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ABSTRACT

We introduce Lemur and Lemur-Chat, openly accessible language models op-
timized for both natural language and coding capabilities to serve as the back-
bone of versatile language agents. The evolution from language chat models to
functional language agents demands that models not only master human inter-
action, reasoning, and planning but also ensure grounding in the relevant envi-
ronments. This calls for a harmonious blend of language and coding capabil-
ities in the models. Lemur and Lemur-Chat are proposed to address this ne-
cessity, demonstrating balanced proficiencies in both domains, unlike existing
open-source models that tend to specialize in either. Through meticulous pre-
training using a code-intensive corpus and instruction fine-tuning on text and code
data, our models achieve state-of-the-art averaged performance across diverse
text and coding benchmarks. Comprehensive experiments demonstrate Lemur’s
superiority over existing open-source models and its proficiency across various
agent tasks involving human communication, tool usage, and interaction under
fully- and partially- observable environments. The harmonization between natu-
ral and programming languages enables Lemur-Chat to significantly narrow the
gap with proprietary models on agent abilities, providing key insights into devel-
oping advanced open-source agents adept at reasoning, planning, and operating
seamlessly across environments. Our model and code have been open-sourced at
https://github.com/OpenLemur/Lemur.

1 INTRODUCTION

Intelligent agents are broadly conceptualized as autonomous problem solvers with the abilities to
sense their environment, decide, and act upon that enviorment (Sutton & Barto, 2005; Russell, 2010;
Wilkins, 2014). Recent implementations of this concept in creating language agents (Yao et al.,
2022b; Gravitas, 2023; Wang et al., 2023a) capable of utilizing natural language for varied and
intricate tasks in diverse environments have demonstrated potential, particularly when built upon
large language models (LLMs) (Brown et al., 2020; Chen et al., 2021; Chowdhery et al., 2022;
OpenAI, 2023; Touvron et al., 2023a). Such agents harness the human knowledge in LLMs and
can think and communicate in human terms. This equips them to employ varied tools, operate in
complex environments, engage in language reasoning, and create spontaneous multi-agent systems.

To effectively form the foundation of language agents, LLMs should not only master human inter-
action, reasoning, and planning but also ensure grounding in the relevant environments (Wei et al.,
2022; Huang et al., 2022a; Ichter et al., 2022). Human interaction, reasoning, and planning can be
largely realized through the natural language capabilities of LLMs. On the other hand, the grounded
execution in the environment is usually achieved by using general-purpose code or domain-specific
APIs, such as controlling web browsers (Shi et al., 2017; Yao et al., 2022a; Deng et al., 2023; Zhou
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et al., 2023), interacting with OS CLI terminals (Yang et al., 2023), and manipulating robotic arms
via primitive APIs (Ichter et al., 2022; Huang et al., 2022b; Liang et al., 2023). Therefore, we posit
that for the construction of language agents, it is imperative for language models to possess har-
monized capabilities in both natural language and programming languages. This balance ensures
that models do not specialize exclusively in certain areas but can seamlessly integrate with envi-
ronment contexts and generate controllable and valid actions. Presently, closed-source models like
GPT-4 (OpenAI, 2023) demonstrate such capabilities, which empower them to function as language
agents. However, current open-source LLMs such as Llama 2 (Touvron et al., 2023a) and CodeL-
lama (Rozière et al., 2023) have traditionally been tailored for either textual or code-related tasks,
with limited ability to effectively balance both.

To address this need, we introduce Lemur and Lemur-Chat, cutting-edge, openly accessible models
pre-trained and fine-tuned to harmonize text and code capabilities. We enhanced the base Llama-
2-70B through thoughtfully designed pre-training and instruction fine-tuning stages. Specifically,
we built a code-centric corpus based on The Stack (Kocetkov et al., 2022), comprising 90B tokens
with a 10:1 code-to-text ratio, ensuring improved capabilities in coding ability while maintaining
performance in natural language ability. We refer to this model as Lemur. After pretraining, we
conducted instruction fine-tuning using about 300K examples from both text and code to build an
instruction-following model, which we refer to as Lemur-Chat. Thorough assessments across 8
textual and coding benchmarks validate the superior performance of both Lemur and Lemur-Chat in
multiple text and code evaluations, establishing them as the most well-rounded open-source models.

Moreover, this work embarks on assessing the vital capabilities of language agents across various
scenarios, which we refer to as agent benchmarks. We place a particular emphasis on their tool-
usage abilities, and abilities in grounding in the environment feedback and human feedback. We
also explore the challenges posed by real and partially observable environments where the agent has
to take actions based on limited knowledge and take additional actions to gather more information.
Experimental results indicate that Lemur-Chat outperforms other open-sourced models in 12 of the
13 agent benchmarks. This underscores how the integration of natural and coding capabilities allows
Lemur-Chat to exceed the current open-source models for language agents, markedly bridging the
performance disparity between open-source and commercial alternatives. Our experiments show an
important insight that in agent scenarios, there is a need for synergy between natural language and
coding abilities. Specifically, for models with strong natural language capabilities but weak cod-
ing abilities like Llama-2-70B-Chat, they can effectively use simple tools to assist reasoning
(§4.2) because the action space is small and the difficulty of using tools is low. However, when
facing complex decision-making scenarios such as web browsing and house navigation, the action
space is usually large, and models with strong coding abilities have an advantage in generating com-
plex executable action sequences (§4.5). Moreover, we did error analysis on several environments
covering multiple agent skills to reflect the key challenges for future language agent development,
including tool and action executability §D.1, problem difficulty §D.2, and domain knowledge §D.3.
Overall, Lemur has both strong natural language and coding abilities, enabling it to achieve better
performance in both scenarios. This research provides insights into optimizing the synergy between
natural and programming languages, laying a solid foundation for developing advanced language
agents capable of operating efficiently in various environments.

2 PRE-TRAINING AND INSTRUCTION TUNING OF LEMUR

This section will introduce the method to build the Lemur and Lemur-Chat models and their per-
formance on commonly-used benchmarks for pre-trained language model evaluation. To build a
more balanced model, the pipeline includes two stages: pre-training (§ 2.1) and instruction fine-
tuning (§ 2.2). The training pipeline is shown in Figure 1.

2.1 PRE-TRAINING

In the pre-training stage, we choose the Llama-2-70B base model as the starting point, which
is the cutting-edge open-sourced base model in most scenarios except the coding scenario. Our
goal is to improve the coding ability while maintaining the reasoning ability of Llama-2. To this
end, we built a corpus with a code-to-text ratio of 10:1. We discuss how we decided this ratio in
§ A.1.2. For the code part, we base it on The Stack (Kocetkov et al., 2022), a collection of source
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Figure 1: Overview of Training Procedure. We continually pre-train Llama-2-70B model on
90B code-intensive data and fine-tune it with 300K examples of instructions to enable the model to
harmonize natural language and coding abilities.

Table 1: Instruction datasets investigated in this work. We report the average number of rounds
(N̄rounds), average length of prompts (L̄prompt), average length of completion (L̄completion).

Datasets Query Source Response Source # Instances N̄rounds L̄prompt L̄completion

Open Assistant 1 Human-written Human-written 34,546 1.6 34.9 213.1
OpenOrca Human-written GPT-4 200,000 1.0 242.8 174.1
ShareGPT & ChatLogs User prompts GPT-3.5/GPT-4 81,319 6.0 96.7 340.2
Evol-CodeAlpaca GPT-3.5/GPT-4 GPT-3.5/GPT-4 51,952 1.0 93.9 343.5

codes from GitHub with permissive licenses. Among all languages, we focus on scripting or in-
terpreted languages (Python, SQL, Bash, Perl, etc.) because agent models are often executed in
interactive scenarios. Unlike compiled languages like C++, the interpreted nature of scripting lan-
guages allows for immediate execution and ease of modification, which is essential for dynamic
interaction in language agent scenarios. As for the text aspect, we use RefinedWeb (Penedo et al.,
2023), Redpajama (Computer, 2023), as well as CommonCrawl, Wikipedia, Books, ArXiv, Stack-
Exchange and DM Mathematics (Saxton et al., 2019) to build the textual data corpus. Following
previous works (Gao et al., 2020; Smith et al., 2022; Computer, 2023; Li et al., 2023), we do
extensive deduplication after aggregating all data sources. The composition of the data is shown
in Appendix § A.1.1. We train the Lemur-70B model initialized with Llama-2-70B using a
TPUv4-512 pod. We train the model with sequence packing (Raffel et al., 2019; Chung et al., 2022)
to improve the training efficiency. Please refer to Appendix § A.1.3 for more details.

2.2 INSTRUCTION FINE-TUNING

During the instruction fine-tuning phase, we include four data sources to construct Lemur-Chat,
including the Open Assistant crowdsourced annotated dialogue corpus (Köpf et al., 2023), Orca
data with chain of thought reasoning for human-written tasks (Lian et al., 2023; Mukherjee et al.,
2023), ShareGPT & Chatlogs containing real user and ChatGPT history records (ShareGPT data),
as well as Evol-CodeAlpaca data (Luo et al., 2023) consisting of complex coding tasks generated by
ChatGPT along with their solutions. The statistics of these instruction datasets are shown in Table 1.
After we collect these data, we additionally clean and deduplicate these instruction fine-tuning data.
We conduct training on these data for 2 epochs. Please refer to § A.2 for more details.

3 FROM LANGUAGE MODEL TO LANGUAGE AGENT

This section introduces how we measure the language and coding abilities of a language model to
guide the process of harmonization. We further discuss the new challenges faced when connecting
LLM to the environment and describe how we examine the necessary agent capabilities.

3.1 FUNDAMENTAL LANGAUGE AND CODING CAPABILITIES

Previous work typically uses a variety of benchmarks to comprehensively reflect the performance of
models on different types of tasks. Therefore, we evaluate the performance of various models across
text and code benchmarks as follows.
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• Text benchmarks: MMLU (Hendrycks et al., 2021a) to determine factuality, BBH (Suzgun et al.,
2022) to check reasoning abilities, GSM8K (Cobbe et al., 2021) to gauge math reasoning.

• Code benchmarks: HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) to test Python
writing abilities, Spider (Yu et al., 2018) to assess database query capabilities, MultiPL-E (Cas-
sano et al., 2023) to measure the multi-lingual coding capabilities, DS-1000 (Lai et al., 2023) for
evaluation in data science scenarios

3.2 CONNECTING LLM AGENTS TO ENVIRONMENT

While the measurements in §3.1 provide valuable insights on each domain, they may not fully
encapsulate the models’ capabilities in language agent scenarios due to their focus on single-turn
interactions in fully observable settings. In order to address this discrepancy, we scrutinize models
in the context of multi-turn interactive scenarios to gauge their adaptability in practical situations.
Our assessment is centered on various capabilities of language agents, which are encapsulated in the
factors outlined in Figure 2 and Table 2. For a more comprehensive assessment of these capabilities,
we reorganize existing multiple datasets into four sets to examine the diverse skills demanded by the
agent scenario. Please refer to Appendix B for details of each dataset.

Augment with Tools Self-Debug Follow Feedback Explore Environment

use
run

messages

feedback exploreobserve

Employ various tools 
to augment agents’ 

capabilities

Utilize error messages from 
the environment to rectify 

existing errors

Understand complex feedback 
from human / agents

and convert them into symbolic 
executable sequences

Operate in environments 
that are partially 

observable

feedback

Figure 2: We inspect language agents in various aspects, including the abilities to augment with
tools, self-debug, follow feedback, and explore partially observable environments.

Table 2: Multi-turn agent evaluation under different settings. We evaluate crucial capabilities for
LLM as an agent, spanning tool usage, feedback adherence and environment exploration.

Capabilities Environments Observability Datasets

Augment with Tools (§4.2) Python Calculator Fully M-{GSM8K, MATH, TheoremQA}
WikiSearch M-{HotpotQA, MMLU}

Self-debug with
Environment Feedback (§4.3)

Python

Fully

M-{HumanEval, MBPP}
OS Terminal InterCode-Bash

Database InterCode-SQL
Robotics API RoboCodeGen

Follow Natural Language
Feedback (§4.4)

User/Agent Fully M-Reasoning w/ GPT-4 feedback
User/Agent M-Code w/ GPT-4 feedback

Explore in Partially
Observable Environment (§4.5)

OS Terminal
Partially

InterCode-CTF
Web Browser WebArena

Embodied Simulator M-ALFWorld

Augment with Tools Tool usage (Schick et al., 2023; Hao et al., 2023; Mialon et al., 2023) is an
important capability of language agents. Tasks like calculations or information retrieval can be of-
floaded to external modules (e.g. Python interpreters or search engines) using tools (Gao et al., 2023;
Chen et al., 2022), improving reliability and interpretability. Tools involve calling operators in sym-
bolic languages or invoking APIs (Shen et al., 2023). This requires decomposing a task, grounding
intention to tools, and using the results for further actions, relying on natural language reasoning
and programming abilities (Cheng et al., 2023; Surı́s et al., 2023). To assess the ability of lan-
guage agents to solve complex multi-turn problems using tools, we introduce the part of the MINT
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dataset (Wang et al., 2023b) which focuses on tool-utilization for reasoning. This part includes sev-
eral adapted datasets for testing: MINT-{GSM8K, MATH} (Cobbe et al., 2021; Hendrycks et al.,
2021b) is used to test the model’s ability to solve mathematical problems using a Python interpreter,
and MINT-{HotpotQA, MMLU} (Yang et al., 2018; Hendrycks et al., 2021a) assesses the model’s
capability to solve knowledge-based questions using Wikipedia searches. At the same time, for
the MINT-TheoremQA (Chen et al., 2023a), the model needs to perform knowledge searches on
Wikipedia and use a Python interpreter to calculate and draw conclusions.

Self-debug with Environment Feedback Self-debug is an important way to test whether a model
can incorporate environmental feedback (Jignasu et al., 2023; Olausson et al., 2023; Chen et al.,
2023b). In the self-debug scenario, the model usually needs to complete a complex operation se-
quence, such as Python functions, database queries/modifications, robot action sequences, etc (Gur
et al., 2023; Yao et al., 2023). These complex operations sometimes cannot be executed successfully
and will return error messages. This requires the model to comprehend this kind of environmental
feedback and correct errors, which tests the joint effect of natural language reasoning ability and
programming languages. We use rich datasets from multiple benchmarks to evaluate this perfor-
mance, including multi-turn MINT-MBPP and MINT-HumanEval in MINT (Wang et al., 2023b),
SQL and Bash in InterCode (Yang et al., 2023), as well as RoboCodeGen that calls robot APIs
through code (Liang et al., 2023). These environments require the model to complete complex tasks
and will provide execution errors. In these environments, model performance will vary according to
its self-debugging ability, reflecting the ability to incorporate feedback.

Follow Natural Language Feedback Following natural language feedback is an important mech-
anism for agents to receive information from humans or other agents (Wang et al., 2022a; Ouyang
et al., 2022; Gong et al., 2023). In scenarios where complex problems are solved through multi-turn
interactions, the model not only needs to incorporate environmental feedback but also feedback from
humans or other agents in order to improve. This mechanism requires the model to understand new
instructions based on a context that combines natural language and code, and ground them into new
action sequences. To evaluate the model’s ability to accept natural language feedback, we follow
the approach of the MINT benchmarks: using a GPT-4 simulated user as a teacher to guide the
model in problem-solving. This setup includes a series of MINT datasets (Wang et al., 2023b) to
comprehensively evaluate performance after adding natural language feedback in various scenarios.

Explore in Partially Observable Environments Exploring partially observable environments is a
unique and challenging factor in agent scenarios. All the settings mentioned earlier can be consid-
ered as fully observable environments, which means that agents can observe all the information of
the environment to plan, reason, and make decisions. However, in partially observable environments
(also known as Partially Observable Markov Decision Process) (Kurniawati, 2021), agents can only
partially observe the environmental information to solve problems. This requires agents to collect
information through exploration and continue making decisions. This process places high demands
on various abilities of agents, such as natural language planning and reasoning, environmental in-
teraction, etc. To measure this ability, we use three datasets: InterCode-CTF (Yang et al., 2023) and
WebArena (Zhou et al., 2023) in digital environments, as well as ALFWorld (Shridhar et al., 2020b)
in physical environments. InterCode-CTF provides an OS terminal for models to solve Catch the
Flag (CTF) problems where agents need multiple rounds of exploration to obtain the flag. WebArena
evaluates agents’ ability to control browsers for task completion through exploration. ALFWorld is
a simulated home environment where agents need to explore navigation and complete specific tasks.

4 EXPERIMENTAL RESULTS

4.1 LANGUAGE AND CODE CAPABILITIES

The comprehensive evaluations of text and code benchmarks in Table 3 demonstrate the impressive
capabilities of Lemur-70B and Lemur-70B-Chat models. Deviating from Llama-2-70B
and Llama-2-70B-Chat, which are mostly pre-trained and fine-tuned on text data, the Lemur
models augment coding abilities and thereby enhance the overall performance by 4.3% and 14.8%
respectively. Alternatively, models like StarCoder-15B, WizardCoder-15B, CodeLlama-34B and
CodeLlama-34B-INST, which are primarily trained on code datasets, exhibit solid performance
in code benchmarks. On average, Lemur-70B outperforms StarCoder-15B, StarCoderPlus-15B
and CodeLlama-34B by 14.3%, 16.8% and 1.9% respectively, and Lemur-70B-Chat surpasses
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Table 3: Performance comparison across diverse models on text and code benchmarks. MCode is
an abbreviation for Multilingual Code. HE stands for HumanEval. Avg denotes the average perfor-
mance across all benchmarks. Lemur-70B and Lemur-70B-Chat exhibit balanced capabilities,
achieving the highest overall performance when averaged by task. See Appendix C for more details.

Text Code

Model QA Reason Math Python SQL MCode DS Avg

MMLU BBH GSM8K HE MBPP Spider MultiPL-E DS-1000

StarCoder-15B 30.8 33.2 8.9 33.6 52.7 58.3 25.3 26.0 33.6
StarCoderPlus-15B 42.0 36.2 17.7 26.2 37.0 48.8 21.4 19.4 31.1
CodeLlama-34B 52.8 42.2 32.7 48.8 55.0 68.4 36.4 31.8 46.0
Llama-2-70B 68.9 51.2 56.8 30.5 45.4 60.0 24.4 11.3 43.6
Lemur-70B 64.5 51.6 54.9 35.4 53.2 62.8 30.4 30.7 47.9
WizardCoder-15B 29.4 28.8 7.1 57.3 51.6 61.6 30.8 29.2 37.0
CodeLlama-34B-INST 53.5 37.1 41.0 41.5 57.0 66.6 36.1 32.3 45.6
Llama-2-70B-Chat 63.9 38.9 48.7 31.1 38.2 60.3 22.6 17.8 40.2
Lemur-70B-Chat 65.3 61.9 66.3 61.0 55.5 62.5 42.9 34.5 55.0

WizardCoder-15B and CodeLlama-34B-INST by 18.0% and 9.4% respectively. This commend-
able increase highlights the virtue of harmonizing textual and coding skills.

The synergic text and code abilities enable them to function as language agents. However, a disparity
exists between natural language and coding capabilities in current open-source models. Such limita-
tions obstruct these models’ abilities to act as language agents, leading to performance degradation
in agent benchmarks. In subsequent sections, we meticulously evaluate various critical capabilities
of agents, revealing the importance of synergic text and code abilities to language models.

4.2 AUGMENT WITH TOOLS

In the realm of problem-solving, agents, akin to humans, employ various tools to augment their ca-
pabilities. This is exemplified by (Chen et al., 2022), who showcase that the mathematical reasoning
prowess of LLM can be significantly enhanced with the aid of Python. As per the data presented
in Table 4, it is evident that Lemur-70B-Chat outperforms both Llama-2-70B-Chat and
CodeLlama-34B-INST, indicating its superior ability to effectively leverage tools. In addition,
we found performance differences between open-source models and closed-source models in the
challenging math benchmark tests M-MATH and M-TheoremQA. We further analyzed the errors to
better understand this phenomenon, please refer to the content in Appendix D.1.

Table 4: The tool-augmented reasoning tasks evaluate the model’s capabilities to use tools in the
reasoning process. Across five tasks with Python and WikiSearch API as tools, Lemur-70B-Chat
outperforms both Llama-2-70B-Chat and CodeLlama-34B-INST by large margins.

Model
Math Reasoning

with Python
Question Answering
with WikiSearch API

MicroAvg

M-GSM8K M-MATH M-TheoremQA M-HotpotQA M-MMLU

Llama-2-70B-Chat 33.33 3.00 2.04 27.91 42.11 20.25
CodeLlama-34B-INST 25.00 4.00 2.04 16.28 30.26 14.87
Lemur-70B-Chat 58.33 6.00 8.16 44.19 56.58 31.65
gpt-3.5-turbo 43.75 26.00 28.57 27.91 56.58 36.71
gpt-4 93.75 57.00 57.14 46.51 80.26 66.77

4.3 SELF-DEBUG WITH ENVIRONMENT FEEDBACK

The technique of self-debug gains considerable traction in the realm of code generation (Olaus-
son et al., 2023; Zhang et al., 2023). This method consists of models using feedback informa-
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Table 5: Model performance with environment feedback. Lemur-70B-Chat demonstrates
strong capabilities to comprehend environment feedback, achieving performance on par with
gpt-3.5-turbo. *Due to overfitting to [PYTHON] tag, CodeLlama-34B-INST fails to fol-
low feedback and generated parsable results (Wang et al., 2023b).

Debug Environment Python Interpreter Bash Terminal Database Robotics

Dataset M-HumanEval M-MBPP IC-Bash IC-SQL RoboCodeGen

Llama-2-70B-Chat 8.89∗ 8.79∗ 31.50 67.89 48.65
CodeLlama-34B-INST 2.22∗ 2.20∗ 36.00 67.79 64.86
Lemur-70B-Chat 46.67 17.58 34.50 73.79 75.68
gpt-3.5-turbo 37.78 25.27 46.51 72.82 83.78
gpt-4 73.33 52.75 48.52 84.41 83.78

tion, such as interpreter error tracebacks and database observations, to rectify any existing errors.
This adaptive capacity is essential for agents because they have to constantly receive and react
to feedback from the environment during interaction. As demonstrated in Table 5, the perfor-
mance of the Lemur-70B-Chat significantly surpasses that of the Llama-2-70B-Chat and
CodeLlama-34B-INST in interactive coding benchmarks. This underscores the importance of
having balanced capabilities for interactive agents in such environments.
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Figure 3: Success Rate with interaction
turns across models in IC-SQL.

We further analyze the results of InterCode-SQL
to understand how models incorporate environment
feedback. In this setting, agents are provided with
database schema and guidelines for SQL game in-
teractions. Acting as agents, the models are tasked
with querying databases and responding to ques-
tions in a multi-turn interaction environment. Fig-
ure 3 shows the Growth in Success Rate across
models with each interaction turn. Lemur demon-
strates robust performance in the first round, show-
ing an initial performance that is comparable to
that of text-bison-001 and slightly lower than
gpt-3.5-turbo. Nevertheless, Lemur improves
consistently across ten interactive rounds, surpass-
ing the performance of gpt-3.5-turbo eventu-
ally. In contrast, text-bison-001, which exhibits comparable initial performance with Lemur,
does not show significant improvement. Llama-2-70B-Chat, while displaying consistent adapt-
ability to feedback throughout the process, has a significant gap in initial performance due to inferior
coding ability, hence its success rate remains relatively lower. CodeLlama-34B-INST hardly an-
swers the questions correctly in the first round. We observe that this is because it blindly follows
the advice in the game guide and stubbornly executes the show tables command first, instead of
trying to understand the provided database structure. After an improvement in the second round, its
performance returns to normal. However, the growth remained limited even after ten rounds of inter-
action, settling at par with Llama-2-70B-Chat and reflecting its relative weakness in adapting
to environmental feedback.Additionally, we analyzed the probelm difficulty influence in §D.2.

4.4 FOLLOW NATURAL LANGUAGE FEEDBACK

Following natural language feedback from users or other agents is an important ability for language
agents. It requires agents to understand complex natural language instructions and convert them into
symbolic executable sequences based on the current contexts. To evaluate the models’ ability to
follow natural language feedback, we follow the evaluation settings of MINT (Wang et al., 2023b),
which measures language agents’ ability to leverage natural language feedback using performance
improvement. To provide natural language feedback in multi-turn settings, MINT uses GPT-4 to
simulate a user providing helpful feedback on the solutions from evaluated language agents.
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Table 7: Performance comparison of different models
in partially observable environments InterCode-CTF, We-
bArena and ALFWorld.

Model Digital Env. Physical Env.

IC-CTF WebAreana ALFWorld

Llama-2-70B-Chat 9.00 1.72 21.64
CodeLlama-34B-INST 16.00 4.06 37.31
Lemur-70B-Chat 22.00 5.30 59.70

gpt-3.5-turbo 11.00 7.38 41.79
gpt-4 37.00 10.59 84.33

Llama CodeLlama Lemur

2

4

6

1.72

4.06

5.3
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4.68
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Sc
or

e

Symbolic Programming

Figure 4: Performance Compari-
son of symbolic and programming
representation for WebArena.

We evaluate models on MINT-Reasoning and MINT-Code with and without GPT-4 feedback and the
experimental results are in Table 6. MINT-Reasoning includes five modified benchmarks: GSM8k,
MATH, TheoremQA, HotpotQA, and MMLU. MINT-Coding includes modified HumanEval and
MBPP. We find that all models can benefit from GPT-4, which means powerful GPT-4 as a teacher
can provide helpful feedback even without ground truth. We also calculate ∆ feedback, which in-
dicates the absolute improvement thanks to GPT-4 feedback. According to the results from Ta-
ble 6, Lemur-70B-Chat model obtain 8.19 in ∆feedback, which is significantly better than
Llama-2-70B-Chat and CodeLlama-34B-INST.

Table 6: Comparative analysis of various models’ Successful Rate (SR) on tasks related to Reason-
ing and Code Generation, with and without GPT-4 feedback. The table presents the performance
metrics of each model under two conditions: ‘no feedback’ and ‘with GPT-4 feedback’. The Micro
Avg. column represents the average performance of the models across the tasks.

Model Feedback Reasoning Code Gen. Micro Avg. ∆feedback

Llama-2-70B-Chat
no feedback 20.25 8.82 16.81 5.31w/ GPT-4 feedback 23.10 19.85 22.12

CodeLlama-34B-INST
no feedback 14.87 2.21 11.06 4.20w/ GPT-4 feedback 20.25 3.68 15.27

Lemur-70B-Chat
no feedback 31.65 27.21 30.31 8.19w/ GPT-4 feedback 35.76 44.86 38.50

gpt-3.5-turbo
no feedback 36.71 29.41 34.51 12.39w/ GPT-4 feedback 50.32 38.97 46.90

gpt-4 (upper-bound) no feedback 66.77 59.56 69.11 N/A

4.5 EXPLORE IN PARTIALLY OBSERVABLE ENVIRONMENTS

We evaluate language agents in varied environments and find that Lemur-70B-Chat exhibits bal-
anced and commendable performance across all tested tasks. As shown in Table 7, it scored 22.00 in
InterCode-CTF, showcasing its proficiency in multifaceted terminal skills and strategic adaptability.
Moreover, we conducted further error analysis on CTF tasks in §D.3 and found that besides gen-
eral skills of OS terminal, CTF tasks also require cybersecurity domain knowledge. This indicates
the challenging requirements for agents to perform well in different environments. In WebArena, it
achieved a score of 5.79, reflecting its adeptness in interpreting and executing advanced natural lan-
guage commands in intricate web environments. In ALFWorld, it demonstrated superior planning
and commonsense reasoning with a score of 59.70, successfully navigating and performing in sim-
ulated physical environments. While gpt-4 overall exhibits higher scores, Lemur-70B-Chat’s
consistent performance across diverse and partially observable environments underscores its versa-
tility and potential in handling real-world, multifarious applications.

We also conduct experiments to explore different output formats for actions in the WebArena en-
vironment. Instead of merely prompting the language model to directly produce predefined actions
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(e.g. type [id] [content] [press enter after]), we deterministically map the action space to Python
representations (e.g. type(id:int, content:str, press enter after:bool)). We then prompt the language
model to predict this representation and then parse the model’s Python prediction into the predefined
executable actions. Our findings, as shown in Figure 4 indicate that mapping to a Python representa-
tion leads to better performance than directly predicting actions. Such results suggest that carefully
and rationally selecting intermediate representation, based on the pre-training corpus, can effectively
enhance the model’s performance as a language agent, aligning with prior findings (Hu et al., 2022).

5 RELATED WORK

Transfer Learning on Code The advancement in expansive language models (Devlin et al., 2019;
Radford et al., 2019; Raffel et al., 2019; Brown et al., 2020) has catalyzed progress in transfer learn-
ing for code-related tasks, further enriched by the continuous pre-training paradigm (Gururangan
et al., 2020). Hernandez et al. (2021) offered insights into the interplay between model size, train-
ing data, and performance in transferring language ability to code tasks. Several models have been
introduced, exhibiting enhanced program synthesis and infilling/completion performance, by under-
going continual pre-training on extensive code data (Feng et al., 2020; Wang et al., 2021; Chen et al.,
2021; Rozière et al., 2023). However, their intense focus on code often results in a compromise on
natural language capabilities. Lemur addresses this by moderately augmenting a large model with a
balanced mixture of code and natural language data, maintaining proficiency in both domains.

Instruction Fine-tuning The process of aligning LLMs to follow instructions, often referred to as
instruction tuning, has been primarily directed towards NLP tasks (Wei et al., 2021; Wang et al.,
2022b). Recent studies have sought to broaden the use cases of instruction tuning to involve a wider
variety of general tasks (Ouyang et al., 2022). Self-instruct method generates instructions using
seed instructions, aiding the understanding of how to adapt language models by fine-tuning them
on instructions garnered from ChatGPT (Wang et al., 2022a; Zheng et al., 2023; Xu et al., 2023b;
Mukherjee et al., 2023). We adopt a similar approach in tuning our model to follow instructions.

Language Agents Language agents are adept at following user instructions and engaging with envi-
ronments to execute tasks. Recent trends in research and open-source communities have employed
Large Language Models (LLMs) (Brown et al., 2020; Chen et al., 2021; Chowdhery et al., 2022;
OpenAI, 2023) as the principal controllers for these agents (Yao et al., 2022b; Chase, 2022; Grav-
itas, 2023; Shinn et al., 2023; Wang et al., 2023a; Xu et al., 2023a; Lin et al., 2023; Yao et al.,
2023). This is driven by the LLMs’ demonstrated abilities in reasoning, planning, grounding, and
code generation (Wei et al., 2022; Huang et al., 2022a; Ichter et al., 2022; Xie et al., 2023), crucial
for comprehending user instructions, grasping the environmental context, and generating executable
actions. Lemur seamlessly integrates capabilities in both text and code, enabling the generation of
environment-grounded, executable actions essential for constructing language agents.

Agent Evaluation Benchmarks The rapid evolution of language agents requires an accurate and
comprehensive assessment of agents. Recent works pose new dimensions that put language agents
in web environments (Deng et al., 2023; Yao et al., 2022a; Zhou et al., 2023), interactive code en-
vironments (Yang et al., 2023), digital game (Fan et al., 2022), and household (Puig et al., 2018;
Shridhar et al., 2020a;b) to finish certain task under natural language instruction. Apart from col-
lecting new tasks, these agent benchmarks can be established by re-purposing and transforming
existing datasets to agent datasets (Wang et al., 2023b; Yang et al., 2023; Liu et al., 2023). Our
research combines these tasks, conducts extensive evaluation, and evaluates the model’s capability
to construct a language agent from multiple dimensions.

6 CONCLUSION

In conclusion, this research underscores the pivotal role of harmonizing natural and programming
language proficiencies in the evolution of language models to sophisticated language agents. By
developing Lemur and Lemur-Chat, we demonstrated that the meticulous amalgamation of these
competencies allows for elevated performance in diverse environments and applications, narrowing
the existent capability divide between open-source and proprietary models. We open-sourced both
models, intending to foster further research in the field of language models for agents.
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A LEMUR AND LEMUR-CHAT

A.1 PRE-TRAINING

A.1.1 PRE-TRAINING DATA

We performed pre-training on the top of Llama-2. The detailed statistics of pre-training data corpus
is presented at below in Table 8.

Table 8: Distribution of data by Type and Source, as well as the sampling weights. Epochs are the
number of passes over each constituent dataset during a full epoch over the data split.

Type Weights (%) Source Weights (%) Effective Tokens (B) Epoch

Code 90.9

Python 72.73 65.46 2.98
SQL 5.15 4.63 0.69
Java 1.82 1.64 0.06
Shell 1.82 1.64 1.26
Notebook 1.71 1.54 0.82
JavaScript 1.69 1.52 0.06
C 1.61 1.44 0.06
PHP 1.33 1.19 0.06
CPP 1.21 1.09 0.06
Others 1.73 1.55 0.06

Text 9.1

RefinedWeb 6.82 6.14 –
Wikipedia 0.64 0.57 –
Books 0.41 0.37 –
ArXiv 0.41 0.37 –
StackExchange 0.41 0.37 –
DM Mathematics 0.41 0.37 –

Total 100 100.00 90.00

A.1.2 DATA MIXTURE RATIO DISCUSSION

The data mixture for continual pre-training is a complex trade-off between the model size, the vanilla
performance of the model, data quality, learning efficiency, catastrophic forgetting etc Hernandez
et al. (2021). To roughly estimate a good ratio of composing the training corpora, we conducted a
continue pre-training study with Llama models on a set of different code-text ratios and found that
the ratio of 10:1 is an efficient ratio for the Llama model to transfer from text to text-code balance.

Due to computational limits, it is difficult for us to conduct comprehensive experiments and perform
systematic studies on this scale. However, we hope that our open-source effective settings and
training checkpoints can benefit the community for continual exploration. We believe that a method
to predict the optimal continue-pre-training data mixture ratio for a pair of domains to maximize
their performance would be very meaningful and interesting, and it is still an open research question
for the current large language model Hernandez et al. (2021); Chowdhery et al. (2022); Hoffmann
et al. (2022); Aghajanyan et al. (2023).

When generalizing this approach to different models, the data mixture ratio and training steps need
further adjustment. For example, smaller models have less capacity for harmonizing both text and
code capabilities. Therefore, they may suffer from relatively obvious forgetting of natural language
knowledge.. The strategy of data mixture for large language model pretraining is an open and
valuable research question. We believe we will have a more efficient and predictable data mixture
strategy in future studies.

A.1.3 TRAINING DETAILS

We train our model on a TPUv4-512 pod. Our codebase is based on Jax and EasyLM (Geng, 2023).
Following the pretraining methodology of Llama 2 (Touvron et al., 2023a), we used a batch size of
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4M tokens. To improve training efficiency, we packed multiple shorter sequences into each batch
entry when possible, an approach known as sequential packing (Raffel et al., 2019).

Optimization was performed with Adam using a peak learning rate of 4e-5 along with β1 = 0.9 and
β2 = 0.95. Gradients were clipped at 1.0 to prevent exploding gradients. A cosine decay schedule
was used for the learning rate, with a linear warmup of 2000 steps followed by decaying the learning
rate to 10.% of its peak value at the end of training.

A.2 INSTRUCTION FINE-TUNING

A.2.1 INSTRUCTION FINE-TUNING DATA

OpenORCA The OpenOrca dataset is a collection of augmented FLAN Collection data. Currently
1M GPT-4 completions, and 3.2M GPT-3.5 completions. It is tabularized in alignment with the
distributions presented in the ORCA paper (Lian et al., 2023) and currently represents a partial
completion of the full intended dataset, with ongoing generation to expand its scope. The data is
primarily used for training and evaluation in the field of natural language processing.

OpenAssistant 1 OpenAssistant(OASST1) is a crowdsourced human-annotated assistant-style
conversation corpus comprising 161,443 messages, enriched with 461,292 quality ratings. (Köpf
et al., 2023). The data results from the collaboration of over 13,500 volunteers worldwide.

ShareGPT and Chatlogs We curated English human instructions from ShareGPT and Chatlogs
for instruction-tuning. To filter English instructions, we utilized the langdetect package in Python
and eliminated any instructions with non-English detection results. Additionally, considering that
non-English instructions often contain consecutive non-English characters, we implemented a sec-
ond filtering step, removing all sentences with three or more consecutive non-English characters. To
ensure semantic diversity, we employed instructor(Su et al., 2023) to encode the filtered instructions,
calculate cosine similarity, and remove instructions with a similarity score greater than 0.95. After
deduplication, we obtained nearly 80K instances, with an average of about 6 rounds of high-quality
data per instance.

Evol-CodeAlpaca We use two open-sourced Evolution-Instruct (Luo et al., 2023) datasets, i.e.,
Evol-Instruct-Code-80k-v1 and evol-codealpaca-v1, and an execution-verified Python dataset con-
structed by us. After applying the same deduplication method as the Text data, we obtained ∼ 46K
examples.

A.2.2 INSTRUCTION FINE-TUNING DETAILS

We use Huggingface Transformers (Wolf et al., 2019) with Accelerate Library to fine-tune the Lemur
model to obtain the Lemur-Chat model. We train on our data collection for two epochs. We use
Adam optimizer with a learning rate of 2e-5 and a batch size of 128.

B AGENT EVALUATION

MINT (Wang et al., 2023b) is a well-rounded evaluation that covers a range of tasks repurposed
for multi-turn evaluation. It consists of three types of tasks, namely reasoning (MMLU (Hendrycks
et al., 2021a), GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021a), TheoremQA (Chen
et al., 2023a), HotpotQA (Yang et al., 2018)), code generation (HumanEval (Chen et al., 2021),
MBPP (Austin et al., 2021)), and decision-making (ALFWorld (Shridhar et al., 2020b)). To assess
the proficiency of language models in employing tools, their reasoning process is reoriented to in-
corporate tool use. For instance, language models are prompted to utilize the Python calculator to
work out mathematical problems, rather than supplying the answer outright. In code generation, the
LLM is encouraged to incorporate Python interpreter messages to check generated code. To prevent
any misunderstanding, we use the prefix “M-” to differentiate the original dataset from the MINT
version in our paper.

InterCode-Bash/SQL (Yang et al., 2023) are two tasks that serve as an experimental platform that
assesses the capacity of extensive language models to integrate feedback from the environment dur-
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ing interactive coding. This benchmark evaluates models in a way of generating a series of actions
under user instruction, and regards elements such as execution outcomes, and error backtracking,
amongst others as environment observations.

RoboCodeGen (Liang et al., 2023) serves as a specialized evaluation framework focused on
robotics-related tasks. It comprises three main types of questions that target spatial reasoning (e.g.,
identifying the closest point among a set of points), geometric reasoning (e.g., verifying if one
bounding box is contained within another), and controls (e.g., PD control).

InterCode-CTF is a task in the InterCode evaluation suite. Capture the Flag (CTF) is a competitive
cybersecurity game that requires LLMs to discover encrypted “flag” hidden within code snippets
or file systems. Compared with Bash and SQL generation, CTF is much more complex, requiring
agents to have knowledge of multiple coding languages, modularize higher-order objectives into
sub-problems, create multi-step plans for solving each problem, and adjust strategies when a plan
fails to provide any useful insights.

WebArena (Zhou et al., 2023) creates self-hostable websites of four popular categories by simu-
lating real-world equivalent functionalities and data. To simulate human problem-solving abilities,
WebArena also embeds tools and knowledge resources as standalone websites.

ALFWorld (Shridhar et al., 2020b) is a synthetic environment benchmark adapted from Al-
fred (Shridhar et al., 2020a) in the text-based interface where agents need to navigate in simulated
households (e.g., go to coffee table 1, pick up paper 2, use desk lamp 1) and achieve high-level goals
(e.g., check the paper under the desk lamp). Task instances may involve over 50 locations and 50
steps to solve, thus challenging the agent’s ability to plan, track sub-goals, and conduct systematic
exploration.

C BASELINE MODELS

StarCoder-15B Li et al. (2023) is a model with 15.5B parameters and 8k context length. It is
first trained on 1 trillion tokens sourced from The Stack Kocetkov et al. (2022), a large collection of
permissively licensed GitHub repositories, and then finetuned on 35B Python tokens.

StarCoderPlus-15B Li et al. (2023) is similar to StarCoder-15B, except that it is finetuned in
RefinedWeb Penedo et al. (2023), The Stack Kocetkov et al. (2022) and Wikipedia dataset. It is
expected to have more balanced text and code capabilities.

Llama-2 Touvron et al. (2023b) is a model with 70B parameters trained on 2 trillion tokens from
public sources. Its training corpus is mostly natural language texts, which enables its strong abilities
in textual understanding.

Llama-2-70B-Chat Touvron et al. (2023b) finetunes Llama-2-70B and is optimized for dialogue
use cases.

CodeLlama-34B Roziere et al. (2023) finetunes Llama-2-34B on code-intensive corpus with
500B tokens.

CodeLlama-34B-INST Roziere et al. (2023), Code Llama - Instruct is based on Code Llama and
fine-tuned with an additional approx. 5B tokens to better follow human instructions.

WizardCoder-15B Luo et al. (2023) was trained with instrucions on code-intensive datasets.
It achieved superior performance on popular code generation benchmarks including HumanEval,
HumanEval+, MBPP, and DS1000.

D ERROR ANALYSIS ON LANGUAGE AGENT TASKS

D.1 AUGMENT WITH TOOLS: A CASE STUDY ON MINT-MATH

In Table 9, we report the percentage of examples in MINT-MATH dataset with execution errors
and invalid actions. From the results, we can see that Llama-2-70B-Chat produces the most
execution error, followed by CodeLlama-34B-INST, Lemur-70B-Chat, gpt-3.5-turbo
and gpt-4 has the fewest error. This is aligned with the performance of task success rates reported
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Table 9: Model error rate in MATH evaluation set by causes

Model Execution error Invalid action

Llama-2-70B-Chat 40.00 8.00

CodeLlama-34B-INST 38.00 33.00

Lemur-70B-Chat 29.00 26.00

gpt-3.5-turbo 17.00 15.00

gpt-4 7.00 2.00

in Table 4, which indicates that execution error is an important factor in explaining the performance
difference between models.

On the other hand, the rate of invalid actions among different models also follows similar trends, ex-
cept that Llama-2-70B-Chat achieves extremely low error rate. With further investigation into
the example output, we find out that Llama-2-70B-Chat usually writes trivial and ineffective
actions, which does not contribute to solving the problem.

D.2 SELF-DEBUG WITH ENVIRONMENT FEEDBACK: A CASE STUDY ON INTERCODE-SQL

Table 10: Model accuracy in different spectrum of Spider evaluation set

Model Easy Medium Hard Extra All

Llama-2-70B-Chat 89.92 69.73 59.77 38.55 67.89

CodeLlama-34B-INST 90.73 67.49 63.79 38.55 67.80

Lemur-70B-Chat 92.74 74.89 70.69 45.78 73.79

gpt-3.5-turbo 92.74 74.89 67.24 43.37 72.82

gpt-4 95.16 82.96 86.21 68.67 84.14
In Table 10, We report detailed scores of different models in various spectrums of the Spider eval-
uation set divided by difficulty level. According to Table 10, as the difficulty level increases, the
performance gap between gpt-4 and Lemur-Chat gradually widens. When evaluated with easy
questions, the model usually solves the problem in the first round; while in the difficult split, the
model needs to iteratively incorporate the environment feedback. The larger gap between Lemur-
Chat and gpt-4 indicates better abilities of gpt-4 to perform multi-turn interaction with the en-
vironment.

D.3 EXPLORE IN PARTIALLY OBSERVABLE ENVIRONMENT : A CASE STUDY ON CTF

We manually researched the CTF (Capture The Flag) tasks, which is a popular competition pro-
gram originating from cybersecurity. We manually labeled the problems in 100 CTF tasks and
divided each problem into 6 categories. Figure 5 shows the performance comparison between
Lemur-70B-Chat and gpt-4. We found that gpt-4 and Lemur-70B-Chat perform signif-
icantly better in the ”general skills” category than in domain-specific fields such as ”cryptography”
and ”reverse engineering”. This means current language agents methods easily fail on domain-
specific scenarios, which guide the future research of language agents.
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Figure 5: The number of problems solved by Lemur-70B-Chat and gpt-4. The blue part
indicates the total number of problems.
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