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ABSTRACT

Transformers have emerged as a cornerstone across various fields with extensive
applications. However, the training dynamics of transformers remain relatively
underexplored. In this work, we present a novel perspective on how transformers
acquire knowledge during the training dynamics, inspired by the feature learn-
ing theory. To this end, we conceptualize each token as embodying two types
of knowledge: elementary knowledge represented by syntactic information, and
specialized knowledge represented by semantic information. Building on this data
structure, we rigorously prove that transformers follow a syntax-then-semantics
learning paradigm, i.e., first mastering syntax in the Elementary Stage and then
unlocking semantics in the subsequent Specialized Stage. The results are derived
from the training dynamics analysis and finite-time convergence within the in-
context learning framework for supervised classification. To our best knowledge,
this is the first rigorous result of a two-stage optimization process in transformers
from a feature learning perspective. Empirical findings on real-world language
datasets support the theoretical results of the two-stage learning process. More-
over, the spectral properties of attention weights, derived from our theoretical
framework, align with the experimental observations, providing further validation.

1 INTRODUCTION

Transformers (Vaswani, |2017) have emerged as foundational ar-
chitectures with broad applications across multiple research do-
mains, such as natural language processing (Kenton & Toutanova,
2019; |[Radford et al., 2019; [Brown, 2020), computer vision (Liu
et al., 2021} [He et al.| [2022), efc. Recently, large language mod-
els (LLM) based on decoder-only transformer architectures further
demonstrate impressive capabilities, particularly their remarkable
in-context learning (ICL) ability (Brown, 2020), where the model
solves new tasks based on prompts without further parameter fine-
tuning (Black et al.| [2022} Rae et al., 2021). The ICL ability has
served as the foundation for developing more advanced prompting
techniques to tackle complex problems (Huang & Chang) 2022).
Recent theoretical studies derive that transformers can mimic the
behavior of supervised learning algorithms when training and test
prompts are embedded as sequences of labeled training samples
and an unlabeled query (Akytirek et al., 2022; [Zhang et al., [2023;

More Syntactically and Semantically Correct

Figure 1: Data information.

Huang et al.| [2023; |Cheng et al.| |2023; |Chen et al.,|2024). Following this ICL regime, we construct
the training prompts and aim to develop the corresponding optimization theory on supervised tasks.

Before theoretically modelling the optimization process, we conducted motivating experiments by
setting different rank preservation over attention weights (Details in Section[3). In Figure[I] we have
the question ‘Yacin Chikh (ALG) def. Anatoly Filipov (EUN), 5:3. Xamarin owner (?)’ with the
gold answer ‘Microsoft’. In this question, the content inside the parentheses, ‘ALG’ and ‘EUN’,
represents the affiliations of the preceding names. Thus the transformer should induce the affiliation
relationship and answer that ‘the Xamarin owner is Microsoft’. From right to left in Figure[} more
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small eigenvalues of attention weights are preserved. Using different edited weights, the model’s
answer improves from syntactically incorrect (‘of”) to semantically similar (‘Sony’,’BP’) to seman-
tically correct (‘Microsoft’). We surprisingly induce that smaller eigenvalues preserve syntactic
information, while retaining larger eigenvalues enables the model to gradually grasp the semantic
meaning of sentences. Motivated by this phenomenon, for transformers on various tasks like classic
NLP tasks or supervised learning tasks in ICL regimes, we can disentangle data information (neu-
ral representations) into two types: elementary knowledge represented by syntactic information,
and specialized knowledge represented by semantic information. Empirically, studies by|Bao et al.
(2019); [Chen et al.| (2019a); [Huang et al.| (2021) consider concrete disentangling processes, such
as using paraphrase pairs to experimentally extract two types of information. Theoretically, our re-
search aims to further disentangle the learning process of these two types of data information in a
mathematically rigorous manner. This leads to a critical question:

How do transformers learn the syntactic and semantic information stage wisely?

To demystify the training dynamics of transformers, the first line of work is beyond ICL regimes (De-
ora et al.| 2023} |L1 et al., [2023b; Tian et al., 2023azb). Seminal works by [Tian et al.| (2023a) and
Tian et al.| (2023b)) analyze how the self-attention mechanism combines input tokens by studying
attention maps. However, this line provides few insights into the training dynamics and convergence
behaviors. Another closely related line is modelled under the ICL regime like ours (Zhang et al.,
2023; [Huang et al.,|2023}; |Cheng et al., 2023}, (Chen et al., 2024). For example, Huang et al.| (2023))
consider stage wisely learning on the switch of dominant and target features. As a comparison, this
paper derives the stage transitions using (equally dominant) syntactic and semantic features. In sum-
mary, finite-time training dynamics of transformers remain relatively unexplored, especially when
attempting to disentangle the learning process of syntactic and semantic information.

In this paper, we derive a rigorous two-stage learning process where transformers first master syntax
and then unlock semantics. Simultaneously, we investigate how transformer weights evolve over
time and explore the convergence theory. Our main contributions are summarized as follows.

(a) Data Modelling with Feature Learning. Inspired by feature learning theory, we categorize
token information into two key feature types: elementary knowledge represented by syntactic infor-
mation, and specialized knowledge represented by semantic information. Furthermore, we proceed
with theoretical abstraction in Section [3] aligning the learning difficulty of foundational knowledge
with linearly separable, easy-to-fit data distributions, while associating specialized knowledge with
linearly non-separable, hard-to-fit data distributions.

(b) Mathematical Proof in Two-Stage Learning. Based on the underlying data structure, to our
best knowledge, this is the first paper presenting rigorous proofs for the two-stage learning process
in transformers, distinguishing between the initial stage of mastering elementary knowledge and the
subsequent stage of acquiring specialized knowledge (Detailed proof in Section [FI] ~[G.2).

(c) Optimization Trajectory and Convergence Analysis. We present optimization trajectory and
convergence analysis in Section |4} providing deeper insights into the two-stage learning process.
Specifically, by adopting feature learning and signal-noise decomposition techniques, we give key
propositions and lemmas in Appendix [E] carefully discussing the different ReLU activation patterns
and the impact of signal or noise weights on network output computations.

(d) Alignment of Theory and Experiments. Our theoretical findings are consistent with experi-
mental observations of spectral properties, and experiments on real-world language datasets validate
the two-stage learning theory (Experiments are provided in Section [5).

2 RELATED WORK

Optimization Analysis for In-context Learning. Numerous studies have explored the theoret-
ical properties of transformers for in-context learning (ICL). In theoretical regimes of ICL, a line
of work (Zhang et al., 2023} [Huang et al.| [2023; |Cheng et al., |2023}; |(Chen et al., [2024) focuses on
optimizing transformers using training prompts structured with input-label pairs, which is similar to
this paper. This line of work shows that the global minimum of ICL loss can be reached through
gradient flow across different models and tasks (such as models with linear or softmax modules,
tasks on linear regression or nonlinear function learning). However, this line usually does not inves-
tigate how the model weights are optimized and updated or how the loss evolves throughout training.
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Additionally, this line does not address finite-time convergence or the distinct stages of learning var-
ious types of information. Among them, |Huang et al.| (2023) also derive stage-wise learning under
linear regression regimes with unbalanced features. Our work differs from them in two aspects: (a)
the stage-wise comes from the different types of data in this paper; and (b) this paper focuses on
nonlinear classification tasks. This leads to totally different techniques where [Huang et al.| (2023))
emphasize attention maps while we adopt feature learning that accounts for specific data structures
to mathematically demonstrate the stages of learning syntactic and semantic information.

Training Dynamics of Transformers. Beyond ICL regimes, many studies focus on attention-
based models for general learning problems. For example, Deora et al.| (2023)) investigate opti-
mization and generalization of multi-head attention layer in a binary classification setting, using
natural sequences rather than synthetic input-label pairs. [L1 et al.| (2023a) offer a theoretical analy-
sis of training a shallow ViT for classification tasks, characterizing the sample complexity required
to achieve zero generalization error. Additionally, Tian et al.[(2023a) and [Tian et al. (2023b) ana-
lyze the SGD training dynamics for one-layer transformers, focusing on how the self-attention layer
combines input tokens by studying attention maps.

Optimization Theory of Neural Networks - Feature Learning. A line of work studying the
convergence of neural networks relies on Neural Tangent Kernel (NTK) technique (Jacot et al., 2018},
Li & Liang}, 2018} |Allen-Zhu et al.||2019; |Chen et al.,|2019b; |Du et al.,|2019). It relates the training
of over-parameterized (or infinite-width) neural networks to learning over a kernel defined by the
network’s randomly initialized weights. However, the parameters of practical networks usually do
not remain in the lazy training regime and instead move a large distance. Following NTK, a new
theoretical branch called feature learning theory in deep learning has emerged (Allen-Zhu & Li,
2020; 2022; Wen & Li, 2021} |L1 et al., 2023b). Feature learning theory typically assumes specific
data generation models, such as Gaussian mixtures. This paper follows this line and utilizes a
different syntax-semantics data structure, motivated by empirical observations. This data structure
allows us to capture the intrinsic interaction between different features and neural network dynamics.

3 PROBLEM SETUP

This section presents the details of the data, model, and training procedure. Concretely, Section [3.1]
designs the individual sample structure and constructs training prompts following ICL regimes. Sec-
tion [3.2]introduces a one-layer attention-based model and two virtual networks. Finally, Section[3.3|
describes the corresponding loss function and optimization algorithm used for classification tasks.

Notations. Let ||A|r be the Frobenius norm for matrix A and ||z||2 be the 2-norm for vector
x. For matrix A, define [A]; as the i-th row, and [A];; as the (7,j)-th element. For vector x,
ReLU(x) = max{x,0} denotes the standard ReLU activation function, and 1(z) denotes a binary
vector which takes entries 1 when z; > 0. We use ® to denote the Hadamard product. For set
operators, denote N, U, @ and \ by intersection, union, symmetric difference of two sets, and set
difference, respectively. Additionally, throughout the paper, let U € IR%2¢*24 denote a weight matrix,
and W € R4V ¢ R denote the principal submatrices of U which will be defined later.
For order analysis, Poly(-) represents polynomial order, and f(n) = O(g(n)) means that f(n) is
asymptotically less than or equal to g(n) in terms of the order of magnitude.

3.1 IN-CONTEXT LEARNING FRAMEWORK AND DATA DISTRIBUTION

We adopt the well-established in-context learning (ICL) framework, as introduced by |Garg et al.
(2022). ICL regime refers to the behavior of models within a specified hypothesis class, where
the functions and input samples are drawn respectively from the hypothesis distribution and data
distribution. The models operate on sequences, which are known as prompts.

Training Prompt Structure. To train a transformer to hold ICL abilities on complex binary
classification tasks, the process begins with N random training prompts, which are used to learn
a specific classifier in a hypothesis class. As suggested by the general ICL regime, for the n-

th prompt, input samples z7,---,2%7_; and query z’} are drawn randomly and independently
from the same data distribution. The input-label pairs are stacked to form a training prompt
pP" = (ac’f, Y T YT, xﬁ) with prompt length L. For binary classification tasks, the
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Figure 2: Overview of disentangling syntax and semantics.

ground truth label of ' is denoted by y' = y( me{-1,1}. Especially, for query 7, the ground
truth label is y7 y(m 7). The goal of an in- context learner is to use such prompts to make a
prediction f (x’i) for the query such that f(z}) ~ y}.

Individual Sample Structure. For each individual input sample z}" in prompt P", it is composed
of two types of components: P component represents easy-to-fit features, aligning with syntactic
information in the corpus, and @ component represents hard-to-fit features, aligning with semantic
information in the corpus.

Specifically, we define 2} = [z]',2],]" where a2}, €
R¢, 2", € R% and 2} € R Then we design the con- . .
crete structure of P and Q for the sample ' as follows, draw-
ing inspirations from |Li et al,| (2019). Let xz 1 ~ Pyn and
xﬁz ~ Qy? For distribution P, it noise e and optlmal clas-
sifier w* satisfy (w ,e) > 0, then we construct the positive
sample based on x7'; = yow* + e. Conversely, if (w*, e> <0,
we construct the negatlve sample based on 27’} = —yow* + e.
It is natural to find that 7', has easy-to-fit features and it could

be easily classified by a linear classifier sign (w*le) with a

margin of 2vy. To simplify, let w* € IR? be a unit vector i.e. .
Lixa

[[w*||2 = 1, margin o = =, and noise e ~ N’ (0 ) For
Figure 3: Composite nonlinear

distribution Q, z}'5, = az belongs to the positive class, while . .
’ classification.

riy € {a(z = (), a(z + ¢)} belongs to the negative class. Ob-
viously, z is not linearly separable with extremely small bias
¢ and thus 7', contains hard-to-fit features. To simplify, let
a=11zlz=u |¢|l2=r < wand (z,{) = 0.

Overall, in Figure 2] we utilize two-dimensional data to intuitively illustrate the roles of two com-
ponents P and Q based on the distribution, in learning both linear and nonlinear classifiers. By
concatenating these two components, sample x7' is employed to tackle a more complex composite
nonlinear classification task, as shown in Figure[3] Despite the data composition, the task’s difficulty
is significantly increased rather than being a simple combination.

3.2 ONE-LAYER TRANSFORMER ARCHITECTURE

Embeddings. Given the prompt P" = (a7, yl', -+, &7 _,,y?_,, a7 ), we construct the embed-
ding matrix by stacking x* or y;'. Let X7* and X' denote the matrices of the two types of features
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n n
zj'y and 27’5, Concretely,
n __ n n n dx L n __ n n n dx L
Xp =27, =%, x} ] e R, XP = [27, a5, T} o] € R

To ensure the model output is linearly decomposable, we combine X; and X5 to form the complete

n
feature embedding matrix as X" = {X& )?n} € R24*2L_ Similarly, we define
2
Y=Y 2Y =y oy - 0l e RV

and the complete label matrix as Y = [Y"  Y"] € R!*2L,

Normalized ReLU Self-Attention Layer. A self-attention layer (Vaswanil 2017) in the single-
head case includes parameters ¢: key, query and value matrices Wg, Wg € R2¥*24 Wy, ¢
IR2L%2L - Given the feature embedding matrix X € R24%2L  we use a normalized ReLU activa-
tion in place of standard softmax activation as Bai et al.|(2024). Then the prediction for query
using a one-layer transformer is given by

~ ~ 1 ~
FU;X,Y) =YWy - S-ReLU (X TWgWgar) =Y /2L -ReLU (X 'Uzy), (1)

where 5 is the normalization factor. To simplify, we reparameterize W, Wq = U € R?¥*?4 and
assume the value matrix is the identity transformation, i.e., Wy = 1.

We remark that softmax is computationally expensive due to the challenges posed by exponential
calculations and the summation over sequence length. Furthermore, transformers with sequence-
length normalized ReLU activations have been experimentally studied in [Wortsman et al.| (2023));
Shen et al.[(2023), demonstrating comparable performances to standard softmax activation in many
vision and NLP tasks.

Transformer Weight Structure. Given that individual samples z}' can be characterized by two
specific types of features, we abstract the real training network into two virtual networks, with
the weight matrix composed of two distinct parts. To simplify our analysis, we here consider the
simplest structure of weight matrix U as a block diagonal matrix:

_ w0 2dx2d
U_{O V]G]R ,

where weight W operates only on X; and V' operates only on Xo. This structure exhibits a strong
property of linear decomposability over the model output, i.e. by decomposition, the two new pre-
dictions with features X; and X» maintain a similar formulation to the original ones:

f(U:X,Y)=1/2-Y/L-ReLU (X{ Way 1) +1/2-Y/L-ReLU (X, Vr ). )
N———
Ny (U;X,Y) Nw (W;X1,Y) or h(X1) Ny (V;X5,Y) or g(X2)

In summary, we naturally abstract two virtual networks: network i (X7 ) with parameter W operates
on X part to learn component P, and network g(X5) with parameter V' operates on X5, part to learn
component Q. The overview is shown in Figure 2]

3.3 TRAINING PROCEDURE

Loss Function. To train the transformer model on binary classification tasks, we consider the
regularized empirical loss over IV training prompts. Denote the logistic loss for each prompt as

I(f(U; X7, Y™)) = log(1 + e Vi U:X"Y™)) then
N
T 1 n ~7L
Lw) = N;l(‘f(U’X M), Q)

and the regularized loss function is denoted as Ly (U) = E(U) + 2|U||%, where A denotes the Lo
regularization coefficient.

Optimization Algorithm. Consider stochastic gradient descent with spherical Gaussian noise,
which is a simplification of minibatch SGD. Taking initial weight [Up|;; ~ N (0, 7'02) and noise

(&lij ~ N (0, Tg), then the update of U with time is represented as
Urpr = Us = %Vo(La(Ur) + &) = (1 = % \Us = %€ = Vo L(Uy). “
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: : Wiyia, ~ Wy 0
i+ Conclusion: i Conclusion: 0 Vst = Vi, +V*
i The model g(X>) learns specialized knowledge Q. ! The model h(X;) preserves elementary knowledge P. e '

oo T SRSRSSERLLELTIES - Overall Training

Figure 4: Summary of Two-stage Learning.

Signal-noise Decomposition. With noise in SGD optimization, we take signal-noise decomposi-
tion for weight U, i.e., U = U+ ﬁ (Allen-Zhu et al., 2019; [Li et al., 2019). The signal weight is
defined as the weights related to the gradient part, i.e., U1 = (1 — 3 A\)U; — 'ytVUf(Ut). And
the noise weight is defined as the weights related to the noise part, i.e., ﬁtJrl £ (1- %A)(}t — Y&
Note that due to Equation[d} such decomposition is always valid.

Notably, the noise component U follows a Gaussian distribution since it is a linear combination of
Gaussian random variables. By setting a relatively small variance 7'52, the signal component always
dominates the noise component (Li et al., 2019). Therefore, one can always rewrite the weight
U=U+Uasa signal part U with a small Gaussian random noise U. Based on this observation,

we define the training loss K (U) which depends solely on the signal weight:
N
— 1 o~ ~
K(U) =~ l(N U U;X“,Y"). 5
@)= Xt (Nul@ + ) )

Based on the above discussions, minimizing Equation [5]is almost equivalent to minimizing Equa-
tion [3} Similarly, we take signal-noise decomposition for W = W + w andV =V + V, then
define the training loss of easy-to-fit component P over signal weight as K!(W/), and the training
loss of hard-to-fit component Q over signal weight as K2 (V):

N N
KN (W) = ;fnz_:ll (Nw (W + Wi X7, v7)), K(V) = Jb;l (N (7 + Pixp.vm).

(6)
4  TwO-STAGE OPTIMIZATION OF TRANSFORMERS

Based on the data characteristics and the different learning complexity of component P and Q, we
split the entire training process into two stages: the Elementary Stage (in Section .1} Theorem [T]
and Theorem [2), and the Specialized Stage (in Section4.2] Theorem [3land Theorem). We establish
the weight trajectory and analyze the finite-time convergence in the two stages. The main theorems
are summarized in Figure[d Before diving into the details, we introduce the fundamental settings of
two stages, including the learning rate and training iterations. Specially,

A

* Elementary Stage. Constant learning rate 777 = ©(1); Containing 0 < ¢ < ¢

where ) denotes the Lo regularization coefficient.
* Specialized Stage. Annealing learning rate 1, = 7, )\26%/717" where ey; = O(1/Poly(d))

1
A

will be introduced later, and » = ||(||2 represents the hardness of semantics (See Para-
2
graph ; Containing t; <t < t; + to where ¢, 4 log"(1/eva)

72 AE%/,I

6
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The annealing learning rate is widely adopted in practical training procedures. Furthermore, we
present the same choices of hyperparameters for two stages in Assumption [T}

Assumption 1. Throughout the Theorems, set the variance of initialization parameter Ty =
o (ﬁ), regularization coefficient 5+ = O (y/log d) and prompt length L = © (Poly(d)) where
d denotes the input dimension.

Discussions on Assumption[I, We next validate the hyperparameter orders in Assumption|[I}

(1) 79 denotes the variance of the initialization parameter. The requirement 7o = O ( \/@) sug-

gests that, as dimension d increases and the data complexity grows, the variance should be adaptively
decreased. This aligns with practical training methodologies, as a higher variance might result in a
significant shift of the initial weights in high-dimensional spaces, leading to unstable training and
potentially impeding convergence.

(2) A denotes the Lo regularization coefficient in the loss function. The requirement % =

O (\/log d) suggests that, as dimension d increases, A should be adjusted to be correspondingly
smaller. This is a practical consideration because, in high-dimensional scenarios, a large A may
overly constrain the model, potentially causing underfitting. Furthermore, ¢; < ml ~ implies that
there might be a longer period during which the model may struggle to effectively learn from the

higher-dimensional data Q, which accords with the empirical intuition.

(3) L denotes the prompt length. The requirement L = O(Poly(d)) suggests that the model antici-
pates longer input sequences for learning high-dimensional data, which accords with reality.

4.1 ELEMENTARY STAGE

This section aims to analyze the regime with 7, = (1) and t < ¢; £ 77%\ Our goal is to prove

. . = Wo 0 = th — W 0 .
that the weights are optimized from Uy = I; Vo} toU,, = 0 V. ~ Vol This
means that W, approach the optimal weights W*, while V;, remains close to V. We split the
derivation into two theorems: Theorem|[I|demonstrates that the hard-to-fit component Q (specialized
knowledge) is not effectively learned by network g, and Theorem 2] demonstrates that the network A

successfully learns the easy-to-fit component P (elementary knowledge). We start from Theorem [I]

Theorem 1. In the elementary stage with n; = O(1) and t, = n%\ where X denotes regularization
coefficients. With Assumption([l] initial weights Vo — Ogxq and N training prompts, it holds that

Vi, || satisfies

(a.1) For the model parameter V' of network g, through gradient descent,

IVallr =0 (P;@) |

(a.2) With random and small noise weight, the training loss of hard-to-fit component Q over signal
weight (Definition in Equation|[6) at iteration t satisfies

L logd
Viogd N’

Namely, the hard-to-fit component Q is not efficiently learned by g within t, iterations.

Kt21 (Vh) Z 10g2 -

Messages Behind Theorem Theorem [I]demonstrates that the hard-to-fit component Q cannot
be effectively learned by the corresponding network g defined in Equation 2} In (a.1), within ¢, iter-

ations, the weight ||V¢, ||  is approximately in order m, which implies that the model weight V'

is almost not optimized since ||V, || = ||V || . In (a.2), we provide the lower bound for the train-
ing loss of component Q. The value is close to log 2 with large dimension d and training prompts N .
Overall, the above discussions exhibit that specialized knowledge like Q is not effectively learned
by the network g. We defer the proof to Appendix and the proof sketch in Remark [6]

Theorem 2. In the elementary stage with n; = O(1) and t1 = m% where \ denotes regularization
coefficients. With Assumption and initial weights Wo — 0gxgq, it holds that there exist ey, =
© (1/Poly(d)), ew = © ((Poly(d))?*/?) (See Definition in Equationand@) such that
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(b.1) The model parameter W of network h is optimized by gradient descent within t, iterations,
[We,l[r = © (dlog(1/ew,1)) > [[WollF.

(b.2) With random and small noise weight, the training loss of easy-to-fit component P over signal

weight (Definition in Equation|[6) at iteration t satisfies

— Vdlogd 1
Ktll(th) Scw,l—'_TgEW—'— \/10@

Namely, the network h learns the easy-to-fit component P within t; iterations.

Messages Behind Theorem Theorem [2| describes how the easy-to-fit component P is learned
by the corresponding network h defined in Equation 2| In (b.1), within ¢; iterations, |W |/ sig-
nificantly grows from the order | W/ ~ V/d to the order ||[W,||r ~ dlog(1/ew.1), indicating
that the knowledge might be learned. In comparison, V;, for the hard-to-fit component Q changes
small since ||V, ||Fr ~ ||[Vollr =~ m (See Theorem |1/ (a.1)). In (b.2), it shows that the loss of
easy-to-fit component P is upper bounded by an o(1) term which converges to zero as the dimen-

%ew + \/IOL has the order of

sion d goes to infinity. Concretely, the upper bound ey ; +

1 1
Poly(d) + (Poly(d)
by a constant close to log 2 (See Theorem (1] (a.2)). In summary, the above discussions imply that
the network h learns elementary knowledge like P, marking the so-called elementary stage.
We defer the Proof to Appendix [F.2]and the Proof Sketch in Remark [7]

yi7s + \/13@. In comparison, the loss of hard-to-fit component Q is lower bounded

4.2 SPECIALIZED STAGE

This section aims to analyze the regime with 7, = 771A26‘2/,17" and t; < t <t + to,
where €y17 = ©(1/Poly(d)) is defined in Equation , t = UTI,\ and ty = %
Our goal is to prove that the weights are optimized from U;, = mtl Vot j to Upve, =
Wiytt, = Wy, 0

0 v SV, 4+ V*] . In total, we split the derivation into two theorems: The-
t1+t2 t1

orem [3|demonstrates that the network g learns specialized knowledge like hard-to-fit component Q,
and Theorem {] demonstrates that the network h continues to preserve the elementary knowledge
like easy-to-fit component P. We start from Theorem [3]

Theorem 3. In the specialized stage with annealing learning rate 12 = 11 )\26%/717’ andt; <t <

2
t1 + to, where ey; = ©(1/Poly(d)), t; £ n%\ to 2 %, A\ denotes the Lo regularization

coefficient and data noise ||(||> = r (See Paragraph[3.1). With Assumption[l} it holds that
(c.1) The model parameter V of network g is optimized by gradient descent within t iterations,

— B log(1/ev1)
Vi +t.llr = © o + Poly(d)

(c.2) With random and small noise weight, the training loss of hard-to-fit component Q over signal
weight (Definition in Equation|[6) satisfies
_ 1 1
K., (V Seva+ + .
t1+t2< t1+t2> ~ V1 (logd)1/4 \/@
Namely, the network g learns hard-to-fit component Q within ts iterations.

> Vi |l p-

Messages Behind Theorem [3] Theorem [3] illustrates the optimization in the specialized stage.
Statement (c.1) implies that within ¢ iterations, |V|| p grows from the order ||V, ||r = to
log(1/ev,1)
€v,1
Assumption . Statement (c.2) implies that the loss is upper bounded by o(1) which converges to
1

zero as d goes to infinity. Notably, the upper bound given by the order ey ; + W + Togd
1

1 1 :
Poly (d) + {Tog )73 + Tosd" Compared to Theorem |1| with constant lower bound, we conclude that

with a small learning rate, the network ¢ learns specialized knowledge, marking the so-called
specialized stage. We defer the Proof to Appendix and the Proof Sketch in Remark [§]

Pol;(d)
+ Po]j(d) ~ Poly(d) log Poly(d) + m (derivation based on

the order ||V, 14, ||F ~
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Figure 5: Two-stage learning of syntax and semantics.

Discussion on Parameter Orders. We first focus on the learning rate 7o = 11 A\*€f, ;7. Given the
choices in Assumption N2~ O (%m) . It usually follows that 2 < 71, which accords with

practical training. Additionally, the current learning process keeps t, = O (Poly(d)(log d)’’?) m),

which is significantly longer than ¢; = O (\/log d/ 771), coming from the difficulty of learning
simple and complex components.

Theorem 4. In the specialized stage with annealing learning rate 1y = 1 )\26%717’ andt; <t <

t1 + to, where ey1 = ©(1/Poly(d)), t1 £ n%\ ty £ logn(i% A denotes the Lo regularization

coefficient and data noise ||(||2 = r (See Paragraph . With Assumptionand number of training
prompts N = O (Poly(d)), it holds that

(d.1) For the model parameter W of network h, through gradient descent optimization from iteration
ti toty +to, |Wey 11, — Wy, || F satisfies

H < 6%/,1 )
F™ log? (1/ev,1) Viogd

(d.2) With random and small noise weight, the training loss of easy-to-fit component P over signal
weight (Definition in Equation2)) satisfies

||Wt1 +ta T Wh

6%/,1
log? (1/ev1) vIogd

Namely, the network h continues to preserve the easy-to-fit knowledge like P within to iterations.

Kt Wy t,) — K (We)| S

Messages Behind Theorem[d] Theorem [4] demonstrates the optimization process on the easy-to-
fit part P in specialized stage, annealing the learning rate from 7; to 72. Statement (d.1) demon-
strates that the signal weight W does not change significantly in the specialized stage, given the
upper bound o(1). Concretely, the upper bound of the weight difference between two moments
v 1
og? (e 1) Viogd’ Poly(d))2 (log d)57% Statement (d.2) demonstrates that the
loss also does not change much from iteration ¢; to t; + to, ensuring that the model remains low
training loss on easy-to-fit component P. In detail, the small changes in loss have an order of
W In summary, in the specialized stage, network / continues to preserve the

knowledge P acquired during the elementary knowledge. Given that both the changes in signal
weight W and the loss are minimal, we also conclude that the specialized stage is dedicated exclu-
sively to the learning of hard-to-fit component Q. We defer the Proof to Appendix|G.2]and the Proof
Sketch to Remark

is with the order of
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Figure 6: Spectral Characteristics.
5 EXPERIMENTS

We conduct motivating experiments on Counterfact dataset containing 65,757 question-answer ex-
amples dataset (Meng et al., [2022). All experiments utilize the GPT-2 architecture. Our goal is to
verify the two-stage learning of syntax and semantics with this dataset, as well as the spectral charac-
teristics of model attention weights. Additional dataset descriptions and experiments on HotpotQA

2020) are detailed in Appendix [C]

Verify Two-stage Learning of Syntax and Semantics. In Figure[5] we present the training loss
over 200 epochs, highlighting three key moments with representative samples, including questions,
gold answers, and the model’s predictions. At the initial time 7" = 1, many predictions are both syn-
tactically and semantically incorrect. By 7' = 5, we observe a significant decrease in training loss;
all predictions meet syntactic requirements, but most remain semantically incorrect and inconsistent
with the true answers. Thus, the period from 7" = 1 to T' = 5 corresponds to our theoretical Ele-
mentary Stage. By T' = 100, all predictions are syntactically correct, with most being semantically
correct and achieving small training loss. Therefore, the period from 7" = 6 to 7" = 100 represents
our theoretical Specialized Stage. Overall, this experiment supports our theory of two-stage learning
for syntax and semantics.

Verify Spectral Characteristics. There is a direct Corollary [I] (in Appendix [B) from Theorems 2]
~ [ demonstrating that relatively small eigenvalues of attention weights store syntax information
and large ones store semantics. We verify this insight empirically in Figure[6]by preserving different
eigenvalues and observing the model performances. Concretely, at time 7' = 5 (fully syntactically
correct) and 7" = 100 (fully syntactically correct, nearly fully semantically correct), we set the
rank preservation p ranging from 0.1 to 1.0, to Obtain edited matrices with different eigenvalues
using SVD for comparing predictions. For the left figure, we find that the model’s predictions
become more semantically similar and accurate, as rank preservation p increases (maintaining more
large eigenvalues). For the right figure, we find that the model gradually grasps correct syntax and
semantic information as p increases (maintaining more small eigenvalues). In addition, in the middle
figure, the number of correct predictions increases with larger rank preservation, which accords with
intuition. We defer the detailed discussion to Appendix [C.1]

6 CONCLUSION

This paper provides rigorous proof for the two-stage learning process of transformers in ICL tasks.
We categorize token information into two feature types: elementary knowledge represented by syn-
tactic information, and specialized knowledge represented by semantic information. By employing
feature learning and signal-noise decomposition techniques, we analyze the optimization trajectory,
finite-time convergence, and spectral characteristics under the ICL regime, offering deeper insights
into the optimization process. Ultimately, our work aims to provide a new perspective and a theo-
retical framework for understanding the optimization dynamics of transformers.

10
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A TABLE OF NOTATIONS

Table 1: Table of Notations.

Notation Description
t1 Total iterations of the elementary stage
to Total iterations of the specialized stage
N Number of training prompts
L Training prompt length (the last token is a query)
x = [z, xf,] T € R Divide the i-th token of n-th training prompts into two parts
xiy~Pe R¢ The syntactic information in a token
s~ Q ER? The semantic information in a token
Xt =|ap, By oo ap,| €RE Stack of =7,
X3 =|ab, aB, - al,| RV Stack of 7',
X" = X0 € R2dx2L Stack of X7* and X%
0 X7
yi € {-1,1} Binary classification label
yn = [y? o 0] € RIXE Stack of yI'

v = [Y” Y"] € RYx2L

Stack of Y{" and Y5"

fU; X,Y) Normalized ReLU self-attention output, see in Equationlﬂ
h(X1) Virtual network operates on X1, see in Equation|2|
9(X2) Virtual network operates on X2, see in Equation|2|
w 0 2dx2d . .
U= ceR Model parameter of normalized ReLU self-attention network
0 Vv

Signal-noise decomposition of weight U

Model parameter of virtual network h, signal-noise decomposition

of weight W

Model parameter of virtual network g, signal-noise decomposition

of weight V'

The empirical loss over weight U, see in EquationE|
The training loss over signal weight U, see in Equation
The training loss over signal weight T, see in Equati0n|§|

The training loss over signal weight V, see in Equation|€|

B ADDITIONAL COROLLARY FOR SPECTRAL CHARACTERISTICS FROM

THEOREMS

Corollary 1. With choices of = O(4hs).3 = O(Vlogd) and L =

O (Poly(d)). Denote p1,p2 as the proportions of the negative derivative of logistic loss (i.e.

Viogd

VOV X0 Y)), V(F(V3XaY)) < ) Let by 2 max(folB)E V110X wr0)] ke 2

max(||z[[3)E |[I”_[1T1(X] wr0)|-

14
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(a) In the elementary stage within t; < n%\ iterations, the spectral dynamics satisfy

Tr(Wy,) = (1 — A+ 2pikainy /L) Tr(Weo),  Tr(Vi,) = (1 — mA + 2pikamy /L) Tr(Vp).

Further at iteration t1, we have
Tr(Wy,) > Tr(Vy, ).

log?(1/ev.1)
772)\6%/,1

Tr(Wiy46,) = (1= o) + 2p1kina /D)2 Tr(Wh, ), Tr(Viyqey) = (1 — m2X + 2pakanz /L) Tr(Vs, ).
Further at iteration t1 + t2, we have

Tr(Wt1+t2) < Tr(VYtﬁrtz)'

(b) In the specialized stage within to < iterations, the spectral dynamics satisfy

Remark 5. By applying spectral analysis techniques, such as SVD and gradient descent on eigen-
values, we conclude that whether in the elementary stage or specialize stage, Tr(Wy) and Tr(Vy)
follow similar update rules. The rate of exponential growth over time primarily depends on three
factors: (1) the learning rate ny or no; (2) the proportion p1 or ps of the negative derivative of
logistic loss; and (3) k1 or ko represents the mean absolute value of the selected negative derivative.
By the way, the negative derivative of the logistic loss is selected based on the similarity between
query 1, and sequence X, i.e. 1(X| z L1). When comparing the updating rules for the traces of
weights in the two stages, we find that the three factors differ and vary with training. However,
the overall exponential growth trend remains consistent. Additionally, from Theorems 2| ~ [} it’s
straightforward to compare the relationship of Tr(W) and Tr(V') at iteration t1 and t1 + to, which
will be further verified through experiments on real-world language datasets.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 EXPERIMENTS ON COUNTERFACT DATASET.

Counterfact (Meng et al.l [2022) is a question-answering dataset consisting of knowledge tuples in
the form of (subject, relation, answer). These tuples are constructed using entities in Wikidata. Also,
there are three paraphrased prompts for each question, resulting in a total of 65,757 examples for
the entire dataset. In the following, we provide more discussions about the experimental results in

Figure[5]and [6]

Verify Two-stage Learning of Syntax and Semantics. In Figure[5] we present the training loss
over 200 epochs, highlighting three key moments with representative samples, including questions,
gold answers and the model’s predictions. At the initial time 7' = 1, many predictions are both
syntactically and semantically incorrect. By T' = 5, we observe a significant decrease in training
loss; all predictions meet syntactic requirements, but most are remain semantically incorrect and
inconsistent with the true answers. Thus, the period from 7' = 1 to 7' = 5 corresponds to our
theoretical Elementary Stage. By T' = 100, all predictions are syntactically correct, with most being
semantically correct and achieving a very low loss value. Therefore, the period from 7' = 6 to
T = 100 represents our theoretical Specialized Stage. Overall, this experiment supports our theory
of two-stage learning for syntax and semantics.

Verify Spectral Characteristics. From Theorems 2] ~[4] based on the relationship of F-norm and
trace, it’s straightforward to get Tr(Wy, 4+,) < Tr(Vi,++,) at convergence time ¢; + to (Detailed
Corollay [T)is shown in Appendix [B). We know that weight TV of network h operates on the elemen-
tary syntax and weight V' of network g operates on the specialized semantics. Then the corollary
of Tr(Wy, +4,) < Tr(Vi 4+,) hints that, relatively small eigenvalues of attention weights store
syntax information and large ones store semantics.

Thus in Figure 6] we perform model editing on the attention layer weights of the model to analyze
the impact of large or small eigenvalues. Concretely, we edit attention weights at time 7' = 5 (fully
syntactically correct) and 7' = 100 (fully syntactically correct, nearly fully semantically correct).
Using SVD, we sort the eigenvalues of attention weights and set rank preservation coefficient p,
ranging from 0.1 to 1.0. As shown in Figure[6] the numbers in matrices represent the rank preserva-
tion coefficient p of the current matrix.

15
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Figure 7: Hotpot dataset: two-stage learning of syntax and semantics.

* For the left figure, we first edit attention weights at 7" = 100. Eigenvalues are sorted from
largest to smallest and matrices preserve the top p proportion of the largest eigenvalues.
When p = 0.1, it means maintaining 10% of the largest eigenvalues and corresponding
eigenvectors. The figure displays 10 weight matrices, with p ranging from 0.1 to 1.0 from
left to right. As p increases, more large eigenvalues are preserved, and the model’s predic-
tions become more semantically similar and accurate.

* For the right figure, we further edit attention weights at 7" = 5. Eigenvalues are sorted
from smallest to largest and matrices preserve the top p proportion of the smallest eigen-
values. From right to left, more small eigenvalues are included. As more eigenvalues of the
full matrix are used, the model gradually grasps correct syntax and semantic information.

* For the middle figure, it shows that the number of correct predictions increases with
larger rank preservation, which is intuitive. In summary, the spectral characteristics in-
sights drawn from our theory are also empirically reasonable.

C.2 EXPERIMENTS ON HOTPOTQA DATASET.

HotpotQA. We choose the HotPotQA dataset available on HuggingFace, with a small size 13,530
(Meng et al., [2022). Taking experiments under the same setting as Section [} in Figure [7] we first
verify the two-stage learning of syntax and semantics under this question-answering dataset. The
period from 7' = 1 to T' = 8 corresponds to our theoretical Elementary Stage and the period from
T = 9 to T = 40 represents our theoretical Specialized Stage. In Figure 8| we verify the spectral
characteristics that relatively small eigenvalues of attention weights store syntax information and
large ones store semantics. Specifically, similar to Section [5] we perform model editing on the
attention weights at time 7' = 8 (fully syntactically correct) and 7" = 40 (fully syntactically correct,
nearly fully semantically correct) and set rank preservation p from 0.1 to 1.0.

D USEFUL PROBABILITY CONCENTRATION INEQUALITIES

Lemma 1 (Hoeffding’s Inequality for General Bounded Random Variables, cite HDP p16). Let
X1, , XN be independent random variables. Assume that X; € [m;, M;] for every i. Then, for
any t > 0, we have

al 212
Pr (X; —E[X;) >t] <exp| —
; sz\; (M; —m;)?
Lemma 2 (Bernstein’s Inequality for Bounded Random Variables, cite jconcentration.pdf;, lemma
7.37). Let Xy, -+, Xy be i.i.d. and suppose that |X;| < ¢, E(X;) = p,0% = % Zil Var(X;).
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Figure 8: Hotpot dataset: verify spectral characteristics.

With probability at least 1 — 0,

N
ZXi — i
i=1

Lemma 3 (Norm of Matrix with Gaussian Entries, cite HDP p85). Let A be an n x n random matrix
whose entries A;; are independent gaussian random variables with N (0, 02). Then for any t > 0,

we have
Al S ovn

Lemma 4 (Standard Gaussian Concentration Inequality). Suppose that X = X4,--- , Xy are i.i.d.
standard complex Gaussian variables, and suppose F' : C" — R is a 1-Lipschitz function with
respect to the Euclidean metric. Then E[X] < oo and for all t > 0,

Pr(X -E[X]>t)<e "

Lemma 5 (Chernoff Bound for Guassian Variables). Let X ~ N(u,02), then E[e** =
exp (uA + 02X?/2) and for all t > 0,

202 log(1/4) n 2clog(1/6)

<
n 3n

t2
Pr(|X — t) <2 ——
(X = > ) < 2w (o

X — 2
Pr <‘ ,u‘ > t) < 2exp (—t—)
o 2

E PROPOSITIONS, LEMMAS AND COROLLARIES

Assumption 2. For X1, Xy € R¥L that satisfies the data structure, let i be i-th row, we have
X1 Till2 < w40, [ XT |7 < VL(u + )
I1X2 Jille < wr | X5 |lp < VI(u+t7)
11X Tillz < max{u +0,u + 1 [IX T < V/L(u+70)2 + L(u+7)?

Proof. For X1, we have
lw*]l2 = 1, I[X Till2 < w470, 1X " |lp < VL(u+ )
For X5, we have
(z,) =0,[lzll2 =w [I¢|l2 =
X Tl <u+rIX T |p < VEI(u+r)
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Proposition 1. By signal-noise decomposition, we have the updating rules for signal weight and
noise weight:

t
Ut = - Z n (1 - nA)t_S VU@71L(US—1)7

s=1
t

U= (1 =nN)'"To— Y n(1—nN)" &

s=1

Proof. Decoupling the signal and noise, signal weight U is affected by the gradient updates, and
noise weight U is affected by noise &. With U1 = (1 — v\ U — v (Vo L(Uy) + &),

t t—1
Ui==Y 7 (H(l - %‘)\)> Vo, L(Us1)

s=1 i=s

ﬁt = (1:[(1 — ")/Z/\)> Uy — 278—1 (1:[(1 - ’YZA)> Es—1
i=0 s=1 i=s

When constant learning rate v; = 7,
t ~
U=~ (=N Vu,_,LUs)

s=1
t
Uy=1-nN)'Up— Y n(l—nN)""& 1. (7
s=1
. 0
Since U = , then
0o Vv
Wi 0 W, 0 ~
= (1= (Vo L(U) + &)
[ 0 Vit1 Vi

Wit = (1 — AW — ’Yt(VWf,Z(Ut) + &)
Vier = (1= % \Vi = 7(Vv, L(Uy) + &)

Similar to the signal-noise decomposition of U with learning rate ; = 7, we naturally have

t

We=—=> nl—n\N"" Vw._,L(Us_1)
s=1
t

W= (1—n\) Wo—> n(1—n\)""& (3)

s=1
t

Vi==> n-nN""Vy_ LU

s=1

t
Vi=(1=nN)'Vo—> n(l—n\)""& ©)

s=1
O

Proposition 2. For any U € R2>2 WV ¢ R4 X ¢ R2*2L X, X, € R*LY ¢
RY¥2LY € RYE, then we have the derivative over weight U of empirical loss, i.e. VL(U)
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and its component [V L(U)); is the i-th row of VL(U),
VL(U)=E [1/2/: A(F(U; X, V)X - diag (1(X TUzy)) xﬂ
VLU =B [1/2L U (f(U: X, V)UK U)X e
Additionally, for the derivative over weight W,
VwL(U) = E [1/20-U'(f(U: X, V) X - diag (WX War,)) o, |
Vw L)) = B [1/2L -1 (£(U; X, V)UK LW )X i |
for the derivative over weight ‘-/,

Vy L) = E [1/2L - I'(f(U; X, V) X; - diag (1(X] Vz,»)) xb}

|
eall

(Vv L)) = B [1/2L -1 (f(U; X, V)UXS i Vg 2) [Xalio o]

Proof. According to the definition of training objective, define

(f(U;X,Y)) = —logo (ny (U;X, 17))
then we have the derivative of empirical loss with weight U,

VL) = E [1(/(U: X, ) V(. /(U X,7)]

us )}

es)

:l’(f(U;Xy))yLV (57/2L -ReLU (XTUxL)ﬂ

2L
1/2L - U(f(U; X, Y )y Y 4 VReLU ([X iUz )

i=1

|
es]

|
&

i=1

V2L -V (f(U; X, )y > yiﬂ([XT]iUxL)[XT]ﬂI]

—E [1/20 - U'(f(U; X, V)X - diag (1(X "Uzy)) xﬂ

and [VL(U)]; = E [1/2L V(F(U; X, ?))Il([XT]iUxL)[XT]Z—xI].
Furthermore, when taking derivative over W,
VwL(U) =B [/(f(U; X,7)Vw (5.(U3 (X, 7))]

(U X, Y))yn Vi (5?/2L -ReLU (XTUxL))}

|
sal)

[Xir]iWI‘L@

[XQT}Z'V:EL’Q

I
&

L
1/2L - l/(f(UQ X, f’))yL Z [yi yz} VwReLU (

i=1

)

|
&

L
1/2L-U(f(U; X,Y))yr Zyiﬂ([XlT]iWe%'L,l)[Xl]ixz,1‘|
i=1

I
&

1/21 1 (J(U; X, V) X, - diag (WX Wapy) o]

and [V L(U)); = E [1/2L-z'(f(U;X, f’))ll([XlT]inLJ)[Xl]ixz)l}. Similarly, when taking
derivative over V', we have

VvL(U)=E [1/2L A(F(U; X, V)X, - diag (1(X, Vars)) xzyg}

Vv L)) = B [1/20 - V(F(Us X, V)UK, iVr2)[Xaliw ] o]
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Proposition 3. Assume that L is K-Lipschitz continuous, then we have

[vian], <& |IvEwi, s 7
[vwio)], <k wwiwi], s =
[vvio], < xwviwi], s =

Proposition 4. With Assumption [2| and Proposition 3|, we have that signal weight norm satisfies,
for X 1

— K | — K
< I </
Tl = 5 100l = 5
— K | — K
Wl < = (Wil < ——=
Ly < 5 N0l < 5
— K | — K
< — A< ——
HVtHF ~ N Hvt]ZHzN MW
Proof. By Equation[7][8land[0] when 0 < 1 —nA < 1,ie.,0 <nA <1,
t
_ e K
LAMEDMIEES VLU, S5
et Zn (1= |[VEC ), £
2 2™ A\V2d
Walle = Y 01— [wwE(n)| s &
= F™OA
: K
Wilill2 = 1—n\)' " LU )| S —=
W elillz ;m M) ([Vw L—0k]|, £ 7=
: K
_ e -
Velle =300 =my 7 [V, £ 5
: K
71, _ 1_ t—1 E B ) < B
1V¢)ill2 ;77( nA) VLU0l S i
Furthermore,
— — K(u+m)?
XDl < NXLIT s £ T
— _ K(u+ )2
NXTWiazall, < NXT ezl EF207
74 — K(u+r)?
X Vil < Nl AVl ol 5 EEETE
Proposition 5. For time T < t, we have
Proof. Fort <1,
t—T1
U= (L=nN)"0r = > 01 =)' G
t'=1
= 1=\ U, + B,
where 2, = — >0 (1 — g\ T Gy, O

20



Under review as a conference paper at ICLR 2025

Lemma 6 (Refer to Lemma A.8 in |Li et al.[(2019), Lemma 8.2 of |Allen-Zhu et al.| (2019)). Let
X € R2X2L g1 ¢ R?? be a fixed example, with ||xp|l2 < B and I1XllFr < V2LB. With
Assumpnonland Proposmonl foreveryT >0, letU = U + U where U € R24%24 js q random
variable whose columns have i.i.d distribution N (0, 75 2] 2dx2d) and Y € R2L such that each entry of

Y isiid. uniform in {—1, 1}. We have that, w.h.p over the randomness ofﬁ and Y, VU € R2dx2d
we have that

WX TUzy) — WX Uap)|s S KY3A37,43 128 2 ¢

Furthermore,

Nu(U; X,Y) = Ny (U; X, V)| S (u+m)?KT3NT/37 43 -1/

Proof. With Lemma A.8 of Li, we can compute the difference of activation patterns.
X TUzr) ~ WX Ty S IX O 7 2L
S BTN (ro(2L) /2 By AL
ST 7 oL
With Assumption[2] B = u + m, and Proposition 4] then
X TU2r) ~ WX Tar)lh S0 7 22
SN L2
< K4/3/\_4/37'(;4/3L2/3

LK2 2/3
- (%3)

Nu(T; X,Y) — N3 (T; X, V) ‘ _ H?/2L : (11 (XTUxL) ~1 (XTﬁzL)) © (X Uxy) H

Furthermore,

M) =1 (X0 )| [IX 0 |

<E ‘]1 (XTUxL) -1 (XTT?:UL> H1 max X 0z

§K4/3)\—4/37_(;4/3L—1/3 K(U 1‘ m)2

<(u+ m)2K7/3)\’7/3TO_4/3L’1/3
O

Corollary 2. Let X, € R¥™*E g L1 € R be a fixed example, with Assumption @ and Proposition
4 | < u+ v and | X1||r < VL(u + o). Then, w.h.p over the randomness of W and Y,
VW € ]Rdx‘i we have that

LX) Wap,) — WX Wap)| S KY3N437745123 & ¢, (10)
Furthermore,

| N (W3 X1,Y) — N (W X1, V)| S (u + 70)2K7/3N"T/ 3 31/

Note. In ey, K is the Lipschitz constant, A denotes the Lo regularization coefficient, 79 denotes the
variance of initialization parameter and L is prompt length. When with choices in Assumption [T}
we have ey = (Poly(d))?/3.
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Corollary 3. Let Xo € R¥™*E g L2 € R be a fixed example, with Assumption E]and Proposition
4 ||xpolla < u+rand | Xsllp < VL(u +r). Then, w.h.p over the randomness of V and Y,
VYV € R we have that

LX) Varo) — WX, Vapo)| S K3 Y3743 123 2 ¢,
Furthermore,
‘NV(V§ X5,Y) — Ny (V; X2,Y)| < (u+ T)2K7/3>\_7/3TJ4/3L—1/3

Lemma 7. Under the same setting as Lemmal6] we have
|V(X U rp2) =1 (X U 2L) ||, Sev + Ly / Llogd

where €y = K4/3)\74/370_4/3L2/3. Furthermore,

_ ~ _ ~ K(u+m)?
‘NUtl+t2(Ut1+t2;X, V) = Noy, (T2 X, Y)‘ < <6U YL, /% n Llogd) %

and
‘NUt1+t2 (Ut1+t2 ; Xa Y) - NUtl (UtlthQ; Xv Y)|

56(” +r)'Vd I )L /m + (utr)"\/dlogd

AL A

5( \/njLJr\/r) u+r4f

Proof. To analysis that how the sign of Uy, 1, correlates to Uy, ,
HIl (XTUtH'tzxL) -1 (XTUtle) H1

:H]l (XTUtl_A,_tTQ?L) — 11 (XTﬁtl_A,_tQZCL) + ]1 (XT(,jt1+t2J)L> — ]1 (XTfjtle>

+1(X Tan) ~1 (XU )|

< H]l (XU pr2) — 1 (XTﬁtl+t2xL) H1 n H]l (XTﬁtl+t2xL) 1 (XTfftle> H1

A B
[ (X ) -1 (XU,

c
For term A and term C, With Lemmal6] we have
XU rpar) — WX Uiyl S KYAAY375 2123 2 ¢ 1)
IMX U ) — WX Uy ap)|s S KY3A Y3743 1203 2 ¢ (12)

For term B, we first analysis the relationship between ﬁtﬁ_tQ and ﬁtl . With Proposition forT <t,
we have

t—r1

Vi=(1-pN)'"7V, - Z VTR Y L

t'=1
= (1= TV, + By s

where Z; ; = — Zi,_:q n(l — nA)t*T’t,CTH/_l. Assume that there are ¢; iterations in the first
stage, let 7 = t1,t =t; + to, and t — 7 = to, then

ﬁt1+t2 =(1- ’72)‘ Ut1 Z n2(1 — 772)\ l<t1+t’71

t'=1

= (1 - 7]2)\>t2(7t1 + Et1+t2,t1 (13)
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— t i
where Zy, 11,0, = — Dy M2(1 — 12 A)? 70 Gy 1.

Consider [Zy, 5,4, ]ij ~ N(0,07 1 4,4,), for 0 < 1 —maX < 1, with a technical assumption that

2 _ m—(1-mN?g

s P s
2 _
Y 1-— (1 — 772)\)2t2 1
Ut21+t2,t1 = Z 773(1 - T]2>‘)2(t2 ! )742 = 7’]%7'3 7]2)\
t'=1
1 78— (1=—mN? 1 2mAre 1
< — =3 5 <
2 uh N2\ N A
_ 21275
m

Since 12 < 11, then oy, 44, 4, <K 7o. This implies that additional noise in the second stage is small.

With Equation [I3] we have
XU ppgzr = (1= 2X Uy ap + X 24 1iy.0 7L
since [fjtl]ij ~N(0,75) and [E¢, 1450, Ji ~ N(0,07 14,4,)-
Var (X Ty 1) 2 1 X1l 13

2
27
LI X E 3

ar (X ' Z, 4t0.0,71) S

then naturally we have

2 2 2
= - 127 [ XNl /m 2
Pr |:]1 (XTUt +t IL) 7é 1 XT:t t1+ta L :| § == —_—
o (X En o) I X% (1 mn

and
E Hﬂ ([XT]if]tlerxL) -1 <[XT]J7“:EL) H
Py ]l ( T]iﬁtl-&-tle/) 1 ([XT]iﬁtlﬂfL)}

Using Hoeffding’s inequality in Lemma with probability at least 1 — 2,

H]l (XT(ZIHQQ:L) 1 (XTﬁtle) H1 <L, /@ + /4L logd
m
<L 24 Llogd
\/ m

Combine term A, B, C, Finally, with Equation [TT} [T2]and [T3} we have
HI[ (XTUt1+t2IL) —]I(XTUtIJZL Hl <€U+L1)n Llogd
where e = K4/3\=4/3 _4/3L2/3

Furthermore, with Proposition [
‘NUt1+t2 (Ut1+t2 ; X, i;) - NUtl (Uh-i-tz; X, i;)‘

- Z Jal U (X iU o) = (X LU ) || [X L0 |
ze[L]

Z ||]1 (X Ut1+t2«fCL) ]1 (XTUtlﬂCL) ”1 Hl?X|[XTUt1+t2]Z‘IL|

[12 K(u+m)?
(EU +L m LlOgd) T
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Corollary 4. Let X; € Rl z L1 € R be a fixed example, with Assumption E| and Proposition
lzrille < w4y and || X1||Fr < \/Z(u + v0). Then, w.h.p over the randomness of W and Y,

YW € R4 we have that

(X Wi pipar) =1 (X Woapa) ||, S ew + Ly /Z—j ++/TLlogd

where ey = K4/3)\74/37'0_4/3L2/3. Furthermore,

— = K(u+70)?
|Nwe o, (Wit X1, Y) = Nuwy, (Wi, 43 X1, V)| S (eW + L, /% +/ILlog d) %

Corollary 5. Let X, € R*L ¢ L2 € R be a fixed example, with Assumption @and Proposition
|zralls < w+rand | Xsl|lp < VL(u +r). Then, w.h.p over the randomness of V and Y,

YV € R4%? we have that
Hﬂ (X;—VtﬁtzxLﬁ) -1 (X;WICULQ)Hl Sev+ L, /% ++/Llogd
where ey = K4/3>\_4/3T(;4/3L2/3. Furthermore,

— — / K(u+7r)?
|Nw1+t2 (Vt1+t2;X2,Y) — NVM (Vt1+t2;X2,Y)| 5 <€V + L % + LlOgd) %

Proposition 6. Under the same setting as Lemma @ we have w.h.p over the randomness of U,

_ dlogd
Nﬁ(U;X,Y)lgTO(qum)z\/ Lg

Proof. We have

No(T: X, 7) = % S W X710

i1€[2L] +

With Lemma we have ||U|| < 79v/d. Then

H (X700

< ||IxX T, S movllel
+l2 2

Using Hoeffding’s inequality in Lemma since [Y];, € {-1,1}, m; =

_i {[XT]iﬁmLL_H M = 21L‘ [[XT]iﬁxLL_ , then we have
2 2
! U 212
Pr oL Z [Y]; [[XT],-UxL] >t] <2exp| — ;
i€[2L] Zz‘e[m] <221L [[XT}iUxLLL >
2
2t2
<2exp | — .
%Zz‘e[zL] [[XT]iUCUL}+ ,

t2
S2exp| ———mF———
( i(TO\/EHxQF)
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Letd = 2exp (f then with § = %

1 2
= \/L(To\/ExIIQ)Q log 3

/1 2
N 7’0\/g||$||2 Zlogg
[dlogd
= 7’0\\93”2 A
Thus, with 1 — § prob, we get

~ 1 ~ dlogd
Ng(@:x,Y)| = |5 3 W (X)) | smuxnﬂﬁ

i€[2L]

~ dlogd
[Np (0%, )| S o+ m)?y [ E

Proposition 7. Under the same setting as Lemma [6] with Proposition [6] we have w.h.p over the
randomness of U, YU € R23*2d,

‘NU(ﬁ;X, Y) - Np(U3 X, 57)’ S (u+m)2KTPATT B 1

t2 )
% (roVd||z]|2)2 )’

Since ||z||2 < u + m, then

O

and

_ ~ _ dlogd
’NU(U; X, Y)’ < (u+ m)2K7/3)\_7/37'0 43173 4 To(u + m)Qﬁ

Proof. Forevery i, 1([X TU);x1) # 1([X T Ulszy), itholds that |[X TUl,z 1| < |[X T U);zL|. Then
’NU(ﬁ;X, Y) - Nﬁ(ﬁ;x,?)‘ — H)?/2L~ 1(X Uz.) -1 (XTﬁxL)) o (XTﬁ:z:L) H

<or 3 |7

i€[2L]

1(XTiUz,) —1 ([XT]iﬁxL) ‘ ’[XT}iﬁxL’

IN

1 ~ —
57 [1(XTU@L) =1 (XU || max |[X T
-1/3 K(u+m)?

A
< (u+ m)2K7/3)\77/37'0_4/3L71/3
With Proposition[6] using triangle inequality, we have

_ _ dlogd
’NU(U;X, Y)’ S (utm)PKTPNTTB B LY g (u m)Q\/oig

L
[dlogd
= K(u+m)*X\ ey + mo(u+m)? (;,g
O

Corollary 6. Let X, € R>*L z; 1 € RY be a fixed example, with Assumption @and Proposition

BJSCLJ lo < u+v0and | X1||p < VI(u+ o). Then, wh.p over the randomness of W and Y,
YW € R¥*4,

N B dlogd
‘NW(W;Xl, Y)’ S (u+70)2KTBNTRABLB (w4 )%/ Zg

With choice of small u,r, 1o = O <#> ,+ =0 (Vlogd) and L = © (Poly(d)), then

< K4/3)\—4/3T(;4/3L

Viogd
e dlogd
[N (W5 X1, 7)| S 7ol +70)2 o 2 ewa (16)
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Note. In eyy,1, 79 denotes the variance of initialization parameter, L is prompt length and d represents

the input dimension. When with choices in Assumptionﬂ we have ey = © (m).

Corollary 7. Let X, € Rl ¢ L2 € R be a fixed example, with Assumption E]and Proposition
E] |zralls < w+rand | Xsl|lp < VL(u +r). Then, w.h.p over the randomness of V and Y,
vV € R4,

~ _ dlogd
’NV(V§X2aY)’ S () 2K B gy (u - )? \ Zg

Vl1og d

~ I
’NV(V§XLY)’ S To(u+7“)2\/ d ng £ evq (17)

Note. In ey1, 1o denotes the variance of initialization parameter, L is prompt length and d represents

the input dimension. When with choices in Assumption we have ey} = O (#)

With choice of small u,r, 7o = O (#) ,+ = O (Vlogd) and L = © (Poly(d)), then

Poly(d)
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F PROOF FOR THE ELEMENTARY STAGE

F.1 PROOF OF THEOREM([]]

Theorem. In the elementary stage with 1, = O(1) and t < t; = n%\ where A denotes the Loy

regularization coefficient. With Assumption [l initial weights Vo — Ogxq and N training prompts,
it holds that

(a.1) For the model parameter V of network g, through gradient descent optimization from iteration
0to t1, ||V, ||F satisfies

72l = (o)

(a.2) With random and small noise weight, the training loss of hard-to-fit component Q over signal
weight (Definition in Equation|6)) at iteration t, satisfies

o log d
Viogd N~

Kt21 (th) Z 1Og2 -

Namely, the hard-to-fit component Q is not efficiently learned by g within t, iterations.

Remark 6 (Proof Sketch). We summarize the proof sketch and main techniques in Proof of The-
orem At the starting point, using signal-noise decomposition technique, we assume that the
approximate output g uses noise part to compute activation and signal part as the weight to
compute attention score. We show that g is very close to g primarily through Corollary |3| and
[A Relevant corollaries are crucial for describing the differences in activation and network out-
put under various activation and weight schemes. In the following analysis, we turn to focus on
the approximation §. As a key step, we focus on the network g’s ability to distinguish between
positive and negative class samples by examining the differences in their respective outputs, i.e.
[:+(X2, 2 — ) + 9:(X2, 2 + ¢) — 2g:(Xa, 2)|. Decompose it into two parts ® and ¥, where each
part separately contains z and (. Then, give the upper bound of ® and V by applying concentra-
tion inequalities like Chernoff, Bernstein and complex probability analysis like Gaussian integrals.
Combining the above, we show that the prediction difference of the network for positive and negative
samples is upper bounded by a small value, 1/+/logd. Consequently, we derive a straightforward
lower bound 2 — 1/+/log d, demonstrating that the network g cannot simultaneously make accurate
predictions for both positive and negative samples.

From the network output, we further derive the changes in weight and loss. For (a.1) and (a.2): At
an initial step, to compute the high-probability proportions for query xy, o = 2’ = {z—(, z+(} and
T2 = 2, we express the training loss in terms of the network outputs for positive and negative class
samples based on the proportion, dividing it into two parts with terms gy, (X, 2') and gy, (X2, 2)
respectively. As an essential step, by leveraging the convexity and Lipschitz properties of the logistic
loss, we derive a lower bound for the training loss in (a.2). Using Taylor expansion techniques
in combination with this lower bound, we further deduce a corollary of Theorem [l which states:
lgt, (X2, 2)|, |g¢, (X2, 2= )|, |g¢, (X2, 24+0)| S W. By utilizing the expression of normalized

ReLU self-attention, this corollary can be further extended to give (a.l).

Proof. Using noise part to compute activation and signal part as weight.

9t(X2) = Ny, (V5 X3, Y)

=Y (]1 (X;‘Z$L,2) © (XQTVthQ))
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Using triangle inequality, with Corollary [3]and
|9:(X2) — g:(X2)|
= ’N\/f,(Vt;XQ, Y) - N\Z(VﬁXQ,Y)’
= ‘Nvt (Vi X2,Y) + Ny, (Vi; X2,Y) — Ny, (Vt;X%Y)‘
< ‘Nvt(vt;X%Y) - N\Z(Vt;X27Y)‘ + ‘NVt(‘th;Xzay)‘

dlogd

S(u+ )P KBN BB LB (4 2K LB o () :

With choice of small u,r, 7o = O (\/b%gd) ,+ =0 (Vlogd) and L = © (Poly(d)),

< (\/logd)n/3 1 dlogd
~ (Poly(d))1/  \iogd || Poly(d)

< 1
~ Poly(d)

l9:(X2) — 9:(X2)|

In the following, we focus on g;(X5).

Definition 1. For any time t, input X € R*L with query x;, € RY, define 6X LA fie|l):

[(XT;Vizp > 0} and €™ £ {i € [L] : [XT|;Vix < 0}. Note that X aligns with Xo and x1,
aligns with xp, 5. Then Il( ) € {0, 1}~. Naturally, we have

(e ") = WX Vo).
Let Q; = diag(Y ") X, V4, then
gi(X2) = N‘Z(Vt;Xg,Y)
~Y/L (11 (X;f/tm) © (XJVt:cL,z))
~ T _
=1/L-1 (XJ Vtxm) (diag(Y ") X3 V1) wps

~ T
= 1/L-1(X] Viers) Qv

To simplify, we use X that represents X, and x, represents x;, o, in this Lemma, if there are
no confusion.

Define g:(X, z — () as sequence X with x;, = z — (, similarly for g;(X, z 4 ¢) and g:(X, z). Then
with Definition[T]

19¢:(X, 2 = ¢) + g¢(X, 2 + ) — 2g:(X, 2)]

1) Q=011 () o+ -n(d) e
<t/ (1 (&) #1 (257 -2 (@) @ e (1 (75) -1 (7)) T

=1/L-

<] 4

-
Deal with term U. First, consider the second term ‘(]1 (gf‘,z+< ) -1 (th,z—C>) Q:C|. With

S R

g{,z*C‘ - max || [Qt]1||2

Assumption 2|that |[C[|, = 7,

(1) - 9 e

<rle
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For "™ @ ¢ C interm W. Fori € 7" & "¢, with [XT];Vi(2 + () > 0 and
[X T]iVi(z — ¢) <0, then

—[XTLViC < [X TiViz < [XT],ViC
[XT14Fiz] < | IXTIiVag

then ¢t =

Using chernoff bound for Gaussian variable in Lemma let § = 2exp (%2) = é,

a\/@ = o0+/2log2d. Substitute Vi given that it is a Gaussian vector with each component
[‘Z]ij ~ N(0,72), we have wh.p 1 — §

‘[XT]JZC’ < r(u+r)|‘~/t\ < 7or(u+1)4/logd

< 7or(u+ r)\/@

XT3z

< ’[XT]i‘N/tC

ie., Pr (’ (X T];Viz

< ror(u+ rw@) >1-1

In the following, we try to give the upper bound of Pr (’ (X T];Viz

< 7or(u +r)/log d). Define

the standardized variable [TfuT(Zﬂf) ~ N(0,1). We have Pr(|X| < a) = 2®(a) — 1 where @ is
CDF. of standard Gaussian random variable. Substituting % and a = Lfgd, then with large
d (i.e. large a),
~ XTV)iz Tor(u + r)y/log d
Pr (IIXTViliz| < Viogd) =P X Vil |
PRV s ot nviesd) = Pr{ 2G| = T )

20 (rdlogd) 1

u
2 Llj’gd - mV/logd
T Ver Y w

ie., Pr (’ (XT];Viz

< ror(u+)Viogd) § “EL

With Bernstein inequality in Lemma define new random variable R; = I(|[X T V;];2| < mor(u +

r)y/Iog d) where I(-) is the indicator function, I [R;] = Pr(|[X T V;];2| < 7or(u + r)y/Iogd) <

rvioed Then whp. 1 -6 =1— L wehave

u

1 202log(1/8)  2clog(1/4)

L 3L

|

L
Z R; —E[R;] <
i—1

L
202 log(1 2clog(1 L+/1
R <L o oLg( /9) ) c o:;gé /9) +T Viogd
Z U

L+/logd
< +/Llogd+logd+ rEvose
u
ie. |69 @ e "t < Llogd + logd + rivlosd Vulogd. For sufficiently large L,

- L+/logd
R T
(%

(18)
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For [Q;]; in term . For Q; = diag(Y )X "V, using Cauchy-Schwarz inequality, Assumption
and Proposition [

11Qelilly = [|[Y TL[X TV il = XT Jii [Vl

H'Mg

2

IA

IXill2lVell e
K(u+r)

<
~ A

19)

Combine Equation[I8|and[I9} For term B, we have

(1 (@) -3(@9) ed < @) -1 (@)

<7} @ €5 max Qi

< rLvlogd K(u+r)

~ U >\
r(u+r)KLylogd

~ U

Since then, we have completed term ¥ in Equation.

.
Deal with term ®. Consider term ® = ‘ (]l (etX = C) +1 ( X 2+<) -21 (efz)) Q:z| in this

part. Leta = (]1 (e;x’z_q) +1 ( X Z+<) -21 (etxz)) , then

(l (qX’Z*C) +1 ( i Z+C) 21 (efz)>T Qiz=a'Qz

According to the definition of Q); and V', we have
a'Q; =adiag(Y XV,

t
=a'diag(Y )XY m(1—mN)""Vy, LU, 1)
=1

t
=a" Y m1-mNTTAQ, 4

T=1

where AQ, = diag(Y )X T Vy, L(U,). Then

(0 () e (00 ()
] ) e () - () e

2

For AQ, in term ®.
Definition 2. For any time t, input X € R with query x;, € RY, define GX*r & {i € [L] :

[XT);Vyxr > 0} and ai(“ 2 i€ L) [XT)iVraxr < 0}. Similar to Deﬁnition note that X
aligns with Xo and xy, aligns with xy, .

Suppose i, j satisfy that, for input 7, = z — ( and x, = z + ( have the same activation pattern,
then with Definition 2] we have

.. _ .. —=X,z— —X,z+
ij€GX NG ori je g ng e
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Consider the relationship between [AQ.]; and [AQ.]; for the above 4,j. We have AQ, =
diag(Y T)X T Vy. L(U,), then

[AQ,); = [diag(Y )], [XTVVTE(UT)L = y; [XTVV,Z(U,)L

[AQ,]; = [diag(Y'")] .

XV iwn)]

; =Yj [XTVVTE(UT)} )

With Proposition 2] then
[AQ:]; = yil X "V, LU = wil X "LE [1/2L - I'(f (Ur; X, Y)U(X " iUrap)[X )iz ] ]
[AQ]; =y [X Vv, L(U); = [ X TI;E [1/2L - V' (f(Ur X, Y)U(X T);Urwr)[X] ;) ]

Thus for 2, € {0,2,2 — (,z + ¢} fzp =0, [AQ,]; = [AQ,];. Forall zp, € {z,2 — (,z + (},
i,j € GX*=¢ N GX*+C and then i, j € GX*. Thus,

WX )i Vewp) = 1([XT];Vewp) = 1
For fixed X, [VVTE(UT)L- = [VVTE(UT)]J-. If [X]; = [X];, then y; = y;,

[AQ-]i = [AQ;];
If [X];, [X]; = 2 — (, 2 + (, then y; =y,

[AQ-]i = (2 = O)C, [AQ-]; = (2 + ()C
[AQ-]i = (2 + )C, [AQ-]; = (2 = ()C
[AQ-]i — [AQ-]; = £2¢C

where C = E V(f(U~ X, Y)UX T iUrar)(z £ Q)] If [Xa]i, [Xa]; = 2 £, 2 then y; =
—Yj,

[AQT]’L = (Z + C)C7 [AQT}J =zC

[AQ.]; = 2C,[AQ-]; = (2 £ ()C

[AQ-]i — [AQ-]; = (—22 £ ()C, £¢C

where C' = ]E[ (f(Ur; X, Y)U([X T Ur ) (2(£0))2] | -

For (1 () +2 (%) -1 ()
L) e e —an ()

_H(Xz CQXZ>—|—11< q\tz) ]1( +csz>+ﬂ(Xz+g\ )
(0 ) S (5 ) (5 0 ) 1 (5, )

1 (Etx,rc \ e ) i1 ( Xz (X, z) 1 (Eth \etX’z’C) _1 (EtX,z Et)(,erC)

1 (65,#4 \ ei(,z) 1 <€tX,z 65{,2—<> 11 ( e ) <6tx,z X z+C)

Part I Part IT

AQ; in term ¢. With Deﬁmtlon L we have

Observe that Part I and Part II are similar, and we deal with Part I first. Let A = ¢ and
B = et =\ eX #=¢_ Similar to Deﬁn1t10n . we give the following definition to divide sets A and B,

based on the above high probability results that is ‘ [X T]inZ ’ < 1or(u + 7)+/log d.

Xz-&-(\ X,z

A

Definition 3. For any time 7, input X € R¥L with query v, = z € R?, define FF = {i €
[L] : [XT)iVez 2 1or(u+1)/logd}, Fr 2 {i € [L] : [X];Vs2 < —7or(u + r)/logd} and
Fes{ie[l]: ‘[XT]Z-‘N/TZ‘ < 1or(u + r)y/log d}. Similar to Deﬁnition note that X aligns with

Xo.
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With Definition 3]
-
(1 (™) 1 (g7 6F)) aqs

= D120 = 1AQ-;

2

i€A i€eB 2
< YD 1AQdi— DD 1AQ || | YD 1AQdi— D> [AQ
icANFT ieBNFF 9 i€ANF; i€EBNF; 9
HYD 1AQdi - > [AQ:
IEANFE i€BNFE

2

We have introduced the relationship between [AQ.]; and [AQ,]; for i,j € GX*~¢ N GX*+¢. In
the following, we show that if k,l € F.© (similar for 7 and F¢) then k,l € GX*=¢ N GXo=+¢,

thus we have the same conclusion for [AQ. ] and [AQT]Tl.

Suppose k, [ satisfy that, when z € {z — (, z + (}
[XT]]CVTQC 2 1or(u+1)4/logd
(X TV 2 7or(u+r)y/logd

Naturally, we have [X ]y V,2z > 7or(u + r)vIogd and [X T}, V,z = mor(u +r)/Iog d, ie., k1 €
F;". Then

XTI Vrz| S X TWVez = (X T(Ve = Vi)z < |[X 16V -2
and with Assumption [2]and Proposition 4]

(X Vez > (X TeVez — |[X 1V - 2|
> 1or(u+ r)/logd — M
2 or(u+r)y/logd

where the last inequality comes from §+ = O(y/logd). Since {[X "]V, 2z 2 7or(u + r)\/logd} C

{[XTxVrz > 0} € GX==¢ N GX=+C, then we have k,l € GX+=¢ N GX*C. Thus, if k,1 €
Fr Fo, FE [AQ-]k and [AQ-); hold the same conclusion as [AQ]; and [AQ];.

Therefore, with the definition of data structure, assume that the probability of [X]; = [X] j» Le.
[AQ-]; = [AQ+];, is P, then

(@)~ (@06 9) aQl

2

€A i€B 2
<D0 A= YD AQ| +| D] AQdi— D> [AQ
icANFT i€ BNF; 9 i€EANFS i€BNFL 9
DD 1AQ— D> [AQ
i€ANFE i€BNFE

2
<max [[AQ.Jll, (AN FF| + |BAFS | +ANF7 |+ [BOFr |+ A0 Fe| + BN Fe))

g(u—&—T)K(PHAﬂ}'ﬂ —|BAFH||+P|[ANF7| = |BAFS||+(1—P) (JANFF| + BN FH)

+(1—P)(|Am}';|+|Bm]-‘;|)+\Am]~‘$|+|BmJ—'ﬂ)
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For |[A n Ff, |B n Ff| and [[ANFI|—|BNFF|. It is related to
[XTiViz, [XT]iVi¢, [X T]iVs2. At time 7 < t, we can establish the relationship of
[X T)iVr2,[X T];V;2. With Propositionand n = 11, we have

t—T
X TiViz = A —mN) X TVez = > (L= mN) Y (X |iCrgro12
t'=1
=1 =N X Vez 4 [XT)iBr 2

where 2, = — S0 m(L — mA) T Gy Let Vi = [XT]Viz, Yy = [XT];Vz2, Vs =
(XTViC, Yo = [X )i r2 8= (1 - mA)!™" S 1, wehave Vi = Yj + 3Ya.

Consider Y7, given that [V;];; ~ N(0,73), then
T 1/ _ .2 2 2 _ 2 2 2
Var([X ' ];V;2) = 15|23 Zin =75 l|2l12M1[XTsll2
J

With Assumption [2| we have Y ~ N(0, 73u?(u + 7)?). Similarly, Y1 ~ N (0, 78u?(u + 7)?),
Y3 ~ N(0, 7372 (u +1)?)

Consider Y}, denote its variance as oy .
Var([X "];V;2) = (1 — A2 D Var([X )V, 2) + Var([X T):E,.-2)

ru(u+r)? = (1 —mA)? g wt ) +of

o1 = \J 7802w+ 1) (1= (1= A7) 2 mou(u + 1) y/mA(E —7)

Let k = 7or(u + r)+/log d, with Chernoff bound for Gaussian Variable in Lemma |5} and we have
Gaussian Integral that [~ e~a2” = V/Z. then

Pr(ANF}) =Prfi € 67 i ¢ €7 i € FI
—Pr[Ya+Y3>0,Y <0,Y; > k]
=Pr[Yo+Y3>0,Y2 <0,Ys > r — BY3]
=Ey, [Pr[Ys > Y5 | ¥5,Y5 <0,Y; > k — Y3 | Y5]]
= Ey, [Pr[Ys > Y2 | Y2] 1(Y2 < 0) Pr[Yy > r — BY> | Y]]

0o .2 _ (k=822 0 1 B2 \,2
</ e 2grtin?, 2% g, </ e\ et 20i )T gy
~Y

~
— 00 — 0o

< ﬁ

~ 1 ﬁ2
2\/2T§T2 (utr)? + 20’?1

Stor(u+r)

-

Pr(BNFI)=Prlice,i¢ e ¢ ie Fr
= Pr[Ys>0,Ys — V3 <0,Y; > k]
=Pr[-Y2>0,-Y, — Y5 <0,-Y; > K]
=Ey, [1(Y2 < 0)Pr[Y; > —Y2 [ Ya] Pr[Yy < —r — BY> | Y]
=Ey, [1(Y2 <0)Pr[Ys > =Y5 | Y2| Pr[Yy > K + BY2 | Y2]]

0o _ 22 _ (n4B2)2 0 (7%7i>22
</ e FERwETe 2, dZS/ e\ 2griuin? 207 )7 g

~
—0o0 — 00

< ﬁ

~ 1 62
2 \/27’37"2 (u+r)? + 207 ,

Sror(u+1)
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Using Bernstein inequality in Lemma[2} to bound |A N F;| and |B N F;|. Suppose M; = 1(i €
T i¢eie Fryand N, =1(ie e ide Cie Fl).

L L
ANFH =Y My |BOF =3 N,

=1 =1
E[|ANF}] = E[M;] = Pr(M;) < mor(u+7),
E[|BNF. || = E[N;] = Pr(N;) < 1or(u +7)

Then with high probability at least 1 — §, and let 6 = %,

L

ZMi S v/ Llogd+logd+ mor(u+1r)L

=1

ZNi < +/Llogd+logd+ mor(u+r)L

i=1

~

Finally, for L = © (Poly(d)), we conclude that

|ANFH < ror(u+71)L
|BNFS| S mor(u+1)L

Furthermore, we derive that

|Pr(AnF}) —Pr(BNFS)| = Prlic e ™ i¢ e ic Fi|—Prfice,id e ie Fl
=Ey, [1(Y2 <0)Pr[Y3 > —Y> | Ya] Pr [k — BYy <Yy < K + Y2 | Yal]

|vp|2
<Ey, |1%; < 0)e Tt 2]
O—t,T
0 2 |z Y
S/ e zfgr2(u+r)2 7d2§ / e 2r§r2(u+r)2dz
—00 Ot,r Ot,r Jo
ré(u-+r &
STO ( + ) / e—vd,v
Ot,r 0
<T§T2(u+r)2< mer?(u +r)? < Tor?(u + 1)
~Y

Otr ~rou(u 1) VmAE—T1) T uy/mA{E —T1)

Using Bernstein inequality in Lemma 2} to bound ||A N 7| — [B N F7||. Suppose M; = 1(i €
tCideie FryandN, =1(iee,i¢ el < ie Fh).

L

D (¥

i=1

[ElANF!| - [BNFH)| = E[M; - N
= [Pr(M;) — Pr(N)|

‘ rlicetCigerie Frl—Prlice,i¢ e Cie F]

IANFE| - 1BAF|| =

Tor?(u+ 1)

uy/MmA({t — 1)

A
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Then with high probability at least 1 — §, and let 6 = é,

L
1 202log(1/8)  2clog(1/4)
= E i N;) — N <
i 2 (M; — N;) —E[M; — N;] < T + Y3

L 2021og(1/6) 2clog(1/6) = Tor?(u+r)L

M;—N;) <L
;( ) L 3L u\/ﬂl)\(t—T)
L 2
Tor?(u+ 1)L
(M; — N;) S+v/Llogd+logd + ————
iz:; ! ur/mA(t —7)
Finally, for L = © (Poly(d)), we get that
2
Tor*(u+1)L
AnFH - [BnFf|| g et b
| | ur\/mA(t — 1)

For |[ANF |,|BNF-|and ||[ANF-|—|BNF ||. Similar to the above part, we have
[ANF | STor(u+r)L
IBNF | < tor(u+r)L

Tor?(u+ 1)L

ANFI | = IBNF || S —F—7———=
| | ur/mA(t —7)
For |AN F¢| and |B N FE|.
Prlic e ™, i¢ e ic F)=Pr[Yoa+Y5>0,Y;, <0, V1| <&
=E[Pr[Ya+Y; >0, <0,|Y; — AYs| < &]]

=Ey, [1(1/2 <0)Pr[Ys > Y, | Vo] — }

Os,t
___1v)? &

<y, |10 < 0)e FF0a7 1

Ot,r
< Tor(u+ 1)k V21 < Tor(u + )77 (v + r)y/log d
~ Ot,r 27 nu(utr)mAE—T1)
< Tor?(u + 1r)\/logd
~uymAt—T)

Similarly, using Bernstein inequality in Lemma |[ANFE S % ‘:gd, and |[BNF| S
7072 (utr)Ly/Tog d

ur/ M A(t—T)
Finally,

(]1 (ef{’z‘c) +1 (eff»Z+<> —21 (ef"z)f AQ- i

g(u+r)K(P||Amfj| —BAFH|+P|[AnNF | = [BAF ||+ (1 - P) (JAnFH + BN F/|)

+(1=P) (IANF; [+ [BOF|) +|ANF + BN Fe))

Tor®(u+1)L Tor?(u+r)Ly/logd
S(u+r)K <2Pu\/m + (1 =2P)ror(u+r)L + u/mA(t —7) )
2
<yt KTQT (U‘f’T)L\/IOW
S(u+r) Nt —1)
<¢0r2(u+r)2KL\/10@
uy/mA(t —7)
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When t < n%\’ we conclude that term ® is

() ea(ar) - (@) o
: EX,sz 6X7z ¢\ _ 6X,z T
S (1 () +1 () - () s

: Tor?(u + )2 K Ly/logd
Smu)
= uy/mA(t — 1)

t
<ror?(u+7)2KL\/logd 771
SToA” 1r2(u+r )*K L+/logd

Combine term ¥ and term .

|§t(X’Z - C) + gt(XaZ + C) - 2§t(X Z)‘

1() Q-0 +1 () Qe+ 0 -2 () @iz

ot (1) 01 (0) 2 () e (54) 1 (59) e

2

=1/L-

@ v
StoA 12 (u + 1) 2K \/logd + A Yrum (u + ) K \/log d
with choice of small u,r, 79 = ( Tosd 3y = V1ogd) and L = © (Poly(d)), therefore, we

conclude that

1 1 1
G(X, 2 —O) + 3 (X, —925,(X, 2)| < Viogd <

Deal with |g;, (X5)|. Assume that lgt, (X2, 2 — () + g1, (X2, 2+ () — 204, (X2, 2)] < & and
from Theorem |1| we have £ = \/@. We would first like to analysis |g¢, (X2, 2)|, |gt, (X2, 2 —

Ol |gt, (X2, 2z 4+ ¢)|. Naturally, we have

(o0 (X224 Q) g0 (X2 = Q)

9ty (X27Z) =
where |y| < €.

Then consider the proportion of z1, o = {z — (,z + ¢, 2z} in N training sequences with high prob-
ability. For x, 2 = {z — {,z + ¢}, its expected proportion is i and for xr, » = z, its expected
proportion % Using Hoeffding’s inequality in Lemma for example x1, » = z — (, define random
variables,

X, — 1 ifXZQ:z—C7
0 else.

Since X, are i.i.d. and F[X,,] = i,

N
1 1 9
Pr ( N;Xﬂ 1 > t) < 2exp (—2Nt )
Let § = 2exp (—2Nt?), then t = 102%\,%. Ifl1-6=1-211t=,/2& losd "then with probability at
least 1 — 4, the proportion of x, o = z — ( is % + log d , Naturally, the proportion of x1 2 = 2z + ¢
is -+ logd , and the proportion of z7,» = z is  + loﬁ,d.
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With the definition of empirical loss, [ is the logistic loss, and I(f(V;-);X2,Y) =
log (1 + e’ny(V?X%Y)). Then w.h.p. atleast 1 — 6,

LVi) =5 3 U (Vi3 ): Xa,¥)

_ (i L0 ( lojéd)) Uge, (X, 2+ 0)) + (i +0 < IOJng)) gty (Xa,2— Q)
(so (V5]
:<4 ( )) (912 (X2 + ) + Ugiy (Xar 2 — ©)) + 21{gn (X, )))
) (
+ 21(gs, (Xa, 2) — ) + 21(gz, (Xo, z)))
B

gtl X25 z+ C)) + l(gn (X2a z = C)) - 2l(gt1 (XQ? Z) - '7)
A

For term A, since [ is convex, then
A :l(gtl (XQ, z+ C)) + l(gtl (X27 z = C)) - 21(9t1 (X27Z) - ’7)
~1{giy (X, 24 )) + g, (X, 2 — ) — 2 (%(XW O g (a2 - <>)

2
>0

Further since [ is a 2-Lipschitz function, we have

[1(ge(X,2)) — U(ge(X,2) =) < 2v
B =2I(gs, (X2, 2) — ) + 2(g¢, (X2, 2))
>2l(gt, (X2, 2) —7) + 2U(g1, (X2,2) —7) — 4y

Finally, from Theoremwe have £ = %\/T’ we have the lower bound of L V),

L(Vi,) = (i icf)( bﬁd)) (4+ B)
> (i —O( 10]%;1)) (4log 2 — 4v)

>log2 — O(€) - O ( IOde)

1 log d
>log2—- O -0
=108 <\/logd) < N )

According to the definition of training loss of component Q on signal weight, i.e. K*(V), we have

— 1 logd
1 > — —
K; (Vi) 2 log2 -0 ( logd> @) ( N >
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Naturally, assume that L(V;,) < log 2 + O(&),

P(viy) > (i —0< k’ﬁd)) (A+ 4log2 — 47)

1 logd
:<4—O< N ))(A+4log2—(9(§))

L(V,,) <log2+ 0O(¢)

<‘11 ) < loﬁd» A<log2+O(E) - <‘11 ) < 105](1)) (4log2 — O(¢))

(i e < lojéd)) 420 +0()
1o 0E)+09)
1-0 ( 10]%d>

Consider the Taylor expression of A, including the 2nd order, and v = g4, (Xo2,2 + {),v =
gt, <X27 z = C)

2 2 9
10g2+u+“+log2+v+v_2<10g2+u+v+(u+v) >

2 8 2 '8 4 32
_ut v (utv)?  (utw)?
8 8 16 16

!
<A< O') + 0(¢)

Finally, we have

§+¢
X ) 1X7 - ’ 1X7 *O  [losd
0006 Al 062 = bl (= Q1< | g

then we derive

|gt1 (X27 z— C) + gty (X27 z+ C) - 29251 (X27 Z)| §|gt1(X2a Z = C)| + ‘gtl (X27Z + C)‘ + 2‘gt1 (XQVZ)‘

< | EEE o
\IBNET

From Theoremwe have & = ﬁ, thus & = 5.

Finally, we conclude that

9 (X 2] 19 (X 2 — Ol g (Ken 2+ O] S | —S 8 < J € +9) (1 4 logd)
1 /lead N

P T
~\ logd /Nlogd +logd /N
<1
S Togd)i7a
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Deal with ||V}, ||r. Through |g;, (X2)|, we then analysis ||V;, || 7. With Corollary 7]
l9t, (X2)| =Nv,, (Viy; X2,Y)
=Ny, (Vi X0,Y) + Ny, (‘N/tl 1 Xo,Y)
_ly . -
ST ;yﬂl([xg JiVazre) - ([Xg liViar2) +eva

1 _
S WX, Vi, wp0) ||, max (X5 [V, 2r2) + eva (20)

For HI[(X;—thxL,g)

1> using Corollary
10X Veyzr2) = WX Viywr2) o S KA 57 PL2 2 ey

thus further consider H]l(X2T Vi zr2)

s
1

H]l(XzT‘leL,z)Hl = > WX Vi zLe)
i€[L]

where 1([ Xy ];V;, 1. 2) is Bernoulli r.v., then using Hoeffding’s inequality in Lemma 1]
+2

Pr Z ﬂ([leT]thﬂiL,l) >t| <e =
1€[L]

Let§ = efg, with § = 1. ¢ = (/2log + = /2logd, then with probability at least 1 — ¢ (i.e.,
12,
1S T w0)|||  Vioed
Using triangle inequality, we know that
T Vaara)], S 1 Vawra)| +ev s Viogd+ev
Substitute into Equation 20} we have
g0, (Xa)| 7 [1(XT Viywrr.o)||, max ((X] ) Vienrs.2) + evia

1
$7 (Viogd+ev) @+ Ve llr + eva

w4 r)?
SVl e (\/ log d + Ev) % +eva
1 1
<V,
Sl tlHFPoly(d) * Poly(d)

with g4, (X2)| S W, we have

V. < IV <
Velle < IWValle S oo
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F.2 PROOF OF THEOREM[Z]

Theorem. In the elementary stage with 1, = O(1) and t < t; £ n%\ where \ denotes the Lo

regularization coefficient. With Assumption ewa = O (1/Poly(d)), ew = © ((Poly(d))*?) and
initial weights Wy — 044, it holds that

(b.1) For the model parameter W of network h, there exists an optimal signal weight W*, W, can
reach W* through gradient descent optimization over t1 iterations, i.e., ||Wy, || F satisfies

W, llp = © (dlog(1/ew,1)) .

(b.2) With random and small noise weight, the training loss of easy-to-fit component P over signal
weight (Definition in Equation[6)) at iteration t; satisfies

Vdlogd 1
———ew + .
L Vlogd

Namely, the network h learns the easy-to-fit component P within t; iterations.

Remark 7 (Proof Sketch). We summarize the proof sketch and main techniques in Proof of Theorem
For (b.1) and (b.2): In the beginning, we first analyze the network h’s output under the opti-
mal weight, with signal-noise decomposition, separating it into the outputs under the optimal signal
weight and small random noise weights, respectively. The upper bound of the latter relies on the key
Proposition|[6] [/jand Corollary[6] where the calculation of activations and attention scores is explic-
itly written out, leveraging the differences in activation patterns. The upper bound analysis of the
former utilizes the properties of W* and the data construction attributes of component P. Moving
Jorward, we use this network output to represent the upper bound of the optimal loss. Furthermore,
through gradient descent analysis, we measure |Wy, —W*|| and || K}, (W4, ) — K} (W*)]|. We use
proof by contradiction to give (b.1) and (b.2), showing that there exists a fixed target signal matrix
which will classify P correctly no matter the small noise weight.

K (We,) S ewa +

Proof. According to Theorem [I] we conclude that the large learning rate creates too much noise to
learn (). Also, from above we conclude that in the first stage, the network weight V;, on @) changes
small.

W
Definition 4. In the elementary stage, denote the optimal weight as U = _ with
0 th = AV
initial Wo = Vo — 0454, where W* £ dlog(1/ew.1)w*(w*) " € R4, and |V, ||F < ﬁ’(d)'

In this section, we primarily focus on the process of optimizing from W, to W*. With the
decomposition of signal and noise weight, consider random and small noise, we will prove that W
can be optimized to W, , which is close to W™, at the end of this section through gradient descent
analysis.

Since f; is the function of signal weight with random noise weight, then we first consider the de-
composition of f;(W*; X;,Y)

£W* X1,Y) = Ny, (W* + Wy; X1,Y)
= N, (W*: X1,Y) + N, (Wi; X1,Y)
Deal with term NWt(Wt;Xl,Y). With Corollary @ and choice of small u,r, 79 =
O () = © (VIogd) and L = Poly(d), then we have

—~ dlogd 1
Nw,(W;; X1,Y) S 7’0(“4‘70)2\/ Lg < Poly(d) £ ewn (21)

Deal with term Ny, (W*; X1,Y). For the term Ny, (W*; X1,Y), we know that
Nw,(W* X1,Y) =Y/L - ((X{ Wyap1) @ (X W*zr1))

L
S AT W) - (T LW )

i=1
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Accordmg to the data structure of X7, assume that vy = 1/v/d Vd, with Deﬁnmonl and Assumptlonl
that (w*)? = 1. We find that

W17 = (dlog(1/ew,1))* [lw* (w*) " [|5
= d*log®(1/ew1) (22)
‘We can derive that,
Nw,(W* X1,Y) =Y/L- (L(X| Wyxr1) ® (X{ W*zL1))

= S (K Wea) - (X e)

i=1

L
2 AT W) - (d1og(1 few) X Jow* () T 1)

=1
= dlog(1/ew,1)[ X Jiw* (w*) Twp 1 |[U(X] Wezr )], /L

IN

For dlog(1/ew1)[ Xy |iw* (w*) Tz 1, with ey = ﬁ@l)’

dlog(l/ew,l)[XlT]iw*(w*)TxLJ = dlog(1/ew,) <sign(<w*,e>) L + (w*,e>)

Vd
< dlog(Poly(d))
For || 1(X{ Wyap,1)

1» using Corollary
1 XTWIELl —1 XTWSCLl 1 §K4/3)\74/37—4/3L2/3 é ew
1 ; 1 : 0

s

thus further consider H]l(X1T WtzLyl) ‘

[T W), = 3 210X Waar)
i€[L]

where 1([X ]z’Wt-r 1) is Bernoulli r.v., then using Hoeffding’s inequality in Lemma
T1 717 2
Z (X, |iWixpa) >t ] <e =

i€[L]

Let § = efg, with § = é, t = ,/210g% = /2logd, then with probability at least 1 — § (i.e.,
1—2),
H]l(XIthL,l)Hl S \/@
Using triangle inequality, we know that
(X Wi, S X T Wezr) + ew S Vlogd + ew
Finally,
Ny, (W* X1,Y) = dlog(l/ewﬂ[XlT}iw*(w* T.%‘LJ Hﬂ(XlTthL,l)Hl /L
< dlog(Poly(d (\/lo?—keW) -1/L
< dlogd (\/@Jr EW) 1/L

1
< 7 (dlogd\/logd + eW\/glogd)
where ey = (Poly(d))?/3 > \/log d, then

Vdlogd

NWt(W*;X17Y> S L ew

(23)
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Combine Equation 21| and Equation Combine Equation 2] and Equation 23] we have

FEW* X1,Y) = Ny, (W* + Wy; X1, Y)
= NWt(W*;leY) + NWt,(Wt;XhY)

dlogd . -
< mo(u +70)? \/ % + KAB3N3 Y3 12/3 -1/ dlog(Poly(d))
Vdlogd

Sewa + 7w

with choice of small u,r, 790 = O (ﬁ) .5 = O (ylogd) and L = Poly(d), we have

by

. Vdlogd
fFEWV* X1,Y) Sewn + Lg ew
1 Vdlogd

<
~ Poly(d) = Poly(d)
Then consider the loss with signal weight W; = W* and random noise weight Wt at time ¢,
K (W)
1N
=5 2L (X7 Ym)

n=1

< max {log (1 + exp(—(ew1 + \/&/L log dew))) ,log (1 + exp(ew,1 + \/&/L log deW))}

1 dlogd 1 dlogd
<€W,1+f;g 6W>710g2+<ew,1+f;g 6W>}

o~ log2 — =
max{og 3 5

Vdlogd

Sew + 7w

Deal with gradient descent to find 1W*. Consider the graident descent of signal W,

Wit =W —mVE,(W,) — mAW,
=1 —mANW; —mVEK(W,)

With [|W*||r = dlog(1/ew.1) £ B from Equation loss K is K-Lipschitz, i.e. | VK (W,)|r <
K, assume that |V, — W*||r < R < B, then we can measure the distance of W; and W*.

2
*
Wi,

|
(1= N (W, = W) =y AW* + VK2
= (1= AT = W2 4+ 12 AW + VE 2 = 200 (1 — N (W, — W AW

=21 (1 — mA) (W, — W*, VK;)
I17 * 2 * A/ *
=11 = m X)Wy = W[+ nf AW + VE) |5 — 201 — mA) (W, W)
+2m AL = A (W W) = 2m1 (1 — m A\ (K (W) — K (W)

<@ =mN (W, - W*)||§ + 207 (A*B? + K?) — 2m A (1 — m\) (R + B)B

+2mA(L —mA)B? = 21 (1 — mA) (K (W) — K, (W)

<|J(1 =\ (W, = W2+ 202 (VB> + K) — 2 A(1 — mA)RB

= 2m (1 = mA)(Ke(We) — Ko(W™))
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For the sake of contradiction, assume that K} (W;) — K} (W*) > C,1et0 < 1 —mA < 1, and
M < gt lr . and AR? < C,

W — W2 < || — W2 +202(A2B2 + X’ BR + K2 + \C) — 201 (ABR + C)
<||(W; - W*)Hi —2m(ABR+C)
<||(W - W*)Hi —2mC

A 1

Thus, in the elementary stage with ¢; iterations, ¢t < ¢ e

W, = W2 < ||[(Wo — W2 = 2timC < R? — 26, C < 0

which is a contradiction, i.e., K7 (Wy,) — K, (W*) < C.

Therefore, in the elementary stage within ¢; iterations, t; < m%’ through gradient descent optimiza-
tion, |W, || satisfies | W4, || < B + R, then

Wi, llp = © (dlog(1/ew,1))

and the training loss satisfies

— Vdlogd 1
1 1 *
Ktl(th) < Ktl(W )+C,§,€W,1 + L ew + \/@
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G PROOF FOR THE SPECIALIZED STAGE

G.1 PROOF OF THEOREM 3]

Theorem. In the specialized stage with annealing learning rate ny = 7]1/\26‘2/,17" andt; <t <

t1 + to, where ey = O(1/Poly(d)), t £ )\, ty = logn(i% A denotes the Lo regularization

coefficient and data noise ||||2 = r (See Pamgraph.) With Assumptlon. it holds that

(c.1) For the model parameter V of network g, there exists an optimal signal weight th + V7,

Vi, 41, canreach Vi, +V* through gradient descent optimization over t, iterations, i.e.,
satisfies

_ loe(1 X
||Vt1+t2||F =0 ( Og( /€V71) " ) -

€vi Poly(d)
(c.2) With random and small noise weight, the training loss of hard-to-fit component Q over signal
weight (Definition in Equation|[0) satisfies

1 1
(log d)t/4 * Viogd’

) _
Ki o, (Vi) Seva +

Namely, the network g learns hard-to-fit component Q within ts iterations.

Remark 8 (Proof Sketch). We summarize the proof sketch and main techniques in Proof of Theorem
To begin with, we explore the properties of optimal weight V, + V> and analyze the network g’s
output under the optimal weight at timepoint t1 + to. Using triangle inequality, we need to handle
three parts A, B, C separately. Part A exploits the characteristics of V* in detail. Part B uses the
key Lemma[/\and Corollary[3|to analyze the relationship between the network output at time t1 + to
and at time ty, taking into account the signal weight update formula. Part C utilizes the properties
of the network output at time ty to facilitate the analysis. Thereafter, we use this network output
to represent the upper bound of the optimal loss. Furthermore, through gradient descent analysis,
we measure |V, 11, — (Vi, + V)| and K7 1y, (Viy41,) — K2 1, (Vi, + V?)|l. We use proof
by contradiction to give (a) and (b), showing that there exists a fixed target signal matrix which will
classify Q correctly no matter the small noise weight.

Proof.
Definition 5. For time t, input X € RL with query xp, = 2z — (, 2,2 + ¢ € RY, define

Hi 2 i€ [L) | [XTiViy (2= O) > 0,[X T]iVh, 2 > 0,[X T];Vi, (2 + €) < 0}
Ho2 {ie[L]|[XT]iVi, (2 =€) >0,[X Vi, 2 <0,[XT|;Vi, (2 +¢) <0}
Hs £ {i € [L] | [X TV, (2= O) < 0,[X ]iVh, 2 < 0,[X Vi, (2 + ) > 0}
Ha 2 {i € [L]| [XTiVay (2 = ©) < 0,[X ]iViyz > 0, [X Vi, (2 +¢) > 0}

Similar to Deﬁnitionm note that X aligns with Xo and x 1, aligns with xy, ».

We first try to analyze the probability of i € ;. With Assumption[2] we can compute the cosine of
z — (C and 2,
(z—¢,2) u? — (¢, 2) B u? — ur cos Oy

cosf = = =
[2llllz = Cll2 uy/u2 =2{C,2) + 72  uvuZ + 1% = 2urcosfy

in 0
sinf = /1 —cos20 = ity

Vu2 + 12 — 2urcosd

For small r, with Taylor expansion of arcsin 6, we have that the angle of z—( and zis § = £+O(r2).

For 11, when [X T]iIN/tl fall into the middle of z — ¢ and z, as well as not in the positive half space
of z + (, its probability is approximately the proportion of the spherical surface area corresponding
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to the angle Z + O(r?). Using Hoeffding’s inequality in Lemma and further consider Corollary
let X; = 1{i € Hy}, then [H,] = Y1, X,

E(Hil| =L -Prli e Hy) ~ L — +ey
2mu

Then, let § = 2exp (——) t =4/3Llog2, and 1 — 6 = 1 — %, then with probability at least
1-9,

1 2
M| — E[[Hall] < fLIOgg < V/Llogd

|H1] < < — —|—ev ++/Llogd

Similarly, we have

[Hal, [Hal, [Hsl, [Hal S f+ev+\/m

Definition 6. In the second stage, denote the optimal weight as UjJ =
W, + AW 0 B lwmt 0

0 Vi, +Vve| 0 V4V
V* € R4 satisfies

, Hthth”F S dlog(1/ew,1), and

oel/eva) ;T ifi € Hy
—2logll/evi) loiiZiV'l)zT ifi € Ho;
(X V= v T pie Hy; (24)
_zlogilv{iv,l)ZT ifi € Ha;
0 otherwise.
We have that ||[We, 4 — Wy ||, < ||V, +V* = Vi, || = IV*|| ., and we still have |[Wy, ]l S

dlog(1/ew,1) from Theorem [2| In this section, we primarily focus on the process of optimizing
from V;, to V4, + V*. To calculate the Frobenius norm ||V*|| g,

1X5 V*|I3
1Og(l/em 2log 1/6v1) log(1/ev;1) ?
-y (o) e Y (e ) e 5 12713
i€H1 i€Ho i€Hs revii
21 1
+ Z ( Og/eVl)) 12712
1€EH4 Vil
log(1
<u? ) (Loatl/eva) /EV‘)) < +ev+\/ﬁ) 72 [eva)
Tev,1 2T V,l
<uLlog2(1/eV71)
~ re%/’l

and then |[V*||p = O (%), where c is a constant.

In the following, we focus on the empirical loss with optimal weight th + V*.
K (Ve + V) = (Nvt (Ve + V5 X0, Y))
= N Z log (1 + exp (—yZNVtIH (th + VXD Y”)))

n€[N]
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and then consider y Ny, ., (Vy, +V*; X5,Y),
yNVt1+t (th + V*; Xo, Y)
ZyNVt1+f, (V*’ XQ? Y) - yNVt1+t (th ) X27 Y)
>yNy, (V*5X5,Y) = |yNy, ., (V" X2,Y) —yNy, (V' Xo,Y)| —yNy, ., (Vi,; X2, Y)

A B c

Deal with term A. We have
yNv, (V5 X0, Y) =y Y/L- (1(X] Vo,zL2) © (X3 VFapy))

LS (T W) © (6T 01.0)

For z1, 2 = 2z — ¢, we have that

log(1 2log(1
Nvo (V53 X, Vi = 2 — ) < [H1] log( /Gv,l)ZT(z_ 0 — [H2| 21og( /fv,l)ZT(Z _ o)
L TeV1 L TE€V,1

< log(1/ey)u(u+r) [ r ey logd
~ 2y L L

Tev,1

< log(1/eva)(u+r)

~

€V,1

and for 7, » = z + ¢, we have that

[Hs|log(1/evi) + _|Ha| 21og(1/eva) +

Ny, (V¥ X,,Y, = < —_—
(VX0 Yo = 5 ) < DTy ¢ FHZ08 PO T (o
< Clog(l/ev)u(u+r) [ 1 L logd
~ TeV,1 2mUu L L
< _10g(1/€v71)(’u + r)
~ €v,1
and for x, » = 2, we have that
log(1 2log(1
Ny (V53 X, Vi = 2+ 0) < [Hallog(/eva) v _ [Hal 2log(l/evis) 1.

L Tev,1 L Tey,1

2
< Clog(1/ev)u” [ 1 Ly logd
rey,1 21 L L

< log(1/eva)u
~ €v,1

Finally, with small r < u, for 21,2 € {z — (, z, 2 + ¢}, we have

ulog(1/ev.1)

yNth (V*7 X27 Y) Z
€v,1

2
Deal with term B.  With the definition of [| X5 V*||%, and || X, V*||3 < “E& (1/eva) "we derive
V,1

that
T log(1/ey. [u
’[Xz v *]z‘ S 7g( / 71) ;

€V,1

log(1/ev1) [Ju(u+71)?
€v,1 T

(X3 V¥ iwro| S
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With Corollary [5]

log(1/ev1) [Ju(u+1)?

lyNv, (V5 X0, Y) —yNy, (V5 X0, V)| S (ev + L, /"2 + /T logd
1 1 m €V71L r

log(1/6v1)
<L =2l T
~ €V71L\/; ()‘GV,I\/’F)

where the last step satisfies when with choice of small u, 7, 79 = O (\/T%(J ,+ =0 (Vlogd) and
L = © (Poly(d)), and na = m A\*e}, ;. Finally,

[yNv;, 1 (V5 X2, Y) = yNy, (V5 X2,Y)| S Mog(1/ev.1)

Deal with term C. Before, we have

¢'+¢ 1

<
flogd | ~ (logd)/4
1—/leed (log d)

|gt1(X7’Z)‘v ‘gh(XvZ - <)|7 |gt1(X7’Z+C)| S o

Then, combine with Corollary

INv,, (Vs Xo, V)| < ge, (X2)| + [Ny, (Vi3 X2,Y) = Ny, (Vg3 X2,Y)|
< lgi, (X2)| + [Ny, (Vi X2, V)]

With Corollaryand Vil < m
v, . v, - e L
|yNth+t(Vt1’X27Y)_yN‘/t1 (Vt17X2,Y)| 5 <EV+L E“F Llogd) le(d)

< 1 2
~ Poly(d) \/ m1

Finally, we get

_ 1 72
Ny Vi Xo, V)| S —— —
]y Vt1+t( 5 X2, Y)| S (10gd)1/4+ev’1+Poly(d) "
1 + + )\GV,l
P BTN
(logd)/* " V1" logd
1
<
~ (logd)1/2 +evi

when with choice of 7, = mA%el, 7, § = O (Viogd).

Combine term A, B and C.

yNVt1+t(Vt1 +V*;X27Y)
>yNy, (V5 X0, Y) = [yNv, ., (V1 X2,Y) —yNy, (V5 X2,Y)| = [yNv, ,,(Ve,; X2, V)|

A B C
>ulog(1/evyl) 1

— Alog(1 - —
6\/71 Og( /EVJ) (log d)1/4 Vi1
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Finally, when u ~ ey 1 A,

Kt21+t(vt1 + V*) = E(NVHH (th + V*;XQa Y))

1 _
= 2 log(1+exp (—y Ny, . (Ve + V5 X5, Y™)))

n€[N]
ulog(1/ev,) |
Slog |1 ———="" 4+ Alog(1 —
Stog 1+ emp (L 4 A1) e+ v
1

< -

~ (logd)l/4 Teva
where ey1 = 1o(u +1)? dl%gd.

Deal with gradient descent to find V;, +V*. Consider the graident descent of signal V,
Vie1 =V —mVEK(Vy) —mAV;
=1 =mAVe—=mVE(Vy)

Similar to gradient descent of W, let V; + V* be W*, then ||Vy +V*
6 (lsltlers) 4 i) £ BoLet [Ve— (Vi +V7) |, S R < B,

I

v
Vs = (Ve + V)5

= |1 = A Vs = VE, — (Vi + V)2

— (1 =N (Ve = (Vi + V) = AV, + V) + V)|

—|(1 =N (Vi = (Ve + Vs + 2 AT, +V*) + VEL
—2m2(1 = A (Ve — (Vi, + V), MV, + V7))
—2mo(1 — A\ (Vy — (Vi + V*), VKy)

<@ =X (Ve = (Vi + V*))Hz +205(\*B? + K?) — 2o\ (1 — m2\) (R + B)B
+2mA(1 — 72 A)B? = 2m2(1 — oA ) (K (V) — K (Vy, + V7))

<||(1 =N (Ve = (Vi + VO)|la + 202(A2B2 + K2) — 2 (1 — 120 RB
—2m2(1 = A (K (V) = Kio(Viy, + V7))

For the sake of contradiction, assume that (K2(V) — KZ2(Vi, + V*)) > C,1let 0 < 1 — 2\ < 1,

and 112 < seprarp Rracy M AR? < C,

|Vier — Vi, + V*)Hz <|Ve= (Vi + V*))Hz +202(A\°B? + A’ BR 4 K% + \C) — 2n2(ABR + O)
<||(Vi = (Ve, + V)||s = 21:(ABR + C)
<|Vie= (Vi + V*))Hi —2nC

4 log?(eva) 4 & 1
A log(eva) 4 &

Thus, in the specialized stage within ¢; <t < ¢; + ¢ iterations, to AN —
V,1

m°

Vit = (Ve, + V*)Hi < |V, = (Ve + V*))H; —2ineC <

10g2 (1/6\/)1)
— 5 = 2mC <0
V1

which is a contradiction.

2
Finally, we conclude that, in the specialized stage within ¢, iterations, t; < M, t < L,
N2 Aev,l niA

through gradient descent optimization, || V¢, 1+, | r satisfies ||V, 41, ||F < B + R, then

N
Vol =0 (FECL0D 4
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and the training loss satisfies

K7521+t2 (Vite,) < K1521+t2(‘_/t1 + V) +C Seva +
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G.2 PROOF OF THEOREM 4]

Theorem. In the specialized stage with annealing learning rate no = M /\26‘2/)17‘ andt; <t <
2
t1 + to, where ey.1 = ©(1/Poly(d)), t; = n%\ to £ %, A denotes the Lo regularization
V,1
coefficient and data noise ||C||2 = r (See Paragraph[3.1). With Assumption[l|and number of training
prompts N = O (Poly(d)), it holds that

(d.1) For the model parameter W of network h, through gradient descent optimization from iteration
ty toty + to, [|Wi e, — Wy, || F satisfies

2
€v,1 1

log? (1/ev1) vIogd  Poly(d)

(d.2) With random and small noise weight, the training loss of easy-to-fit component P over signal
weight (Definition in Equation2) satisfies

1Weria = Wellp 3

2
|Kt1 wts Weige,) — K} (Wfl))| S Vi1 .
e ' log™ (1/ev,1) Viogd
Namely, the network h continues to preserve the easy-to-fit knowledge like ‘P within t iterations.

Remark 9 (Proof Sketch). We summarize the proof sketch and main techniques in Proof of Theorem
At the first step, based on the expression for the training loss of component P over signal weight,
we use the triangle and Cauchy-Schwarz inequality to transform the difference in training loss at
times ty +ty and ty, i.e. || K}, (We,14,) — K& (W4,)||, into the difference in model weights at the
two times, i.e. ’|Wt1+t2 — Wy, H Following that, through gradient descent analysis, similar to the
analysis of |Wy, — W*| in Theorem we derive |[Wy, 1y, — W*|| and combine these to conclude
W, 44, =W, || in (a). Naturally utilizing the relationship between | K} (W, 44,)— K¢ (W) ||
and ||Wy, 41, — Wy, || from the first step to derive (b). In total, we demonstrate that the model weight
W and training loss of ‘P are almost stable.

Deal with gradient descent from W, to W, ,,. Similar to the optimization from W to W* in
Appendix we consider the graident descent of signal W, ,
Wt+1 =W, - 772VKt(Wt) — AW
= (1= mAW; = VEK(W;)

With |[W*||z = dlog(1/ew,1) £ B from Equation]22] loss K is K-Lipschitz, i.e. | VK (W)||r <
K. Fort; <t <t + ty, assume that |[W; — W*||r < Ry < B. For the sake of contradiction,
assume that K (W) — K} (W*) > Cy,let 0 < 1 — 1\ < 1, and 1y < szperara btz
and AR2 < Oy,

[Wers = W[5 < [|(We = W*)||; + 203(2B% + N BRz + K2 4+ ACa) — 2m(ABRs + Ca)
< H(Wt - W*)H; —2n2(ABRy + ()
< [[(We = W)|f; - 2mCs

2
From Theorem |3} in the specialized stage within ¢ iterations, t, £ %, t, 2 m% From the
V,1

gradient descent in Appendix we have |[W,, — W*HF < R < B =dlog(1/ew,1), then
Hth-‘rtz — W*Hz S H(th — W*)Hz — 2t2’l720 S R2 — 2t2’l7202 <0

which is a contradiction. We naturally have R <
ARge%/,l

log.z(l/ev,l)

satisfies

Raev,1 . 2
Tg(i/er ) then we can derive that \R* <

& (. Thus, at iteration t1 + to, the training loss of component P over signal weight

— Vdlogd €2
Kt11+t2 (Wt1+tz) < Kt11+t2 (W*) +C2 S ew,1 + s € Yol

+
L ™" 7 log? (1/ev.) Viogd
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Combining the conclusion in Theorem 2] we have that the difference of loss between iteration ¢;
and t1 + to is

6%/,1
log? (1/ey.1) vIogd

In the following, we would like to show that the changes in W is also small. With 1-Lipschitzness
of logistic loss, we know that

|K1‘/11+t2 (ththz) - Ktll (Wh))‘ S (25)

T T 1 T n n T/ n n
|Kt11+t2(Wt1+t2) - Ktll (th))‘ = ﬁ Z (Z(NWt1+t2 (Wt1+t2;X1 >Y )) - Z(Nth (th;Xl >Y )))

n€[N]

IN

1 n n n n
N E ‘NWt1+tz(th+t2;X1,Y ) = Nw,, (W X7, Y )|
ne[N]

A
(26)

With Corollary f]and Corollary [6] we derive that
‘Nwt1+t2 (th-‘rtz ) X{l’ Yn) - Nth (Wt1 ) XILv Yn)’
< |NWt1+t2 (Wt1+t2; Xlna Yn) - Nth (th-‘rtz’ X?v Yn | + |NWt1 (Wt1+t2; Xlna Yn) - Nth (WtﬁX{L? Yn)|

/ K(u+ S

S <€W+L %J’_ Llogd) %_F‘N Wt1+t27X1aYn) Nth (Wt17XIL7Yn)’
1

Deal with Term A. 27)

Substitute Equation [27)into Equation [26] and use Cauchy-Shwartz inequality,
|K2511 +to (th +to ) - Ktll (th )) ’

]' T/ n n A7 n n K u+ 2
v > Nw,, (Wi ga,3 XT,Y™) = Nw,, (W X7, V™) + (eW+L,/Zi+ Llogd> (TVO)
ne[N]

1 — . ——— 2 [12 K(u+10)”
S ] D (Nwy (Wey gy X7, Y7) = Ny, (W X7,Y7)) " + <6W +L " + LlOgd) I
n€[N]
1 T n n T n ny)2 1
Sw > (Nw,, (Weyg00; X7, Y™) = N, (W, X7,Y™)) " + Poly(d)

née[N] 5

where the last step comes with choice of small u,r, 79 = O (\/lé@) , % =0 (\/log d) and L =

O (Poly(d)), and ny = my )\26%/,17“. With Assumption We have
(Nth (Wt1+t2; X7, Yn) - Nth (th P X1 Yn))2
—(v/r (1 (X0 Wazea) © (X7 Wessiea ) )
v/ (1 (X5 W) © (X Wees, )

1 n|2 nT 2 n1 1 157 n1 T 57 2
SL—maX\Y 2 |1 ([XT] Wy zpa ) (XTT Wernzra — [XT] Wy o )

2

[ (T W )| XTI s — W a3

_L2 1
2

L u+’YO HWtr‘rtz th ;

(o) 2

< L2
Using Corollary

1

LX) Wap,) — WX Wap)| S KY3NA37745028 2 ¢
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thus further consider H]l(XlT th xr1)

>

H]I(XIW““J)Hl = Z ]l([Xir]thle,l)

i€[L]

where 1([ X[ W, « £,1) is Bernoulli r.v., then using Hoeffding’s inequality in Lemma

IA
o
|

vl

Pr| N U(X] Wy z1) >t

1€[L]

Let§ = efg, with § = 1, ¢ = ,/2log} = /2logd, then with probability at least 1 — § (i.e.,
1-1
d 2

[T Woar)||, S Viogd
1
Using triangle inequality, we know that

o~ 2 2
T Wz} S (IR Waan)ll +ew) 5 (Viegd +ew)

Thus, for term B, we have
(Nth (Wt1+t2;Xin7Yn) - NWt,l (Wt1;XIL7Yn))2
1 2 — —
<7s Hﬂ ( X{L}TWnl‘LJ) H L(u+70)* [[Wey 0, — W, Hi
_l’_ - _
N U ’YO (\/log +€W) ||Wt1+t2 *WMH;

and then for |Ktll_~_t2 (Wt1+t2) — Ktl(th)) ,

|Kt11+t2 (Wthtz) - Ktll (th )) ‘

1 T n n T n n 2
SN Z (Nth(th-Hz;leY )7NWt1(Wt1;X13Y )) +

ne[N]

1
Poly(d)

B
u+70 (\/b?—&-ew) Wit — thHF +

Combining with Equatlon@ we can derive that

1
Poly(d)

H < 6%/,1 o 1
F ™~ 1og?(1/ev.1) vIogd  Poly(d)

when VLN = O(y/logd + ew), i.e. N = © (Poly(d)). Therefore, we conclude that in the
specialized stage, the changes in W and the loss in the h network are both small, and the loss
remains very low.

HWt1+t2 - th

2
IWewtts = Wl S o e = 5
log” (1/ev1) VIogd  Poly(d)
and
_ _ €2
|K1511+t2 (ththz) - Ktll (Wh))‘ S Vil

~ log® (1/ey.1) VIogd

52



Under review as a conference paper at ICLR 2025

H PROOF FOR SPECTRAL CHARACTERISTICS

H.1 PROOF OF COROLLARY ]

Compute the gradient of weight Wi and W,. With one normalized Relu self-attention layer,
we have

-~ 1
JWU:X.Y) =Y - o ReLU (X TWiWozr)
=Y /2L -ReLU (X "Uzy)
where X € R?2L U = WLW, € R??*24. Consider the gradient of weight Wy and W,
Vi LU) = B [V(F(U: X, V)V f(U; X, V)|

I
&

|
eahl

[P ) (72 Ret0 (X T W) )|

I
&

2L
1/2L - U'(f(U; X,Y))yL Y _ yiVReLU ([XT]iW;WQxL)]

i=1

|
[eall

B 2L
V2L - U(fF(U; X, )y Y wil (X T]iW;EWQxL)WQa:L[XT]i]

i=1

:1/2L T (F(U X, Y)W (X - diag (1(X W, Wozr)) x{ﬂ

I
&

|
ss)

[V LU

[V L(Uy)];
Similarly, we have
Vi, L(U) = E V(U X Y)Y (e f(U X, ff))}

/2L V(U X, V)il ((X WA W) Wolson [X T

E :1/2L A(f(Us X, ?))yLyjl([XT]jWI—(rWQxL)[WQ]J’CEL[XTL}

es)}

V(U X, Y))yrV (17/2L ‘ReLU (XTW;WQQ:L))}

|
[es)

2L
1/2L - 1'(f(U; X,Y))yL »_ yiVReLU ([XT]iW;(—WQxL)]
L i=1

I
&

2L
2L -V (f(U; X, Y))yr Y yiﬂ([XT]iWI—(rWQxL)WKXixz]
=1

1/2L - 1'(f(U; X, Y)Wk X - diag (1(X WL WozL)) xﬂ

sl

vs )}

(Vo L)) = :1/2L U (f(U X, ?))yLyi]l([XThW;WQzL)[WK],;Xizﬂ

[Vwo L(U))]; = E :1/2L U(f(Us X, 17))yL:yjll([XT]J‘VV}EVVQOCL)[WK]ijﬂcﬂ

N XV N X V) — —yrexp(—yrf(UiX,Y)) i
With [ = —logo (ny(U,X,Y)), we have I £ /(f(U; X, 1)) = SUepCufUa) A

cording to Vyy, L(U) and VWQZAL(U), let A =E (X - diag ((XTWLWgoar))z] ] € R4,
then we have
Wri+1 =Wk — WVWK,tZ(Ut) — AWk ¢
= (1= n\)Wkt — 1Vw,, L(Ur)
= (L= Wi —n/2L- Wa, Al
Similarly,
Wa.i+1 = Wa. — 1V, L(Us) — 7AWG.¢
=1 =n\)Wq,: — UVWQ,tz(Ut)
= (L =n\Wq, —n/2L - Wi 1 Ay
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Eigen decomposition and the gradient descent of eigenvalues. Assume that Wi ~ Wg and
simultaneous diagonolizability,

Wy = M - diag(o(Wg))® "
Wo = M - diag(o(Wp))® "

Then,
W1 = (1 =\ Wi —n/2L - W 4 [Ad] "
= (1 =MWk —n/2L - M, - diag(o(Wq 1))@/ [A/]"
= (1= n\) Wiy — /2L - M, - diag(o(Wa,) @/ [A)] @, P,
= (1 =AWk —n/2L - My - diag(c(Wq.)) (9] Atq)t)
Wo41 =1 —nA\)Wo —n/2L - Wk 1Ay
= (1 —n\)Wo, —n/2L - My - diag(oc (Wi 1)) ®, A,
= (1 -\ Woq —n/2L - M; - diag(c(Wi 1))@, A, D]
= (1 =\ Wqu —n/2L - My - diag(c (W) (D] Ar®) @/

If we have A is symmetric and OTAD is diagonal, then for the eigenvalues of W and Wy, i.e.
O'(WK) and O'(WQ),

0 (Wkis1) = (1 —nN)o (Wk) —n/2L-0(Wgt) © a([At}T)
o (Wao.i+1) = (1 —=nX)o (Woi) —n/2L - (Wi ) © o(Ar)
Let vw = 0(Wk) = c(Wg) € R{and w = o(U) = o(Wk

o (Wi i+1) ©0 (Wqi41) =(1 =) (0 (Wk ) © 0 (Wq.t)
—n/2 (c(Wa.)®?) © o ([Ad]T

(WQ) c ]Rd, o= J(A),

)©
) = n/2L - (6(Wi)?) ® o(Ay)
)
)

=(1=nX) (0 (Wik) © 0 (Wa.e)) = n/2L (c(Wik.)*? + 0 (Wo.)*?) © 0(Ay)

Finally, we have

wt = (1 = p\w! —n/2L - 2w © o

Analysis the relationship of @ = Tr(A) and w = Tr(U). In the following, we analysis the
relationship of @ and w. To Compute trace of matrix A,

Tr(A) = Tr (E [I'X - diag (1(X "W Woay)) xZ])
= [Tr (I'X - diag (1(X TWEWozr)) z])]

= |[I'Tr (X - diag (W(X Wi Wozr)) z})

M

For term M,
M =Tr (X -diag (W(X T WgWozyr)) z])

d
Z ZX” XTWI—(FWQQTL)L. Xrq

L
< max([[«[3) Y [1 (X T WgWazL)],
j=1

Z
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For term Z,
Wi = M - diag(o(Wi))® "
Wo = M - diag(c(Wg))® "
XTWiWgryp = X' ® - diag(v/w)M " M - diag(v/w)® "z,
= X" ® . diag(w)® 'z,
and then

[L(X T WxWozy)], = HXch dlag w)® 'z
(L(X " @)L (diag(w))L(® )],
(

(X7 ) 1(diag(w))1(® " z1)

(X T]; @) L@ o)1 (w)

[
[((

1

-T2

(X o) L (ws)

>
Il

1

Combine term M and term Z, and assume that almost Yw; > 0, then we have

r (X - diag (WX "W Wozr))z])]
z’ Tr (X - diag (WX "W Wozr)) 2 )] + p4+E [}, Tr (X - diag (L(X "W Woz1)) z])]

Il
es) el
—_

L
>pE [I” max(||z||3) Z XTW;WQ:EL)]]. +(1—p)E [l Tr (X - diag (1(X "W Wozr)) 2] )]
j=1

=pE |’ max (J|z]|3)

L

1 k=1

<.

d
Z:ﬂ ij wk)
d

=pmax(||z|2)E |1 Zﬂ Tz L(wy)
j=1k=1

—pmax(o])E [1-171(xT >}é—pk

where p is the proportion of negative logistic loss, k = max(HxH%)]ﬁ [ ‘IT]l(XTSL'L)} > 0. We
conclude that the lower bound of @ is independent with w, naturally,

Wit1 < (1 —nA\)wy +n/2L - 2pkw;

Analysis W; and V;. By similar proof, for W = [W}(]TW&?, let Al =
E [I'X; - diag (W(X[ Wk TWhar 1)) 2l ] € R™, w' = o(Wk) ® o(W}) € R
a' = o(Al), we also have

~ ~ . T
Vo LOV) = B [1/L-V(F(W5 X0, Y)W (X, - diag (UX] W) Wher ) o1,) |
Vg LW) = E [1/L-I'(f(W; X1, Y)W X1 - diag (W(X] [Wi] Wohar1)) o] 1]

and p; is the proportion of the negative derivative of logistic loss I’(f(W; X1,Y)) <0

T = (1= g\@} + 2pkin/L -}, 2 max(lelD)E (111X wp0)]
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For V = [W2]TW3, let A2 = E [I'X, - diag (10X, [W2]TW2zL2)) 2] 5] € R w? =
o(Wi)©a(W3) € R%, o = 0(A?), we have
~ ~ . T
V2 L(V) = E {UL A (f(V; X2, Y)W (X2 - diag (1(xy [W?(]TWc?ng,z)) 5322) }
Vg L(V) = E[1/L-U(f(V; X2, Y)W X - diag (W(X5 W] T W) o ]
and po is the proportion of the negative derivative of logistic loss I'(f(V; X2,Y)) < 0

W = (1= g\JTF + 2pakan/L 0, ey 2 max(lelD)E [J11171(X] wp0)]

In the elementary stage. With learning rate 1, Tr(W;) £ w;, and Tr(V;) £ w7, we have

Wy = (1—mN@; + 2pikam /L@y, ki 2 max(||z]3)E [|ZL|1T]1(X1T$L,1)}
Wy = (1= mAT? + 2pokom /L,y 2 max (ol (1217 1(X] wr0)|
then through ¢; < n%\ iterations, according to the dynamic of the trace of W and V/,
w%l = (1 —mA+ 2p1k‘1771/L)t1 E(lJ
W7, = (1= mA+ 2pakoms /)" W5
We conclude that Tr(W;) and Tr(V;) have similar update rules where the rate of exponential growth
over time mainly depends on three factors: (1) The learning rate 7;. (2) The proportion of the
negative derivative of logistic loss p. (3) The negative derivative of the logistic loss is selected based

on the similarity between query x, and sequence X, i.e. 1( X, z 1,1). Further compute & with the
mean absolute value of the selected negative derivative.

Combine Theorem [2] with small and random noise, |Wr, || & |[Wt, ||r and || Vi, || 7 = |V, || 7, we
conclude the following corollary that at time ¢4,

wy, = Te(Wy,) < \/Te(W,] Wy,) = W, || S dlog(1/ew,)
1
w§1 - Tr(‘/tl) < \/ Tr(Vt—lr‘/h) = ||W1 ||F 5 POly(d)

Tr(Wy,) > Tr(Vy,)

Finally, we have

£ wy, and Tr(V;) £ w3, we have

Jel)E (117U )|

lal3)E (1117 2(X wr0)]

In the specialized stage. With learning rate o, Tr(W;)
Wi, = (1- N N)Tr + 2p1kine/L - W),  ky £ max

—~ o~

@?4_1 = (1 — T]Q)\)@? + 2p2k’2772/L . @?, ko max

2
Through 5 < % iterations, according to the dynamic of the trace of W and V,
V,1

@%H—tg =(1—=noA+ 2p1k1772/L) wt1

Wiy, = (1= 1A+ 2pokat /L) w3,
Similar to the elementary stage, we conclude that Tr(W;) and Tr(V;) still have similar update rules
where the rate of exponential growth over time mainly depends on three factors.

Combine with Theorem 3]and 4] we have

W11y = Te(Whyat) < TV, Wi in,) = (Wil S dlog(1/ew) +

log (1/ev1)
)\3/26%/’1

_ / 1 log(1/ev,1)
wt21+t2 = Tr(‘/t1+t2) < Tr(‘/;flr+t2‘/;51+t2) = vatﬁ*tzHF S POly(d) + v1

Finally, we have

Te(Wi,y 41,) < Tr(Viy 44,)
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