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ABSTRACT

Transformers have emerged as a cornerstone across various fields with extensive
applications. However, the training dynamics of transformers remain relatively
underexplored. In this work, we present a novel perspective on how transformers
acquire knowledge during the training dynamics, inspired by the feature learn-
ing theory. To this end, we conceptualize each token as embodying two types
of knowledge: elementary knowledge represented by syntactic information, and
specialized knowledge represented by semantic information. Building on this data
structure, we rigorously prove that transformers follow a syntax-then-semantics
learning paradigm, i.e., first mastering syntax in the Elementary Stage and then
unlocking semantics in the subsequent Specialized Stage. The results are derived
from the training dynamics analysis and finite-time convergence within the in-
context learning framework for supervised classification. To our best knowledge,
this is the first rigorous result of a two-stage optimization process in transformers
from a feature learning perspective. Empirical findings on real-world language
datasets support the theoretical results of the two-stage learning process. More-
over, the spectral properties of attention weights, derived from our theoretical
framework, align with the experimental observations, providing further validation.

1 INTRODUCTION

More Syntactically and Semantically Correct

of

Sony

Microsoft

BP

of

Microsoft

Question: Yacin Chikh (ALG) def. Anatoly Filipov (EUN), 5:3. Xamarin owner (?)
Gold Answer:  Microsoft
Prediction: ?

Figure 1: Data information.

Transformers (Vaswani, 2017) have emerged as foundational ar-
chitectures with broad applications across multiple research do-
mains, such as natural language processing (Kenton & Toutanova,
2019; Radford et al., 2019; Brown, 2020), computer vision (Liu
et al., 2021; He et al., 2022), etc. Recently, large language mod-
els (LLM) based on decoder-only transformer architectures further
demonstrate impressive capabilities, particularly their remarkable
in-context learning (ICL) ability (Brown, 2020), where the model
solves new tasks based on prompts without further parameter fine-
tuning (Black et al., 2022; Rae et al., 2021). The ICL ability has
served as the foundation for developing more advanced prompting
techniques to tackle complex problems (Huang & Chang, 2022).
Recent theoretical studies derive that transformers can mimic the
behavior of supervised learning algorithms when training and test
prompts are embedded as sequences of labeled training samples
and an unlabeled query (Akyürek et al., 2022; Zhang et al., 2023;
Huang et al., 2023; Cheng et al., 2023; Chen et al., 2024). Following this ICL regime, we construct
the training prompts and aim to develop the corresponding optimization theory on supervised tasks.

Before theoretically modelling the optimization process, we conducted motivating experiments by
setting different rank preservation over attention weights (Details in Section 5). In Figure 1, we have
the question ‘Yacin Chikh (ALG) def. Anatoly Filipov (EUN), 5:3. Xamarin owner (?)’ with the
gold answer ‘Microsoft’. In this question, the content inside the parentheses, ‘ALG’ and ‘EUN’,
represents the affiliations of the preceding names. Thus the transformer should induce the affiliation
relationship and answer that ‘the Xamarin owner is Microsoft’. From right to left in Figure 1, more
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small eigenvalues of attention weights are preserved. Using different edited weights, the model’s
answer improves from syntactically incorrect (‘of’) to semantically similar (‘Sony’,‘BP’) to seman-
tically correct (‘Microsoft’). We surprisingly induce that smaller eigenvalues preserve syntactic
information, while retaining larger eigenvalues enables the model to gradually grasp the semantic
meaning of sentences. Motivated by this phenomenon, for transformers on various tasks like classic
NLP tasks or supervised learning tasks in ICL regimes, we can disentangle data information (neu-
ral representations) into two types: elementary knowledge represented by syntactic information,
and specialized knowledge represented by semantic information. Empirically, studies by Bao et al.
(2019); Chen et al. (2019a); Huang et al. (2021) consider concrete disentangling processes, such
as using paraphrase pairs to experimentally extract two types of information. Theoretically, our re-
search aims to further disentangle the learning process of these two types of data information in a
mathematically rigorous manner. This leads to a critical question:

How do transformers learn the syntactic and semantic information stage wisely?
To demystify the training dynamics of transformers, the first line of work is beyond ICL regimes (De-
ora et al., 2023; Li et al., 2023b; Tian et al., 2023a;b). Seminal works by Tian et al. (2023a) and
Tian et al. (2023b) analyze how the self-attention mechanism combines input tokens by studying
attention maps. However, this line provides few insights into the training dynamics and convergence
behaviors. Another closely related line is modelled under the ICL regime like ours (Zhang et al.,
2023; Huang et al., 2023; Cheng et al., 2023; Chen et al., 2024). For example, Huang et al. (2023)
consider stage wisely learning on the switch of dominant and target features. As a comparison, this
paper derives the stage transitions using (equally dominant) syntactic and semantic features. In sum-
mary, finite-time training dynamics of transformers remain relatively unexplored, especially when
attempting to disentangle the learning process of syntactic and semantic information.

In this paper, we derive a rigorous two-stage learning process where transformers first master syntax
and then unlock semantics. Simultaneously, we investigate how transformer weights evolve over
time and explore the convergence theory. Our main contributions are summarized as follows.

(a) Data Modelling with Feature Learning. Inspired by feature learning theory, we categorize
token information into two key feature types: elementary knowledge represented by syntactic infor-
mation, and specialized knowledge represented by semantic information. Furthermore, we proceed
with theoretical abstraction in Section 3, aligning the learning difficulty of foundational knowledge
with linearly separable, easy-to-fit data distributions, while associating specialized knowledge with
linearly non-separable, hard-to-fit data distributions.

(b) Mathematical Proof in Two-Stage Learning. Based on the underlying data structure, to our
best knowledge, this is the first paper presenting rigorous proofs for the two-stage learning process
in transformers, distinguishing between the initial stage of mastering elementary knowledge and the
subsequent stage of acquiring specialized knowledge (Detailed proof in Section F.1 ∼ G.2).

(c) Optimization Trajectory and Convergence Analysis. We present optimization trajectory and
convergence analysis in Section 4, providing deeper insights into the two-stage learning process.
Specifically, by adopting feature learning and signal-noise decomposition techniques, we give key
propositions and lemmas in Appendix E, carefully discussing the different ReLU activation patterns
and the impact of signal or noise weights on network output computations.

(d) Alignment of Theory and Experiments. Our theoretical findings are consistent with experi-
mental observations of spectral properties, and experiments on real-world language datasets validate
the two-stage learning theory (Experiments are provided in Section 5).

2 RELATED WORK

Optimization Analysis for In-context Learning. Numerous studies have explored the theoret-
ical properties of transformers for in-context learning (ICL). In theoretical regimes of ICL, a line
of work (Zhang et al., 2023; Huang et al., 2023; Cheng et al., 2023; Chen et al., 2024) focuses on
optimizing transformers using training prompts structured with input-label pairs, which is similar to
this paper. This line of work shows that the global minimum of ICL loss can be reached through
gradient flow across different models and tasks (such as models with linear or softmax modules,
tasks on linear regression or nonlinear function learning). However, this line usually does not inves-
tigate how the model weights are optimized and updated or how the loss evolves throughout training.
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Additionally, this line does not address finite-time convergence or the distinct stages of learning var-
ious types of information. Among them, Huang et al. (2023) also derive stage-wise learning under
linear regression regimes with unbalanced features. Our work differs from them in two aspects: (a)
the stage-wise comes from the different types of data in this paper; and (b) this paper focuses on
nonlinear classification tasks. This leads to totally different techniques where Huang et al. (2023)
emphasize attention maps while we adopt feature learning that accounts for specific data structures
to mathematically demonstrate the stages of learning syntactic and semantic information.

Training Dynamics of Transformers. Beyond ICL regimes, many studies focus on attention-
based models for general learning problems. For example, Deora et al. (2023) investigate opti-
mization and generalization of multi-head attention layer in a binary classification setting, using
natural sequences rather than synthetic input-label pairs. Li et al. (2023a) offer a theoretical analy-
sis of training a shallow ViT for classification tasks, characterizing the sample complexity required
to achieve zero generalization error. Additionally, Tian et al. (2023a) and Tian et al. (2023b) ana-
lyze the SGD training dynamics for one-layer transformers, focusing on how the self-attention layer
combines input tokens by studying attention maps.

Optimization Theory of Neural Networks - Feature Learning. A line of work studying the
convergence of neural networks relies on Neural Tangent Kernel (NTK) technique (Jacot et al., 2018;
Li & Liang, 2018; Allen-Zhu et al., 2019; Chen et al., 2019b; Du et al., 2019). It relates the training
of over-parameterized (or infinite-width) neural networks to learning over a kernel defined by the
network’s randomly initialized weights. However, the parameters of practical networks usually do
not remain in the lazy training regime and instead move a large distance. Following NTK, a new
theoretical branch called feature learning theory in deep learning has emerged (Allen-Zhu & Li,
2020; 2022; Wen & Li, 2021; Li et al., 2023b). Feature learning theory typically assumes specific
data generation models, such as Gaussian mixtures. This paper follows this line and utilizes a
different syntax-semantics data structure, motivated by empirical observations. This data structure
allows us to capture the intrinsic interaction between different features and neural network dynamics.

3 PROBLEM SETUP

This section presents the details of the data, model, and training procedure. Concretely, Section 3.1
designs the individual sample structure and constructs training prompts following ICL regimes. Sec-
tion 3.2 introduces a one-layer attention-based model and two virtual networks. Finally, Section 3.3
describes the corresponding loss function and optimization algorithm used for classification tasks.

Notations. Let ∥A∥F be the Frobenius norm for matrix A and ∥x∥2 be the 2-norm for vector
x. For matrix A, define [A]i as the i-th row, and [A]ij as the (i, j)-th element. For vector x,
ReLU(x) = max{x, 0} denotes the standard ReLU activation function, and 1(x) denotes a binary
vector which takes entries 1 when xi ≥ 0. We use ⊙ to denote the Hadamard product. For set
operators, denote ∩, ∪, ⊕ and \ by intersection, union, symmetric difference of two sets, and set
difference, respectively. Additionally, throughout the paper, let U ∈ R2d×2d denote a weight matrix,
and W ∈ Rd×d, V ∈ Rd×d denote the principal submatrices of U which will be defined later.
For order analysis, Poly(·) represents polynomial order, and f(n) = O(g(n)) means that f(n) is
asymptotically less than or equal to g(n) in terms of the order of magnitude.

3.1 IN-CONTEXT LEARNING FRAMEWORK AND DATA DISTRIBUTION

We adopt the well-established in-context learning (ICL) framework, as introduced by Garg et al.
(2022). ICL regime refers to the behavior of models within a specified hypothesis class, where
the functions and input samples are drawn respectively from the hypothesis distribution and data
distribution. The models operate on sequences, which are known as prompts.

Training Prompt Structure. To train a transformer to hold ICL abilities on complex binary
classification tasks, the process begins with N random training prompts, which are used to learn
a specific classifier in a hypothesis class. As suggested by the general ICL regime, for the n-
th prompt, input samples xn

1 , · · · , xn
L−1 and query xn

L are drawn randomly and independently
from the same data distribution. The input-label pairs are stacked to form a training prompt
Pn =

(
xn
1 , y

n
1 , · · · , xn

L−1, y
n
L−1, x

n
L

)
, with prompt length L. For binary classification tasks, the
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Embedding
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Self-Attention Layer

Source Sequence 

Embedding

Predicted label

Hard-to-fit
Nonlinear Classification

Easy-to-fit
Linear Classification

Positive 

Negative

Margin 

Positive 

Negative

Figure 2: Overview of disentangling syntax and semantics.

ground truth label of xn
i is denoted by yni = y(xn

i ) ∈ {−1, 1}. Especially, for query xn
L, the ground

truth label is ynL = y(xn
L). The goal of an in-context learner is to use such prompts to make a

prediction f(xn
L) for the query such that f(xn

L) ≈ ynL.

Individual Sample Structure. For each individual input sample xn
i in prompt Pn, it is composed

of two types of components: P component represents easy-to-fit features, aligning with syntactic
information in the corpus, and Q component represents hard-to-fit features, aligning with semantic
information in the corpus.

Positive 

Negative

Figure 3: Composite nonlinear
classification.

Specifically, we define xn
i = [xn

i,1, x
n
i,2]

⊤ where xn
i,1 ∈

Rd, xn
i,2 ∈ Rd and xn

i ∈ R2d. Then we design the con-
crete structure of P and Q for the sample xn

i as follows, draw-
ing inspirations from Li et al. (2019). Let xn

i,1 ∼ Pyn
i

and
xn
i,2 ∼ Qyn

i
. For distribution P , if noise e and optimal clas-

sifier w⋆ satisfy ⟨w⋆, e⟩ ≥ 0, then we construct the positive
sample based on xn

i,1 = γ0w
⋆ + e. Conversely, if ⟨w⋆, e⟩ ≤ 0,

we construct the negative sample based on xn
i,1 = −γ0w

⋆ + e.
It is natural to find that xn

i,1 has easy-to-fit features and it could
be easily classified by a linear classifier sign

(
w⋆xn

i,1

)
with a

margin of 2γ0. To simplify, let w⋆ ∈ Rd be a unit vector i.e.
∥w⋆∥2 = 1, margin γ0 = 1√

d
, and noise e ∼ N

(
0, Id×d

d

)
. For

distribution Q, xn
i,2 = αz belongs to the positive class, while

xn
i,2 ∈ {α(z− ζ), α(z+ ζ)} belongs to the negative class. Ob-

viously, z is not linearly separable with extremely small bias
ζ and thus xn

i,2 contains hard-to-fit features. To simplify, let
α = 1, ∥z∥2 = u, ∥ζ∥2 = r ≪ u and ⟨z, ζ⟩ = 0.

Overall, in Figure 2, we utilize two-dimensional data to intuitively illustrate the roles of two com-
ponents P and Q based on the distribution, in learning both linear and nonlinear classifiers. By
concatenating these two components, sample xn

i is employed to tackle a more complex composite
nonlinear classification task, as shown in Figure 3. Despite the data composition, the task’s difficulty
is significantly increased rather than being a simple combination.

3.2 ONE-LAYER TRANSFORMER ARCHITECTURE

Embeddings. Given the prompt Pn =
(
xn
1 , y

n
1 , · · · , xn

L−1, y
n
L−1, x

n
L

)
, we construct the embed-

ding matrix by stacking xn
i or yni . Let Xn

1 and Xn
2 denote the matrices of the two types of features

4
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xn
i,1 and xn

i,2. Concretely,
Xn

1 =
[
xn
1,1 xn

2,1 · · · xn
L,1

]
∈ Rd×L, Xn

2 =
[
xn
1,2 xn

2,2 · · · xn
L,2

]
∈ Rd×L.

To ensure the model output is linearly decomposable, we combine X1 and X2 to form the complete

feature embedding matrix as Xn =

[
Xn

1 0
0 Xn

2

]
∈ R2d×2L. Similarly, we define

Y n
1 = Y n

2 ≜ Y n = [yn1 yn2 · · · 0] ∈ R1×L,

and the complete label matrix as Ỹ n = [Y n Y n] ∈ R1×2L.

Normalized ReLU Self-Attention Layer. A self-attention layer (Vaswani, 2017) in the single-
head case includes parameters θ: key, query and value matrices WK ,WQ ∈ R2d×2d, WV ∈
R2L×2L. Given the feature embedding matrix X ∈ R2d×2L, we use a normalized ReLU activa-
tion in place of standard softmax activation as Bai et al. (2024). Then the prediction for query xL

using a one-layer transformer is given by

f(U ;X, Ỹ ) = Ỹ WV · 1

2L
ReLU

(
X⊤W⊤

KWQxL

)
= Ỹ /2L · ReLU

(
X⊤UxL

)
, (1)

where 1
2L is the normalization factor. To simplify, we reparameterize W⊤

KWQ ≜ U ∈ R2d×2d and
assume the value matrix is the identity transformation, i.e., WV = I .

We remark that softmax is computationally expensive due to the challenges posed by exponential
calculations and the summation over sequence length. Furthermore, transformers with sequence-
length normalized ReLU activations have been experimentally studied in Wortsman et al. (2023);
Shen et al. (2023), demonstrating comparable performances to standard softmax activation in many
vision and NLP tasks.

Transformer Weight Structure. Given that individual samples xn
i can be characterized by two

specific types of features, we abstract the real training network into two virtual networks, with
the weight matrix composed of two distinct parts. To simplify our analysis, we here consider the
simplest structure of weight matrix U as a block diagonal matrix:

U =

[
W 0
0 V

]
∈ R2d×2d,

where weight W operates only on X1 and V operates only on X2. This structure exhibits a strong
property of linear decomposability over the model output, i.e. by decomposition, the two new pre-
dictions with features X1 and X2 maintain a similar formulation to the original ones:

f(U ;X, Ỹ )︸ ︷︷ ︸
NU (U ;X,Ỹ )

= 1/2 · Y/L · ReLU
(
X⊤

1 WxL,1

)︸ ︷︷ ︸
NW (W ;X1,Y ) or h(X1)

+1/2 · Y/L · ReLU
(
X⊤

2 V xL,2

)︸ ︷︷ ︸
NV (V ;X2,Y ) or g(X2)

. (2)

In summary, we naturally abstract two virtual networks: network h(X1) with parameter W operates
on X1 part to learn component P , and network g(X2) with parameter V operates on X2 part to learn
component Q. The overview is shown in Figure 2.

3.3 TRAINING PROCEDURE

Loss Function. To train the transformer model on binary classification tasks, we consider the
regularized empirical loss over N training prompts. Denote the logistic loss for each prompt as
l(f(U ;Xn, Ỹ n)) = log(1 + e−yn

Lf(U ;Xn,Ỹ n)), then

L̂(U) =
1

N

N∑
n=1

l
(
f(U ;Xn, Ỹ n)

)
, (3)

and the regularized loss function is denoted as L̂λ(U) = L̂(U) + λ
2 ∥U∥2F , where λ denotes the L2

regularization coefficient.

Optimization Algorithm. Consider stochastic gradient descent with spherical Gaussian noise,
which is a simplification of minibatch SGD. Taking initial weight [U0]ij ∼ N

(
0, τ20

)
and noise

[ξt]ij ∼ N
(
0, τ2ξ

)
, then the update of U with time is represented as

Ut+1 = Ut − γt∇U (L̂λ(Ut) + ξt) = (1− γtλ)Ut − γtξt − γt∇U L̂(Ut). (4)

5
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Theorem 2

Theorem 3

Theorem 1

(c.1) & (c.2)
1. The model weight  reaches .
2. The loss of  remains small.

Conclusion: 
The model  preserves elementary knowledge .

Theorem 4

(d.1) & (d.2)
1. The model weight  changes small around .
2. The loss of  remains small.

Overall Training

Initial time

Iteration 

Iteration 

(a.1) & (a.2)
1. The model weight  changes small.
2. The loss of  remains large.

Conclusion: 
The model  cannot learn specialized knowledge .

(b.1) & (b.2)
1. The model weight  reaches .
2. The loss of  remains small.

Elementary Stage

Specialized Stage

Conclusion: 
The model  learns specialized knowledge .

Conclusion: 
The model  learns elementary knowledge .

Figure 4: Summary of Two-stage Learning.

Signal-noise Decomposition. With noise in SGD optimization, we take signal-noise decomposi-
tion for weight U , i.e., U = U + Ũ (Allen-Zhu et al., 2019; Li et al., 2019). The signal weight is
defined as the weights related to the gradient part, i.e., U t+1 ≜ (1 − γtλ)U t − γt∇U L̂(Ut). And
the noise weight is defined as the weights related to the noise part, i.e., Ũt+1 ≜ (1− γtλ)Ũt − γtξt.
Note that due to Equation 4, such decomposition is always valid.

Notably, the noise component Ũ follows a Gaussian distribution since it is a linear combination of
Gaussian random variables. By setting a relatively small variance τ2ξ , the signal component always
dominates the noise component (Li et al., 2019). Therefore, one can always rewrite the weight
U = U + Ũ as a signal part U with a small Gaussian random noise Ũ . Based on this observation,
we define the training loss K(U) which depends solely on the signal weight:

K(U) =
1

N

N∑
n=1

l
(
NU (U + Ũ ;Xn, Ỹ n)

)
. (5)

Based on the above discussions, minimizing Equation 5 is almost equivalent to minimizing Equa-
tion 3. Similarly, we take signal-noise decomposition for W = W + W̃ and V = V + Ṽ , then
define the training loss of easy-to-fit component P over signal weight as K1(W ), and the training
loss of hard-to-fit component Q over signal weight as K2(V ):

K1(W ) =
1

N

N∑
n=1

l
(
NW (W + W̃ ;Xn

1 , Y
n)
)
, K2(V ) =

1

N

N∑
n=1

l
(
NV (V + Ṽ ;Xn

2 , Y
n)
)
.

(6)
4 TWO-STAGE OPTIMIZATION OF TRANSFORMERS

Based on the data characteristics and the different learning complexity of component P and Q, we
split the entire training process into two stages: the Elementary Stage (in Section 4.1, Theorem 1
and Theorem 2), and the Specialized Stage (in Section 4.2, Theorem 3 and Theorem 4). We establish
the weight trajectory and analyze the finite-time convergence in the two stages. The main theorems
are summarized in Figure 4. Before diving into the details, we introduce the fundamental settings of
two stages, including the learning rate and training iterations. Specially,

• Elementary Stage. Constant learning rate η1 = Θ(1); Containing 0 ≤ t ≤ t1 ≜ 1
η1λ

where λ denotes the L2 regularization coefficient.
• Specialized Stage. Annealing learning rate η2 = η1λ

2ϵ2V,1r where ϵV,1 = Θ(1/Poly(d))
will be introduced later, and r ≜ ∥ζ∥2 represents the hardness of semantics (See Para-
graph 3.1); Containing t1 ≤ t ≤ t1 + t2 where t2 ≜ log2(1/ϵV,1)

η2λϵ2V,1
.

6
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The annealing learning rate is widely adopted in practical training procedures. Furthermore, we
present the same choices of hyperparameters for two stages in Assumption 1.
Assumption 1. Throughout the Theorems, set the variance of initialization parameter τ0 =

O
(

1√
log d

)
, regularization coefficient 1

λ = O
(√

log d
)

and prompt length L = Θ(Poly(d)) where
d denotes the input dimension.

Discussions on Assumption 1. We next validate the hyperparameter orders in Assumption 1.

(1) τ0 denotes the variance of the initialization parameter. The requirement τ0 = O
(

1√
log d

)
sug-

gests that, as dimension d increases and the data complexity grows, the variance should be adaptively
decreased. This aligns with practical training methodologies, as a higher variance might result in a
significant shift of the initial weights in high-dimensional spaces, leading to unstable training and
potentially impeding convergence.

(2) λ denotes the L2 regularization coefficient in the loss function. The requirement 1
λ =

O
(√

log d
)

suggests that, as dimension d increases, λ should be adjusted to be correspondingly
smaller. This is a practical consideration because, in high-dimensional scenarios, a large λ may
overly constrain the model, potentially causing underfitting. Furthermore, t1 ≤ 1

η1λ
implies that

there might be a longer period during which the model may struggle to effectively learn from the
higher-dimensional data Q, which accords with the empirical intuition.

(3) L denotes the prompt length. The requirement L = Θ(Poly(d)) suggests that the model antici-
pates longer input sequences for learning high-dimensional data, which accords with reality.

4.1 ELEMENTARY STAGE

This section aims to analyze the regime with η1 = Θ(1) and t ≤ t1 ≜ 1
η1λ

. Our goal is to prove

that the weights are optimized from U0 =

[
W 0 0
0 V 0

]
to U t1 =

[
W t1 −→ W ⋆ 0

0 V t1 ≈ V 0

]
. This

means that W t1 approach the optimal weights W ⋆, while V t1 remains close to V 0. We split the
derivation into two theorems: Theorem 1 demonstrates that the hard-to-fit component Q (specialized
knowledge) is not effectively learned by network g, and Theorem 2 demonstrates that the network h
successfully learns the easy-to-fit component P (elementary knowledge). We start from Theorem 1.
Theorem 1. In the elementary stage with η1 = Θ(1) and t1 = 1

η1λ
where λ denotes regularization

coefficients. With Assumption 1, initial weights V0 −→ 0d×d and N training prompts, it holds that

(a.1) For the model parameter V of network g, through gradient descent, ∥V t1∥F satisfies

∥V t1∥F = Θ

(
1

Poly(d)

)
.

(a.2) With random and small noise weight, the training loss of hard-to-fit component Q over signal
weight (Definition in Equation 6) at iteration t1 satisfies

K2
t1

(
V t1

)
≳ log 2− 1√

log d
−
√

log d

N
.

Namely, the hard-to-fit component Q is not efficiently learned by g within t1 iterations.

Messages Behind Theorem 1. Theorem 1 demonstrates that the hard-to-fit component Q cannot
be effectively learned by the corresponding network g defined in Equation 2. In (a.1), within t1 iter-
ations, the weight ∥V t1∥F is approximately in order 1

Poly(d) , which implies that the model weight V
is almost not optimized since ∥V t1∥F ≈ ∥V 0∥F . In (a.2), we provide the lower bound for the train-
ing loss of component Q. The value is close to log 2 with large dimension d and training prompts N .
Overall, the above discussions exhibit that specialized knowledge like Q is not effectively learned
by the network g. We defer the proof to Appendix F.1 and the proof sketch in Remark 6.
Theorem 2. In the elementary stage with η1 = Θ(1) and t1 = 1

η1λ
where λ denotes regularization

coefficients. With Assumption 1 and initial weights W0 −→ 0d×d, it holds that there exist ϵW,1 =

Θ(1/Poly(d)), ϵW = Θ
(
(Poly(d))2/3

)
(See Definition in Equation 16 and 10) such that
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(b.1) The model parameter W of network h is optimized by gradient descent within t1 iterations,
∥W t1∥F = Θ(d log(1/ϵW,1)) ≫ ∥W 0∥F .

(b.2) With random and small noise weight, the training loss of easy-to-fit component P over signal
weight (Definition in Equation 6) at iteration t1 satisfies

K1
t1(W t1) ≲ ϵW,1 +

√
d log d

L
ϵW +

1√
log d

.

Namely, the network h learns the easy-to-fit component P within t1 iterations.

Messages Behind Theorem 2. Theorem 2 describes how the easy-to-fit component P is learned
by the corresponding network h defined in Equation 2. In (b.1), within t1 iterations, ∥W∥F sig-
nificantly grows from the order ∥W 0∥F ≈

√
d to the order ∥W t1∥F ≈ d log(1/ϵW,1), indicating

that the knowledge might be learned. In comparison, V t1 for the hard-to-fit component Q changes
small since ∥V t1∥F ≈ ∥V 0∥F ≈ 1

Poly(d) (See Theorem 1 (a.1)). In (b.2), it shows that the loss of
easy-to-fit component P is upper bounded by an o(1) term which converges to zero as the dimen-
sion d goes to infinity. Concretely, the upper bound ϵW,1 +

√
d log d
L ϵW + 1√

log d
, has the order of

1
Poly(d) +

1
(Poly(d))1/3 + 1√

log d
. In comparison, the loss of hard-to-fit component Q is lower bounded

by a constant close to log 2 (See Theorem 1 (a.2)). In summary, the above discussions imply that
the network h learns elementary knowledge like P , marking the so-called elementary stage.
We defer the Proof to Appendix F.2 and the Proof Sketch in Remark 7.

4.2 SPECIALIZED STAGE

This section aims to analyze the regime with η2 = η1λ
2ϵ2V,1r and t1 ≤ t ≤ t1 + t2,

where ϵV,1 = Θ(1/Poly(d)) is defined in Equation 17, t1 ≜ 1
η1λ

and t2 ≜ log2(1/ϵV,1)

η2λϵ2V,1
.

Our goal is to prove that the weights are optimized from U t1 =

[
W t1 0
0 V t1

]
to U t1+t2 =[

W t1+t2 ≈ W t1 0
0 V t1+t2 −→ V t1 + V ⋆

]
. In total, we split the derivation into two theorems: The-

orem 3 demonstrates that the network g learns specialized knowledge like hard-to-fit component Q,
and Theorem 4 demonstrates that the network h continues to preserve the elementary knowledge
like easy-to-fit component P . We start from Theorem 3.
Theorem 3. In the specialized stage with annealing learning rate η2 = η1λ

2ϵ2V,1r and t1 ≤ t ≤
t1 + t2, where ϵV,1 = Θ(1/Poly(d)), t1 ≜ 1

η1λ
, t2 ≜ log2(1/ϵV,1)

η2λϵ2V,1
, λ denotes the L2 regularization

coefficient and data noise ∥ζ∥2 = r (See Paragraph 3.1). With Assumption 1, it holds that

(c.1) The model parameter V of network g is optimized by gradient descent within t2 iterations,

∥V t1+t2∥F = Θ

(
log(1/ϵV,1)

ϵV,1
+

1

Poly(d)

)
≫ ∥V t1∥F .

(c.2) With random and small noise weight, the training loss of hard-to-fit component Q over signal
weight (Definition in Equation 6) satisfies

K2
t1+t2(V t1+t2) ≲ ϵV,1 +

1

(log d)1/4
+

1√
log d

.

Namely, the network g learns hard-to-fit component Q within t2 iterations.

Messages Behind Theorem 3. Theorem 3 illustrates the optimization in the specialized stage.
Statement (c.1) implies that within t2 iterations, ∥V ∥F grows from the order ∥V t1∥F ≈ 1

Poly(d) to

the order ∥V t1+t2∥F ≈ log(1/ϵV,1)
ϵV,1

+ 1
Poly(d) ≈ Poly(d) log Poly(d) + 1

Poly(d) (derivation based on
Assumption 1). Statement (c.2) implies that the loss is upper bounded by o(1) which converges to
zero as d goes to infinity. Notably, the upper bound given by the order ϵV,1 + 1

(log d)1/4
+ 1√

log d
≈

1
Poly(d) +

1
(log d)1/4

+ 1√
log d

. Compared to Theorem 1 with constant lower bound, we conclude that
with a small learning rate, the network g learns specialized knowledge, marking the so-called
specialized stage. We defer the Proof to Appendix G.1 and the Proof Sketch in Remark 8.
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Syntax
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Semantics

The mother tongue of Danielle Darrieux is French

The larvae feed on turf grasses and corn stalks.
The language of Likkutei Sichos was Hebrew

T=100

Battle of Chacabuco is located in Santiago

Syntax

Semantics

French

Hebrew
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Figure 5: Two-stage learning of syntax and semantics.

Discussion on Parameter Orders. We first focus on the learning rate η2 = η1λ
2ϵ2V,1r. Given the

choices in Assumption 1, η2 ≈ O
(

log d
(Poly(d))2 η1

)
. It usually follows that η2 < η1, which accords with

practical training. Additionally, the current learning process keeps t2 = O
(
Poly(d)(log d)7/2/η1

)
,

which is significantly longer than t1 = O
(√

log d/η1
)
, coming from the difficulty of learning

simple and complex components.

Theorem 4. In the specialized stage with annealing learning rate η2 = η1λ
2ϵ2V,1r and t1 ≤ t ≤

t1 + t2, where ϵV,1 = Θ(1/Poly(d)), t1 ≜ 1
η1λ

, t2 ≜ log2(1/ϵV,1)

η2λϵ2V,1
, λ denotes the L2 regularization

coefficient and data noise ∥ζ∥2 = r (See Paragraph 3.1). With Assumption 1 and number of training
prompts N = Θ(Poly(d)), it holds that

(d.1) For the model parameter W of network h, through gradient descent optimization from iteration
t1 to t1 + t2, ∥W t1+t2 −W t1∥F satisfies

∥∥W t1+t2 −W t1

∥∥
F
≲

ϵ2V,1

log2 (1/ϵV,1)
√
log d

.

(d.2) With random and small noise weight, the training loss of easy-to-fit component P over signal
weight (Definition in Equation 2) satisfies

∣∣K1
t1+t2(W t1+t2)−K1

t1(W t1))
∣∣ ≲ ϵ2V,1

log2 (1/ϵV,1)
√
log d

.

Namely, the network h continues to preserve the easy-to-fit knowledge like P within t2 iterations.

Messages Behind Theorem 4. Theorem 4 demonstrates the optimization process on the easy-to-
fit part P in specialized stage, annealing the learning rate from η1 to η2. Statement (d.1) demon-
strates that the signal weight W does not change significantly in the specialized stage, given the
upper bound o(1). Concretely, the upper bound of the weight difference between two moments

is
ϵ2V,1

log2(1/ϵV,1)
√
log d

, with the order of 1
(Poly(d))2(log d)5/2

. Statement (d.2) demonstrates that the
loss also does not change much from iteration t1 to t1 + t2, ensuring that the model remains low
training loss on easy-to-fit component P . In detail, the small changes in loss have an order of

1
(Poly(d))2(log d)5/2

. In summary, in the specialized stage, network h continues to preserve the
knowledge P acquired during the elementary knowledge. Given that both the changes in signal
weight W and the loss are minimal, we also conclude that the specialized stage is dedicated exclu-
sively to the learning of hard-to-fit component Q. We defer the Proof to Appendix G.2 and the Proof
Sketch to Remark 9.
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Figure 6: Spectral Characteristics.

5 EXPERIMENTS

We conduct motivating experiments on Counterfact dataset containing 65,757 question-answer ex-
amples dataset (Meng et al., 2022). All experiments utilize the GPT-2 architecture. Our goal is to
verify the two-stage learning of syntax and semantics with this dataset, as well as the spectral charac-
teristics of model attention weights. Additional dataset descriptions and experiments on HotpotQA
(Yang et al., 2020) are detailed in Appendix C.

Verify Two-stage Learning of Syntax and Semantics. In Figure 5, we present the training loss
over 200 epochs, highlighting three key moments with representative samples, including questions,
gold answers, and the model’s predictions. At the initial time T = 1, many predictions are both syn-
tactically and semantically incorrect. By T = 5, we observe a significant decrease in training loss;
all predictions meet syntactic requirements, but most remain semantically incorrect and inconsistent
with the true answers. Thus, the period from T = 1 to T = 5 corresponds to our theoretical Ele-
mentary Stage. By T = 100, all predictions are syntactically correct, with most being semantically
correct and achieving small training loss. Therefore, the period from T = 6 to T = 100 represents
our theoretical Specialized Stage. Overall, this experiment supports our theory of two-stage learning
for syntax and semantics.

Verify Spectral Characteristics. There is a direct Corollary 1 (in Appendix B) from Theorems 2
∼ 4, demonstrating that relatively small eigenvalues of attention weights store syntax information
and large ones store semantics. We verify this insight empirically in Figure 6 by preserving different
eigenvalues and observing the model performances. Concretely, at time T = 5 (fully syntactically
correct) and T = 100 (fully syntactically correct, nearly fully semantically correct), we set the
rank preservation ρ ranging from 0.1 to 1.0, to Obtain edited matrices with different eigenvalues
using SVD for comparing predictions. For the left figure, we find that the model’s predictions
become more semantically similar and accurate, as rank preservation ρ increases (maintaining more
large eigenvalues). For the right figure, we find that the model gradually grasps correct syntax and
semantic information as ρ increases (maintaining more small eigenvalues). In addition, in the middle
figure, the number of correct predictions increases with larger rank preservation, which accords with
intuition. We defer the detailed discussion to Appendix C.1.

6 CONCLUSION

This paper provides rigorous proof for the two-stage learning process of transformers in ICL tasks.
We categorize token information into two feature types: elementary knowledge represented by syn-
tactic information, and specialized knowledge represented by semantic information. By employing
feature learning and signal-noise decomposition techniques, we analyze the optimization trajectory,
finite-time convergence, and spectral characteristics under the ICL regime, offering deeper insights
into the optimization process. Ultimately, our work aims to provide a new perspective and a theo-
retical framework for understanding the optimization dynamics of transformers.
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A TABLE OF NOTATIONS

Table 1: Table of Notations.

Notation Description

t1 Total iterations of the elementary stage

t2 Total iterations of the specialized stage

N Number of training prompts

L Training prompt length (the last token is a query)

xn
i = [xn

i,1, x
n
i,2]

⊤ ∈ R2d Divide the i-th token of n-th training prompts into two parts

xn
i,1 ∼ P ∈ Rd The syntactic information in a token

xn
i,2 ∼ Q ∈ Rd The semantic information in a token

Xn
1 =

[
xn
1,1 xn

2,1 · · · xn
L,1

]
∈ Rd×L Stack of xn

i,1

Xn
2 =

[
xn
1,2 xn

2,2 · · · xn
L,2

]
∈ Rd×L Stack of xn

i,2

Xn =

Xn
1 0

0 Xn
2

 ∈ R2d×2L Stack of Xn
1 and Xn

2

yn
i ∈ {−1, 1} Binary classification label

Y n =
[
yn
1 yn

2 · · · 0
]
∈ R1×L Stack of yn

i

Ỹ n =
[
Y n Y n

]
∈ R1×2L Stack of Y n

1 and Y n
2

f(U ;X, Ỹ ) Normalized ReLU self-attention output, see in Equation 1

h(X1) Virtual network operates on X1, see in Equation 2

g(X2) Virtual network operates on X2, see in Equation 2

U =

W 0

0 V

 ∈ R2d×2d Model parameter of normalized ReLU self-attention network

U = U + Ũ ∈ R2d×2d Signal-noise decomposition of weight U

W = W + W̃ ∈ Rd×d Model parameter of virtual network h, signal-noise decomposition
of weight W

V = V + Ṽ ∈ Rd×d Model parameter of virtual network g, signal-noise decomposition
of weight V

L̂(U) The empirical loss over weight U , see in Equation 3

K(U) The training loss over signal weight U , see in Equation 5

K1(W ) The training loss over signal weight W , see in Equation 6

K2(V ) The training loss over signal weight V , see in Equation 6

B ADDITIONAL COROLLARY FOR SPECTRAL CHARACTERISTICS FROM
THEOREMS

Corollary 1. With choices of τ0 = O
(

1√
log d

)
, 1
λ = O

(√
log d

)
and L =

Θ(Poly(d)). Denote p1, p2 as the proportions of the negative derivative of logistic loss (i.e.,

l′(f(W ;X1, Y )), l′(f(V ;X2, Y )) < 0). Let k1 ≜ max(∥x∥22)Ê
[
|l′−|1⊤1(X⊤

1 xL,1)
]
, k2 ≜

max(∥x∥22)Ê
[
|l′−|1⊤1(X⊤

2 xL,2)
]
.
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(a) In the elementary stage within t1 ≤ 1
η1λ

iterations, the spectral dynamics satisfy

Tr(Wt1) = (1− η1λ+ 2p1k1η1/L)
t1 Tr(W0), Tr(Vt1) = (1− η1λ+ 2p1k2η1/L)

t1 Tr(V0).

Further at iteration t1, we have
Tr(Wt1) > Tr(Vt1).

(b) In the specialized stage within t2 ≤ log2(1/ϵV,1)

η2λϵ2V,1
iterations, the spectral dynamics satisfy

Tr(Wt1+t2) = (1− η2λ+ 2p1k1η2/L)
t2 Tr(Wt1), Tr(Vt1+t2) = (1− η2λ+ 2p2k2η2/L)

t2 Tr(Vt1).

Further at iteration t1 + t2, we have

Tr(Wt1+t2) < Tr(Vt1+t2).

Remark 5. By applying spectral analysis techniques, such as SVD and gradient descent on eigen-
values, we conclude that whether in the elementary stage or specialize stage, Tr(Wt) and Tr(Vt)
follow similar update rules. The rate of exponential growth over time primarily depends on three
factors: (1) the learning rate η1 or η2; (2) the proportion p1 or p2 of the negative derivative of
logistic loss; and (3) k1 or k2 represents the mean absolute value of the selected negative derivative.
By the way, the negative derivative of the logistic loss is selected based on the similarity between
query xL and sequence X , i.e. 1(X⊤

1 xL,1). When comparing the updating rules for the traces of
weights in the two stages, we find that the three factors differ and vary with training. However,
the overall exponential growth trend remains consistent. Additionally, from Theorems 2 ∼ 4, it’s
straightforward to compare the relationship of Tr(W ) and Tr(V ) at iteration t1 and t1+ t2, which
will be further verified through experiments on real-world language datasets.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 EXPERIMENTS ON COUNTERFACT DATASET.

Counterfact (Meng et al., 2022) is a question-answering dataset consisting of knowledge tuples in
the form of (subject, relation, answer). These tuples are constructed using entities in Wikidata. Also,
there are three paraphrased prompts for each question, resulting in a total of 65,757 examples for
the entire dataset. In the following, we provide more discussions about the experimental results in
Figure 5 and 6.

Verify Two-stage Learning of Syntax and Semantics. In Figure 5, we present the training loss
over 200 epochs, highlighting three key moments with representative samples, including questions,
gold answers and the model’s predictions. At the initial time T = 1, many predictions are both
syntactically and semantically incorrect. By T = 5, we observe a significant decrease in training
loss; all predictions meet syntactic requirements, but most are remain semantically incorrect and
inconsistent with the true answers. Thus, the period from T = 1 to T = 5 corresponds to our
theoretical Elementary Stage. By T = 100, all predictions are syntactically correct, with most being
semantically correct and achieving a very low loss value. Therefore, the period from T = 6 to
T = 100 represents our theoretical Specialized Stage. Overall, this experiment supports our theory
of two-stage learning for syntax and semantics.

Verify Spectral Characteristics. From Theorems 2 ∼ 4, based on the relationship of F-norm and
trace, it’s straightforward to get Tr(Wt1+t2) < Tr(Vt1+t2) at convergence time t1 + t2 (Detailed
Corollay 1 is shown in Appendix B). We know that weight W of network h operates on the elemen-
tary syntax and weight V of network g operates on the specialized semantics. Then the corollary
of Tr(Wt1+t2) < Tr(Vt1+t2) hints that, relatively small eigenvalues of attention weights store
syntax information and large ones store semantics.

Thus in Figure 6, we perform model editing on the attention layer weights of the model to analyze
the impact of large or small eigenvalues. Concretely, we edit attention weights at time T = 5 (fully
syntactically correct) and T = 100 (fully syntactically correct, nearly fully semantically correct).
Using SVD, we sort the eigenvalues of attention weights and set rank preservation coefficient ρ,
ranging from 0.1 to 1.0. As shown in Figure 6, the numbers in matrices represent the rank preserva-
tion coefficient ρ of the current matrix.
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Cadmium Chloride is slightly soluble in this 
chemical, it is also called what?

Question Answer Prediction

alcohol \n

The 34th Foot Regiment was sent to fight who? Americans s

T=1

The short story from The Wind’s Twelve Quarters that 
won the Hugo Award in 1974 was published in what year 1973 The

Syntax

Semantics

Elementary Stage

Specialized Stage

T=1

T=8
T=40

What country are Mudvayne and Hellyeah both 
from?

American Australia

In what year was the "puppet state" in which Liu 
Menggeng a politician/physician abolished?

1945 1978

T=8

What does Jack Horner and Jack and the 
Beanstalk have in common?

Jack         American

Syntax

Semantics

What type of media does Caracal and The Weeknd
have in common?

music

In what year was the "puppet state" in which Liu 
Menggeng a politician/physician abolished? 1945

T=40

Are Lawson and Minutemen from the same 
country?

no

Syntax

Semantics

music

1945

no

Figure 7: Hotpot dataset: two-stage learning of syntax and semantics.

• For the left figure, we first edit attention weights at T = 100. Eigenvalues are sorted from
largest to smallest and matrices preserve the top ρ proportion of the largest eigenvalues.
When ρ = 0.1, it means maintaining 10% of the largest eigenvalues and corresponding
eigenvectors. The figure displays 10 weight matrices, with ρ ranging from 0.1 to 1.0 from
left to right. As ρ increases, more large eigenvalues are preserved, and the model’s predic-
tions become more semantically similar and accurate.

• For the right figure, we further edit attention weights at T = 5. Eigenvalues are sorted
from smallest to largest and matrices preserve the top ρ proportion of the smallest eigen-
values. From right to left, more small eigenvalues are included. As more eigenvalues of the
full matrix are used, the model gradually grasps correct syntax and semantic information.

• For the middle figure, it shows that the number of correct predictions increases with
larger rank preservation, which is intuitive. In summary, the spectral characteristics in-
sights drawn from our theory are also empirically reasonable.

C.2 EXPERIMENTS ON HOTPOTQA DATASET.

HotpotQA. We choose the HotPotQA dataset available on HuggingFace, with a small size 13,530
(Meng et al., 2022). Taking experiments under the same setting as Section 5, in Figure 7, we first
verify the two-stage learning of syntax and semantics under this question-answering dataset. The
period from T = 1 to T = 8 corresponds to our theoretical Elementary Stage and the period from
T = 9 to T = 40 represents our theoretical Specialized Stage. In Figure 8, we verify the spectral
characteristics that relatively small eigenvalues of attention weights store syntax information and
large ones store semantics. Specifically, similar to Section 5, we perform model editing on the
attention weights at time T = 8 (fully syntactically correct) and T = 40 (fully syntactically correct,
nearly fully semantically correct) and set rank preservation ρ from 0.1 to 1.0.

D USEFUL PROBABILITY CONCENTRATION INEQUALITIES

Lemma 1 (Hoeffding’s Inequality for General Bounded Random Variables, cite HDP p16). Let
X1, · · · , XN be independent random variables. Assume that Xi ∈ [mi,Mi] for every i. Then, for
any t > 0, we have

Pr

(
N∑
i=1

(Xi − E[Xi]) ≥ t

)
≤ exp

(
− 2t2∑N

i=1(Mi −mi)2

)
Lemma 2 (Bernstein’s Inequality for Bounded Random Variables, cite ¡concentration.pdf¿, lemma
7.37). Let X1, · · · , XN be i.i.d. and suppose that |Xi| ≤ c,E(Xi) = µ, σ2 = 1

N

∑N
i=1 Var(Xi).
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

More Semantically Correct

T=40

Question: Pearl Lowe and Alison Goldfrapp, is of which nationality?
Gold Answer:  English
Prediction: ?

American

Australian

0.1

More Syntactically and Semantically Correct

no

Spain

Mexico

Mexico

American

Brazil

Question: The Colombian airline that has been the national airline and flag carrier of 
Colombia since 1919 is wholly owned by a company headquartered in what country
Gold Answer:  Brazil
Prediction: ?

T=8

American

Italian

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.11.0

English

Brazil

Figure 8: Hotpot dataset: verify spectral characteristics.

With probability at least 1− δ,∣∣∣∣∣
N∑
i=1

Xi − µ

∣∣∣∣∣ ≤
√

2σ2 log(1/δ)

n
+

2c log(1/δ)

3n

Lemma 3 (Norm of Matrix with Gaussian Entries, cite HDP p85). Let A be an n×n random matrix
whose entries Aij are independent gaussian random variables with N(0, σ2). Then for any t > 0,
we have

∥A∥ ≲ σ
√
n

Lemma 4 (Standard Gaussian Concentration Inequality). Suppose that X = X1, · · · , XN are i.i.d.
standard complex Gaussian variables, and suppose F : Cn → R is a 1-Lipschitz function with
respect to the Euclidean metric. Then E[X] < ∞ and for all t ≥ 0,

Pr (X − E[X] > t) ≤ e−t2

Lemma 5 (Chernoff Bound for Guassian Variables). Let X ∼ N (µ, σ2), then E[eλX =
exp

(
µλ+ σ2λ2/2

)
and for all t ≥ 0,

Pr (|X − µ| > t) ≤ 2 exp

(
− t2

2σ2

)

Pr

(∣∣∣∣X − µ

σ

∣∣∣∣ > t

)
≤ 2 exp

(
− t2

2

)

E PROPOSITIONS, LEMMAS AND COROLLARIES

Assumption 2. For X1, X2 ∈ Rd×L that satisfies the data structure, let i be i-th row, we have

∥[X⊤
1 ]i∥2 ≤ u+ γ0, ∥X⊤

1 ∥F ≤
√
L(u+ γ0)

∥[X⊤
2 ]i∥2 ≤ u+ r, ∥X⊤

2 ∥F ≤
√
L(u+ r)

∥[X⊤]i∥2 ≤ max{u+ γ0, u+ r}, ∥X⊤∥F ≤
√
L(u+ γ0)2 + L(u+ r)2

Proof. For X1, we have

∥w⋆∥2 = 1, ∥[X⊤]i∥2 ≤ u+ γ0, ∥X⊤∥F ≤
√
L(u+ γ0)

For X2, we have

⟨z, ζ⟩ = 0, ∥z∥2 = u, ∥ζ∥2 = r

∥[X⊤]i∥2 ≤ u+ r, ∥X⊤∥F ≤
√
L(u+ r)
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Proposition 1. By signal-noise decomposition, we have the updating rules for signal weight and
noise weight:

U t = −
t∑

s=1

η (1− ηλ)
t−s ∇Us−1

L̂(Us−1),

Ũt = (1− ηλ)
t
U0 −

t∑
s=1

η (1− ηλ)
t−s

ξs−1.

Proof. Decoupling the signal and noise, signal weight U is affected by the gradient updates, and
noise weight Ũ is affected by noise ξ. With Ut+1 = (1− γtλ)Ut − γt(∇U L̂(Ut) + ξt),

U t = −
t∑

s=1

γs−1

(
t−1∏
i=s

(1− γiλ)

)
∇Us−1

L̂(Us−1)

Ũt =

(
t−1∏
i=0

(1− γiλ)

)
U0 −

t∑
s=1

γs−1

(
t−1∏
i=s

(1− γiλ)

)
ξs−1

When constant learning rate γt = η,

U t = −
t∑

s=1

η (1− ηλ)
t−s ∇Us−1L̂(Us−1)

Ũt = (1− ηλ)
t
U0 −

t∑
s=1

η (1− ηλ)
t−s

ξs−1. (7)

Since U =

[
W 0

0 V

]
, then

[
Wt+1 0

0 Vt+1

]
= (1− γtλ)

[
Wt 0

0 Vt

]
− γt(∇U L̂(Ut) + ξt)

Wt+1 = (1− γtλ)Wt − γt(∇Wt
L̂(Ut) + ξt)

Vt+1 = (1− γtλ)Vt − γt(∇VtL̂(Ut) + ξt)

Similar to the signal-noise decomposition of U with learning rate γt = η, we naturally have

W t = −
t∑

s=1

η (1− ηλ)
t−s ∇Ws−1

L̂(Us−1)

W̃t = (1− ηλ)
t
W0 −

t∑
s=1

η (1− ηλ)
t−s

ξs−1 (8)

V t = −
t∑

s=1

η (1− ηλ)
t−s ∇Vs−1

L̂(Us−1)

Ṽt = (1− ηλ)
t
V0 −

t∑
s=1

η (1− ηλ)
t−s

ξs−1 (9)

Proposition 2. For any U ∈ R2d×2d,W, V ∈ Rd×d, X ∈ R2d×2L, X1, X2 ∈ Rd×L, Ỹ ∈
R1×2L, Y ∈ R1×L, then we have the derivative over weight U of empirical loss, i.e. ∇L̂(U)
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and its component [∇L̂(U)]i is the i-th row of ∇L̂(U),

∇L̂(U) = Ê
[
1/2L · l′(f(U ;X, Ỹ ))X · diag

(
1(X⊤UxL)

)
x⊤
L

]
[∇L̂(U)]i = Ê

[
1/2L · l′(f(U ;X, Ỹ ))1([X⊤]iUxL)[X

⊤]ix
⊤
L

]
Additionally, for the derivative over weight W ,

∇W L̂(U) = Ê
[
1/2L · l′(f(U ;X, Ỹ ))X1 · diag

(
1(X⊤

1 WxL,1)
)
x⊤
L,1

]
[∇W L̂(U)]i = Ê

[
1/2L · l′(f(U ;X, Ỹ ))1([X⊤

1 ]iWxL,1)[X1]ix
⊤
L,1

]
for the derivative over weight V ,

∇V L̂(U) = Ê
[
1/2L · l′(f(U ;X, Ỹ ))X2 · diag

(
1(X⊤

2 V xL,2)
)
x⊤
L,2

]
[∇V L̂(U)]i = Ê

[
1/2L · l′(f(U ;X, Ỹ ))1([X⊤

2 ]iV xL,2)[X2]ix
⊤
L,2

]
Proof. According to the definition of training objective, define

l(f(U ;X, Ỹ )) = − log σ
(
yLf

(
U ;X, Ỹ

))
then we have the derivative of empirical loss with weight U ,

∇L̂(U) = Ê
[
l′(f(U ;X, Ỹ ))∇(yLf(U ;X, Ỹ ))

]
= Ê

[
l′(f(U ;X, Ỹ ))yL∇

(
Ỹ /2L · ReLU

(
X⊤UxL

))]
= Ê

[
1/2L · l′(f(U ;X, Ỹ ))yL

2L∑
i=1

yi∇ReLU
(
[X⊤]iUxL

)]

= Ê

[
1/2L · l′(f(U ;X, Ỹ ))yL

2L∑
i=1

yi1([X
⊤]iUxL)[X

⊤]ix
⊤
L

]
= Ê

[
1/2L · l′(f(U ;X, Ỹ ))X · diag

(
1(X⊤UxL)

)
x⊤
L

]
and [∇L̂(U)]i = Ê

[
1/2L · l′(f(U ;X, Ỹ ))1([X⊤]iUxL)[X

⊤]ix
⊤
L

]
.

Furthermore, when taking derivative over W ,

∇W L̂(U) = Ê
[
l′(f(U ;X, Ỹ ))∇W

(
yLf(U ; (X, Ỹ ))

)]
= Ê

[
l′(f(U ;X, Ỹ ))yL∇W

(
Ỹ /2L · ReLU

(
X⊤UxL

))]
= Ê

[
1/2L · l′(f(U ;X, Ỹ ))yL

L∑
i=1

[
yi yi

]
∇W ReLU

([
[X⊤

1 ]iWxL,1

[X⊤
2 ]iV xL,2

])]

= Ê

[
1/2L · l′(f(U ;X, Ỹ ))yL

L∑
i=1

yi1([X
⊤
1 ]iWxL,1)[X1]ix

⊤
L,1

]
= Ê

[
1/2L · l′(f(U ;X, Ỹ ))X1 · diag

(
1(X⊤

1 WxL,1)
)
x⊤
L,1

]
and [∇W L̂(U)]i = Ê

[
1/2L · l′(f(U ;X, Ỹ ))1([X⊤

1 ]iWxL,1)[X1]ix
⊤
L,1

]
. Similarly, when taking

derivative over V , we have

∇V L̂(U) = Ê
[
1/2L · l′(f(U ;X, Ỹ ))X2 · diag

(
1(X⊤

2 V xL,2)
)
x⊤
L,2

]
[∇V L̂(U)]i = Ê

[
1/2L · l′(f(U ;X, Ỹ ))1([X⊤

2 ]iV xL,2)[X2]ix
⊤
L,2

]
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Proposition 3. Assume that L̂ is K-Lipschitz continuous, then we have∥∥∥∇L̂(U)
∥∥∥
F
≲ K,

∥∥∥[∇L̂(U)]i

∥∥∥
2
≲

K√
2d∥∥∥∇W L̂(U)

∥∥∥
F
≲ K,

∥∥∥[∇W L̂(U)]i

∥∥∥
2
≲

K√
d∥∥∥∇V L̂(U)

∥∥∥
F
≲ K,

∥∥∥[∇V L̂(U)]i

∥∥∥
2
≲

K√
d

Proposition 4. With Assumption 2 and Proposition 3 , we have that signal weight norm satisfies,
for X1 ∥∥U t

∥∥
F
≲

K

λ
,
∥∥[U t]i

∥∥
2
≲

K

λ
√
2d∥∥W t

∥∥
F
≲

K

λ
,
∥∥[W t]i

∥∥
2
≲

K

λ
√
d∥∥V t

∥∥
F
≲

K

λ
,
∥∥[V t]i

∥∥
2
≲

K

λ
√
d

Proof. By Equation 7, 8 and 9, when 0 < 1− ηλ < 1, i.e., 0 < ηλ < 1,∥∥U t

∥∥
F
=

t∑
τ=1

η (1− ηλ)
t−τ

∥∥∥∇L̂(Uτ−1)
∥∥∥
F
≲

K

λ

∥∥[U t]i
∥∥
2
=

t∑
τ=1

η (1− ηλ)
t−τ

∥∥∥[∇L̂(Uτ−1)]i

∥∥∥
2
≲

K

λ
√
2d

∥W t∥F =

t∑
τ=1

η (1− ηλ)
t−τ

∥∥∥∇W L̂(Uτ−1)
∥∥∥
F
≲

K

λ

∥[W t]i∥2 =

t∑
τ=1

η (1− ηλ)
t−τ

∥∥∥[∇W L̂(Uτ−1)]i

∥∥∥
2
≲

K

λ
√
d

∥V t∥F =

t∑
τ=1

η (1− ηλ)
t−τ

∥∥∥∇V L̂(Uτ−1)
∥∥∥
F
≲

K

λ

∥[V t]i∥2 =

t∑
τ=1

η (1− ηλ)
t−τ

∥∥∥[∇V L̂(Uτ−1)]i

∥∥∥
2
≲

K

λ
√
d

Furthermore, ∥∥[X⊤U ]ixL

∥∥
2
≤ ∥[X]i∥2∥U∥F ∥xL∥2 ≲

K(u+m)2

λ∥∥[X⊤
1 W ]ixL,1

∥∥
2
≤ ∥[X1]i∥2∥W∥F ∥xL,1∥2 ≲

K(u+ γ0)
2

λ∥∥[X⊤
2 V ]ixL,2

∥∥
2
≤ ∥[X2]i∥2∥V ∥F ∥xL,2∥2 ≲

K(u+ r)2

λ

Proposition 5. For time τ ≤ t, we have

Proof. For τ ≤ t,

Ũt = (1− ηλ)t−τ Ũτ −
t−τ∑
t′=1

η(1− ηλ)t−τ−t′ζτ+t′−1

= (1− ηλ)t−τ Ũτ + Ξt,τ

where Ξt,τ = −
∑t−τ

t′=1 η(1− ηλ)t−τ−t′ζτ+t′−1.
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Lemma 6 (Refer to Lemma A.8 in Li et al. (2019), Lemma 8.2 of Allen-Zhu et al. (2019)). Let
X ∈ R2d×2L, xL ∈ R2d be a fixed example, with ∥xL∥2 ≤ B and ∥X∥F ≤

√
2LB. With

Assumption 2 and Proposition 4, for every τ > 0, let U = U + Ũ where Ũ ∈ R2d×2d is a random
variable whose columns have i.i.d distribution N (0, τ20 I2d×2d) and Ỹ ∈ R2L such that each entry of
Ỹ is i.i.d. uniform in {−1, 1}. We have that, w.h.p over the randomness of Ũ and Ỹ , ∀U ∈ R2d×2d,
we have that

∥1(X⊤UxL)− 1(X⊤ŨxL)∥1 ≲ K4/3λ−4/3τ
−4/3
0 L2/3 ≜ ϵU

Furthermore, ∣∣∣NU (U ;X, Ỹ )−NŨ (U ;X, Ỹ )
∣∣∣ ≲ (u+m)2K7/3λ−7/3τ

−4/3
0 L−1/3

Proof. With Lemma A.8 of Li, we can compute the difference of activation patterns.

∥1(X⊤UxL)− 1(X⊤ŨxL)∥1 ≲ ∥X⊤U∥4/3F τ
−4/3
0 L2/3

≲ ((2L)
1/2

B)4/3∥U∥4/3F (τ0(2L)
1/2B)−4/3L2/3

≲ ∥U∥4/3F τ
−4/3
0 L2/3

With Assumption 2, B = u+m, and Proposition 4, then

∥1(X⊤UxL)− 1(X⊤ŨxL)∥1 ≲ ∥U∥4/3F τ
−4/3
0 L2/3

≲ ∥U∥4/3F τ
−4/3
0 L2/3

≲ K4/3λ−4/3τ
−4/3
0 L2/3

=

(
LK2

λ2τ20

)2/3

Furthermore,∣∣∣NU (U ;X, Ỹ )−NŨ (U ;X, Ỹ )
∣∣∣ =∥∥∥Ỹ /2L ·

(
1
(
X⊤UxL

)
− 1

(
X⊤ŨxL

))
⊙
(
X⊤UxL

)∥∥∥
≤ 1

2L

∑
i∈[2L]

∣∣∣[Ỹ ]i

∣∣∣ ∣∣∣1 ([X⊤]iUxL

)
− 1

(
[X⊤]iŨxL

)∣∣∣ ∣∣[X⊤]iUxL

∣∣
≤ 1

2L

∥∥∥1
(
X⊤UxL

)
− 1

(
X⊤ŨxL

)∥∥∥
1
max

i

∣∣[X⊤U ]ixL

∣∣
≲K4/3λ−4/3τ

−4/3
0 L−1/3K(u+m)2

λ

≲(u+m)2K7/3λ−7/3τ
−4/3
0 L−1/3

Corollary 2. Let X1 ∈ Rd×L, xL,1 ∈ Rd be a fixed example, with Assumption 2 and Proposition
4, ∥xL,1∥2 ≤ u + γ0 and ∥X1∥F ≤

√
L(u + γ0). Then, w.h.p over the randomness of W̃ and Y ,

∀W ∈ Rd×d, we have that

∥1(X⊤
1 WxL,1)− 1(X⊤

1 W̃xL,1)∥1 ≲ K4/3λ−4/3τ
−4/3
0 L2/3 ≜ ϵW (10)

Furthermore,∣∣NW (W ;X1, Y )−N
W̃
(W ;X1, Y )

∣∣ ≲ (u+ γ0)
2K7/3λ−7/3τ

−4/3
0 L−1/3

Note. In ϵW , K is the Lipschitz constant, λ denotes the L2 regularization coefficient, τ0 denotes the
variance of initialization parameter and L is prompt length. When with choices in Assumption 1,
we have ϵW = (Poly(d))2/3.
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Corollary 3. Let X2 ∈ Rd×L, xL,2 ∈ Rd be a fixed example, with Assumption 2 and Proposition
4, ∥xL,2∥2 ≤ u + r and ∥X2∥F ≤

√
L(u + r). Then, w.h.p over the randomness of Ṽ and Y ,

∀V ∈ Rd×d, we have that

∥1(X⊤
2 V xL,2)− 1(X⊤

2 Ṽ xL,2)∥1 ≲ K4/3λ−4/3τ
−4/3
0 L2/3 ≜ ϵV

Furthermore, ∣∣NV (V ;X2, Y )−NṼ (V ;X2, Y )
∣∣ ≲ (u+ r)2K7/3λ−7/3τ

−4/3
0 L−1/3

Lemma 7. Under the same setting as Lemma 6, we have∥∥1
(
X⊤Ut1+t2xL

)
− 1

(
X⊤Ut1xL

)∥∥
1
≲ ϵU + L

√
η2
η1

+
√
L log d

where ϵU = K4/3λ−4/3τ
−4/3
0 L2/3. Furthermore,∣∣∣NUt1+t2

(U t1+t2 ;X, Ỹ )−NUt1
(U t1+t2 ;X, Ỹ )

∣∣∣ ≲ (ϵU + L

√
η2
η1

+
√

L log d

)
K(u+m)2

Lλ

and ∣∣NUt1+t2
(Ut1+t2 ;X,Y )−NUt1

(U t1+t2 ;X,Y )
∣∣

≲
ϵ(u+ r)4

√
d

λL
+

(u+ r)4
√

Ldη2/η1
λ

+ (u+ r)4
√

d log d

≲

(
ϵ+

√
η2
η1

L+
√
L log d

)
(u+ r)4

√
d

λL

Proof. To analysis that how the sign of Ut1+t2 correlates to Ut1 ,∥∥1
(
X⊤Ut1+t2xL

)
− 1

(
X⊤Ut1xL

)∥∥
1

=
∥∥∥1
(
X⊤Ut1+t2xL

)
− 1

(
X⊤Ũt1+t2xL

)
+ 1

(
X⊤Ũt1+t2xL

)
− 1

(
X⊤Ũt1xL

)
+ 1

(
X⊤Ũt1xL

)
− 1

(
X⊤Ut1xL

)∥∥∥
1

≤
∥∥∥1
(
X⊤Ut1+t2xL

)
− 1

(
X⊤Ũt1+t2xL

)∥∥∥
1︸ ︷︷ ︸

A

+
∥∥∥1
(
X⊤Ũt1+t2xL

)
− 1

(
X⊤Ũt1xL

)∥∥∥
1︸ ︷︷ ︸

B

+
∥∥∥1
(
X⊤Ũt1xL

)
− 1

(
X⊤Ut1xL

)∥∥∥
1︸ ︷︷ ︸

C

For term A and term C, With Lemma 6, we have

∥1(X⊤Ut1+t2xL)− 1(X⊤Ũt1+t2xL)∥1 ≲ K4/3λ−4/3τ
−4/3
0 L2/3 ≜ ϵU (11)

∥1(X⊤Ut1xL)− 1(X⊤Ũt1xL)∥1 ≲ K4/3λ−4/3τ
−4/3
0 L2/3 ≜ ϵU (12)

For term B, we first analysis the relationship between Ũt1+t2 and Ũt1 . With Proposition 5, for τ ≤ t,
we have

Ṽt = (1− ηλ)t−τ Ṽτ −
t−τ∑
t′=1

η(1− ηλ)t−τ−t′ζτ+t′−1

= (1− ηλ)t−τ Ṽτ + Ξt,τ

where Ξt,τ = −
∑t−τ

t′=1 η(1 − ηλ)t−τ−t′ζτ+t′−1. Assume that there are t1 iterations in the first
stage, let τ = t1, t = t1 + t2, and t− τ = t2, then

Ũt1+t2 = (1− η2λ)
t2Ũt1 −

t2∑
t′=1

η2(1− η2λ)
t2−t′ζt1+t′−1

= (1− η2λ)
t2Ũt1 + Ξt1+t2,t1 (13)
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where Ξt1+t2,t1 = −
∑t2

t′=1 η2(1− η2λ)
t2−t′ζt1+t′−1.

Consider [Ξt1+t2,t1 ]ij ∼ N (0, σ2
t1+t2,t1), for 0 < 1 − η2λ < 1, with a technical assumption that

τ2ζ =
τ2
0−(1−η1λ)

2τ2
0

η2
1

,

σ2
t1+t2,t1 =

t2∑
t′=1

η22(1− η2λ)
2(t2−t′)τ2ζ = η22τ

2
ζ

1− (1− η2λ)
2t2−1

η2λ

≤ η22τ
2
ζ

1

η2λ
= η22

τ20 − (1− η1λ)
2τ20

η21

1

η2λ
≤ η22

2η1λτ
2
0

η21

1

η2λ

=
2η2τ

2
0

η1
Since η2 ≪ η1, then σt1+t2,t1 ≪ τ0. This implies that additional noise in the second stage is small.

With Equation 13, we have

X⊤Ũt1+t2xL = (1− η2λ)
t2X⊤Ũt1xL +X⊤Ξt1+t2,t1xL

since [Ũt1 ]ij ∼ N (0, τ20 ) and [Ξt1+t2,t1 ]i ∼ N (0, σ2
t1+t2,t1),

Var
(
X⊤Ũt1+t2xL

)
≳ τ20 ∥X∥2F ∥xL∥22

Var
(
X⊤Ξt1+t2,t1xL

)
≲

η2τ
2
0

η1
∥X∥2F ∥xL∥22

then naturally we have

Pr
[
1
(
X⊤Ũt1+t2xL

)
̸= 1

(
X⊤Ξt1,t1+t2xL

)]
≲

√
η2τ20 ∥X∥2F ∥x∥2/η1

τ20 ∥X∥2F ∥x∥2
=

√
η2
η1

(14)

and

E
[∣∣∣1([X⊤]iŨt1+t2xL

)
− 1

(
[X⊤]iŨt1xL

)∣∣∣]
=Pr

[
1
(
[X⊤]iŨt1+t2xL

)
̸= 1

(
[X⊤]iŨt1xL

)]
≲
√

η2
η1

Using Hoeffding’s inequality in Lemma 1, with probability at least 1− 1
d ,∥∥∥1

(
X⊤Ũt1+t2xL

)
− 1

(
X⊤Ũt1xL

)∥∥∥
1
≲ 2L

√
η2
η1

+
√
4L log d

≲ L

√
η2
η1

+
√

L log d (15)

Combine term A,B,C, Finally, with Equation 11, 12 and 15, we have∥∥1
(
X⊤Ut1+t2xL

)
− 1

(
X⊤Ut1xL

)∥∥
1
≲ ϵU + L

√
η2
η1

+
√
L log d

where ϵU = K4/3λ−4/3τ
−4/3
0 L2/3.

Furthermore, with Proposition 4,∣∣∣NUt1+t2
(U t1+t2 ;X, Ỹ )−NUt1

(U t1+t2 ;X, Ỹ )
∣∣∣

=
1

L

∑
i∈[L]

|[Y ]i|
∣∣1 ([X⊤]iUt1+t2xL

)
− 1

(
[X⊤]iUt1xL

)∣∣ ∣∣[X⊤]iU t1+t2xL

∣∣
≤ 1

L

∥∥1
(
X⊤Ut1+t2xL

)
− 1

(
X⊤Ut1xL

)∥∥
1
max

i

∣∣[X⊤U t1+t2 ]ixL

∣∣
≲

(
ϵU + L

√
η2
η1

+
√
L log d

)
K(u+m)2

Lλ
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Corollary 4. Let X1 ∈ Rd×L, xL,1 ∈ Rd be a fixed example, with Assumption 2 and Proposition
4, ∥xL,1∥2 ≤ u + γ0 and ∥X1∥F ≤

√
L(u + γ0). Then, w.h.p over the randomness of W̃ and Y ,

∀W ∈ Rd×d, we have that∥∥1
(
X⊤

1 Wt1+t2xL,1

)
− 1

(
X⊤

1 Wt1xL,1

)∥∥
1
≲ ϵW + L

√
η2
η1

+
√

L log d

where ϵW = K4/3λ−4/3τ
−4/3
0 L2/3. Furthermore,∣∣NWt1+t2

(W t1+t2 ;X1, Y )−NWt1
(W t1+t2 ;X1, Y )

∣∣ ≲ (ϵW + L

√
η2
η1

+
√

L log d

)
K(u+ γ0)

2

Lλ

Corollary 5. Let X2 ∈ Rd×L, xL,2 ∈ Rd be a fixed example, with Assumption 2 and Proposition
4, ∥xL,2∥2 ≤ u + r and ∥X2∥F ≤

√
L(u + r). Then, w.h.p over the randomness of Ṽ and Y ,

∀V ∈ Rd×d, we have that∥∥1
(
X⊤

2 Vt1+t2xL,2

)
− 1

(
X⊤

2 Vt1xL,2

)∥∥
1
≲ ϵV + L

√
η2
η1

+
√

L log d

where ϵV = K4/3λ−4/3τ
−4/3
0 L2/3. Furthermore,∣∣NVt1+t2

(V t1+t2 ;X2, Y )−NVt1
(V t1+t2 ;X2, Y )

∣∣ ≲ (ϵV + L

√
η2
η1

+
√

L log d

)
K(u+ r)2

Lλ

Proposition 6. Under the same setting as Lemma 6, we have w.h.p over the randomness of Ũ ,∣∣∣NŨ (Ũ ;X,Y )
∣∣∣ ≲ τ0(u+m)2

√
d log d

L

Proof. We have

NŨ (Ũ ;X, Ỹ ) =
1

2L

∑
i∈[2L]

[Ỹ ]i

[
[X⊤]iŨxL

]
+

With Lemma 3, we have ∥Ũ∥ ≲ τ0
√
d. Then∥∥∥∥[[X⊤]iŨxL

]
+

∥∥∥∥
2

≤
∥∥∥[X⊤]iŨxL

∥∥∥
2
≲ τ0

√
d∥x∥22

Using Hoeffding’s inequality in Lemma 1, since [Y ]i ∈ {−1, 1}, mi =

− 1
2L

∥∥∥∥[[X⊤]iŨxL

]
+

∥∥∥∥
2

,Mi =
1
2L

∥∥∥∥[[X⊤]iŨxL

]
+

∥∥∥∥
2

, then we have

Pr

∣∣∣∣∣∣ 12L
∑

i∈[2L]

[Y ]i

[
[X⊤]iŨxL

]
+

∣∣∣∣∣∣ ≥ t

 ≤ 2 exp

− 2t2∑
i∈[2L]

(
2 · 1

2L

∥∥∥∥[[X⊤]iŨxL

]
+

∥∥∥∥
2

)2



≤ 2 exp

− 2t2

1
L2

∑
i∈[2L]

∥∥∥∥[[X⊤]iŨxL

]
+

∥∥∥∥2
2


≲ 2 exp

(
− t2

1
L (τ0

√
d∥x∥2)2

)
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Let δ = 2 exp
(
− t2

1
L (τ0

√
d∥x∥2)2

)
, then with δ = 1

d

t =

√
1

L
(τ0

√
d∥x∥2)2 log 2

δ

≲ τ0
√
d∥x∥2

√
1

L
log

2

δ

= τ0∥x∥2
√

d log d

L
Thus, with 1− δ prob, we get∣∣∣NŨ (Ũ ;X,Y )

∣∣∣ =
∣∣∣∣∣∣ 12L

∑
i∈[2L]

[Y ]i

[
[X⊤]iŨxL

]
+

∣∣∣∣∣∣ ≲ τ0∥x∥2
√

d log d

L

Since ∥x∥2 ≤ u+m, then ∣∣∣NŨ (Ũ ;X,Y )
∣∣∣ ≲ τ0(u+m)2

√
d log d

L

Proposition 7. Under the same setting as Lemma 6, with Proposition 6, we have w.h.p over the
randomness of Ũ , ∀U ∈ R2d×2d,∣∣∣NU (Ũ ;X, Ỹ )−NŨ (Ũ ;X, Ỹ )

∣∣∣ ≲ (u+m)2K7/3λ−7/3τ
−4/3
0 L−1/3

and ∣∣∣NU (Ũ ;X, Ỹ )
∣∣∣ ≲ (u+m)2K7/3λ−7/3τ

−4/3
0 L−1/3 + τ0(u+m)2

√
d log d

L

Proof. For every i, 1([X⊤U ]ixL) ̸= 1([X⊤Ũ ]ixL), it holds that |[X⊤Ũ ]ixL| ≤ |[X⊤U ]ixL|. Then∣∣∣NU (Ũ ;X, Ỹ )−NŨ (Ũ ;X, Ỹ )
∣∣∣ = ∥∥∥Ỹ /2L ·

(
1
(
X⊤UxL

)
− 1

(
X⊤ŨxL

))
⊙
(
X⊤ŨxL

)∥∥∥
≤ 1

2L

∑
i∈[2L]

∣∣∣[Ỹ ]i

∣∣∣ ∣∣∣1 ([X⊤]iUxL

)
− 1

(
[X⊤]iŨxL

)∣∣∣ ∣∣∣[X⊤]iŨxL

∣∣∣
≤ 1

2L

∥∥∥1
(
X⊤UxL

)
− 1

(
X⊤ŨxL

)∥∥∥
1
max

i

∣∣[X⊤U ]ixL

∣∣
≲ K4/3λ−4/3τ

−4/3
0 L−1/3K(u+m)2

λ

≲ (u+m)2K7/3λ−7/3τ
−4/3
0 L−1/3

With Proposition 6, using triangle inequality, we have∣∣∣NU (Ũ ;X, Ỹ )
∣∣∣ ≲ (u+m)2K7/3λ−7/3τ

−4/3
0 L−1/3 + τ0(u+m)2

√
d log d

L

= K(u+m)2λ−1ϵU + τ0(u+m)2
√

d log d

L

Corollary 6. Let X1 ∈ Rd×L, xL,1 ∈ Rd be a fixed example, with Assumption 2 and Proposition
7, ∥xL,1∥2 ≤ u + γ0 and ∥X1∥F ≤

√
L(u + γ0). Then, w.h.p over the randomness of W̃ and Y ,

∀W ∈ Rd×d,∣∣∣NW (W̃ ;X1, Y )
∣∣∣ ≲ (u+ γ0)

2K7/3λ−7/3τ
−4/3
0 L−1/3 + τ0(u+ γ0)

2

√
d log d

L

With choice of small u, r, τ0 = O
(

1√
log d

)
, 1
λ = O

(√
log d

)
and L = Θ(Poly(d)), then∣∣∣NW (W̃ ;X1, Y )

∣∣∣ ≲ τ0(u+ γ0)
2

√
d log d

L
≜ ϵW,1 (16)
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Note. In ϵW,1, τ0 denotes the variance of initialization parameter, L is prompt length and d represents

the input dimension. When with choices in Assumption 1, we have ϵW,1 = Θ
(

1
Poly(d)

)
.

Corollary 7. Let X2 ∈ Rd×L, xL,2 ∈ Rd be a fixed example, with Assumption 2 and Proposition
7, ∥xL,2∥2 ≤ u + r and ∥X2∥F ≤

√
L(u + r). Then, w.h.p over the randomness of Ṽ and Y ,

∀V ∈ Rd×d,∣∣∣NV (Ṽ ;X2, Y )
∣∣∣ ≲ (u+ r)2K7/3λ−7/3τ

−4/3
0 L−1/3 + τ0(u+ r)2

√
d log d

L

With choice of small u, r, τ0 = O
(

1√
log d

)
, 1
λ = O

(√
log d

)
and L = Θ(Poly(d)), then

∣∣∣NV (Ṽ ;X1, Y )
∣∣∣ ≲ τ0(u+ r)2

√
d log d

L
≜ ϵV,1 (17)

Note. In ϵV,1, τ0 denotes the variance of initialization parameter, L is prompt length and d represents

the input dimension. When with choices in Assumption 1, we have ϵV,1 = Θ
(

1
Poly(d)

)
.
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F PROOF FOR THE ELEMENTARY STAGE

F.1 PROOF OF THEOREM 1

Theorem. In the elementary stage with η1 = Θ(1) and t ≤ t1 ≜ 1
η1λ

where λ denotes the L2

regularization coefficient. With Assumption 1, initial weights V0 −→ 0d×d and N training prompts,
it holds that

(a.1) For the model parameter V of network g, through gradient descent optimization from iteration
0 to t1, ∥V t1∥F satisfies

∥V t1∥F = Θ

(
1

Poly(d)

)
.

(a.2) With random and small noise weight, the training loss of hard-to-fit component Q over signal
weight (Definition in Equation 6) at iteration t1 satisfies

K2
t1

(
V t1

)
≳ log 2− 1√

log d
−
√

log d

N
.

Namely, the hard-to-fit component Q is not efficiently learned by g within t1 iterations.

Remark 6 (Proof Sketch). We summarize the proof sketch and main techniques in Proof of The-
orem 1. At the starting point, using signal-noise decomposition technique, we assume that the
approximate output g̃ uses noise part to compute activation and signal part as the weight to
compute attention score. We show that g̃ is very close to g primarily through Corollary 3 and
7. Relevant corollaries are crucial for describing the differences in activation and network out-
put under various activation and weight schemes. In the following analysis, we turn to focus on
the approximation g̃. As a key step, we focus on the network g’s ability to distinguish between
positive and negative class samples by examining the differences in their respective outputs, i.e.
|g̃t(X2, z − ζ) + g̃t(X2, z + ζ)− 2g̃t(X2, z)|. Decompose it into two parts Φ and Ψ, where each
part separately contains z and ζ. Then, give the upper bound of Φ and Ψ by applying concentra-
tion inequalities like Chernoff, Bernstein and complex probability analysis like Gaussian integrals.
Combining the above, we show that the prediction difference of the network for positive and negative
samples is upper bounded by a small value, 1/

√
log d. Consequently, we derive a straightforward

lower bound 2− 1/
√
log d, demonstrating that the network g cannot simultaneously make accurate

predictions for both positive and negative samples.

From the network output, we further derive the changes in weight and loss. For (a.1) and (a.2): At
an initial step, to compute the high-probability proportions for query xL,2 = z′ = {z−ζ, z+ζ} and
xL,2 = z, we express the training loss in terms of the network outputs for positive and negative class
samples based on the proportion, dividing it into two parts with terms gt1(X2, z

′) and gt1(X2, z)
respectively. As an essential step, by leveraging the convexity and Lipschitz properties of the logistic
loss, we derive a lower bound for the training loss in (a.2). Using Taylor expansion techniques
in combination with this lower bound, we further deduce a corollary of Theorem 1, which states:
|gt1(X2, z)|, |gt1(X2, z−ζ)|, |gt1(X2, z+ζ)| ≲ 1

(log d)1/4
. By utilizing the expression of normalized

ReLU self-attention, this corollary can be further extended to give (a.1).

Proof. Using noise part to compute activation and signal part as weight.

g̃t(X2) = NṼt
(V t;X2, Y )

= Y
(

1
(
X⊤

2 ṼtxL,2

)
⊙
(
X⊤

2 V txL,2

))
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Using triangle inequality, with Corollary 3 and 7,

|gt(X2)− g̃t(X2)|

=
∣∣∣NVt(Vt;X2, Y )−NṼt

(V t;X2, Y )
∣∣∣

=
∣∣∣NVt

(V t;X2, Y ) +NVt
(Ṽt;X2, Y )−NṼt

(V t;X2, Y )
∣∣∣

≤
∣∣∣NVt

(V t;X2, Y )−NṼt
(V t;X2, Y )

∣∣∣+ ∣∣∣NVt
(Ṽt;X2, Y )

∣∣∣
≲(u+ r)2K7/3λ−7/3τ

−4/3
0 L−1/3 + (u+ r)2K7/3λ−7/3τ

−4/3
0 L−1/3 + τ0(u+ r)2

√
d log d

L

With choice of small u, r, τ0 = O
(

1√
log d

)
, 1
λ = O

(√
log d

)
and L = Θ(Poly(d)),

|gt(X2)− g̃t(X2)| ≲
(
√
log d)11/3

(Poly(d))1/3
+

1√
log d

√
d log d

Poly(d)

≲
1

Poly(d)

In the following, we focus on g̃t(X2).

Definition 1. For any time t, input X ∈ Rd×L with query xL ∈ Rd, define ϵX,xL

t ≜ {i ∈ [L] :

[X⊤]iṼtxL ≥ 0} and ϵX,xL

t ≜ {i ∈ [L] : [X⊤]iṼtxL < 0}. Note that X aligns with X2 and xL

aligns with xL,2. Then 1(ϵ) ⊂ {0, 1}L. Naturally, we have

1(ϵX,xL

t ) = 1(X⊤ṼtxL).

Let Qt = diag(Y ⊤)X⊤
2 V t, then

g̃t(X2) = NṼt
(V t;X2, Y )

= Y/L
(

1
(
X⊤

2 ṼtxL,2

)
⊙
(
X⊤

2 V txL,2

))
= 1/L · 1

(
X⊤

2 ṼtxL,2

)⊤ (
diag(Y ⊤)X⊤

2 V t

)
xL,2

= 1/L · 1
(
X⊤

2 ṼtxL,2

)⊤
QtxL,2

To simplify, we use X that represents X2 and xL represents xL,2, in this Lemma, if there are
no confusion.

Define g̃t(X, z− ζ) as sequence X with xL = z− ζ, similarly for g̃t(X, z+ ζ) and g̃t(X, z). Then
with Definition 1,

|g̃t(X, z − ζ) + g̃t(X, z + ζ)− 2g̃t(X, z)|

=1/L ·
∣∣∣∣1(ϵX,z−ζ

t

)⊤
Qt(z − ζ) + 1

(
ϵX,z+ζ
t

)⊤
Qt(z + ζ)− 21

(
ϵX,z
t

)⊤
Qtz

∣∣∣∣
≤1/L ·

∣∣∣∣(1
(
ϵX,z−ζ
t

)
+ 1

(
ϵX,z+ζ
t

)
− 21

(
ϵX,z
t

))⊤
Qtz

∣∣∣∣︸ ︷︷ ︸
Φ

+1/L ·
∣∣∣∣(1

(
ϵX,z+ζ
t

)
− 1

(
ϵX,z−ζ
t

))⊤
Qtζ

∣∣∣∣︸ ︷︷ ︸
Ψ

Deal with term Ψ. First, consider the second term
∣∣∣∣(1

(
ϵX,z+ζ
t

)
− 1

(
ϵX,z−ζ
t

))⊤
Qtζ

∣∣∣∣. With

Assumption 2 that ∥ζ∥2 = r,∣∣∣∣(1
(
ϵX,z+ζ
t

)
− 1

(
ϵX,z−ζ
t

))⊤
Qtζ

∣∣∣∣ ≤ ∥∥∥∥(1
(
ϵX,z+ζ
t

)
− 1

(
ϵX,z−ζ
t

))⊤
Qt

∥∥∥∥
2

∥ζ∥2

≤ r
∣∣∣ϵX,z+ζ

t ⊕ ϵX,z−ζ
t

∣∣∣ ·max ∥[Qt]i∥2
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For ϵX,z+ζ
t ⊕ ϵX,z−ζ

t in term Ψ. For i ∈ ϵX,z+ζ
t ⊕ ϵX,z−ζ

t , with [X⊤]iṼt(z + ζ) ≥ 0 and
[X⊤]iṼt(z − ζ) ≤ 0, then

−[X⊤]iṼtζ ≤ [X⊤]iṼtz ≤ [X⊤]iṼtζ∣∣∣[X⊤]iṼtz
∣∣∣ ≤ ∣∣∣[X⊤]iṼtζ

∣∣∣
Using chernoff bound for Gaussian variable in Lemma 5, let δ = 2 exp

(
−t2

2σ2

)
= 1

d , then t =

σ
√
2 log 2

δ = σ
√
2 log 2d. Substitute Ṽt, given that it is a Gaussian vector with each component

[Ṽt]ij ∼ N (0, τ20 ), we have w.h.p 1− δ∣∣∣[X⊤]iṼtζ
∣∣∣ ≤ r(u+ r)|Ṽt| ≤ τ0r(u+ r)

√
log d∣∣∣[X⊤]iṼtz

∣∣∣ ≤ ∣∣∣[X⊤]iṼtζ
∣∣∣ ≤ τ0r(u+ r)

√
log d

i.e., Pr
(∣∣∣[X⊤]iṼtz

∣∣∣ ≤ τ0r(u+ r)
√
log d

)
≳ 1− 1

d .

In the following, we try to give the upper bound of Pr
(∣∣∣[X⊤]iṼtz

∣∣∣ ≤ τ0r(u+ r)
√
log d

)
. Define

the standardized variable [X⊤Ṽt]iz
τ0u(u+r) ∼ N (0, 1). We have Pr(|X| ≤ a) = 2Φ(a) − 1 where Φ is

CDF. of standard Gaussian random variable. Substituting [X⊤Ṽt]iz
τ0u(u+r) and a = r

√
log d
u , then with large

d (i.e. large a),

Pr
(
|[X⊤Ṽt]iz| ≤ τ0r(u+ r)

√
log d

)
= Pr

(∣∣∣∣∣ [X⊤Ṽt]iz

τ0u(u+ r)

∣∣∣∣∣ ≤ τ0r(u+ r)
√
log d

τ0u(u+ r)

)

= 2Φ

(
r
√
log d

u

)
− 1

≈
2 · r

√
log d
u√

2π
≲

r
√
log d

u

i.e., Pr
(∣∣∣[X⊤]iṼtz

∣∣∣ ≤ τ0r(u+ r)
√
log d

)
≲ r

√
log d
u .

With Bernstein inequality in Lemma 2, define new random variable Ri = I(|[X⊤Ṽt]iz| ≤ τ0r(u+

r)
√
log d) where I(·) is the indicator function, E [Ri] = Pr(|[X⊤Ṽt]iz| ≤ τ0r(u + r)

√
log d) ≲

r
√
log d
u . Then w.h.p. 1− δ = 1− 1

d we have

1

L

L∑
i=1

Ri − E [Ri] ≤
√

2σ2 log(1/δ)

L
+

2c log(1/δ)

3L

L∑
i=1

Ri ≤ L

√
2σ2 log(1/δ)

L
+ L

2c log(1/δ)

3L
+

rL
√
log d

u

≲
√
L log d+ log d+

rL
√
log d

u

i.e. |ϵX,z−ζ
t ⊕ ϵX,z+ζ

t | ≲
√
L log d+ log d+ rL

√
log d
u . For sufficiently large L,

|ϵX,z−ζ
t ⊕ ϵX,z+ζ

t | ≲ rL
√
log d

u
(18)
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For [Qt]i in term Ψ. For Qt = diag(Y ⊤)X⊤V t, using Cauchy-Schwarz inequality, Assumption
2 and Proposition 4,

∥[Qt]i∥2 =
∥∥[Y ⊤]i[X

⊤V t]i
∥∥
2
=

∥∥∥∥∥∥yi
d∑

j=1

[X⊤]ij [V t]j

∥∥∥∥∥∥
2

≤ ∥[X]i∥2∥V t∥F

≲
K(u+ r)

λ
(19)

Combine Equation 18 and 19. For term B, we have∣∣∣∣(1
(
ϵX,z+ζ
t

)
− 1

(
ϵX,z−ζ
t

))⊤
Qtζ

∣∣∣∣ ≤ ∥∥∥∥(1
(
ϵX,z+ζ
t

)
− 1

(
ϵX,z−ζ
t

))⊤
Qt

∥∥∥∥
2

∥ζ∥2

≤ r
∣∣∣ϵX,z+ζ

t ⊕ ϵX,z−ζ
t

∣∣∣ ·max ∥[Qt]i∥2

≲
rL

√
log d

u
· K(u+ r)

λ

≲
r(u+ r)KL

√
log d

uλ

Since then, we have completed term Ψ in Equation.

Deal with term Φ. Consider term Φ =

∣∣∣∣(1
(
ϵX,z−ζ
t

)
+ 1

(
ϵX,z+ζ
t

)
− 21

(
ϵX,z
t

))⊤
Qtz

∣∣∣∣ in this

part. Let a =
(

1
(
ϵX,z−ζ
t

)
+ 1

(
ϵX,z+ζ
t

)
− 21

(
ϵX,z
t

))⊤
, then(

1
(
ϵX,z−ζ
t

)
+ 1

(
ϵX,z+ζ
t

)
− 21

(
ϵX,z
t

))⊤
Qtz = a⊤Qtz

According to the definition of Qt and V t, we have

a⊤Qt = a⊤diag(Y ⊤)X⊤V t

= a⊤diag(Y ⊤)X⊤
t∑

τ=1

η1 (1− η1λ)
t−τ ∇Vτ−1L̂(Uτ−1)

= a⊤
t∑

τ=1

η1 (1− η1λ)
t−τ

∆Qτ−1

where ∆Qτ = diag(Y ⊤)X⊤∇Vτ L̂(Uτ ). Then∣∣∣∣(1
(
ϵX,z−ζ
t

)
+ 1

(
ϵX,z+ζ
t

)
− 21

(
ϵX,z
t

))⊤
Qtz

∣∣∣∣
≤η1u

t∑
τ=1

∥∥∥∥(1
(
ϵX,z−ζ
t

)
+ 1

(
ϵX,z+ζ
t

)
− 21

(
ϵX,z
t

))⊤
∆Qτ−1

∥∥∥∥
2

For ∆Qτ in term Φ.
Definition 2. For any time t, input X ∈ Rd×L with query xL ∈ Rd, define GX,xL

τ ≜ {i ∈ [L] :

[X⊤]iVτxL ≥ 0} and GX,xL

τ ≜ {i ∈ [L] : [X⊤]iVτxL < 0}. Similar to Definition 1, note that X
aligns with X2 and xL aligns with xL,2.

Suppose i, j satisfy that, for input xL = z − ζ and xL = z + ζ have the same activation pattern,
then with Definition 2 we have

i, j ∈ GX,z−ζ
τ ∩ GX,z+ζ

τ or i, j ∈ GX,z−ζ

τ ∩ GX,z+ζ

τ
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Consider the relationship between [∆Qτ ]i and [∆Qτ ]j for the above i, j. We have ∆Qτ =

diag(Y ⊤)X⊤∇Vτ L̂(Uτ ), then

[∆Qτ ]i =
[
diag(Y ⊤)

]
i

[
X⊤∇Vτ L̂(Uτ )

]
i
= yi

[
X⊤∇Vτ L̂(Uτ )

]
i

[∆Qτ ]j =
[
diag(Y ⊤)

]
j

[
X⊤∇Vτ L̂(Uτ )

]
j
= yj

[
X⊤∇Vτ

L̂(Uτ )
]
j

With Proposition 2, then

[∆Qτ ]i = yi[X
⊤∇Vτ L̂(Uτ )]i = yi[X

⊤]iÊ
[
1/2L · l′(f(Uτ ;X,Y ))1([X⊤]iUτxL)[X]ix

⊤
L

]
[∆Qτ ]j = yj [X

⊤∇Vτ L̂(Uτ )]j = yj [X
⊤]jÊ

[
1/2L · l′(f(Uτ ;X,Y ))1([X⊤]jUτxL)[X]jx

⊤
L

]
Thus for xL ∈ {0, z, z − ζ, z + ζ}. If xL = 0, [∆Qτ ]i = [∆Qτ ]j . For all xL ∈ {z, z − ζ, z + ζ},
i, j ∈ GX,z−ζ

τ ∩ GX,z+ζ
τ , and then i, j ∈ GX,z

τ . Thus,

1([X⊤]iVτxL) = 1([X⊤]jVτxL) = 1

For fixed X , [∇Vτ
L̂(Uτ )]i = [∇Vτ

L̂(Uτ )]j . If [X]i = [X]j , then yi = yj ,

[∆Qτ ]i = [∆Qτ ]j

If [X]i, [X]j = z − ζ, z + ζ, then yi = yj ,

[∆Qτ ]i = (z − ζ)C, [∆Qτ ]j = (z + ζ)C

[∆Qτ ]i = (z + ζ)C, [∆Qτ ]j = (z − ζ)C

[∆Qτ ]i − [∆Qτ ]j = ±2ζC

where C = Ê
[
l′(f(Uτ ;X,Y ))1([X⊤]iUτxL)(z ± ζ)x⊤

L

]
. If [X2]i, [X2]j = z ± ζ, z, then yi =

−yj ,

[∆Qτ ]i = (z ± ζ)C, [∆Qτ ]j = zC

[∆Qτ ]i = zC, [∆Qτ ]j = (z ± ζ)C

[∆Qτ ]i − [∆Qτ ]j = (−2z ± ζ)C,±ζC

where C = Ê
[
l′(f(Uτ ;X,Y ))1([X⊤]iUτxL)(z(±ζ))x⊤

L

]
.

For
(

1
(
ϵX,z−ζ
t

)
+ 1

(
ϵX,z+ζ
t

)
− 21

(
ϵX,z
t

))⊤
∆Qτ in term Φ. With Definition 1, we have

1
(
ϵX,z−ζ
t

)
+ 1

(
ϵX,z+ζ
t

)
− 21

(
ϵX,z
t

)
=1
(
ϵX,z−ζ
t ∩ ϵX,z

t

)
+ 1

(
ϵX,z−ζ
t \ ϵX,z

t

)
+ 1

(
ϵX,z+ζ
t ∩ ϵX,z

t

)
+ 1

(
ϵX,z+ζ
t \ ϵX,z

t

)
− 1

(
ϵX,z
t ∩ ϵX,z−ζ

t

)
− 1

(
ϵX,z
t \ ϵX,z−ζ

t

)
− 1

(
ϵX,z
t ∩ ϵX,z+ζ

t

)
− 1

(
ϵX,z
t \ ϵX,z+ζ

t

)
=1
(
ϵX,z−ζ
t \ ϵX,z

t

)
+ 1

(
ϵX,z+ζ
t \ ϵX,z

t

)
− 1

(
ϵX,z
t \ ϵX,z−ζ

t

)
− 1

(
ϵX,z
t \ ϵX,z+ζ

t

)
= 1

(
ϵX,z+ζ
t \ ϵX,z

t

)
− 1

(
ϵX,z
t \ ϵX,z−ζ

t

)
︸ ︷︷ ︸

Part I

+ 1
(
ϵX,z−ζ
t \ ϵX,z

t

)
− 1

(
ϵX,z
t \ ϵX,z+ζ

t

)
︸ ︷︷ ︸

Part II

Observe that Part I and Part II are similar, and we deal with Part I first. Let A = ϵX,z+ζ
t \ ϵX,z

t and
B = ϵX,z

t \ ϵX,z−ζ
t . Similar to Definition 1, we give the following definition to divide sets A and B,

based on the above high probability results that is
∣∣∣[X⊤]iṼtz

∣∣∣ ≲ τ0r(u+ r)
√
log d.

Definition 3. For any time τ , input X ∈ Rd×L with query xL = z ∈ Rd, define F+
τ ≜ {i ∈

[L] : [X⊤]iṼτz ≳ τ0r(u + r)
√
log d}, F−

τ ≜ {i ∈ [L] : [X⊤]iṼτz ≲ −τ0r(u + r)
√
log d} and

Fc
τ ≜ {i ∈ [L] :

∣∣∣[X⊤]iṼτz
∣∣∣ ≲ τ0r(u+ r)

√
log d}. Similar to Definition 1, note that X aligns with

X2.
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With Definition 3,∥∥∥∥(1
(
ϵX,z+ζ
t \ ϵX,z

t

)
− 1

(
ϵX,z
t \ ϵX,z−ζ

t

))⊤
∆Qτ

∥∥∥∥
2

=

∥∥∥∥∥∑
i∈A

[∆Qτ ]i −
∑
i∈B

[∆Qτ ]i

∥∥∥∥∥
2

≤

∥∥∥∥∥∥
∑

i∈A∩F+
τ

[∆Qτ ]i −
∑

i∈B∩F+
τ

[∆Qτ ]i

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

i∈A∩F−
τ

[∆Qτ ]i −
∑

i∈B∩F−
τ

[∆Qτ ]i

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

i∈A∩Fc
τ

[∆Qτ ]i −
∑

i∈B∩Fc
τ

[∆Qτ ]i

∥∥∥∥∥∥
2

We have introduced the relationship between [∆Qτ ]i and [∆Qτ ]j for i, j ∈ GX,z−ζ
τ ∩ GX,z+ζ

τ . In
the following, we show that if k, l ∈ F+

τ (similar for F−
τ and Fc

τ ) then k, l ∈ GX,z−ζ
τ ∩ GX,z+ζ

τ ,
thus we have the same conclusion for [∆Qτ ]k and [∆Qτ ]l.

Suppose k, l satisfy that, when x ∈ {z − ζ, z + ζ}

[X⊤]kṼτx ≳ τ0r(u+ r)
√
log d

[X⊤]lṼτx ≳ τ0r(u+ r)
√
log d

Naturally, we have [X⊤]kṼτz ≳ τ0r(u+ r)
√
log d and [X⊤]lṼτz ≳ τ0r(u+ r)

√
log d, i.e., k, l ∈

F+
t . Then

−
∣∣[X⊤]kV τz

∣∣ ≤ [X⊤]kV τz = [X⊤]k(Vτ − Ṽτ )z ≤
∣∣[X⊤]kV τz

∣∣
and with Assumption 2 and Proposition 4,

[X⊤]kVτz ≥ [X⊤]kṼτz −
∣∣[X⊤]kV τz

∣∣
≥ τ0r(u+ r)

√
log d− u(u+ r)K

λ

≳ τ0r(u+ r)
√

log d

where the last inequality comes from 1
λ = O(

√
log d). Since {[X⊤]kVτz ≳ τ0r(u + r)

√
log d} ⊂

{[X⊤]kVτz ≥ 0} ⊂ GX,z−ζ
τ ∩ GX,z+ζ

τ , then we have k, l ∈ GX,z−ζ
τ ∩ GX,z+ζ

t . Thus, if k, l ∈
F+

τ ,F−
τ ,Fc

τ , [∆Qτ ]k and [∆Qτ ]l hold the same conclusion as [∆Qτ ]i and [∆Qτ ]j .

Therefore, with the definition of data structure, assume that the probability of [X]i = [X]j , i.e.
[∆Qτ ]i = [∆Qτ ]j , is P , then∥∥∥∥(1

(
ϵX,z+ζ
t \ ϵX,z

t

)
− 1

(
ϵX,z
t \ ϵX,z−ζ

t

))⊤
∆Qτ

∥∥∥∥
2

=

∥∥∥∥∥∑
i∈A

[∆Qτ ]i −
∑
i∈B

[∆Qτ ]i

∥∥∥∥∥
2

≤

∥∥∥∥∥∥
∑

i∈A∩F+
τ

[∆Qτ ]i −
∑

i∈B∩F+
τ

[∆Qτ ]i

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

i∈A∩F−
τ

[∆Qτ ]i −
∑

i∈B∩F−
τ

[∆Qτ ]i

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

i∈A∩Fc
τ

[∆Qτ ]i −
∑

i∈B∩Fc
τ

[∆Qτ ]i

∥∥∥∥∥∥
2

≤max ∥[∆Qτ ]i∥2
(
|A ∩ F+

τ |+ |B ∩ F+
τ |+ |A ∩ F−

τ |+ |B ∩ F−
τ |+ |A ∩ Fc

τ |+ |B ∩ Fc
τ |
)

≤(u+ r)K
(
P
∣∣|A ∩ F+

τ | − |B ∩ F+
τ |
∣∣+ P

∣∣|A ∩ F−
τ | − |B ∩ F−

τ |
∣∣+ (1− P )

(
|A ∩ F+

τ |+ |B ∩ F+
τ |
)

+ (1− P )
(
|A ∩ F−

τ |+ |B ∩ F−
τ |
)
+ |A ∩ Fc

τ |+ |B ∩ Fc
τ |
)
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For |A ∩ F+
τ |, |B ∩ F+

τ | and ||A ∩ F+
τ | − |B ∩ F+

τ ||. It is related to
[X⊤]iṼtz, [X

⊤]iṼtζ, [X
⊤]iṼτz. At time τ ≤ t, we can establish the relationship of

[X⊤]iṼτz, [X
⊤]iṼtz. With Proposition 5 and η = η1, we have

[X⊤]iṼtz = (1− η1λ)
t−τ [X⊤]iṼτz −

t−τ∑
t′=1

(1− η1λ)
t−τ−t′ [X⊤]iζτ+t′−1z

= (1− η1λ)
t−τ [X⊤]iṼτz + [X⊤]iΞt,τz

where Ξt,τ = −
∑t−τ

t′=1 η1(1 − η1λ)
t−τ−t′ζτ+t′−1. Let Y1 = [X⊤]iṼtz, Y2 = [X⊤]iṼτz, Y3 =

[X⊤]iṼtζ, Y4 = [X⊤]iΞt,τz, β = (1− η1λ)
t−τ ≲ 1, we have Y1 = Y4 + βY2.

Consider Y1, given that [Ṽτ ]ij ∼ N (0, τ20 ), then

Var([X⊤]iṼτz) = τ20 ∥z∥22
∑
j

X2
ji = τ20 ∥z∥22∥[X]i∥22

With Assumption 2, we have Y2 ∼ N (0, τ20u
2(u + r)2). Similarly, Y1 ∼ N (0, τ20u

2(u + r)2),
Y3 ∼ N (0, τ20 r

2(u+ r)2)

Consider Y4, denote its variance as σt,τ .

Var([X⊤]iṼτz) = (1− η1λ)
2(t−τ)Var([X⊤]iṼτz) + Var([X⊤]iΞt,τz)

τ20u
2(u+ r)2 = (1− η1λ)

2(t−τ)τ20u
2(u+ r)2 + σ2

t,τ

σt,τ =
√
τ20u

2(u+ r)2
(
1− (1− η1λ)2(t−τ)

)
≳ τ0u(u+ r)

√
η1λ(t− τ)

Let κ = τ0r(u + r)
√
log d, with Chernoff bound for Gaussian Variable in Lemma 5, and we have

Gaussian Integral that
∫∞
−∞ e−ax2

=
√

π
a , then

Pr(A ∩ F+
τ ) = Pr[i ∈ ϵX,z+ζ

t , i /∈ ϵx,zt , i ∈ F+
τ ]

= Pr [Y2 + Y3 ≥ 0, Y2 ≤ 0, Y1 ≥ κ]

= Pr [Y2 + Y3 ≥ 0, Y2 ≤ 0, Y4 ≥ κ− βY2]

= EY2
[Pr [Y3 ≥ −Y2 | Y2, Y2 ≤ 0, Y4 ≥ κ− βY2 | Y2]]

= EY2
[Pr [Y3 ≥ −Y2 | Y2]1(Y2 ≤ 0)Pr [Y4 ≥ κ− βY2 | Y2]]

≲
∫ 0

−∞
e
− z2

2τ2
0 r2(u+r)2 e

− (κ−βz)2

2σ2
t,τ dz ≲

∫ 0

−∞
e

(
− 1

2τ2
0 r2(u+r)2

− β2

2σ2
t,τ

)
z2

dz

≲

√
π

2
√

1
2τ2

0 r
2(u+r)2

+ β2

2σ2
t,τ

≲ τ0r(u+ r)

Pr(B ∩ F+
τ ) = Pr[i ∈ ϵzt , i /∈ ϵz−ζ

t , i ∈ F+
τ ]

= Pr [Y2 ≥ 0, Y2 − Y3 ≤ 0, Y1 ≥ κ]

= Pr [−Y2 ≥ 0,−Y2 − Y3 ≤ 0,−Y1 ≥ κ]

= EY2
[1(Y2 ≤ 0)Pr [Y3 ≥ −Y2 | Y2] Pr [Y4 ≤ −κ− βY2 | Y2]]

= EY2
[1(Y2 ≤ 0)Pr [Y3 ≥ −Y2 | Y2] Pr [Y4 ≥ κ+ βY2 | Y2]]

≲
∫ 0

−∞
e
− z2

2τ2
0 r2(u+r)2 e

− (κ+βz)2

2σ2
t,τ dz ≲

∫ 0

−∞
e

(
− 1

2τ2
0 r2(u+r)2

− β2

2σ2
t,τ

)
z2

dz

≲

√
π

2
√

1
2τ2

0 r
2(u+r)2

+ β2

2σ2
t,τ

≲ τ0r(u+ r)
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Using Bernstein inequality in Lemma 2, to bound |A ∩ F+
τ | and |B ∩ F+

τ |. Suppose Mi = 1(i ∈
ϵz+ζ
t , i /∈ ϵzt , i ∈ F+

τ ) and Ni = 1(i ∈ ϵzt , i /∈ ϵz−ζ
t , i ∈ F+

τ ).

|A ∩ F+
τ | =

L∑
i=1

Mi, |B ∩ F+
τ | =

L∑
i=1

Ni

E[|A ∩ F+
τ |] = E[Mi] = Pr(Mi) ≲ τ0r(u+ r),

E[|B ∩ F+
τ |] = E[Ni] = Pr(Ni) ≲ τ0r(u+ r)

Then with high probability at least 1− δ, and let δ = 1
d ,

L∑
i=1

Mi ≲
√

L log d+ log d+ τ0r(u+ r)L

L∑
i=1

Ni ≲
√
L log d+ log d+ τ0r(u+ r)L

Finally, for L = Θ(Poly(d)), we conclude that

|A ∩ F+
τ | ≲ τ0r(u+ r)L

|B ∩ F+
τ | ≲ τ0r(u+ r)L

Furthermore, we derive that

∣∣Pr(A ∩ F+
τ )− Pr(B ∩ F+

τ )
∣∣ = ∣∣∣Pr[i ∈ ϵz+ζ

t , i /∈ ϵzt , i ∈ F+
τ ]− Pr[i ∈ ϵzt , i /∈ ϵz−ζ

t , i ∈ F+
τ ]
∣∣∣

=EY2 [1(Y2 ≤ 0)Pr [Y3 ≥ −Y2 | Y2] Pr [κ− βY2 ≤ Y4 ≤ κ+ βY2 | Y2]]

≲EY2

[
1(Y2 ≤ 0)e

− |Y2|2

2τ2
0 r2(u+r)2

|Y2|
σt,τ

]

≲
∫ 0

−∞
e
− z2

2τ2
0 r2(u+r)2

|z|
σt,τ

dz ≲
1

σt,τ

∫ ∞

0

ze
− z2

2τ2
0 r2(u+r)2 dz

≲
τ20 r

2(u+ r)2

σt,τ

∫ ∞

0

e−vdv

≲
τ20 r

2(u+ r)2

σt,τ
≲

τ20 r
2(u+ r)2

τ0u(u+ r)
√
η1λ(t− τ)

≲
τ0r

2(u+ r)

u
√
η1λ(t− τ)

Using Bernstein inequality in Lemma 2, to bound ||A ∩ F+
τ | − |B ∩ F+

τ ||. Suppose Mi = 1(i ∈
ϵz+ζ
t , i /∈ ϵzt , i ∈ F+

τ ) and Ni = 1(i ∈ ϵzt , i /∈ ϵz−ζ
t , i ∈ F+

τ ).

∣∣|A ∩ F+
τ | − |B ∩ F+

τ |
∣∣ = ∣∣∣∣∣

L∑
i=1

(Mi −Ni)

∣∣∣∣∣∣∣E[|A ∩ F+
τ | − |B ∩ F+

τ |]
∣∣ = E [Mi −Ni]

= |Pr(Mi)− Pr(Ni)|

=
∣∣∣Pr[i ∈ ϵz+ζ

t , i /∈ ϵzt , i ∈ F+
τ ]− Pr[i ∈ ϵzt , i /∈ ϵz−ζ

t , i ∈ F+
τ ]
∣∣∣

≲
τ0r

2(u+ r)

u
√
η1λ(t− τ)
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Then with high probability at least 1− δ, and let δ = 1
d ,

1

L

L∑
i=1

(Mi −Ni)− E [Mi −Ni] ≤
√

2σ2 log(1/δ)

L
+

2c log(1/δ)

3L

L∑
i=1

(Mi −Ni) ≤ L

√
2σ2 log(1/δ)

L
+ L

2c log(1/δ)

3L
+

τ0r
2(u+ r)L

u
√

η1λ(t− τ)

L∑
i=1

(Mi −Ni) ≲
√
L log d+ log d+

τ0r
2(u+ r)L

u
√
η1λ(t− τ)

Finally, for L = Θ(Poly(d)), we get that∣∣|A ∩ F+
τ | − |B ∩ F+

τ |
∣∣ ≲ τ0r

2(u+ r)L

u
√
η1λ(t− τ)

For |A ∩ F−
τ |, |B ∩ F−

τ | and ||A ∩ F−
τ | − |B ∩ F−

τ ||. Similar to the above part, we have
|A ∩ F−

τ | ≲ τ0r(u+ r)L

|B ∩ F−
τ | ≲ τ0r(u+ r)L∣∣|A ∩ F−
τ | − |B ∩ F−

τ |
∣∣ ≲ τ0r

2(u+ r)L

u
√

η1λ(t− τ)

For |A ∩ Fc
s | and |B ∩ Fc

s |.
Pr[i ∈ ϵz+ζ

t , i /∈ ϵzt , i ∈ Fc
s ] = Pr [Y2 + Y3 ≥ 0, Y2 ≤ 0, |Y1| ≤ κ]

= E [Pr [Y2 + Y3 ≥ 0, Y2 ≤ 0, |Y4 − βY2| ≤ κ]]

= EY2

[
1(Y2 ≤ 0)Pr [Y3 ≥ −Y2 | Y2] ·

κ

σs,t

]
≲ EY2

[
1(Y2 ≤ 0)e

− |Y2|2

2τ2
0 r2(u+r)2

κ

σt,τ

]

≲
τ0r(u+ r)κ

σt,τ

√
2π

2
≲

τ0r(u+ r)τ0r(u+ r)
√
log d

τ0u(u+ r)
√

η1λ(t− τ)

≲
τ0r

2(u+ r)
√
log d

u
√
η1λ(t− τ)

Similarly, using Bernstein inequality in Lemma 2, |A ∩ Fc
s | ≲

τ0r
2(u+r)L

√
log d

u
√

η1λ(t−τ)
, and |B ∩ Fc

s | ≲
τ0r

2(u+r)L
√
log d

u
√

η1λ(t−τ)
.

Finally,∥∥∥∥(1
(
ϵX,z−ζ
t

)
+ 1

(
ϵX,z+ζ
t

)
− 21

(
ϵX,z
t

))⊤
∆Qτ

∥∥∥∥
2

≤(u+ r)K
(
P
∣∣|A ∩ F+

τ | − |B ∩ F+
τ |
∣∣+ P

∣∣|A ∩ F−
τ | − |B ∩ F−

τ |
∣∣+ (1− P )

(
|A ∩ F+

τ |+ |B ∩ F+
τ |
)

+ (1− P )
(
|A ∩ F−

τ |+ |B ∩ F−
τ |
)
+ |A ∩ Fc

τ |+ |B ∩ Fc
τ |
)

≲(u+ r)K

(
2P

τ0r
2(u+ r)L

u
√
η1λ(t− τ)

+ (1− 2P )τ0r(u+ r)L+
τ0r

2(u+ r)L
√
log d

u
√
η1λ(t− τ)

)

≲(u+ r)K
τ0r

2(u+ r)L
√
log d

u
√
η1λ(t− τ)

≲
τ0r

2(u+ r)2KL
√
log d

u
√
η1λ(t− τ)
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When t ≤ 1
η1λ

, we conclude that term Φ is∣∣∣∣(1
(
ϵX,z−ζ
t

)
+ 1

(
ϵX,z+ζ
t

)
− 21

(
ϵX,z
t

))⊤
Qtz

∣∣∣∣
≤η1u

t∑
τ=1

∥∥∥∥(1
(
ϵX,z−ζ
t

)
+ 1

(
ϵX,z+ζ
t

)
− 21

(
ϵX,z
t

))⊤
∆Qτ−1

∥∥∥∥
2

≲η1u

t∑
τ=1

τ0r
2(u+ r)2KL

√
log d

u
√
η1λ(t− τ)

≲τ0r
2(u+ r)2KL

√
log d

√
tη1
λ

≲τ0λ
−1r2(u+ r)2KL

√
log d

Combine term Ψ and term Φ.

|g̃t(X, z − ζ) + g̃t(X, z + ζ)− 2g̃t(X, z)|

=1/L ·
∣∣∣∣1(ϵX,z−ζ

t

)⊤
Qt(z − ζ) + 1

(
ϵX,z+ζ
t

)⊤
Qt(z + ζ)− 21

(
ϵX,z
t

)⊤
Qtz

∣∣∣∣
≤1/L ·

∣∣∣∣(1
(
ϵX,z−ζ
t

)
+ 1

(
ϵX,z+ζ
t

)
− 21

(
ϵX,z
t

))⊤
Qtz

∣∣∣∣︸ ︷︷ ︸
Φ

+1/L ·
∣∣∣∣(1

(
ϵX,z+ζ
t

)
− 1

(
ϵX,z−ζ
t

))⊤
Qtζ

∣∣∣∣︸ ︷︷ ︸
Ψ

≲τ0λ
−1r2(u+ r)2K

√
log d+ λ−1ru−1(u+ r)K

√
log d

with choice of small u, r, τ0 = O
(

1√
log d

)
, 1
λ = O

(√
log d

)
and L = Θ(Poly(d)), therefore, we

conclude that

|g̃t(X, z − ζ) + g̃t(X, z + ζ)− 2g̃t(X, z)| ≲ 1√
log d

1√
log d

√
log d ≲

1√
log d

Deal with |gt1(X2)|. Assume that |gt1(X2, z − ζ) + gt1(X2, z + ζ)− 2gt1(X2, z)| ≲ ξ and
from Theorem 1 we have ξ = 1√

log d
. We would first like to analysis |gt1(X2, z)|, |gt1(X2, z −

ζ)|, |gt1(X2, z + ζ)|. Naturally, we have

gt1(X2, z) =
1

2
(gt1(X2, z + ζ) + gt1(X2, z − ζ)) + γ

where |γ| ≤ ξ.

Then consider the proportion of xL,2 = {z − ζ, z + ζ, z} in N training sequences with high prob-
ability. For xL,2 = {z − ζ, z + ζ}, its expected proportion is 1

4 and for xL,2 = z, its expected
proportion 1

2 . Using Hoeffding’s inequality in Lemma 1, for example xL,2 = z − ζ, define random
variables,

Xn =

{
1 if Xn

L,2 = z − ζ,

0 else.

Since Xn are i.i.d. and E[Xn] =
1
4 ,

Pr

(∣∣∣∣∣ 1N
N∑

n=1

Xn − 1

4

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−2Nt2

)
Let δ = 2 exp

(
−2Nt2

)
, then t =

√
log 2

δ

2N . If 1 − δ = 1 − 1
d , t =

√
log d
N , then with probability at

least 1− δ, the proportion of xL,2 = z− ζ is 1
4 +

√
log d
N , Naturally, the proportion of xL,2 = z+ ζ

is 1
4 +

√
log d
N , and the proportion of xL,2 = z is 1

2 +
√

log d
N .
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With the definition of empirical loss, l is the logistic loss, and l(f(V ; ·);X2, Y ) =
log
(
1 + e−yLf(V ;X2,Y )

)
. Then w.h.p. at least 1− δ,

L̂(Vt1) =
1

N

∑
n∈[N ]

l(f(Vt1 ; ·);X2, Y )

=

(
1

4
±O

(√
log d

N

))
l(gt1(X2, z + ζ)) +

(
1

4
±O

(√
log d

N

))
l(gt1(X2, z − ζ))

+

(
1

2
±O

(√
log d

N

))
l(gt1(X2, z))

=

(
1

4
±O

(√
log d

N

))
(l(gt1(X2, z + ζ)) + l(gt1(X2, z − ζ)) + 2l(gt1(X2, z)))

=

(
1

4
±O

(√
log d

N

))(
l(gt1(X2, z + ζ)) + l(gt1(X2, z − ζ))− 2l(gt1(X2, z)− γ)︸ ︷︷ ︸

A

+ 2l(gt1(X2, z)− γ) + 2l(gt1(X2, z))︸ ︷︷ ︸
B

)

For term A, since l is convex, then

A =l(gt1(X2, z + ζ)) + l(gt1(X2, z − ζ))− 2l(gt1(X2, z)− γ)

=l(gt1(X, z + ζ)) + l(gt1(X2, z − ζ))− 2l

(
gt1(X2, z + ζ) + gt1(X2, z − ζ)

2

)
≥0

Further since l is a 2-Lipschitz function, we have

|l(gt(X, z))− l(gt(X, z)− γ)| ≤ 2γ

B =2l(gt1(X2, z)− γ) + 2l(gt1(X2, z))

≥2l(gt1(X2, z)− γ) + 2l(gt1(X2, z)− γ)− 4γ

Finally, from Theorem 1 we have ξ = 1√
log d

, we have the lower bound of L̂(Vt1),

L̂(Vt1) =

(
1

4
±O

(√
log d

N

))
(A+B)

≥

(
1

4
−O

(√
log d

N

))
(4 log 2− 4γ)

≥ log 2−O(ξ)−O

(√
log d

N

)

≥ log 2−O
(

1√
log d

)
−O

(√
log d

N

)

According to the definition of training loss of component Q on signal weight, i.e. K1(V ), we have

K1
t1(V t1) ≳ log 2−O

(
1√
log d

)
−O

(√
log d

N

)
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Naturally, assume that L̂(Vt1) ≤ log 2 +O(ξ′),

L̂(Vt1) ≥

(
1

4
−O

(√
log d

N

))
(A+ 4 log 2− 4γ)

=

(
1

4
−O

(√
log d

N

))
(A+ 4 log 2−O(ξ))

L̂(Vt1) ≤ log 2 +O(ξ′)

Then, (
1

4
−O

(√
log d

N

))
A ≤ log 2 +O(ξ′)−

(
1

4
−O

(√
log d

N

))
(4 log 2−O(ξ))(

1

4
−O

(√
log d

N

))
A ≤ O(ξ) +O(ξ′)

A ≤ O(ξ′) +O(ξ)

1−O
(√

log d
N

)
Consider the Taylor expression of A, including the 2nd order, and u = gt1(X2, z + ζ), v =
gt1(X2, z − ζ)

log 2 +
u

2
+

u2

8
+ log 2 +

v

2
+

v2

8
− 2

(
log 2 +

u+ v

4
+

(u+ v)2

32

)
=
u2

8
+

v2

8
− (u+ v)2

16
=

(u+ v)2

16

≤A ≤ O(ξ′) +O(ξ)

1−O
(√

log d
N

)
Finally, we have

|gt1(X, z)|, |gt1(X, z − ζ)|, |gt1(X, z + ζ)| ≤ O

√√√√ ξ′ + ξ

1−
√

log d
N


then we derive

|gt1(X2, z − ζ) + gt1(X2, z + ζ)− 2gt1(X2, z)| ≤|gt1(X2, z − ζ)|+ |gt1(X2, z + ζ)|+ 2|gt1(X2, z)|

≲

√√√√ ξ′ + ξ

1−
√

log d
N

≲ ξ

From Theorem 1 we have ξ = 1√
log d

, thus ξ′ = 1
log d .

Finally, we conclude that

|gt1(X2, z)|, |gt1(X2, z − ζ)|, |gt1(X2, z + ζ)| ≲
√√√√ ξ′ + ξ

1−
√

log d
N

≲

√√√√(ξ′ + ξ)

(
1 +

√
log d

N

)

≲

√
1

log d
+

1√
N log d

+
1√
log d

+
1√
N

≲
1

(log d)1/4

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Deal with ∥Vt1∥F . Through |gt1(X2)|, we then analysis ∥Vt1∥F . With Corollary 7,

|gt1(X2)| =NVt1
(Vt1 ;X2, Y )

=NVt1
(V t1 ;X2, Y ) +NVt1

(Ṽt1 ;X2, Y )

≲
1

L

L∑
i=1

yi1([X
⊤
2 ]iVt1xL,2) ·

(
[X⊤

2 ]iV t1xL,2

)
+ ϵV,1

≲
1

L

∥∥1(X⊤
2 Vt1xL,2)

∥∥
1
max

(
[X⊤

2 ]iV t1xL,2

)
+ ϵV,1 (20)

For
∥∥1(X⊤

2 Vt1xL,2)
∥∥
1
, using Corollary 3,

∥1(X⊤
2 Vt1xL,2)− 1(X⊤

2 Ṽt1xL,2)∥1 ≲ K4/3λ−4/3τ
−4/3
0 L2/3 ≜ ϵV

thus further consider
∥∥∥1(X⊤

2 Ṽt1xL,2)
∥∥∥
1
,∥∥∥1(X⊤

2 Ṽt1xL,2)
∥∥∥
1
=
∑
i∈[L]

1([X⊤
2 ]iṼt1xL,2)

where 1([X⊤
2 ]iṼt1xL,2) is Bernoulli r.v., then using Hoeffding’s inequality in Lemma 1,

Pr

∑
i∈[L]

1([X⊤
1 ]iW̃txL,1) ≥ t

 ≤ e−
t2

2

Let δ = e−
t2

2 , with δ = 1
d , t =

√
2 log 1

δ =
√
2 log d, then with probability at least 1 − δ (i.e.,

1− 1
d ), ∥∥∥1(X⊤

2 Ṽt1xL,2)
∥∥∥
1
≲
√
log d

Using triangle inequality, we know that∥∥1(X⊤
2 Vt1xL,2)

∥∥
1
≲
∥∥∥1(X⊤

2 Ṽt1xL,2)
∥∥∥
1
+ ϵV ≲

√
log d+ ϵV

Substitute into Equation 20, we have

|gt1(X2)| ≲
1

L

∥∥1(X⊤
2 Vt1xL,2)

∥∥
1
max

(
[X⊤

2 ]iV t1xL,2

)
+ ϵV,1

≲
1

L

(√
log d+ ϵV

)
(u+ r)2∥Vt1∥F + ϵV,1

≲∥Vt1∥F
(√

log d+ ϵV

) (u+ r)2

L
+ ϵV,1

≲∥Vt1∥F
1

Poly(d)
+

1

Poly(d)

with |gt1(X2)| ≲ 1
(log d)1/4

, we have

∥V t1∥F ≤ ∥Vt1∥F ≲
1

Poly(d)
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F.2 PROOF OF THEOREM 2

Theorem. In the elementary stage with η1 = Θ(1) and t ≤ t1 ≜ 1
η1λ

where λ denotes the L2

regularization coefficient. With Assumption 1, ϵW,1 = Θ(1/Poly(d)), ϵW = Θ
(
(Poly(d))2/3

)
and

initial weights W0 −→ 0d×d, it holds that

(b.1) For the model parameter W of network h, there exists an optimal signal weight W ⋆, W t1 can
reach W ⋆ through gradient descent optimization over t1 iterations, i.e., ∥W t1∥F satisfies

∥W t1∥F = Θ(d log(1/ϵW,1)) .

(b.2) With random and small noise weight, the training loss of easy-to-fit component P over signal
weight (Definition in Equation 6) at iteration t1 satisfies

K1
t1(W t1) ≲ ϵW,1 +

√
d log d

L
ϵW +

1√
log d

.

Namely, the network h learns the easy-to-fit component P within t1 iterations.
Remark 7 (Proof Sketch). We summarize the proof sketch and main techniques in Proof of Theorem
2. For (b.1) and (b.2): In the beginning, we first analyze the network h’s output under the opti-
mal weight, with signal-noise decomposition, separating it into the outputs under the optimal signal
weight and small random noise weights, respectively. The upper bound of the latter relies on the key
Proposition 6, 7 and Corollary 6, where the calculation of activations and attention scores is explic-
itly written out, leveraging the differences in activation patterns. The upper bound analysis of the
former utilizes the properties of W ⋆ and the data construction attributes of component P . Moving
forward, we use this network output to represent the upper bound of the optimal loss. Furthermore,
through gradient descent analysis, we measure ∥W t1 −W ⋆∥ and ∥K1

t1(W t1)−K1
t1(W

⋆)∥. We use
proof by contradiction to give (b.1) and (b.2), showing that there exists a fixed target signal matrix
which will classify P correctly no matter the small noise weight.

Proof. According to Theorem 1, we conclude that the large learning rate creates too much noise to
learn Q. Also, from above we conclude that in the first stage, the network weight Vt1 on Q changes
small.

Definition 4. In the elementary stage, denote the optimal weight as U⋆
1 =

[
W ⋆ 0

0 V t1 = ∆V

]
with

initial W0 = V0 −→ 0d×d, where W ⋆ ≜ d log(1/ϵW,1)w
⋆(w⋆)⊤ ∈ Rd×d, and ∥V t1∥F ≲ 1

Poly(d) .

In this section, we primarily focus on the process of optimizing from W0 to W ⋆. With the
decomposition of signal and noise weight, consider random and small noise, we will prove that W 0

can be optimized to W t1 , which is close to W ⋆, at the end of this section through gradient descent
analysis.

Since ft is the function of signal weight with random noise weight, then we first consider the de-
composition of ft(W ⋆;X1, Y )

ft(W
⋆;X1, Y ) = NWt

(W ⋆ + W̃t;X1, Y )

= NWt
(W ⋆;X1, Y ) +NWt

(W̃t;X1, Y )

Deal with term NWt(W̃t;X1, Y ). With Corollary 6, and choice of small u, r, τ0 =

O
(

1√
log d

)
, 1
λ = O

(√
log d

)
and L = Poly(d), then we have

NWt
(W̃t;X1, Y ) ≲ τ0(u+ γ0)

2

√
d log d

L
≲

1

Poly(d)
≜ ϵW,1 (21)

Deal with term NWt(W
⋆;X1, Y ). For the term NWt(W

⋆;X1, Y ), we know that
NWt(W

⋆;X1, Y ) = Y/L ·
(
1(X⊤

1 WtxL,1)⊙ (X⊤
1 W ⋆xL,1)

)
=

1

L

L∑
i=1

yi1([X
⊤
1 ]iWtxL,1) ·

(
[X⊤

1 ]iW
⋆xL,1

)
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According to the data structure of X1, assume that γ0 = 1/
√
d, with Definition 4 and Assumption 2

that (w⋆)2 = 1. We find that

∥W ⋆∥2F = (d log(1/ϵW,1))
2 ∥w⋆(w⋆)⊤∥2F

= d2 log2(1/ϵW,1) (22)

We can derive that,

NWt
(W ⋆;X1, Y ) = Y/L ·

(
1(X⊤

1 WtxL,1)⊙ (X⊤
1 W ⋆xL,1)

)
=

1

L

L∑
i=1

yi1([X
⊤
1 ]iWtxL,1) ·

(
[X⊤

1 ]iW
⋆xL,1

)
≤ 1

L

L∑
i=1

1([X⊤
1 ]iWtxL,1) ·

(
d log(1/ϵW,1)[X

⊤
1 ]iw

⋆(w⋆)⊤xL,1

)
= d log(1/ϵW,1)[X

⊤
1 ]iw

⋆(w⋆)⊤xL,1

∥∥1(X⊤
1 WtxL,1)

∥∥
1
/L

For d log(1/ϵW,1)[X
⊤
1 ]iw

⋆(w⋆)⊤xL,1, with ϵW,1 = 1
Poly(d) ,

d log(1/ϵW,1)[X
⊤
1 ]iw

⋆(w⋆)⊤xL,1 = d log(1/ϵW,1)

(
sign(⟨w⋆, e⟩) 1√

d
+ ⟨w⋆, e⟩

)2

≲ d log(Poly(d))

For
∥∥1(X⊤

1 WtxL,1)
∥∥
1
, using Corollary 2,

∥1(X⊤
1 WxL,1)− 1(X⊤

1 W̃xL,1)∥1 ≲ K4/3λ−4/3τ
−4/3
0 L2/3 ≜ ϵW

thus further consider
∥∥∥1(X⊤

1 W̃txL,1)
∥∥∥
1
,∥∥∥1(X⊤

1 W̃txL,1)
∥∥∥
1
=
∑
i∈[L]

1([X⊤
1 ]iW̃txL,1)

where 1([X⊤
1 ]iW̃txL,1) is Bernoulli r.v., then using Hoeffding’s inequality in Lemma 1,

Pr

∑
i∈[L]

1([X⊤
1 ]iW̃txL,1) ≥ t

 ≤ e−
t2

2

Let δ = e−
t2

2 , with δ = 1
d , t =

√
2 log 1

δ =
√
2 log d, then with probability at least 1 − δ (i.e.,

1− 1
d ), ∥∥∥1(X⊤

1 W̃txL,1)
∥∥∥
1
≲
√

log d

Using triangle inequality, we know that∥∥1(X⊤
1 WtxL,1)

∥∥
1
≲ ∥1(X⊤W̃txL)∥1 + ϵW ≲

√
log d+ ϵW

Finally,

NWt
(W ⋆;X1, Y ) = d log(1/ϵW,1)[X

⊤
1 ]iw

⋆(w⋆)⊤xL,1

∥∥1(X⊤
1 WtxL,1)

∥∥
1
/L

≤ d log(Poly(d))
(√

log d+ ϵW

)
· 1/L

≤ d log d
(√

log d+ ϵW

)
· 1/L

≲
1

L

(
d log d

√
log d+ ϵW

√
d log d

)
where ϵW = (Poly(d))2/3 ≫

√
log d, then

NWt
(W ⋆;X1, Y ) ≲

√
d log d

L
ϵW (23)
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Combine Equation 21 and Equation 23. Combine Equation 21 and Equation 23, we have

f1
t (W

⋆;X1, Y ) = NWt(W
⋆ + W̃t;X1, Y )

= NWt(W
⋆;X1, Y ) +NWt(W̃t;X1, Y )

≲ τ0(u+ γ0)
2

√
d log d

L
+K4/3λ−4/3τ

−4/3
0 L2/3L−1

√
d log(Poly(d))

≲ ϵW,1 +

√
d log d

L
ϵW

with choice of small u, r, τ0 = O
(

1√
log d

)
, 1
λ = O

(√
log d

)
and L = Poly(d), we have

f1
t (W

⋆;X1, Y ) ≲ ϵW,1 +

√
d log d

L
ϵW

≲
1

Poly(d)
+

√
d log d

Poly(d)

Then consider the loss with signal weight W t = W ⋆ and random noise weight W̃t at time t,

K1
t (W

⋆)

=
1

N

N∑
n=1

l
(
f1
t (W

⋆;Xn
1 , Y

n)
)

≲max
{
log
(
1 + exp(−(ϵW,1 +

√
d/L log dϵW ))

)
, log

(
1 + exp(ϵW,1 +

√
d/L log dϵW )

)}
≈max

{
log 2− 1

2

(
ϵW,1 +

√
d log d

L
ϵW

)
, log 2 +

1

2

(
ϵW,1 +

√
d log d

L
ϵW

)}

≲ϵW,1 +

√
d log d

L
ϵW

Deal with gradient descent to find W ⋆. Consider the graident descent of signal W ,

W t+1 = W t − η1∇Kt(W t)− η1λWt

= (1− η1λ)W t − η1∇Kt(W t)

With ∥W ∗∥F = d log(1/ϵW,1) ≜ B from Equation 22, loss Kt is K-Lipschitz, i.e. ∥∇Kt(W t)∥F ≤
K, assume that ∥W t −W ⋆∥F ≤ R ≪ B, then we can measure the distance of Wt and W ⋆.∥∥W t+1 −W ⋆

∥∥2
2
=
∥∥(1− η1λ)W t − η1∇Kt −W ⋆

∥∥2
2

=
∥∥(1− η1λ)(W t −W ⋆)− η1(λW

⋆ +∇Kt)
∥∥2
2

=
∥∥(1− η1λ)(W t −W ⋆)

∥∥2
2
+ η21 ∥λW ⋆ +∇Kt∥22 − 2η1(1− η1λ)⟨W t −W ⋆, λW ⋆⟩

− 2η1(1− η1λ)⟨W t −W ⋆,∇Kt⟩

=
∥∥(1− η1λ)(W t −W ⋆)

∥∥2
2
+ η21 ∥(λW ⋆ +∇Kt)∥22 − 2ηλ(1− η1λ)⟨W t,W

⋆⟩
+ 2η1λ(1− η1λ)⟨W ⋆,W ⋆⟩ − 2η1(1− η1λ)(Kt(W t)−Kt(W

⋆))

≤
∥∥(1− η1λ)(W t −W ⋆)

∥∥2
2
+ 2η21(λ

2B2 +K2)− 2η1λ(1− η1λ)(R+B)B

+ 2η1λ(1− η1λ)B
2 − 2η1(1− η1λ)(Kt(W t)−Kt(W

⋆))

≤
∥∥(1− ηλ)(W t −W ⋆)

∥∥2
2
+ 2η21(λ

2B2 +K2)− 2η1λ(1− η1λ)RB

− 2η1(1− η1λ)(Kt(W t)−Kt(W
⋆))
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For the sake of contradiction, assume that K1
t (W t) − K1

t (W
⋆) ≥ C, let 0 < 1 − η1λ < 1, and

η1 ≪ λBR+C
λ2B2+λ2BR+K2+λC , and λR2 ≪ C,∥∥W t+1 −W ⋆

∥∥2
2
≤
∥∥(W t −W ⋆)

∥∥2
2
+ 2η21(λ

2B2 + λ2BR+K2 + λC)− 2η1(λBR+ C)

≤
∥∥(W t −W ⋆)

∥∥2
2
− 2η1(λBR+ C)

≤
∥∥(W t −W ⋆)

∥∥2
2
− 2η1C

Thus, in the elementary stage with t1 iterations, t ≤ t1 ≜ 1
η1λ

,∥∥W t1 −W ⋆
∥∥2
2
≤
∥∥(W 0 −W ⋆)

∥∥2
2
− 2t1η1C ≤ R2 − 2t1η1C < 0

which is a contradiction, i.e., K1
t1(W t1)−K1

t1(W
⋆) ≤ C.

Therefore, in the elementary stage within t1 iterations, t1 ≤ 1
η1λ

, through gradient descent optimiza-
tion, ∥W t1∥F satisfies ∥W t1∥F ≤ B +R, then

∥W t1∥F = Θ(d log(1/ϵW,1))

and the training loss satisfies

K1
t1(W t1) ≤ K1

t1(W
⋆) + C ≲ ϵW,1 +

√
d log d

L
ϵW +

1√
log d
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G PROOF FOR THE SPECIALIZED STAGE

G.1 PROOF OF THEOREM 3

Theorem. In the specialized stage with annealing learning rate η2 = η1λ
2ϵ2V,1r and t1 ≤ t ≤

t1 + t2, where ϵV,1 = Θ(1/Poly(d)), t1 ≜ 1
η1λ

, t2 ≜ log2(1/ϵV,1)

η2λϵ2V,1
, λ denotes the L2 regularization

coefficient and data noise ∥ζ∥2 = r (See Paragraph 3.1). With Assumption 1, it holds that

(c.1) For the model parameter V of network g, there exists an optimal signal weight V t1 + V ⋆,
V t1+t2 can reach V t1+V ⋆ through gradient descent optimization over t2 iterations, i.e., ∥V t1+t2∥F
satisfies

∥V t1+t2∥F = Θ

(
log(1/ϵV,1)

ϵV,1
+

1

Poly(d)

)
.

(c.2) With random and small noise weight, the training loss of hard-to-fit component Q over signal
weight (Definition in Equation 6) satisfies

K2
t1+t2(V t1+t2) ≲ ϵV,1 +

1

(log d)1/4
+

1√
log d

.

Namely, the network g learns hard-to-fit component Q within t2 iterations.

Remark 8 (Proof Sketch). We summarize the proof sketch and main techniques in Proof of Theorem
3. To begin with, we explore the properties of optimal weight V t1 +V ⋆ and analyze the network g’s
output under the optimal weight at timepoint t1 + t2. Using triangle inequality, we need to handle
three parts A,B,C separately. Part A exploits the characteristics of V ⋆ in detail. Part B uses the
key Lemma 7 and Corollary 5 to analyze the relationship between the network output at time t1 + t2
and at time t1, taking into account the signal weight update formula. Part C utilizes the properties
of the network output at time t1 to facilitate the analysis. Thereafter, we use this network output
to represent the upper bound of the optimal loss. Furthermore, through gradient descent analysis,
we measure ∥V t1+t2 − (V t1 + V ⋆)∥ and ∥K2

t1+t2(V t1+t2) − K2
t1+t2(V t1 + V ⋆)∥. We use proof

by contradiction to give (a) and (b), showing that there exists a fixed target signal matrix which will
classify Q correctly no matter the small noise weight.

Proof.
Definition 5. For time t1, input X ∈ Rd×L with query xL = z − ζ, z, z + ζ ∈ Rd, define

H1 ≜ {i ∈ [L] | [X⊤]iVt1(z − ζ) ≥ 0, [X⊤]iVt1z ≥ 0, [X⊤]iVt1(z + ζ) < 0}
H2 ≜ {i ∈ [L] | [X⊤]iVt1(z − ζ) ≥ 0, [X⊤]iVt1z < 0, [X⊤]iVt1(z + ζ) < 0}
H3 ≜ {i ∈ [L] | [X⊤]iVt1(z − ζ) < 0, [X⊤]iVt1z < 0, [X⊤]iVt1(z + ζ) ≥ 0}
H4 ≜ {i ∈ [L] | [X⊤]iVt1(z − ζ) < 0, [X⊤]iVt1z ≥ 0, [X⊤]iVt1(z + ζ) ≥ 0}

Similar to Definition 1, note that X aligns with X2 and xL aligns with xL,2.

We first try to analyze the probability of i ∈ Hi. With Assumption 2, we can compute the cosine of
z − ζ and z,

cos θ =
⟨z − ζ, z⟩

∥z∥2∥z − ζ∥2
=

u2 − ⟨ζ, z⟩
u
√

u2 − 2⟨ζ, z⟩+ r2
=

u2 − ur cos θ0

u
√
u2 + r2 − 2ur cos θ0

sin θ =
√
1− cos2 θ =

r sin θ0√
u2 + r2 − 2ur cos θ0

For small r, with Taylor expansion of arcsin θ, we have that the angle of z−ζ and z is θ = r
u+O(r2).

For H1, when [X⊤]iṼt1 fall into the middle of z − ζ and z, as well as not in the positive half space
of z + ζ, its probability is approximately the proportion of the spherical surface area corresponding
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to the angle r
u +O(r2). Using Hoeffding’s inequality in Lemma 1 and further consider Corollary 3,

let Xi = 1{i ∈ H1}, then |H1| =
∑L

i=1 Xi

E [|H1|] = L · Pr(i ∈ H1) ≈ L · r

2πu
+ ϵV

Then, let δ = 2 exp
(
− 2t2

L

)
, t =

√
1
2L log 2

δ , and 1 − δ = 1 − 1
d , then with probability at least

1− δ,

||H1| − E[|H1|]| ≤
√

1

2
L log

2

δ
≲
√
L log d

|H1| ≲
rL

2πu
+ ϵV +

√
L log d

Similarly, we have

|H1|, |H2|, |H3|, |H4| ≲
rL

2πu
+ ϵV +

√
L log d

Definition 6. In the second stage, denote the optimal weight as U⋆
2 =[

W t1 +∆W 0

0 V t1 + V ⋆

]
=

[
W t1+t 0

0 V t1 + V ⋆

]
, ∥W t1+t∥F ≲ d log(1/ϵW,1), and

V ⋆ ∈ Rd×d satisfies

[X⊤
2 V ∗]i =



log(1/ϵV,1)
rϵV,1

z⊤ if i ∈ H1;

− 2 log(1/ϵV,1)
rϵV,1

z⊤ if i ∈ H2;
log(1/ϵV,1)

rϵV,1
z⊤ if i ∈ H3;

− 2 log(1/ϵV,1)
rϵV,1

z⊤ if i ∈ H4;

0 otherwise.

(24)

We have that
∥∥W t1+t −W t1

∥∥
F
≪
∥∥V t1 + V ⋆ − Vt1

∥∥ = ∥V ⋆∥F , and we still have ∥W t1+t∥F ≲
d log(1/ϵW,1) from Theorem 2. In this section, we primarily focus on the process of optimizing
from V t1 to V t1 + V ⋆. To calculate the Frobenius norm ∥V ∗∥F ,

∥X⊤
2 V ∗∥22

=
∑
i∈H1

(
log(1/ϵV,1)

rϵV,1

)2

∥z⊤∥22 +
∑
i∈H2

(
−2 log(1/ϵV,1)

rϵV,1

)2

∥z⊤∥22 +
∑
i∈H3

(
log(1/ϵV,1)

rϵV,1

)2

∥z⊤∥22

+
∑
i∈H4

(
−2 log(1/ϵV,1)

rϵV,1

)2

∥z⊤∥22

≲u2 |H|
(
log(1/ϵV,1)

rϵV,1

)2

≲ u2

(
rL

2πu
+ ϵV +

√
L log d

)
log2(1/ϵV,1)

r2ϵ2V,1

≲
uL log2(1/ϵV,1)

rϵ2V,1

and then ∥V ⋆∥F = O
(

log(1/ϵV,1)
ϵV,1

)
, where c is a constant.

In the following, we focus on the empirical loss with optimal weight V t1 + V ⋆.

K2
t1+t(V t1 + V ⋆) = L̂(NVt1+t

(V t1 + V ⋆;X2, Y ))

=
1

N

∑
n∈[N ]

log
(
1 + exp

(
−ynLNVt1+t(V t1 + V ⋆;Xn

2 , Y
n)
))
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and then consider yNVt1+t
(V t1 + V ∗;X2, Y ),

yNVt1+t(V t1 + V ∗;X2, Y )

≥yNVt1+t
(V ∗;X2, Y )− yNVt1+t

(V t1 ;X2, Y )

≥ yNVt1
(V ∗;X2, Y )︸ ︷︷ ︸

A

−
∣∣yNVt1+t

(V ⋆;X2, Y )− yNVt1
(V ⋆;X2, Y )

∣∣︸ ︷︷ ︸
B

− yNVt1+t
(V t1 ;X2, Y )︸ ︷︷ ︸
C

Deal with term A. We have

yNVt1
(V ∗;X2, Y ) = y · Y/L ·

(
1
(
X⊤

2 Vt1xL,2

)
⊙
(
X⊤

2 V ∗xL,2

))
=

1

L

L∑
i=1

(
1
(
[X⊤

2 ]iVt1xL,2

)
⊙
(
[X⊤

2 ]iV
∗xL,2

))
For xL,2 = z − ζ, we have that

NVt1
(V ∗;X2, Y, xL,2 = z − ζ) ≤ |H1|

L

log(1/ϵV,1)

rϵV,1
z⊤(z − ζ)− |H2|

L

2 log(1/ϵV,1)

rϵV,1
z⊤(z − ζ)

≲ − log(1/ϵV,1)u(u+ r)

rϵV,1

(
r

2πu
+

ϵV
L

+

√
log d

L

)

≲ − log(1/ϵV,1)(u+ r)

ϵV,1

and for xL,2 = z + ζ, we have that

NVt1
(V ∗;X2, Y, xL,2 = z + ζ) ≤ |H3|

L

log(1/ϵV,1)

rϵV,1
z⊤(z + ζ)− |H4|

L

2 log(1/ϵV,1)

rϵV,1
z⊤(z + ζ)

≲ − log(1/ϵV,1)u(u+ r)

rϵV,1

(
r

2πu
+

ϵV
L

+

√
log d

L

)

≲ − log(1/ϵV,1)(u+ r)

ϵV,1

and for xL,2 = z, we have that

NVt1
(V ∗;X2, Y, xL,2 = z + ζ) ≤ |H1|

L

log(1/ϵV,1)

rϵV,1
z⊤z − |H4|

L

2 log(1/ϵV,1)

rϵV,1
z⊤z

≲ − log(1/ϵV,1)u
2

rϵV,1

(
r

2πu
+

ϵV
L

+

√
log d

L

)

≲ − log(1/ϵV,1)u

ϵV,1

Finally, with small r ≪ u, for xL,2 ∈ {z − ζ, z, z + ζ}, we have

yNVt1
(V ∗;X2, Y ) ≳

u log(1/ϵV,1)

ϵV,1

Deal with term B. With the definition of ∥X⊤
2 V ∗∥2F , and ∥X⊤

2 V ∗∥22 ≲ uL log2(1/ϵV,1)

rϵ2V,1
, we derive

that ∣∣[X⊤
2 V ∗]i

∣∣ ≲ log(1/ϵV,1)

ϵV,1

√
u

r∣∣[X⊤
2 V ∗]ixL,2

∣∣ ≲ log(1/ϵV,1)

ϵV,1

√
u(u+ r)2

r
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With Corollary 5,

∣∣yNVt1+t(V
⋆;X2, Y )− yNVt1

(V ⋆;X2, Y )
∣∣ ≲ (ϵV + L

√
η2
η1

+
√
L log d

)
log(1/ϵV,1)

ϵV,1L

√
u(u+ r)2

r

≲
log(1/ϵV,1)

ϵV,1L
√
r

L ·
(
λϵV,1

√
r
)

where the last step satisfies when with choice of small u, r, τ0 = O
(

1√
log d

)
, 1
λ = O

(√
log d

)
and

L = Θ(Poly(d)), and η2 = η1λ
2ϵ2V,1r. Finally,∣∣yNVt1+t

(V ⋆;X2, Y )− yNVt1
(V ⋆;X2, Y )

∣∣ ≲ λ log(1/ϵV,1)

Deal with term C. Before, we have

|gt1(X, z)|, |gt1(X, z − ζ)|, |gt1(X, z + ζ)| ≲ O

√√√√ ζ ′ + ζ

1−
√

log d
N

 ≲
1

(log d)1/4

Then, combine with Corollary 7,

|NVt1
(V t1 ;X2, Y )| ≤ |gt1(X2)|+ |NVt1

(V t1 ;X2, Y )−NVt1
(Vt1 ;X2, Y )|

≤ |gt1(X2)|+ |NVt1
(Ṽt1 ;X2, Y )|

≲
1

(log d)1/4
+ ϵV,1

With Corollary 5 and ∥V t1∥ ≲ 1
Poly(d)

∣∣yNVt1+t
(V t1 ;X2, Y )− yNVt1

(V t1 ;X2, Y )
∣∣ ≲ (ϵV + L

√
η2
η1

+
√
L log d

)
1

L · Poly(d)

≲
1

Poly(d)

√
η2
η1

Finally, we get

∣∣yNVt1+t
(V t1 ;X2, Y )

∣∣ ≲ 1

(log d)1/4
+ ϵV,1 +

1

Poly(d)

√
η2
η1

≲
1

(log d)1/4
+ ϵV,1 +

λϵV,1√
log d

≲
1

(log d)1/4
+ ϵV,1

when with choice of η2 = η1λ
2ϵ2V,1r, 1

λ = O
(√

log d
)
.

Combine term A,B and C.

yNVt1+t
(V t1 + V ∗;X2, Y )

≥ yNVt1
(V ∗;X2, Y )︸ ︷︷ ︸

A

−
∣∣yNVt1+t

(V ⋆;X2, Y )− yNVt1
(V ⋆;X2, Y )

∣∣︸ ︷︷ ︸
B

−
∣∣yNVt1+t

(V t1 ;X2, Y )
∣∣︸ ︷︷ ︸

C

≳
u log(1/ϵV,1)

ϵV,1
− λ log(1/ϵV,1)−

1

(log d)1/4
− ϵV,1
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Finally, when u ≈ ϵV,1λ,

K2
t1+t(V t1 + V ⋆) = L̂(NVt1+t

(V t1 + V ⋆;X2, Y ))

=
1

N

∑
n∈[N ]

log
(
1 + exp

(
−ynLNVt1+t

(V t1 + V ⋆;Xn
2 , Y

n)
))

≲ log

(
1 + exp

(
−u log(1/ϵV,1)

ϵV,1
+ λ log(1/ϵV,1) +

1

(log d)1/4
+ ϵV,1

))
≲

1

(log d)1/4
+ ϵV,1

where ϵV,1 = τ0(u+ r)2
√

d log d
L .

Deal with gradient descent to find V t1 + V ⋆. Consider the graident descent of signal V ,

V t+1 = V t − η1∇Kt(V t)− η1λVt

= (1− η1λ)V t − η1∇Kt(V t)

Similar to gradient descent of W , let V t1 + V ⋆ be W ⋆, then
∥∥V t1 + V ⋆

∥∥
F

=

Θ
(

log(1/ϵV,1)
ϵV,1

+ 1
Poly(d)

)
≜ B. Let

∥∥V t −
(
V t1 + V ⋆

)∥∥
F
≤ R ≪ B.∥∥V t+1 − (V t1 + V ⋆)

∥∥2
2

=
∥∥(1− η2λ)V t − η2∇Kt − (V t1 + V ⋆)

∥∥2
2

=
∥∥(1− η2λ)(V t − (V t1 + V ⋆))− η2(λ(V t1 + V ⋆) +∇Kt)

∥∥2
2

=
∥∥(1− η2λ)(V t − (V t1 + V ⋆))

∥∥2
2
+ η22

∥∥λ(V t1 + V ⋆) +∇Kt

∥∥2
2

− 2η2(1− η2λ)⟨V t − (V t1 + V ⋆), λ(V t1 + V ⋆)⟩
− 2η2(1− η2λ)⟨V t − (V t1 + V ⋆),∇Kt⟩

≤
∥∥(1− η2λ)(V t − (V t1 + V ⋆))

∥∥2
2
+ 2η22(λ

2B2 +K2)− 2η2λ(1− η2λ)(R+B)B

+ 2η2λ(1− η2λ)B
2 − 2η2(1− η2λ)(Kt(V t)−Kt(V t1 + V ⋆))

≤
∥∥(1− η2λ)(V t − (V t1 + V ⋆))

∥∥2
2
+ 2η22(λ

2B2 +K2)− 2η2λ(1− η2λ)RB

− 2η2(1− η2λ)(Kt(V t)−Kt(V t1 + V ⋆))

For the sake of contradiction, assume that (K2
t (V t)−K2

t (V t1 + V ⋆)) ≥ C, let 0 < 1− η2λ < 1,
and η2 ≪ λBR+C

λ2B2+λ2BR+K2+λC , and λR2 ≪ C,∥∥V t+1 − (V t1 + V ⋆)
∥∥2
2
≤
∥∥(V t − (V t1 + V ⋆))

∥∥2
2
+ 2η22(λ

2B2 + λ2BR+K2 + λC)− 2η2(λBR+ C)

≤
∥∥(V t − (V t1 + V ⋆))

∥∥2
2
− 2η2(λBR+ C)

≤
∥∥(V t − (V t1 + V ⋆))

∥∥2
2
− 2η2C

Thus, in the specialized stage within t1 ≤ t ≤ t1 + t2 iterations, t2 ≜ log2(1/ϵV,1)

η2λϵ2V,1
, t1 ≜ 1

η1λ
,

∥∥V t1+t2 − (V t1 + V ⋆)
∥∥2
2
≤
∥∥(V t1 − (V t1 + V ⋆))

∥∥2
2
− 2tη2C ≤ log2 (1/ϵV,1)

ϵ2V,1
− 2tη2C < 0

which is a contradiction.

Finally, we conclude that, in the specialized stage within t2 iterations, t2 ≤ log2(1/ϵV,1)

η2λϵ2V,1
, t1 ≤ 1

η1λ
,

through gradient descent optimization, ∥V t1+t2∥F satisfies ∥V t1+t2∥F ≤ B +R, then

∥V t1+t2∥F = Θ

(
log(1/ϵV,1)

ϵV,1
+

1

Poly(d)

)
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and the training loss satisfies

K2
t1+t2(V t1+t2) ≤ K2

t1+t2(V t1 + V ⋆) + C ≲ ϵV,1 +
1

(log d)1/4
+

1√
log d
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G.2 PROOF OF THEOREM 4

Theorem. In the specialized stage with annealing learning rate η2 = η1λ
2ϵ2V,1r and t1 ≤ t ≤

t1 + t2, where ϵV,1 = Θ(1/Poly(d)), t1 ≜ 1
η1λ

, t2 ≜ log2(1/ϵV,1)

η2λϵ2V,1
, λ denotes the L2 regularization

coefficient and data noise ∥ζ∥2 = r (See Paragraph 3.1). With Assumption 1 and number of training
prompts N = Θ(Poly(d)), it holds that

(d.1) For the model parameter W of network h, through gradient descent optimization from iteration
t1 to t1 + t2, ∥W t1+t2 −W t1∥F satisfies∥∥W t1+t2 −W t1

∥∥
F
≲

ϵ2V,1

log2 (1/ϵV,1)
√
log d

− 1

Poly(d)
.

(d.2) With random and small noise weight, the training loss of easy-to-fit component P over signal
weight (Definition in Equation 2) satisfies∣∣K1

t1+t2(W t1+t2)−K1
t1(W t1))

∣∣ ≲ ϵ2V,1

log2 (1/ϵV,1)
√
log d

.

Namely, the network h continues to preserve the easy-to-fit knowledge like P within t2 iterations.
Remark 9 (Proof Sketch). We summarize the proof sketch and main techniques in Proof of Theorem
4. At the first step, based on the expression for the training loss of component P over signal weight,
we use the triangle and Cauchy-Schwarz inequality to transform the difference in training loss at
times t1+ t2 and t1, i.e. ∥K1

t1+t2(W t1+t2)−K1
t1(W t1)∥, into the difference in model weights at the

two times, i.e.
∥∥W t1+t2 −W t1

∥∥. Following that, through gradient descent analysis, similar to the
analysis of ∥W t1 −W ⋆∥ in Theorem 2, we derive ∥W t1+t2 −W ⋆∥ and combine these to conclude
∥W t1+t2−W t1∥ in (a). Naturally utilizing the relationship between ∥K1

t1+t2(W t1+t2)−K1
t1(W t1)∥

and ∥W t1+t2 −W t1∥ from the first step to derive (b). In total, we demonstrate that the model weight
W and training loss of P are almost stable.

Deal with gradient descent from W t1 to W t1+t2 . Similar to the optimization from W 0 to W ⋆ in
Appendix F.2, we consider the graident descent of signal W t1 ,

W t+1 = W t − η2∇Kt(W t)− η2λWt

= (1− η2λ)W t − η2∇Kt(W t)

With ∥W ∗∥F = d log(1/ϵW,1) ≜ B from Equation 22, loss Kt is K-Lipschitz, i.e. ∥∇Kt(W t)∥F ≤
K. For t1 < t ≤ t1 + t2, assume that ∥W t − W ⋆∥F ≤ R2 ≪ B. For the sake of contradiction,
assume that K1

t (W t) − K1
t (W

⋆) ≥ C2, let 0 < 1 − η2λ < 1, and η2 ≪ λBR2+C2

λ2B2+λ2BR2+K2+λC2
,

and λR2
2 ≪ C2,∥∥W t+1 −W ⋆

∥∥2
2
≤
∥∥(W t −W ⋆)

∥∥2
2
+ 2η22(λ

2B2 + λ2BR2 +K2 + λC2)− 2η2(λBR2 + C2)

≤
∥∥(W t −W ⋆)

∥∥2
2
− 2η2(λBR2 + C2)

≤
∥∥(W t −W ⋆)

∥∥2
2
− 2η2C2

From Theorem 3, in the specialized stage within t2 iterations, t2 ≜ log2(1/ϵV,1)

η2λϵ2V,1
, t1 ≜ 1

η1λ
. From the

gradient descent in Appendix F.2, we have
∥∥W t1 −W ⋆

∥∥
F
≤ R ≪ B = d log(1/ϵW,1), then∥∥W t1+t2 −W ⋆

∥∥2
2
≤
∥∥(W t1 −W ⋆)

∥∥2
2
− 2t2η2C ≤ R2 − 2t2η2C2 < 0

which is a contradiction. We naturally have R <
R2ϵV,1

log(1/ϵV,1)
, then we can derive that λR2 <

λR2
2ϵ

2
V,1

log2(1/ϵV,1)
≪ C2. Thus, at iteration t1 + t2, the training loss of component P over signal weight

satisfies

K1
t1+t2

(
W t1+t2

)
≤ K1

t1+t2(W
⋆) + C2 ≲ ϵW,1 +

√
d log d

L
ϵW +

ϵ2V,1

log2 (1/ϵV,1)
√
log d
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Combining the conclusion in Theorem 2, we have that the difference of loss between iteration t1
and t1 + t2 is ∣∣K1

t1+t2(W t1+t2)−K1
t1(W t1))

∣∣ ≲ ϵ2V,1

log2 (1/ϵV,1)
√
log d

(25)

In the following, we would like to show that the changes in W is also small. With 1-Lipschitzness
of logistic loss, we know that

∣∣K1
t1+t2(W t1+t2)−K1

t1(W t1))
∣∣ =

∣∣∣∣∣∣ 1N
∑

n∈[N ]

(
l(NWt1+t2

(W t1+t2 ;X
n
1 , Y

n))− l(NWt1
(W t1 ;X

n
1 , Y

n))
)∣∣∣∣∣∣

≤ 1

N

∑
n∈[N ]

∣∣NWt1+t2
(W t1+t2 ;X

n
1 , Y

n)−NWt1
(W t1 ;X

n
1 , Y

n)
∣∣︸ ︷︷ ︸

A

(26)

With Corollary 4 and Corollary 6, we derive that∣∣NWt1+t2
(W t1+t2 ;X

n
1 , Y

n)−NWt1
(W t1 ;X

n
1 , Y

n)
∣∣

≤
∣∣NWt1+t2

(W t1+t2 ;X
n
1 , Y

n)−NWt1
(W t1+t2 , X

n
1 , Y

n)
∣∣+ ∣∣NWt1

(W t1+t2 ;X
n
1 , Y

n)−NWt1
(W t1 ;X

n
1 , Y

n)
∣∣

≲

(
ϵW + L

√
η2
η1

+
√
L log d

)
K(u+ γ0)

2

Lλ
+
∣∣NWt1

(W t1+t2 ;X
n
1 , Y

n)−NWt1
(W t1 ;X

n
1 , Y

n)
∣∣

(27)Deal with Term A.

Substitute Equation 27 into Equation 26, and use Cauchy-Shwartz inequality,∣∣K1
t1+t2(W t1+t2)−K1

t1(W t1))
∣∣

≲
1

N

∑
n∈[N ]

∣∣NWt1
(W t1+t2 ;X

n
1 , Y

n)−NWt1
(W t1 ;X

n
1 , Y

n)
∣∣+ (ϵW + L

√
η2
η1

+
√

L log d

)
K(u+ γ0)

2

Lλ

≲
1

N

√ ∑
n∈[N ]

(
NWt1

(W t1+t2 ;X
n
1 , Y

n)−NWt1
(W t1 ;X

n
1 , Y

n)
)2

+

(
ϵW + L

√
η2
η1

+
√

L log d

)
K(u+ γ0)

2

Lλ

≲
1

N

√√√√∑
n∈[N ]

(
NWt1

(W t1+t2 ;X
n
1 , Y

n)−NWt1
(W t1 ;X

n
1 , Y

n)
)2︸ ︷︷ ︸

B

+
1

Poly(d)

where the last step comes with choice of small u, r, τ0 = O
(

1√
log d

)
, 1
λ = O

(√
log d

)
and L =

Θ(Poly(d)), and η2 = η1λ
2ϵ2V,1r. With Assumption 2, We have(

NWt1
(W t1+t2 ;X

n
1 , Y

n)−NWt1
(W t1 ;X

n
1 , Y

n)
)2

=
(
Y n/L

(
1
(
[Xn

1 ]
⊤
Wt1xL,1

)
⊙
(
[Xn

1 ]
⊤
W t1+t2xL,1

))
− Y n/L

(
1
(
[Xn

1 ]
⊤
Wt1xL,1

)
⊙
(
[Xn

1 ]
⊤
W t1xL,1

)))2
≤ 1

L2
max |Y n

i |22
∥∥∥1
(
[Xn

1 ]
⊤
Wt1xL,1

)∥∥∥2
1

∥∥∥[Xn
1 ]

⊤
W t1+t2xL,1 − [Xn

1 ]
⊤
W t1xL,1

∥∥∥2
2

≤ 1

L2

∥∥∥1
(
[Xn

1 ]
⊤
Wt1xL,1

)∥∥∥2
1
∥[Xn

1 ]
⊤∥2F

∥∥W t1+t2 −W t1

∥∥2
F
∥xL,1∥22

≤ 1

L2

∥∥∥1
(
[Xn

1 ]
⊤
Wt1xL,1

)∥∥∥2
1
L(u+ γ0)

4
∥∥W t1+t2 −W t1

∥∥2
F

Using Corollary 2,

∥1(X⊤
1 WxL,1)− 1(X⊤

1 W̃xL,1)∥1 ≲ K4/3λ−4/3τ
−4/3
0 L2/3 ≜ ϵW
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thus further consider
∥∥∥1(X⊤

1 W̃t1xL,1)
∥∥∥
1
,∥∥∥1(X⊤

1 W̃t1xL,1)
∥∥∥
1
=
∑
i∈[L]

1([X⊤
1 ]iW̃t1xL,1)

where 1([X⊤
1 ]iW̃t1xL,1) is Bernoulli r.v., then using Hoeffding’s inequality in Lemma 1,

Pr

∑
i∈[L]

1([X⊤
1 ]iW̃t1xL,1) ≥ t

 ≤ e−
t2

2

Let δ = e−
t2

2 , with δ = 1
d , t =

√
2 log 1

δ =
√
2 log d, then with probability at least 1 − δ (i.e.,

1− 1
d ), ∥∥∥1(X⊤

1 W̃t1xL,1)
∥∥∥
1
≲
√
log d

Using triangle inequality, we know that∥∥1(X⊤
1 Wt1xL,1)

∥∥2
1
≲
(
∥1(X⊤W̃t1xL)∥1 + ϵW

)2
≲
(√

log d+ ϵW

)2
Thus, for term B, we have(

NWt1
(W t1+t2 ;X

n
1 , Y

n)−NWt1
(W t1 ;X

n
1 , Y

n)
)2

≤ 1

L2

∥∥∥1
(
[Xn

1 ]
⊤
Wt1xL,1

)∥∥∥2
1
L(u+ γ0)

4
∥∥W t1+t2 −W t1

∥∥2
F

≲
(u+ γ0)

2

L

(√
log d+ ϵW

)2 ∥∥W t1+t2 −W t1

∥∥2
F

and then for
∣∣K1

t1+t2(W t1+t2)−K1
t1(W t1))

∣∣,∣∣K1
t1+t2(W t1+t2)−K1

t1(W t1))
∣∣

≲
1

N

√√√√∑
n∈[N ]

(
NWt1

(W t1+t2 ;X
n
1 , Y

n)−NWt1
(W t1 ;X

n
1 , Y

n)
)2︸ ︷︷ ︸

B

+
1

Poly(d)

≲
u+ γ0√

LN

(√
log d+ ϵW

)∥∥W t1+t2 −W t1

∥∥
F
+

1

Poly(d)

Combining with Equation 25, we can derive that∥∥W t1+t2 −W t1

∥∥
F
≲

ϵ2V,1

log2 (1/ϵV,1)
√
log d

− 1

Poly(d)

when
√
LN = Θ(

√
log d + ϵW ), i.e. N = Θ(Poly(d)). Therefore, we conclude that in the

specialized stage, the changes in W and the loss in the h network are both small, and the loss
remains very low. ∥∥W t1+t2 −W t1

∥∥
F
≲

ϵ2V,1

log2 (1/ϵV,1)
√
log d

− 1

Poly(d)

and ∣∣K1
t1+t2(W t1+t2)−K1

t1(W t1))
∣∣ ≲ ϵ2V,1

log2 (1/ϵV,1)
√
log d
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H PROOF FOR SPECTRAL CHARACTERISTICS

H.1 PROOF OF COROLLARY 1

Compute the gradient of weight WK and WQ. With one normalized Relu self-attention layer,
we have

f(U ;X, Ỹ ) = Ỹ · 1

2L
ReLU

(
X⊤W⊤

KWQxL

)
= Ỹ /2L · ReLU

(
X⊤UxL

)
where X ∈ R2d×2L, U = W⊤

KWQ ∈ R2d×2d. Consider the gradient of weight WK and WQ,

∇WK
L̂(U) = Ê

[
l′(f(U ;X, Ỹ ))∇(yLf(U ;X, Ỹ ))

]
= Ê

[
l′(f(U ;X, Ỹ ))yL∇

(
Ỹ /2L · ReLU

(
X⊤W⊤

KWQxL

))]
= Ê

[
1/2L · l′(f(U ;X, Ỹ ))yL

2L∑
i=1

yi∇ReLU
(
[X⊤]iW

⊤
KWQxL

)]

= Ê

[
1/2L · l′(f(U ;X, Ỹ ))yL

2L∑
i=1

yi1([X
⊤]iW

⊤
KWQxL)WQxL[X

⊤]i

]
= Ê

[
1/2L · l′(f(U ;X, Ỹ ))WQ

(
X · diag

(
1(X⊤W⊤

KWQxL)
)
x⊤
L

)⊤]
[∇WK

L̂(Ut)]i = Ê
[
1/2L · l′(f(Ut;X, Ỹ ))yLyi1([X

⊤]iW
⊤
KWQxL)[WQ]ixL[X

⊤]i

]
[∇WK

L̂(Ut)]j = Ê
[
1/2L · l′(f(Ut;X, Ỹ ))yLyj1([X⊤]jW

⊤
KWQxL)[WQ]jxL[X

⊤]j

]
Similarly, we have

∇WQ
L̂(U) = Ê

[
l′(f(U ;X, Ỹ ))∇(yLf(U ;X, Ỹ ))

]
= Ê

[
l′(f(U ;X, Ỹ ))yL∇

(
Ỹ /2L · ReLU

(
X⊤W⊤

KWQxL

))]
= Ê

[
1/2L · l′(f(U ;X, Ỹ ))yL

2L∑
i=1

yi∇ReLU
(
[X⊤]iW

⊤
KWQxL

)]

= Ê

[
1/2L · l′(f(U ;X, Ỹ ))yL

2L∑
i=1

yi1([X
⊤]iW

⊤
KWQxL)WKXix

⊤
L

]
= Ê

[
1/2L · l′(f(U ;X, Ỹ ))WKX · diag

(
1(X⊤W⊤

KWQxL)
)
x⊤
L

]
[∇WQ

L̂(Ut)]i = Ê
[
1/2L · l′(f(Ut;X, Ỹ ))yLyi1([X

⊤]iW
⊤
KWQxL)[WK ]iXix

⊤
L

]
[∇WQ

L̂(Ut)]j = Ê
[
1/2L · l′(f(Ut;X, Ỹ ))yLyj1([X⊤]jW

⊤
KWQxL)[WK ]jXjx

⊤
L

]
With l = − log σ

(
yLf(U ;X, Ỹ )

)
, we have l′ ≜ l′(f(U ;X, Ỹ )) = −yL exp(−yLf(U ;X,Ỹ ))

1+exp(−yLf(U ;X,Ỹ ))
. Ac-

cording to ∇WK
L̂(U) and ∇WQ

L̂(U), let A = Ê
[
l′X · diag

(
1(X⊤W⊤

KWQxL)
)
x⊤
L

]
∈ Rd×d,

then we have
WK,t+1 = WK,t − η∇WK,t

L̂(Ut)− ηλWK,t

= (1− ηλ)WK,t − η∇WK,t
L̂(UT )

= (1− ηλ)WK,t − η/2L ·WQ,tA
⊤
t

Similarly,

WQ,t+1 = WQ,t − η∇WQ,t
L̂(Ut)− ηλWQ,t

= (1− ηλ)WQ,t − η∇WQ,t
L̂(Ut)

= (1− ηλ)WQ,t − η/2L ·WK,tAt
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Eigen decomposition and the gradient descent of eigenvalues. Assume that WK ≃ WQ and
simultaneous diagonolizability,

WK = M · diag(σ(WK))Φ⊤

WQ = M · diag(σ(WQ))Φ
⊤

Then,

WK,t+1 = (1− ηλ)WK,t − η/2L ·WQ,t[At]
⊤

= (1− ηλ)WK,t − η/2L ·Mt · diag(σ(WQ,t))Φ
⊤
t [At]

⊤

= (1− ηλ)WK,t − η/2L ·Mt · diag(σ(WQ,t))Φ
⊤
t [At]

⊤ΦtΦ
⊤
t

= (1− ηλ)WK,t − η/2L ·Mt · diag(σ(WQ,t))
(
Φ⊤

t AtΦt

)⊤
Φ⊤

t

WQ,t+1 = (1− ηλ)WQ,t − η/2L ·WK,tAt

= (1− ηλ)WQ,t − η/2L ·Mt · diag(σ(WK,t))Φ
⊤
t At

= (1− ηλ)WQ,t − η/2L ·Mt · diag(σ(WK,t))Φ
⊤
t AtΦtΦ

⊤
t

= (1− ηλ)WQ,t − η/2L ·Mt · diag(σ(WK,t))
(
Φ⊤

t AtΦt

)
Φ⊤

t

If we have A is symmetric and Φ⊤AΦ is diagonal, then for the eigenvalues of WK and WQ, i.e.
σ(WK) and σ(WQ),

σ (WK,t+1) = (1− ηλ)σ (WK,t)− η/2L · σ(WQ,t)⊙ σ([At]
⊤)

σ (WQ,t+1) = (1− ηλ)σ (WQ,t)− η/2L · σ(WK,t)⊙ σ(At)

Let
√
w = σ(WK) = σ(WQ) ∈ Rd and w = σ(U) = σ(WK)⊙ σ(WQ) ∈ Rd, α = σ(A),

σ (WK,t+1)⊙ σ (WQ,t+1) =(1− ηλ) (σ (WK,t)⊙ σ (WQ,t))− η/2L ·
(
σ(WK,t)

⊙2
)
⊙ σ(At)

− η/2
(
σ(WQ,t)

⊙2
)
⊙ σ([At]

⊤)

=(1− ηλ) (σ (WK,t)⊙ σ (WQ,t))− η/2L
(
σ(WK,t)

⊙2 + σ(WQ,t)
⊙2
)
⊙ σ(At)

Finally, we have

wt+1 = (1− ηλ)wt − η/2L · 2wt ⊙ αt

Analysis the relationship of α = Tr(A) and w = Tr(U). In the following, we analysis the
relationship of α and w. To Compute trace of matrix A,

Tr(A) = Tr
(

Ê
[
l′X · diag

(
1(X⊤W⊤

KWQxL)
)
x⊤
L

])
= Ê

[
Tr
(
l′X · diag

(
1(X⊤W⊤

KWQxL)
)
x⊤
L

)]
= Ê

l′ Tr
(
X · diag

(
1(X⊤W⊤

KWQxL)
)
x⊤
L

)︸ ︷︷ ︸
M


For term M ,

M = Tr
(
X · diag

(
1(X⊤W⊤

KWQxL)
)
x⊤
L

)
=

d∑
i=1

 L∑
j=1

Xij

[
1(X⊤W⊤

KWQxL)
]
j

xLi

≤ max(∥x∥22)
L∑

j=1

[
1(X⊤W⊤

KWQxL)
]
j︸ ︷︷ ︸

Z
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For term Z,

WK = M · diag(σ(WK))Φ⊤

WQ = M · diag(σ(WQ))Φ
⊤

X⊤W⊤
KWQxL = X⊤Φ · diag(

√
w)M⊤M · diag(

√
w)Φ⊤xL

= X⊤Φ · diag(w)Φ⊤xL

and then [
1(X⊤W⊤

KWQxL)
]
j
=
[
1(X⊤Φ · diag(w)Φ⊤xL)

]
j

=
[(

1(X⊤Φ)1(diag(w))1(Φ⊤xL)
)]

j

= 1(
[
X⊤]jΦ

)
1(diag(w))1(Φ⊤xL)

=

d∑
k=1

1([X⊤]jΦ)1(Φ
⊤xL)1(wk)

=

d∑
k=1

1([X⊤]jxL)1(wk)

Combine term M and term Z, and assume that almost ∀wi > 0, then we have

α = Tr(A)

=Ê
[
l′Tr

(
X · diag

(
1(X⊤W⊤

KWQxL)
)
x⊤
L

)]
=p−E

[
l′−Tr

(
X · diag

(
1(X⊤W⊤

KWQxL)
)
x⊤
L

)]
+ p+E

[
l′+Tr

(
X · diag

(
1(X⊤W⊤

KWQxL)
)
x⊤
L

)]
≥pÊ

l′− max(∥x∥22)
L∑

j=1

[
1(X⊤W⊤

KWQxL)
]
j

+ (1− p)E
[
l′+Tr

(
X · diag

(
1(X⊤W⊤

KWQxL)
)
x⊤
L

)]

=pÊ

l′− max(∥x∥22)
L∑

j=1

d∑
k=1

1([X⊤]jxL)1(wk)


=pmax(∥x∥22)Ê

l′− L∑
j=1

d∑
k=1

1([X⊤]jxL)1(wk)


=pmax(∥x∥22)Ê

[
l′−1⊤1(X⊤xL)

]
≜ −pk

where p is the proportion of negative logistic loss, k = max(∥x∥22)Ê
[
|l′−|1

⊤1(X⊤xL)
]
> 0. We

conclude that the lower bound of α is independent with w, naturally,

wt+1 ≤ (1− ηλ)wt + η/2L · 2pkwt

Analysis Wt and Vt. By similar proof, for W = [W 1
K ]⊤W 1

Q, let A1 =

Ê
[
l′X1 · diag

(
1(X⊤

1 [W 1
K ]⊤W 1

QxL,1)
)
x⊤
L,1

]
∈ Rd×d, w1 = σ(W 1

K) ⊙ σ(W 1
Q) ∈ Rd,

α1 = σ(A1), we also have

∇W 1
K
L̂(W ) = Ê

[
1/L · l′(f(W ;X1, Y ))W 1

Q

(
X1 · diag

(
1(X⊤

1 [W 1
K ]⊤W 1

QxL,1)
)
x⊤
L,1

)⊤]
∇W 1

Q
L̂(W ) = Ê

[
1/L · l′(f(W ;X1, Y ))W 1

KX1 · diag
(
1(X⊤

1 [W 1
K ]⊤W 1

QxL,1)
)
x⊤
L,1

]
and p1 is the proportion of the negative derivative of logistic loss l′(f(W ;X1, Y )) < 0

w1
t+1 = (1− ηλ)w1

t + 2p1k1η/L · w1
t , k1 ≜ max(∥x∥22)Ê

[
|l′−|1

⊤1(X⊤
1 xL,1)

]
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For V = [W 2
K ]⊤W 2

Q, let A2 = Ê
[
l′X2 · diag

(
1(X⊤

2 [W 2
K ]⊤W 2

QxL,2)
)
x⊤
L,2

]
∈ Rd×d, w2 =

σ(W 2
K)⊙ σ(W 2

Q) ∈ Rd, α2 = σ(A2), we have

∇W 2
K
L̂(V ) = Ê

[
1/L · l′(f(V ;X2, Y ))W 2

Q

(
X2 · diag

(
1(X⊤

2 [W 2
K ]⊤W 2

QxL,2)
)
x⊤
L,2

)⊤]
∇W 2

Q
L̂(V ) = Ê

[
1/L · l′(f(V ;X2, Y ))W 2

KX2 · diag
(
1(X⊤

2 [W 2
K ]⊤W 2

QxL,2)
)
x⊤
L,2

]
and p2 is the proportion of the negative derivative of logistic loss l′(f(V ;X2, Y )) < 0

w2
t+1 = (1− ηλ)w2

t + 2p2k2η/L · w2
t , k2 ≜ max(∥x∥22)Ê

[
|l′−|1

⊤1(X⊤
2 xL,2)

]
In the elementary stage. With learning rate η1, Tr(Wt) ≜ w1

t , and Tr(Vt) ≜ w2
t , we have

w1
t+1 = (1− η1λ)w

1
t + 2p1k1η1/L · w1

t , k1 ≜ max(∥x∥22)Ê
[
|l′−|1

⊤1(X⊤
1 xL,1)

]
w2

t+1 = (1− η1λ)w
2
t + 2p2k2η1/L · w2

t , k2 ≜ max(∥x∥22)Ê
[
|l′−|1

⊤1(X⊤
2 xL,2)

]
then through t1 ≤ 1

η1λ
iterations, according to the dynamic of the trace of W and V ,

w1
t1 = (1− η1λ+ 2p1k1η1/L)

t1 w1
0

w2
t1 = (1− η1λ+ 2p2k2η1/L)

t1 w2
0

We conclude that Tr(Wt) and Tr(Vt) have similar update rules where the rate of exponential growth
over time mainly depends on three factors: (1) The learning rate η1. (2) The proportion of the
negative derivative of logistic loss p. (3) The negative derivative of the logistic loss is selected based
on the similarity between query xL and sequence X , i.e. 1(X⊤

1 xL,1). Further compute k with the
mean absolute value of the selected negative derivative.

Combine Theorem 2 with small and random noise, ∥Wt1∥F ≈ ∥W t1∥F and ∥Vt1∥F ≈ ∥V t1∥F , we
conclude the following corollary that at time t1,

w1
t1 = Tr(Wt1) ≤

√
Tr(W⊤

t1Wt1) = ∥Wt1∥F ≲ d log(1/ϵW,1)

w2
t1 = Tr(Vt1) ≤

√
Tr(V ⊤

t1 Vt1) = ∥Vt1∥F ≲
1

Poly(d)
Finally, we have

Tr(Wt1) > Tr(Vt1)

In the specialized stage. With learning rate η2, Tr(Wt) ≜ w1
t , and Tr(Vt) ≜ w2

t , we have

w1
t+1 = (1− η2λ)w

1
t + 2p1k1η2/L · w1

t , k1 ≜ max(∥x∥22)Ê
[
|l′−|1

⊤1(X⊤
1 xL,1)

]
w2

t+1 = (1− η2λ)w
2
t + 2p2k2η2/L · w2

t , k2 ≜ max(∥x∥22)Ê
[
|l′−|1

⊤1(X⊤
2 xL,2)

]
Through t2 ≤ log2(1/ϵV,1)

η2λϵ2V,1
iterations, according to the dynamic of the trace of W and V ,

w1
t1+t2 = (1− η2λ+ 2p1k1η2/L)

t2 w1
t1

w2
t1+t2 = (1− η2λ+ 2p2k2η2/L)

t2 w2
t1

Similar to the elementary stage, we conclude that Tr(Wt) and Tr(Vt) still have similar update rules
where the rate of exponential growth over time mainly depends on three factors.

Combine with Theorem 3 and 4, we have

w1
t1+t2 = Tr(Wt1+t2) ≤

√
Tr(W⊤

t1+t2Wt1+t2) = ∥Wt1+t2∥F ≲ d log(1/ϵW,1) +
log (1/ϵV,1)

λ3/2ϵ2V,1

w2
t1+t2 = Tr(Vt1+t2) ≤

√
Tr(V ⊤

t1+t2Vt1+t2) = ∥Vt1+t2∥F ≲
1

Poly(d)
+

log(1/ϵV,1)

ϵV,1

Finally, we have
Tr(Wt1+t2) < Tr(Vt1+t2)
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