Kong et al., 2020) augments node features with
adversarial perturbations and GraphMask (Schlichtkrull et al., 2021) introduces differentiable edge
masking to achieve interpretability. These works assume that a specific type of augmentation suffice
for all supervised tasks and do not utilize the benefit of mixing the augmentations.

Graph augmentations are also studied in contrastive setting to learn transferable graph representa-
tions. DGI (Veličković et al., 2019) and InfoGraph (Sun et al., 2020) adopt DeepInfoMax (Hjelm
et al., 2019) and enforce the consistency between local (node) and global (graph) representation.
MVGRL (Hassani & Khasahmadi, 2020) augments a graph via graph diffusion and constructs two
views by randomly sampling sub-graphs from the adjacency and diffusion matrices. GCC (Qiu
et al., 2020) uses sub-graph instance discrimination and contrasts sub-graphs from a multi-hop ego
network. GraphCL (You et al., 2020) uses trial-and-error to hand-pick graph augmentations and
the corresponding parameters of each augmentation. JOAO (You et al., 2021) extends the GraphCL
using a bi-level min-max optimization that learns to select the augmentations. Nevertheless, it does
not show much improvement over GraphCL. GRACE (Zhu et al., 2020) uses a similar approach to
GraphCL learn node representations. GCA (Zhu et al., 2021) uses a set of heuristics to adaptively pick
the augmentation parameters. BGRL (Thakoor et al., 2021) adopts BYOL (Grill et al., 2020) and uses
random augmentations to learn node representations. ADGCL (Suresh et al., 2021) introduces adver-
sarial graph augmentation strategies to avoid capturing redundant information. Different from these
methods, LG2AR emphasizes the importance of conditional augmentations and learns a distribution
over the augmentation space along with a set of distributions over the augmentation parameters end-
to-end without requiring a bi-level optimization and outperforms the previous contrastive methods on
both node and graph level benchmarks under linear and semi-supervised evaluation protocols.

3 METHOD

Given a dataset of graphs G = {Gk}Nk=1 where each graph Gk = (V, E ,X) consists of |V| nodes, |E|
edges (E ⊆ V × V), and initial node features X ∈ R|V|×dx , and assuming that the semantic labels
are not available during the training, the goal is to learn node-level representations Hv ∈ R|V|×dh
and graph-level representation hG ∈ Rdh such that the learned representations are transferable to
the down-stream tasks unknown a priori. Assuming a set of possible rational augmentations T over
G where each augmentation τi ∈ T , i ∈ {1, ..., |T |} is defined as a function over graph Gk that
generates an identity-preserving view of the graph: Gik = τi(Gk), a contrastive framework with neg-
ative sampling strategy uses T to draw positive samples from the joint distribution p (τi(Gk), τj(Gk))
in order to maximize the agreement between different views of the same graph Gk and to draw
negative samples from the product of marginals p (τi(Gk))× p (τj(Gk′)) to minimize it for views

2

Under review as a conference paper at ICLR 2022

 N
od
e

Ed
ge

Fe
at
ur
e

Su
bG

ra
ph

Id
en
tit
y

C
ontrast

Sa
mple

Sample

Sample

Sample

Augmentation Encoder
(Deterministic)

Policy
(Probabilistic)

Augmentation Heads
(Probabilistic & Dedicated)

Main Encoder
(Deterministic & Shared)

Figure 1: The proposed framework for learning graph augmentation end-to-end.

from two distinct graphs Gk and Gk′ , k 6= k′. Most works, sample the augmentations uniformly
and use trail-and-error to determine a single parameter for each augmentation, e.g., the probability
of dropping nodes. LG2AR, on the other hand, learns the sampling distribution over T and also
learns parametric augmentation τφi

end-to-end along with the representations to generate robust
representations. The architecture of LG2AR (Figure 1) achieves this using an augmentation encoder,
a probabilistic policy, a set of probabilistic augmentation heads, and a shared base encoder. The
details are as follows.

3.1 AUGMENTATION ENCODER

Augmentation encoder gω(.) : R|V|×dx × R|E| 7−→ R|V|×dh × Rdh learns a set of node encoding
Hv ∈ R|V|×dh and a graph encoding hg ∈ Rdh over the input graph Gk to provide the subsequent
modules with expressive encodings so that they can condition their predictions on the input graphs.
The augmentation encoder consists of a GNN producing node representations, a read-out function
(summation) aggregating the representations into a graph representation, and two dedicated projection
heads (three layer MLPs) applied to the learned representations. To encode graphs, we opted for
expressive power and adopted graph isomorphism network (GIN) (Xu et al., 2019).

3.2 POLICY

Policy rµ(.) : R|B|×dh 7−→ R|τ | is a probabilistic module that receives a batch of graph-level
representations Hg ∈ R|B|×dh from the augmentation encoder, constructs a categorical distribution
over the possible augmentations T , and then samples two augmentations, τφi

and τφj
from that

distribution for each batch with temperature t. It is shown that conditioning the augmentation
sampling on the dataset helps achieve better performance (You et al., 2020). However, feeding the
whole dataset to the policy module is computationally expensive and hence we approximate it by
conditioning the policy on mini-batches. Moreover, the policy must be invariant to the order of
representations within the batch. To enforce this, we tried two strategies: (1) a policy instantiated
as a deep set (Zaheer et al., 2017) where representations are first projected and then aggregated into
a batch representation, and (2) a policy instantiated as an RNN where we impose an order on the
representations by sorting them based on their L2-norm and then feeding them into a GRU (Cho et al.,
2014). We use the last hidden state as the batch representation. We observed that GRU based policy
performed better. The policy module automates the ad-hoc trial-and-error augmentation selection
process. To let the gradients flow back to the policy module, we use a skip-connection and multiply
the final graph representations by their associated augmentation probabilities predicted by the policy.

3

Under review as a conference paper at ICLR 2022

3.3 AUGMENTATIONS

We use five graph augmentations including three structural augmentations: node dropping,edge
perturbation, and sub-graph inducing, one feature augmentation: feature masking, and one identity
augmentation. These augmentations enforce the priors that the semantic meaning of a graph should
not change due to perturbations applied to its features or structure. For efficiency, we do not use
compute-intensive augmentations such as graph diffusion. Unlike previous works in which the
parameters of the augmentations are chosen either randomly or by heuristics, we opt to learn them
end-to-end. For example, rather than dropping nodes randomly(You et al., 2020) or computing the
probability proportional to a centrality measure (Zhu et al., 2021), we train a model to predict the
distribution over all nodes within a graph and then sample from it to decide which nodes to drop.
Unlike the policy module, the augmentations are conditioned on the individual graphs. We use a
dedicated head for each augmentation modeled as a two layer MLP that learns a distribution over the
augmentation parameters. The inputs to the heads are the original graph G and representations Hv

and hG from the augmentation encoder. We sample the learned distribution using Gumbel-Softmax
trick (Jang et al., 2016; Maddison et al., 2016) with temperature t.

Node Dropping Head is conditioned on the node and graph representations to decide which nodes
within a graph to drop. It receives the concatenation of the node and graph representations as input
and predicts a categorical distribution over the nodes. The distribution is then sampled using Gumbel-
Top-K trick (Kool et al., 2019) with a ratio hyper-parameter. We also tried Bernoulli sampling but we
observed that it aggressively drops nodes in the few first epochs and the model cannot recover later.
To let the gradients flow back from the augmented graph to the head, we introduce edge weights
on the augmented graph where an edge weight wij is computed as p(vi) + p(vj) and p(vi) is the
probability assigned to node vi. See Algorithm 2 in Appendix.

Edge Perturbation Head is conditioned on head and tail nodes to decide which edges to add or
remove. To achieve this, |E| negative edges (Ē) are first randomly sampled to form a set of negative
and positive edges E ∪ Ē with size of 2|E|. Edges represented as

[
hvi + hvj ‖ 1E(eij)

]
(hvi and

hvj are the representations of head and tail nodes of edge eij and 1E(eij) is an indicator function
indicating if the edge belongs to positive or negative edges) are fed into the head to learn Bernoulli
distributions over the edged. We use the predicted probabilities p(eij) as the edge weights to let the
gradients flow back to the head. See Algorithm 3 in Appendix.

Sub-graph Inducing Head is conditioned on the node and graph representations to decide which
node to select as the center node. It receives the concatenation of the node and graph representations
(i.e., [hv ‖ hg]) as input and learns a categorical distribution over the nodes. The distribution is then
sampled to select a central node per graph around which a sub-graph is induced using Breadth-First
Search (BFS) with K hops. We use a similar trick to node dropping augmentation to overpass the
gradients back to the original graph. See Algorithm 4 in Appendix.

Feature Masking Head is conditioned on the node representation to decide which dimensions of
the node feature to mask. The head receives the node representation hv and learns a Bernoulli
distribution over each feature dimension of the original node feature. The distribution is then sampled
to construct a binary mask m over the initial feature space. Because initial node features can consist
of categorical attributes (one-hot or multi-hot), we use a linear layer to project them into a continuous
space resulting in x′v . The augmented graph has the same structure as the original graph with initial
node features x′v �m where � is the Hadamard product. See Algorithm 5 in Appendix.

3.4 BASE ENCODER

Base encoder gθ(.) : R|V′|×d′x × R|V′|×|V′| 7−→ R|V′|×dh × Rdh is a shared graph encoder among
the augmentations which receives an augmented graph G′ = (V ′, E ′) from the corresponding
augmentation head and learns a set of node representations H′v ∈ R|V′|×dh and a graph representation
h′G ∈ Rdh over the augmented graph G′. The goal of learning the augmentations is to help the base
encoder learn invariances to such augmentations and as a result produce robust representations. The
base encoder is trained end-to-end with the policy and augmentation heads. At inference time, the
input graphs are directly fed to the base encoder to compute the encodings for down-stream tasks.

4

Under review as a conference paper at ICLR 2022

3.5 TRAINING

We follow (Sun et al., 2020) and train the framework end-to-end using deep InfoMax (Hjelm et al.,
2019) and maximize the MI between the node representations of one view with graph representation
of the other view and vice versa with the following objective:

max
ω,µφi,φj ,θ

1

|G|
∑
G∈G

[
1

|V|
∑
v∈V

[
I
(
hiv, h

j
G

)
+ I
(
hjv, h

i
G

)]]
(1)

where ω, µ, φi, φj , θ are parameters of modules to be learned, hiv, h
j
G are representations of node v

and graph G encoded by augmentation i and j, and I is the mutual information estimator. We use the
Jensen-Shannon MI estimator:

I (hv, hG) = Ep [−log (1 + exp (−D(hv, hG)))]− Ep×p̃
[
−log

(
1 + exp

(
D(hv, hG̃)

))]
(2)

D(., .) : Rdh × Rdh 7−→ R is a discriminator that takes in a node and a graph representation and
scores the agreement between them and is implemented as D(hv, hg) = hn.h

T
g . We provide the

positive samples from the joint distribution (p) and the negative samples from the product of marginals
p× p̃, and optimize the model parameters with respect to the objective using mini-batch stochastic
gradient descent. We found that regularizing the encoders by randomly alternating between training
the base and augmentation encoders helps the base encoder to generalize better. For this purpose,
we train the policy and the augmentation heads at each step, but we sample from a Bernoulli to
decide whether to update the weights of the base or augmentation encoders . The training process is
summarized in Algorithm 1.

Algorithm 1: End-to-end training algorithm.
Input: Augmentation heads τi, τj ∈ T , policy r, graph encoders gθ and gω , MI estimator I , loss

L, and graphs G ∈ G
for sampled batch B = {Gk}Nk=1 ∈ G do
{(Hvk , hGk

)}Nk=1 = gω (Gk) // Compute the augmentation encodings

i, j, pi, pj = rµ({(Hvk , hGk
)}Nk=1) // Sample the policy

for k = 1 to N do
Gik = τφi

(Gk,Hvk , hGk
) // Sample the first view

Hi
vk
, hiGk

= gθ(G
i
k) // Compute the first view encodings

Gjk = τφj (Gk,Hvk , hGk
) // Sample the second view

Hj
vk
, hjGk

= gθ(G
j
k) // Compute the second view encodings

hiGk
= hiGk

× pi // Scale the encodings by their probabilities

hjGk
= hjGk

× pj
end
for k = 1 to N and k′ = 1 to N do

sik,k′ = I
(
hiGk

,Hj
vk′

)
, sjk,k′ = I

(
hjGk

,Hi
vk′

)
// Compute pairwise similarity:

end

5ω,µ,φi,φj ,θ
1
N2

N∑
k=1

N∑
k′=1

[
L
(
sik,k′

)
+ L

(
sjk,k′

)]
// compute gradients and update

end

4 EXPERIMENTAL RESULTS

4.1 UNSUPERVISED REPRESENTATION LEARNING EVALUATION

We evaluate LG2AR under the linear evaluation protocol on both node-level and graph-level clas-
sification benchmarks where unsupervised models first encode the graphs, and then the encoding
are fed into a down-stream linear classifier without fine-tuning the encoder. For graph classification
benchmarks, we follow GraphCL and use eight datasets from TUDataset (Morris et al., 2020) and

5

Under review as a conference paper at ICLR 2022

Table 1: Mean graph classification accuracy over 10 runs under linear evaluation protocol.

Method Mutag Proteins IMDB-B IMDB-M Reddit-B Reddit-M
Su

p. GIN 89.4±5.6 76.2±2.8 75.1±5.1 52.3±2.8 92.4±2.5 57.6±1.5
GAT 89.4±6.1 74.7±4.0 70.5±2.3 47.8±3.1 85.2±3.3 45.9 ±0.1

K
er

ne
l

SP 85.2±2.4 − 55.6±0.2 38.0±0.3 64.1±0.1 39.6±0.2
GK 81.7±2.1 − 65.9±1.0 43.9±0.4 77.3±0.2 41.0±0.2
WL 80.7±3.0 72.9±0.6 72.3±3.4 47.0±0.5 68.8±0.4 46.1±0.2
DGK 87.4±2.7 73.3±0.8 67.0±0.6 44.6±0.5 78.0±0.4 41.3±0.2
MLG 87.9±1.6 − 66.6±0.3 41.2±0.0 − −

R
nd

W
al

k RandomWalk 83.7±1.5 − 50.7±0.3 34.7±0.2 − −
Node2Vec 72.6±10.2 57.5±3.6 − − − −
Sub2Vec 61.1±15.8 53.0±5.6 55.3±1.5 36.7±0.8 71.5±0.4 36.7±0.4
Graph2Vec 83.2±9.6 73.3±2.1 71.1±0.5 50.4±0.9 75.8±1.0 47.9±0.3

U
ns

up
er

vi
se

d

InfoGraph 89.0±1.1 74.4±0.3 73.0±0.9 49.7±0.5 82.5±1.4 53.5±1.0
GraphCL 86.8±1.4 74.4±0.5 71.1±0.4 48.5 ± 0.6 89.5±0.8 56.0±0.3
ADGCL 89.7±1.0 73.8±0.5 71.6±1.0 49.9±0.7 85.5±0.8 54.9±0.4
JOAO 87.7±0.8 74.6±0.4 70.8±0.3 − 86.4±1.5 56.0±0.3
LG2AR + GRU (Ours) 90.0±0.6 75.0±0.5 74.5±0.6 51.9±0.3 91.8±0.4 56.3±0.2
LG2AR + DeepSet (Ours) 88.9±0.6 74.8±0.5 74.1±0.2 51.2±0.3 91.6±0.1 56.0±0.2
LG2AR + Random (Ours) 88.6±0.5 74.7±0.5 73.8±0.3 51.5±0.3 92.2±0.1 56.2±0.2

for the node classification, we follow GCA, and use seven datasets from (Mernyei & Cangea, 2020;
Shchur et al., 2018). For fair comparisons, we closely follow the linear evaluation protocol from
previous unsupervised works. For evaluating graph classification, we report the mean 10-fold cross
validation accuracy with standard deviation after ten runs with a down-stream linear SVM classifier,
and for node classification evaluation, we report the mean accuracy of twenty runs over different
data splits with a down-stream single layer linear classifier. For details on the evaluation protocol see
Appendix A.2 and for implementation details and hyper-parameter settings see Appendix A.3.

For both tasks, we train three variants of our framework denoted as LG2AR-GRU, LG2AR-DeepSet,
and LG2AR-Random where each variant indicates its policy instantiation, i.e., GRU, deep set, and
random (sampling views from uniform distribution) policies. For graph classification benchmarks,
we compare the LG2AR with two supervised baselines: GIN and Graph Attention Network (GAT)
(Veličković et al., 2018), five graph kernel methods including Shortest Path kernel (SP) (Borgwardt &
Kriegel, 2005), Graphlet Kernel (GK) (Shervashidze et al., 2009), Weisfeiler-Lehman sub-tree kernel
(WL) (Shervashidze et al., 2011), Deep Graph Kernels (DGK) (Yanardag & Vishwana, 2015), and
Multi-scale Laplacian Graph kernel (MLG) (Kondor & Pan, 2016), and four random walk methods
including Random Walk (Gärtner et al., 2003), Node2Vec (Grover & Leskovec, 2016), Sub2Vec
(Adhikari et al., 2018), Graph2Vec (Narayanan et al., 2017). We also compare the results with state-
of-the-art deep contrastive models including InfoGraph, GraphCL, JOAO, and ADGCL. For node
classification benchmarks, we compare our results with random walk methods including DeepWalk
with and without concatenating node features, and Node2Vec. We also compare the results with deep
learning methods including Graph Autoencoders (GAE, VGAE) (Kipf & Welling, 2016), Graphical
Mutual Information Maximization (GMI) (Peng et al., 2020), MVGRL, DGI, and GCA.

The results for graph classification are reported in Tables 1 and 7 (Appendix) and for the node
classification are reported in Tables 2 and 7 (Appendix). The reported performance for other
models are from the corresponding papers under the same experiment setting. As shown for graph
classification, LG2AR achieves state-of-the-art results with respect to unsupervised models across all
eight benchmarks. For example, on IMDB-Multi and COLLAB datasets we achieve 2.2% and 6.4%
absolute improvement over previous state-of-the-art. We also observe that LG2AR narrows the gap
with the best performing supervised baselines even surpassing them on MUTAG dataset. Moreover,
for node classification, we observe that we achieve state-of-the-art results with respect to previous
unsupervised models in five out of seven benchmarks. For example, we achieve 4.7%, 1.6%, and 1.7
% absolute improvement on the PubMed, Amazon-Photo, and Amazon-Computer datasets. When
compared to supervised baselines, we outperform or perform equally good across the benchmarks.

6

Under review as a conference paper at ICLR 2022

Table 2: Mean node classification accuracy over 20 runs under linear evaluation protocol.

Method WikiCS Amz-Comp Amz-Photo Coauthor-CS Coauthor-Phy
Su

p. GIN 75.9±0.7 87.5±0.9 90.9±0.5 91.4±0.2 95.2±0.1
GAT 77.7±0.1 86.9±0.3 92.6±0.4 92.3±0.2 95.5±0.2

R
nd

W
al

k Raw Features 71.98±0.0 73.8±0.0 78.5±0.0 90.4±0.0 93.6±0.0
Node2Vec 71.8±0.1 84.4±0.1 89.7±0.1 85.1±0.0 91.2±0.0
DeepWalk 74.4±0.1 85.7±0.1 89.4±0.1 84.6±0.2 91.8±0.2
DeepWalk + Feat 77.2±0.0 86.3±0.1 90.1±0.1 87.7±0.0 94.9±0.1

U
ns

up
er

vi
se

d

GAE 70.2±0.0 85.3±0.2 91.6±0.1 90.0±0.7 94.92±0.1
VGAE 75.6±0.2 86.4±0.2 92.2±0.1 92.1±0.1 94.5±0.0
DGI 75.4±0.1 84.0±0.5 91.6±0.2 92.2±0.6 94.5±0.5
GMI 74.9±0.1 82.2±0.3 90.7±0.2 OOM OOM
MVGRL 77.5±0.0 87.5±0.1 91.7±0.1 92.1±0.1 95.3±0.0
GRACE 80.1±0.5 89.5±0.4 92.8±0.5 91.1±0.2 OOM
BGRL 80.0±0.1 90.3±0.2 93.2±0.3 93.3±0.1 95.7±0.1
GCA 78.4±0.1 87.9±0.3 92.2±0.2 93.1±0.0 95.7±0.0
LG2AR + GRU (Ours) 77.8 ±0.5 89.3±0.4 94.1±0.4 93.6±0.3 95.7±0.2
LG2AR + DeepSet (Ours) 76.2±0.9 89.6±0.3 92.6±0.5 92.4±0.3 95.5±0.1
LG2AR + Random (Ours) 76.2±0.7 88.8±0.4 92.4±0.6 92.3±0.2 95.4±0.1

Table 3: Mean 10-fold accuracy of semi-supervised learning with 10% label rate.

Proteins DD COLLAB Reddit-B Reddit-M

GAE 70.5±0.2 74.5±0.7 75.1±0.2 87.7±0.4 53.6±0.1
Infomax 72.3±0.4 75.8±0.3 73.8±0.3 88.7±0.9 53.6±0.3
GraphCL 74.2±0.3 76.2±1.4 74.2±0.2 89.1±0.2 52.6±0.5
JOAO 73.3±0.5 75.8±0.7 75.5±0.2 88.8±0.7 52.7±0.3
ADGCL 74.0±0.5 77.9±0.7 75.8±0.3 90.1±0.2 53.5±0.3
LG2AR (Ours) 76.1±0.4 79.8±0.3 78.4±0.4 92.3±0.5 57.2±0.6

4.2 SEMI-SUPERVISED LEARNING EVALUATION

Furthermore, we evaluated LG2AR in a semi-supervised learning setting on graph classification
benchmarks. We follow the experimental protocol introduced in GraphCL and pre-train the encoder
in an unsupervised fashion and fine-tune it only on 10% of the labeled data. The results reported in
Table 3 show that LG2AR achieves state-of-the-art results compared to previous unsupervised models
across all five benchmarks. Most notably, LG2AR achieves an absolute accuracy gain of 3.6% and
2.6% over Collab and Reddit-Multi benchmarks.

4.3 ANALYSIS OF THE OPTIMIZATION FRAMEWORK

In this section, we discuss how LG2AR cannot fall into trivial solutions and compare its optimization
with a few notable works. SimSiam (Chen & He, 2021) states that collapsing, i.e. minimum possible
loss with constant outputs, cannot be prevented by solely relying on architecture designs such as
batch normalization. By designing multiple experiments they concluded that the non-collapsing
behaviour of SimSiam still remains an empirical observation. Inspired by MoCo (He et al., 2020) and
BYOL (Grill et al., 2020), AutoMix (Liu et al., 2021b) avoids a nested optimization by decoupling its
momentum pipeline. LG2AR does not require a momentum pipeline because it is based on contrasting
local-global information. Even if the augmentation distribution ends being a Dirac peaking on any
of the five augmentations, which we did not observe, a collapse cannot happen and a single level
optimization is sufficient. If solely any of the node, sub-graph or edge augmentations are sampled,
the inductive biases that we injected and discussed, force the model to at least select a sub part
of the graph as an augmented view, hence avoiding the trivial solution of a graph with only one
node and no edges. If only identity or feature augmentation is sampled, LG2AR would reduce to
a single level optimization method such as InfoGraph where there are no augmentations. JOAO,

7

Under review as a conference paper at ICLR 2022

re-frames the auto-augmentation on graphs to a min-max optimization. Inspired from robustness
and adversarial learning literature, they employ Alternating Gradient Descent (Wang et al., 2019a)
to design an approach for learning the augmentation distribution and the encoder parameters in a
bi-level optimization setting. We are using the gumbel-softmax trick to sample from the augmentation
distribution and let the gradient flow through discrete parameters. Our algorithm alternates between
updating the encoder and augmentation parameters by tossing a fair coin in each iteration. Alternating
gradients between modules in unsupervised learning is shown to be efficient in avoiding the trivial
solutions (Caron et al., 2018; Hassani & Haley, 2019a; Khasahmadi et al., 2020b). With these bag of
tricks, LG2AR avoid collapsing to trivial solutions and solving a min-max problem that needs an
inefficient bi-level optimization. Moreover, Figure 3 in the Appendix is showing a stable training
trajectory for multiple datasets.

4.4 ABLATION STUDY

Effect of the Policy. To investigate the effect of policy, we trained the models with three variants of
the policy including GRU, deep set, and random policies. As shown in Tables 1-2, the GRU-based
policy outperforms or performs equally well on 12 out of 15 benchmarks whereas the random policy
outperforms the other variants in only 1 out of 15 datasets, indicating the importance of learning the
view sampling policy. Also, in order to probe what the policy module is learning, we computed the
normalized frequency of the sampled augmentations by the GRU-based policy during the training.
The frequencies for two graph classification benchmarks (MUTAG and Reddit-binary) and two
node classification benchmarks (Coauthor-CS and PubMed) are shown in Figure 2. We observe the
following: (1) The policy is learning different distributions over augmentations for each benchmark
suggesting that it is adapting to the given datasets. (2) In node classification benchmarks, because we
already induce sub-graphs to transform them to inductive tasks, we observe that the policy inclines
towards sampling the identity augmentation more frequently which is essentially a sub-graph of the
original graph. (3) We observe that regardless of the task, edge perturbation and sub-graph inducing
are the two most commonly sampled augmentations. This confirms the observation that sub-graphs
are generally beneficial across datasets (You et al., 2020). (4) We observe that for node classification
benchmarks, the probability of sampling feature masking augmentation is positively correlated with
the initial node feature dimension.

Effect of the Augmentations. To investigate the effect of the augmentations, we run the experiments
with single augmentation, and structural vs feature space augmentations. The results shown in Table
4 indicate that: (1) using our single augmentations performs on par or better than baselines, (2)
generally structural augmentations contribute more than feature space augmentations, and (3) all
augmentations are contributing to the final performance which suggests that the model should use all
augmentations while learning the sampling frequencies.

Effect of the Augmentation Heads. To investigate the effect of the augmentations heads without
benefiting from the policy, we compare our framework when trained with a random policy with
GraphCL for graph classification benchmarks. Both LG2AR-Random and GraphCL sample the
augmentations from a uniform distribution, where the former learns distributions over the augmenta-
tion parameters and the latter randomly samples those. As shown in Tables 1 and 7, in 8 out of 8
benchmarks LG2AR-Random outperforms GraphCL. For instance, we see an absolute improvement
of 2.7% accuracy on Reddit-Binary. This implies that learning the augmentations contributes to
the performance boost on the graph classification benchmarks, and when combined with the policy
learning, results are further improved. We see less of this effect in transductive tasks suggesting that
the policy learning is playing a more important rule in node classification benchmarks. One reason
for this may be the fact that GCA unlike GraphCL uses strong topological inductive biases to select
the augmentation parameters.

Effect of the Mutual Information Estimator and Discriminator. We investigated four MI esti-
mators including: noise-contrastive estimation (NCE) Gutmann & Hyvärinen (2010); Oord et al.
(2018), Jensen-Shannon (JSD) estimator following formulation in Nowozin et al. (2016), normal-
ized temperature-scaled cross-entropy (NT-Xent) Chen et al. (2020b), and Donsker-Varadhan (DV)
representation of the KL-divergence Donsker & Varadhan (1975). The results shown in Table 4
suggests that JSD and NT-Xent perform better compared to the other estimators. We also investigated
the effect of discriminator by training the model using four variants including dot product, cosine

8

Under review as a conference paper at ICLR 2022

Table 4: Effects of Mutual Information Estimator, Discriminator, and augmentations.

Proteins DD COLLAB IMDB-B IMDB-M Reddit-B Reddit-M
L

os
s

JSD 75.0±0.5 79.1±0.3 77.8±0.2 74.5±0.6 51.9±0.3 91.8±0.4 56.3±0.2
NCE 74.4±0.6 78.4±0.5 77.1±0.3 73.9±0.4 51.2±0.6 90.8±0.4 56.4±0.2
NT-Xent 75.1±0.6 78.7±0.5 77.5±0.4 74.6±0.7 51.5±0.4 91.3±0.5 56.7±0.4
DV 74.3±0.4 78.2±0.4 77.1±0.3 73.5±0.6 50.7±0.5 91.1±0.5 55.2±0.3

D
is

cr
im

i. Dot Product 75.0±0.5 79.1±0.3 77.8±0.2 74.5±0.6 51.9±0.3 91.8±0.4 56.3±0.2
Cosine 75.4±0.4 79.2±0.3 77.4±0.3 74.3±0.7 51.6±0.4 92.1±0.3 56.4±0.2
Bilinear 74.6±0.4 78.7±0.4 77.5±0.4 73.8±0.6 51.0±0.5 90.4±0.5 55.4±0.4
MLP 75.3±0.6 79.6±0.5 77.5±0.5 74.7±0.3 60.4±0.6 91.7±0.5 56.8±0.5

A
ug

m
en

ta
tio

ns All 75.0±0.5 79.1±0.3 77.8±0.2 74.5±0.6 51.9±0.3 91.8±0.4 56.3±0.2
Structure 74.6±0.5 79.1±0.2 77.3±0.3 74.1±0.5 51.8±0.3 91.1±0.3 56.2±0.2
Feature 74.2±0.4 77.9±0.3 76.7±0.3 73.7±0.2 51.3±0.3 89.1±0.4 55.3±0.3
Node 74.1±0.5 78.1±0.2 76.6±0.2 73.6±0.3 51.2±0.3 89.4±0.3 55.1±0.2
Edge 74.3±0.5 77.7±0.2 76.9±0.2 73.7±0.3 50.9±0.3 89.5±0.3 55.2±0.2
SubGraph 73.9±0.5 78.4±0.3 76.4±0.2 73.1±0.3 51.2±0.4 89.4±0.2 55.3±0.3

Figure 2: The normalized frequency of augmentation selection by the GRU-based policy for two
graph benchmarks (top row) and two node benchmarks (bottom row).

distance, Bilinear, and MLP discriminators. The results shown in Table 4 suggests that discriminator
instantiated as an MLP performs better across the datasets.

5 CONCLUSION

We introduced LG2AR, and end-to-end framework to automate graph contrastive learning. The
proposed framework learns the augmentations, view selection policy, and the encoders end-to-end
without requiring ad-hoc trial-and-error processes for devising the augmentations for each and every
dataset. Experimental results showed that LG2AR achieves state-of-the-art results on 8 out of 8

9

Under review as a conference paper at ICLR 2022

graph classification benchmarks, and 6 out of 7 node classification benchmarks compared to the
previous unsupervised methods. The results also suggest that LG2AR narrows the gap with its
supervised counterparts. Furthermore, the results suggest that both learning the policy and learning
the augmentations contributes to the performance. In future work, we are planning to investigate
large pre-training and transfer learning capabilities of the proposed method.

REFERENCES

Bijaya Adhikari, Yao Zhang, Naren Ramakrishnan, and B Aditya Prakash. Sub2vec: Feature learning
for subgraphs. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 170–182,
2018.

Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In International
Conference on Data Mining, 2005.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsuper-
vised learning of visual features. In Proceedings of the European Conference on Computer Vision
(ECCV), pp. 132–149, 2018.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. In AAAI Conference on
Artificial Intelligence, pp. 3438–3445, 2020a.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. arXiv preprint arXiv:2002.05709, 2020b.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758, 2021.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder
for statistical machine translation. In Conference on Empirical Methods in Natural Language
Processing, pp. 1724–1734, 2014.

Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V. Le. Autoaugment:
Learning augmentation strategies from data. In IEEE Conference on Computer Vision and Pattern
Recognition, 2019.

Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without
alignments. Journal of molecular biology, 330(4):771–783, 2003.

Monroe D Donsker and SR Srinivasa Varadhan. Asymptotic evaluation of certain markov process
expectations for large time. Communications on Pure and Applied Mathematics, 28(1):1–47, 1975.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. In Advances in Neural Information Processing Systems, pp. 2224–2232, 2015.

Steven Feng, Varun Prashant Gangal, Jason Wei, Soroush Vosoughi, Sarath Chandar, Teruko Mita-
mura, and Eduard Hovy. A survey on data augmentation approaches for nlp. 2021.

Alberto Garcia Duran and Mathias Niepert. Learning graph representations with embedding propaga-
tion. In Advances in Neural Information Processing Systems, pp. 5119–5130. 2017.

Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness results and efficient
alternatives. In Learning theory and kernel machines, pp. 129–143. 2003.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning, pp.
1263–1272, 2017.

10

Under review as a conference paper at ICLR 2022

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
Bilal Piot, koray kavukcuoglu, Remi Munos, and Michal Valko. Bootstrap your own latent - a new
approach to self-supervised learning. In Advances in Neural Information Processing Systems, pp.
21271–21284, 2020.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In International
Conference on Knowledge Discovery and Data Mining, pp. 855–864, 2016.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle
for unnormalized statistical models. In International Conference on Artificial Intelligence and
Statistics, pp. 297–304, 2010.

Kaveh Hassani and Mike Haley. Unsupervised multi-task feature learning on point clouds. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8160–8171,
2019a.

Kaveh Hassani and Mike Haley. Unsupervised multi-task feature learning on point clouds. In
International Conference on Computer Vision, pp. 8160–8171, 2019b.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
graphs. In International Conference on Machine Learning, pp. 4116–4126, 2020.

Ryuichiro Hataya, Jan Zdenek, Kazuki Yoshizoe, and Hideki Nakayama. Faster autoaugment:
Learning augmentation strategies using backpropagation. In European Conference on Computer
Vision, pp. 1–16, 2020.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9729–9738, 2020.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
and maximization. In International Conference on Learning Representations, 2019.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. In International Conference on Learning
Representations, 2020.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
International Conference on Learning Representations, 2016.

Amir Hosein Khasahmadi, Kaveh Hassani, Parsa Moradi, Leo Lee, and Quaid Morris. Memory-based
graph networks. In International Conference on Learning Representations, 2020a.

Amir Hosein Khasahmadi, Kaveh Hassani, Parsa Moradi, Leo Lee, and Quaid Morris. Memory-
based graph networks. In International Conference on Learning Representations, 2020b. URL
https://openreview.net/forum?id=r1laNeBYPB.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

Risi Kondor and Horace Pan. The multiscale laplacian graph kernel. In Advances in Neural
Information Processing Systems, pp. 2990–2998. 2016.

Kezhi Kong, Guohao Li, Mucong Ding, Zuxuan Wu, Chen Zhu, Bernard Ghanem, Gavin Taylor, and
Tom Goldstein. Flag: Adversarial data augmentation for graph neural networks. arXiv preprint
arXiv:2010.09891, 2020.

Wouter Kool, Herke Van Hoof, and Max Welling. Stochastic beams and where to find them: The
gumbel-top-k trick for sampling sequences without replacement. In International Conference on
Machine Learning, pp. 3499–3508, 2019.

11

https://openreview.net/forum?id=r1laNeBYPB

Under review as a conference paper at ICLR 2022

Nils Kriege and Petra Mutzel. Subgraph matching kernels for attributed graphs. In International
Conference on Machine Learning, pp. 291–298, 2012.

Yonggang Li, Guosheng Hu, Yongtao Wang, Timothy Hospedales, Neil M. Robertson, and Yongxin
Yang. Differentiable automatic data augmentation. In European Conference on Computer Vision,
pp. 580–595, 2020.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. In International Conference on Learning Representations, 2015.

Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and Sungwoong Kim. Fast autoaugment. In
Advances in Neural Information Processing Systems, 2019.

Yixin Liu, Shirui Pan, Ming Jin, Chuan Zhou, Feng Xia, and Philip S Yu. Graph self-supervised
learning: A survey. arXiv preprint arXiv:2103.00111, 2021a.

Zicheng Liu, Siyuan Li, Di Wu, Zhiyuan Chen, Lirong Wu, Jianzhu Guo, and Stan Z Li. Automix:
Unveiling the power of mixup. arXiv preprint arXiv:2103.13027, 2021b.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

Péter Mernyei and Cătălina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural
networks. arXiv preprint arXiv:2007.02901, 2020.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020. URL
www.graphlearning.io.

Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang Liu,
and Shantanu Jaiswal. graph2vec: Learning distributed representations of graphs. arXiv preprint
arXiv:1707.05005, 2017.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
using variational divergence minimization. In Advances in Neural Information Processing Systems,
pp. 271–279. 2016.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang. Adversarially
regularized graph autoencoder for graph embedding. In International Joint Conference on Artificial
Intelligence, pp. 2609–2615, 2018.

Jiwoong Park, Minsik Lee, Hyung Jin Chang, Kyuewang Lee, and Jin Young Choi. Symmetric
graph convolutional autoencoder for unsupervised graph representation learning. In International
Conference on Computer Vision, pp. 6519–6528, 2019.

Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang Xu, and Junzhou
Huang. Graph representation learning via graphical mutual information maximization. In Proceed-
ings of The Web Conference, pp. 259–270, 2020.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang,
and Jie Tang. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training, pp.
1150–1160. 2020.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph convo-
lutional networks on node classification. In International Conference on Learning Representations,
2020.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In Proceedings of the 37th
International Conference on Machine Learning, pp. 8459–8468, 2020.

12

www.graphlearning.io

Under review as a conference paper at ICLR 2022

Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. Interpreting graph neural networks for
{nlp} with differentiable edge masking. In International Conference on Learning Representations,
2021.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI Magazine, 29(3):93–93, 2008.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt.
Efficient graphlet kernels for large graph comparison. In Artificial Intelligence and Statistics, pp.
488–495, 2009.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12:2539–
2561, 2011.

Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning.
Journal of Big Data, 6(1):1–48, 2019.

Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximization. In Interna-
tional Conference on Learning Representations, 2020.

Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. Adversarial graph augmentation to improve
graph contrastive learning. arXiv preprint arXiv:2106.05819, 2021.

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Rémi Munos, Petar Veličković, and
Michal Valko. Bootstrapped representation learning on graphs. arXiv preprint arXiv:2102.06514,
2021.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In International Conference on Learning Representations, 2019.

Salvatore Vivona and Kaveh Hassani. Relational graph representation learning for open-domain
question answering. Advances in Neural Information Processing Systems, Graph Representation
Learning Workshop, 2019.

Jingkang Wang, Tianyun Zhang, Sijia Liu, Pin-Yu Chen, Jiacen Xu, Makan Fardad, and Bo Li.
Towards a unified min-max framework for adversarial exploration and robustness. arXiv preprint
arXiv:1906.03563, 2019a.

Tingwu Wang, Yuhao Zhou, Sanja Fidler, and Jimmy Ba. Neural graph evolution: Automatic robot
design. In International Conference on Learning Representations, 2019b.

Lirong Wu, Haitao Lin, Zhangyang Gao, Cheng Tan, Stan Li, et al. Self-supervised on graphs:
Contrastive, generative, or predictive. arXiv preprint arXiv:2105.07342, 2021.

Yaochen Xie, Zhao Xu, Jingtun Zhang, Zhengyang Wang, and Shuiwang Ji. Self-supervised learning
of graph neural networks: A unified review. arXiv preprint arXiv:2102.10757, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Pinar Yanardag and S.V.N. Vishwana. Deep graph kernels. In International Conference on Knowledge
Discovery and Data Mining, pp. 1365–1374, 2015.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in Neural Information Processing Systems, 33:
5812–5823, 2020.

13

Under review as a conference paper at ICLR 2022

Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning automated.
arXiv preprint arXiv:2106.07594, 2021.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems, 2017.

Yingxue Zhang, Soumyasundar Pal, Mark Coates, and Deniz Ustebay. Bayesian graph convolutional
neural networks for semi-supervised classification. In AAAI Conference on Artificial Intelligence,
pp. 5829–5836, 2019.

Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil Shah. Data
augmentation for graph neural networks. In AAAI Conference on Artificial Intelligence, pp.
11015–11023, 2021.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep graph contrastive
representation learning. arXiv preprint arXiv:2006.04131, 2020.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive learning
with adaptive augmentation. In Proceedings of the Web Conference, pp. 2069–2080, 2021.

14

Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 BENCHMARKS

We use seven node classification and eight graph classification benchmarks reported by previous
state-of-the-art methods. For node classification benchmarks, we follow GCA (Zhu et al., 2021)
and use Wiki-CS (Mernyei & Cangea, 2020) which is a computer science subset of the Wikipedia,
Amazon-Computers and Amazon-Photo (Shchur et al., 2018) which are networks of co-purchase
relationships constructed from Amazon, Coauthor-CS and Coauthor-Physics (Shchur et al., 2018)
which are two academic networks containing co-authorship graphs, and two other citation networks,
Cora and Pubmed Sen et al. (2008). For graph classification benchmarks, we follow GraphCL (You
et al., 2020) and use benchmarks from TUDatasets (Morris et al., 2020). We use Proteins and DD
(Dobson & Doig, 2003) modeling neighborhoods in the amino-acid sequences and protein structures,
respectively, MUTAG Kriege & Mutzel (2012) modeling compounds tested for carcinogenicity,
COLLAB (Yanardag & Vishwana, 2015) derived from 3 public physics collaboration, Reddit-Binary
and Reddit-Multi-5K (Yanardag & Vishwana, 2015) connecting users through responses in Reddit
online discussions, and IMDB-Binary and IMDB-Multi Yanardag & Vishwana (2015) connecting
actors/actresses based on movie appearances. The statistics of the graph and graph classification
benchmarks are summarized in Tables 5 and 6, respectively.

Table 5: Statistics of graph classification benchmarks.

Biology Social Networks
MUTAG PROTEINS DD COLLAB IMDB-B IMDB-M REDDIT-B REDDIT-M

| GRAPHS| 188 1113 1178 5000 1000 1500 2000 4999
| NODES| 17.93 39.06 284.32 74.49 19.77 13.00 429.63 508.52
| EDGES| 19.79 72.82 715.66 2457.78 96.53 65.94 497.75 594.87
| FEATURES| 7 4 89 0 0 0 0 0
| CLASSES| 2 2 2 3 2 3 2 5

Table 6: Statistics of node classification benchmarks.

CORA PUBMED WIKICS AMZ-COMP AMZ-PHOTO COAU-CS COAU-PHY

| NODES| 3,327 19,717 11,701 13,752 7,650 18,333 34,493
| EDGES| 4,732 44,338 216,123 245,861 119,081 81,894 247,962
| FEATURES| 1,433 500 300 767 745 6,805 8,415
| CLASSES| 6 3 10 10 8 15 5

A.2 EVALUATION PROTOCOL DETAILS

For node classification, we follow (Veličković et al., 2019; Zhu et al., 2021) where we train the
model with the contrastive method, and then use the resulting embeddings to train and test a simple
logistic regression classifier. We train the model for twenty runs over different data splits and report
the mean accuracy with standard deviation. For fair evaluation and following GCA, we use a two-
layer Graph Convolution Network (GCN) (Kipf & Welling, 2017) for the base encoder across all
node classification benchmarks. In order to make the transductive node classification benchmarks
compatible with our inductive framework, we sample |B| sub-graphs from the input graph around
randomly selected nodes to emulate a batch of graphs, and then feed the batch to our framework.
Because sub-graph augmentation occurs before our framework, we remove this augmentation from
the policy and also remove its corresponding head. For graph classification, we follow (You et al.,
2020; Sun et al., 2020) where we first use the contrastive loss to train the model and then report the
best mean 10-fold cross validation accuracy with standard deviation after five runs. The classifier is a
linear SVM trained using cross-validation on the training folds of the learned embeddings. Following
(Sun et al., 2020), we use GIN layers for the base encoder and treat the number of layers as a
hyper-parameter. We observed that contrasting graph-level representation achieves better results in
graph classification benchmarks. Finally, we report more node and graph level evaluation results
under linear evaluation protocol in Table 7.

15

Under review as a conference paper at ICLR 2022

Table 7: Mean graph and node classification accuracy under linear evaluation protocol.

Node Graph

Method Cora PubMed Method Collab DD

DeepWalk 70.7±0.6 74.3±0.9 InfoGraph 70.7±1.1 72.9±1.8
GAE 71.5±0.4 72.1±0.5 GraphCL 71.4±1.2 78.6±0.4
VERSE 72.5±0.3 − AD-GCL 73.3±0.6 75.1±0.4
DGI 82.3±0.6 76.8±0.6 JOAO 69.5±0.4 77.4±1.2
LG2AR + GRU (Ours) 82.7±0.7 81.0±0.6 LG2AR + GRU (Ours) 77.8±0.2 79.1±0.3
LG2AR + DeepSet (Ours) 80.8±1.0 81.5±0.7 LG2AR + DeepSet (Ours) 77.8±0.2 78.6±0.5
LG2AR + Random (Ours) 81.6±0.9 81.3±0.8 LG2AR + Random (Ours) 77.6±0.2 78.8±0.4

A.3 IMPLEMENTATION & HYPER-PARAMETER SELECTION

We implemented the experiments using PyTorch and used Pytorch Geometric library to implement the
graph encoders. Each experiments was run on a single RTX 6000 GPU. We initialize the parameters
using Xavier initialization and train the model using Adam optimizer. All our graph implementations
are sparse and in Pytorch Geometric format. Therefore, in order to let the gradients back-propagate,
we use edge weights computed from augmentation heads as a way to pass the gradients. Also, in
order to let the gradients back-propagate to the policy module, we multiply the final graph encodings
from the two views with the associated probability of each view computed by the policy.

For node graph classification benchmarks, following GCA, we fix the base encoder to a tow-layer
GCN model with mean-pooling as the read-out function. We select the number of augmentation
encoder layers from [1, 2, 3, 4, 5, 6], number of sub-graphs per batch from [4, 8, 12, 16, 32], hidden
dimension from [128, 256, 512], learning rate from [1e-4, 1e-1], number of hops from [1, 2, 3, 4, 5,
6], temperature from [0.7, 1.4], node dropping ration from [0.6, 0.9], and the dropout from [0.0, 0.2].
The augmentation consists of GIN layers with three layer projection heads and a summation read-out
function. Following DGI, we use a early-stopping with patience of 50 steps. Following GCA, we
train the linear model for 300 epochs with the learning rate of 1e-2.

For graph classification benchmarks, following InfoGraph, we design the both base and augmentation
encoders with GIN layers, dedicated three-layer projection heads for node and graph encodings, and
a summation read-out function. We share the learning rate and the number of layers between the two
encoders and select them from [1e-4, 1e-1] and [1, 2, 3, 4, 5, 6], respectively. We select the batch
size from [32, 64, 128], hidden dimension from [128, 256, 512], number of epochs from [10, 20, 40,
60, 100, 200], learning rate from [1e-4, 1e-1], number of hops from [1, 2, 3, 4, 5, 6], temperature
from [0.7, 1.4], node dropping ration from [0.6, 0.9], and the dropout from [0.0, 0.2]. We also follow
InfoGraph for graph classification and choose the C parameter of the SVM from [10−3, 10−2, ...,
102, 103]. The selected hyper-parameters are shown in Table 9.

Algorithm 2: Node dropping head.
Input: Node and graph encodings Hv and hg , graph G = (V, E ,X), Ratio µ
p(V) = MLP ([Hv ‖ hg])
V ′ ← Sample-Top-K(p(V), µ)
E ′ ← E ⊆ V ′ × V ′
X′ ← X[V ′]
WE ← [p(vi) + p(vj) ∀eij ∈ E ′]
G′ ← (V ′, E ′,X′,WE)
return G′

16

Under review as a conference paper at ICLR 2022

Table 8: Selected hyper-parameters.

Benchmark |Hidden| |Batch| Epoch |Layers| Learning Rate Temperature |Hops| Ratio Dropout

G
ra

ph
B

en
ch

m
ar

ks MUTAG 256 128 20 6 0.001 1.27 5 0.75 0.10
Proteins 256 64 40 3 0.0003 0.73 4 0.77 0.05
DD 256 128 100 3 0.0008 1.05 1 0.77 0.15
COLLAB 128 128 10 4 0.0003 1.05 2 0.73 0.05
IMDB-B 256 128 200 2 0.0003 1.04 4 0.84 0.00
IMDB-M 512 128 100 3 0.0002 1.00 3 0.83 0.20
Reddit-B 128 64 20 6 0.001 1.17 4 0.89 0.05

Reddit-M 128 128 10 6 0.0004 1.24 2 0.72 0.05

N
od

e
B

en
ch

m
ar

ks CORA 512 12 NA 2 0.03 1.19 6 0.86 0.20
PubMed 512 16 NA 3 0.001 1.37 4 0.85 0.00
WikiCS 512 8 NA 2 0.0001 0.83 1 0.86 0.05
Amz-Comp 512 16 NA 2 0.0001 1.17 1 0.84 0.05
Amz-Photo 512 16 NA 3 0.0005 1.23 1 0.76 0.20
Coau-CS 256 4 NA 2 0.003 1.38 2 0.78 0.10
Coau-Phy 512 8 NA 5 0.001 1.07 3 0.80 0.05

Algorithm 3: Edge perturbation head.
Input: Node and graph encodings Hv and hg , graph G = (V, E ,X), temperature t
V ′, E ′,X′,WE ← ∅
Ē = Sample-Negative-Edges(E)
for eij to Ē ∪ E do

heij =
[
hvi + hvj ‖ 1E(eij)

]
p(eij) = MLP(heij)
if Bernoulli-Sample(t, p(eij)) then
V ′ ← V ′ ∪ {vi, vj}
E ′ ← E ′ ∪ {eij}
X′ ← X′ ∪ {hvi , hvj}
WE ←WE ∪ {p(eij)}

end
G′ ← (V ′, E ′,X′,WE)

end
return G′

Algorithm 4: Sub-graph inducing head.
Input: Node and graph encodings Hv and hg , graph G = (V, E ,X), Number of hops K
p(V) = MLP ([Hv ‖ hg])
vcenter ← Sample-Categorical(p(V))
V ′, E ′,X′ ← k-Hop-BFS(vcenter,K)
E ′ ← E ⊆ V ′ × V ′
WE ← [p(vi) + p(vj) ∀eij ∈ E ′]
G′ ← (V ′, E ′,X′,WE)
return G′

17

Under review as a conference paper at ICLR 2022

(a) (b)

(c) (d)

(e) (f)

Figure 3: The evolution of the contrastive loss during the training averaged over ten runs for: (a)
Proteins, (b) IMDB-Binary, (c) Reddit-Binary, (d) Reddit-Multi, (e) DD, and (f) Collab benchmarks.

18

Under review as a conference paper at ICLR 2022

Algorithm 5: Feature masking head.
Input: Node and graph encodings Hv and hg , graph G = (V, E ,X), temperature t
X′ ← Linear(X)
M← Bernoulli-Sample(MLP(Hv), t)
X′ ← X′ �M
G′ ← (V, E ,X′,1)
return G′

Table 9: Mean time (seconds per epoch) and space (Gigabytes of GPU memory) for Infograph (single
encoder) and LG2AR.

MUTAG Proteins DD COLLAB IMDB-B IMDB-M Reddit-B Reddit-M

In
fo Time (Sec/epoch) 0.15 0.82 1.05 2.55 0.37 0.75 6.06 11.51

Space (Gigabytes) 1.249 1.343 4.423 3.153 1.355 1.545 4.341 10.321

O
ur

s Time (Sec/epoch) 0.59 2.06 3.81 12.64 1.67 1.74 13.38 24.33
Space (Gigabytes) 1.525 2.113 14.051 16.331 2.535 2.905 9.495 22.229

19

	Introduction
	Related Work
	Method
	Augmentation Encoder
	Policy
	Augmentations
	Base Encoder
	Training

	Experimental Results
	Unsupervised Representation Learning Evaluation
	Semi-Supervised Learning Evaluation
	Analysis of the optimization framework
	Ablation Study

	Conclusion
	Appendix
	Benchmarks
	Evaluation Protocol Details
	Implementation & Hyper-Parameter Selection

