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ABSTRACT

Training agents to control a dynamic environment is a fundamental task in AI.
In many environments, the dynamics can be summarized by a small set of events
that capture the semantic behavior of the system. Typically, these events form
chains or cascades. We often wish to change the system behavior using a single
intervention that propagates through the cascade. For instance, one may trigger
a biochemical cascade to switch the state of a cell or reroute a truck in logistic
chains to meet an unexpected, urgent delivery.
We introduce a new supervised learning setup called Cascade. An agent observes
a system with known dynamics evolving from some initial state. It is given a
structured semantic instruction and needs to make an intervention that triggers
a cascade of events, such that the system reaches an alternative (counterfactual)
behavior. We provide a test-bed for this problem, consisting of physical objects.
We combine semantic tree search with an event-driven forward model and de-
vise an algorithm that learns to efficiently search in exponentially large semantic
trees of continuous spaces. We demonstrate that our approach learns to effectively
follow instructions to intervene in new complex scenes. When provided with an
observed cascade of events, it can also reason about alternative outcomes.

1 INTRODUCTION

Teaching agents to understand and control their dynamic environments is a fundamental problem in
AI. It becomes extremely challenging when events trigger other events. We denote such processes as
cascading processes. As an example, consider a set of chemical reactions in a cellular pathway. The
synthesis of a new molecule is a discrete event that later enables other chemical reactions. Cascading
processes are also prevalent in man-made systems: In assembly lines, when one task is completed,
e.g., construction of gears, it may trigger another task, e.g. building the transmission system.

Cascading processes are abundant in many environments, from natural processes like chemical re-
actions, through managing crisis situations for natural disasters (Zuccaro et al., 2018; Nakano et al.,
2022) to logistic chains or water treatment plants (Cong et al., 2010). A major goal with cascading
processes is to intervene and steer them towards a desired goal. For example, in biochemical cas-
cades, one hopes to control chemical cascades in a cell by providing chemical signals; in logistics, a
cargo dispatch plan may be completely modified by assigning a cargo plane to a different location.

This paper addresses the problem of reasoning about a cascading process and controlling its qualita-
tive behavior. We describe a new counterfactual reasoning setup called “Cascade”, which is trained
via supervised learning. At inference time, an agent observes a dynamical system, evolving through
a cascading process that was triggered from some initial state. We refer to it as the “unsatisfied” or
“observed” cascade. The goal of the agent is to steer the system toward a different, counterfactual,
configuration. That target configuration is given as a set of qualitative constraints about the end
results and the intermediate properties of the cascade. We call these constraints the “instruction”. To
satisfy that instruction, the agent intervenes with the system at a specific point in time by changing
the state of one element which we call the “pivot”.

To solve the Cascade learning problem, we train an agent to select an intervention given a state of a
system and an instruction. Importantly, we operate in a counterfactual mode (See Pearl, 2000). Dur-
ing training, the agent only sees scenarios that are “satisfied”, in the sense that the system dynamics
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Figure 1: An experimental test bed
for the Cascade setup. Input 1 (the
unsatisfied cascade): A set of balls is
observed moving in a confined space,
colliding with each other, with walls,
and with static pins (grey & black).
Collisions yield a cascade of events
(arrows). Input 2: A complex in-
struction describes a desired “counter-
factual” cascade of events and its con-
straints. Output (the satisfied cas-
cade): The agent intervenes and sets
the (continuous, 2D) initial velocity of
the purple ball (the “pivot”) to achieve
the goal, satisfying the constraints.
Only keyframes are shown. See full
videos here: https://youtu.be/
u1Io-ZWC1Sw (Anonymous)

Input 1: An observed cascade.
t=1.42: 
purple ball hits the right-wall

t=2.04: 
purple hits gray pin

t=3.04: 
yellow hits cyan

t=4.44: 
cyan hits gray pin

Output: A solution.
t=3.35: 
yellow hits red

t=1.75: 
purple ball hits the cyan ball

t=2.24: 
purple hits yellow

t=4.85: 
yellow hits black pin

Input 2: An instruction.
All the balls are in 
motion, in all frames.

Arrows “       ” highlight 
the event of each frame.

obey the constraints given in the instruction. The reason is that in the real world it is not possible to
rewind time and simultaneously obtain both a satisfied and an unsatisfied sequence of events.

Steering a cascade process is hard. To see why, consider a natural but naive approach to the
Cascade problem: train an end-to-end regression model that takes the system and instruction as input
and predicts the necessary intervention. It is challenging because in many cases, a slight change in
one part of the system can make a qualitative effect on the outcome. This may lead to an exponential
number of potential cascades. This “butterfly effect” (Lorenz, 1993) is typical in cascading systems,
like a billiard ball missing another ball by a thread or a truck reaching a warehouse right after another
truck has already left. Back to the regression approach, we empirically find that it fails, presumably
because the set of possible chains of events is exponentially large, and the model fails to learn how
to find an appropriate chain that satisfies the instruction. We discuss other challenges in Section 4.

Technical insights. In designing our approach, we follow two key ideas. First, instead of modeling
the continuous dynamics of the system, we reduce the search space by focusing on a small number
of discrete, semantic events. To do this, we design a representation called an “Event Tree” (Figure 2).
In a billiard game, these events would be collisions of balls. In logistic chains, these events would
be deliveries of items to their target location or assembly of parts. To reduce the search space, we
build a tree of possible future events, where the root holds the initial world-state. Each child node
corresponds to a possible future subsequent event from its parent. Thus, a path in the tree from a
root to a descendant captures a realizable sequence of events.

Our second idea is to learn how to efficiently search over the event tree. This is critical because the
tree grows exponentially with its depth. We learn a function that assigns scores to tree nodes con-
ditioned on the instruction and use these scores to prioritize the search. We also derived a Bayesian
correction term to guide the search with the observed cascade: we first find the path in the event tree
that corresponds to the observed cascade, and then correct the scores of nodes along that path.

Modelling system dynamics with forward models. A forward model describes the evolution of the
dynamic systems in small time steps. There is extensive literature on learning forward models from
observations in physical systems (Fragkiadaki et al., 2016; Battaglia et al., 2016; Lerer et al., 2016;
Watters et al., 2017; Janner et al., 2019). Recent work also studied learning forward models for
cascades (Qi et al., 2021; Girdhar et al., 2021). However, once the forward model has been learned,
the desired initial condition of the system is found by an exhaustive search. Here, we show that
exhaustive search fails for complex cascades and with semantic constraints (Section 5). Therefore,
our paper focuses on learning to search not on learning the forward model. We assume that we are
given a special kind of a “forward” model operating at the level of semantic events. Namely, given a
state of the cascading system, our forward model allows to query for the next event (”which objects
collide next?”), and predict the outcome of that event (velocities of objects after collision).

Test bed. We designed a well-controlled environment that shares key ingredients with real-world
cascading processes. In our test-bed several spheres move freely on a table, colliding with each other
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and with static pins within a confined space (Figure 1). The chain of collisions forms a complex
cascading process. Naturally, a simulated test-bed cannot cover the full complexity of real-world
scenarios and additional research may be required. We discuss these topics in Section 7 .

Contributions. This paper proposes a novel approach for learning to efficiently search for a complex
cascade in a dynamical system. Our contributions are: (1) A new learning setup, Cascade, where an
agent observes a dynamical system and then changes its initial conditions to meet a given semantic
goal. (2) Learning a principled probabilistic scoring function over an – Event Tree – data structure,
for searching efficiently over the space of interventions. (3) A Bayesian formulation leveraging the
observed cascade to guide the search in the event tree toward a counterfactual outcome.

2 RELATED WORK

Learning and reasoning in physical systems. Several papers studied cascading events in the con-
text of physical systems. There, the main focus was to use object interactions to learn a forward
model from observations. PHYRE, Virtual Tools, and CREATE (Bakhtin et al., 2019; Allen et al.,
2020; Jain et al., 2020) are benchmarks for physical reasoning for computer vision. They differ from
our learning setup in three key aspects. First, the current paper focuses on the search problem, look-
ing to satisfy a set of semantic constraints on the event sequence. Second, in the prior benchmarks,
all tasks have to satisfy the same final goal, rather than being conditioned on a semantic goal. Last,
their setup is a sequential decision reinforcement learning setup, allowing exploration, collecting
rewards from the environment, and multiple retries, which are not allowed in our setup. In addition,
no event-driven forward model (EDFM) is currently available for these benchmarks, and training
an EDFM requires additional annotations and is beyond the scope of this work. There are several
approaches to learn such models from temporal data, like dynamic Bayes nets (Bhattacharjya et al.,
2020; Ghahramani, 1998; Gunawardana & Meek, 2016), which can also handle latent variables.

Allen et al. (2020) takes a Bayesian approach for updating the distribution of initial conditions given
a reward. We consider the underlying chain of events and update the value of the node scores in the
event tree according to the observed cascade. CLEVRER, CoPhy, CRAFT, CATER, and IntPhys (Yi
et al., 2020; Baradel et al., 2020; Ates et al., 2021; Girdhar & Ramanan, 2020; Riochet et al., 2018)
are benchmarks for reasoning over observed temporal and causal structures in video. They differ
from our setup in a few key aspects: (1) They focus on video-tracking and question answering rather
than acting . (2) In CLEVRER and CoPhy, the observed cascade is available during training, which
may not be a reasonable assumption for real-world problems (see Section 3). (3) CoPhy estimates
the value of a static observed property, like gravity, while we focus on the cascade evolution.

Roussel et al. (2019) studied the chain reaction problem, with a different focus than ours. Their cas-
cading configuration is fully given and they study how to tune that configuration using a simulator.
Our work focuses on finding a cascading configuration given a partial description of it.

Graph Neural Networks have been used in physical environments (Kim & Shimanuki, 2019; Shen
et al., 2020; Bapst et al., 2019), representing the underlying state as a graph, without considering
temporal consequences. Temporal consequences are vital for our decision system. We propose how
to transform a temporal sequence of events to a DAG.

Reinforcement learning: The “Cascade” learning setup is fundamentally different from a rein-
forcement learning framework (Sutton & Barto, 2005). The problem we try to solve is not a standard
planning problem (Hafner et al., 2019), where a series of actions are taken sequentially. Here, an
action is taken once and sets the cascade of events (“Fire and forget”).

Planning in robotics: Pertsch et al. (2020); Jayaraman et al. (2019) learned from video data to
predict key-frames, conditioned on a start frame and an end frame (goal). These works rely on a
visual end goal. It is unclear how to use them with a semantic goal that includes constraints. They
also rely on taking multiple actions, which is not applicable in our ”Fire and forget” setup.

Causal inference: Counterfactual reasoning was studied in causal inference (Pearl, 2000). Most
relevant is (Buesing et al., 2019) that used counterfactually augmented data for training a RL policy.

3 THE “Cascade” LEARNING SETUP

Cascade is a supervised learning problem. At the inference phase, The agent is provided with a
dynamical system and two inputs: (1) A sequence of events called the “observed cascade” together
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with the respective initial condition of the system. (2) An instruction that describes desired semantic
properties (”constraints”) of the solution. The observed cascasde does not satisfy the instruction.
The agent is asked to intervene by controlling the state of one “pivot element” in the system at a
specific point in time. The goal is to find an intervention that makes the roll out of the dynamical
system satisfy the instruction.

At the training phase, we are only given “successful” labeled examples. The “features” (x) of each
label consists of (1) an instruction; and (2) the initial state of the system except the controllable pivot.
The ”label” (y) of each sample is the initial state of the pivot, which yields the desired behavior of the
system. During training we do not provide examples of failing sequences together with a successful
sequence. The reason is that in reality, one cannot ”roll-back” time and obtain both a failed sequence
and a successful sequence.

More formally, our training set D consists of N labelled samples D =
{features = (xn, gn), label = (y∗n, Q(y∗n), n = 1 . . . N}, where:

• xn is the initial state of a dynamical system, excluding those of its pivot element.
• gn ∈ RG is a structured representation of an instruction.
• y∗n ∈ Y ⊂ Rd is the pivot’s initial state of the solution.
• Q(y∗n) = {sk}Kk=1 is a sequence of events that occur when the system is played out with the

pivot initial value yn.

At test time, a novel sample is drawn, describing an unseen dynamical system and instruction (x, g);
and an observed cascade roll-out (yobs, Q(yobs)) which fails to fulfill the instruction. Our goal is to
provide an alternative (counterfactual) initial state for the pivot element ŷ, such that the instruction
is fulfilled when the system is rolled-out.

Our test bed: We introduce a new simulated test bed that abstract away from specific applications.
An agent observes a physical world with several moving and static objects going through a cascade
of events (Figure 1 top), and it is given a complex instruction “Push: purple ball . . . ”. It then
manipulates the direction and speed of the purple ball (Figure 1 bottom) manifesting a new cascading
process that satisfy the complex set of constraints given by the instruction. In the Cascade setup, the
agent is trained on a set of scenes and their goals, and is tested on new scenes and their goals.

4 METHODS

a)

b)
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Figure 2: (a) The Event Tree data structure, illus-
trated according to our test-bed. S is the collision
sequence of a node; Y is the intervention subset
of a node; W is the node’s world-state. See Sec-
tion 4.1. (b) Tessellation of the intervention space.

Solving the Cascade setup poses three major
challenges. First, our model needs to match
semantic events, but simulations of dynami-
cal systems typically follow fixed and small
timesteps, which are indifferent to events. Sec-
ond, the set of desired constraints and dynam-
ical systems is compositional and large. The
agent should learn to generalize to different sys-
tems and configurations that were not observed
during training. Third, we wish to benefit from
examples of failed cascades that are available at
inference time (the counterfactual setup).

We develop an approach that addresses these
three challenges. To address the first, we de-
velop a representation that focuses on key “se-
mantic” events of the dynamics (e.g., colli-
sions). We build a tree of possible outcomes
such that a path in the tree captures a realizable cascade of events. To address the second challenge,
we learn a scoring function that assigns values to tree nodes conditioned on the instruction. This
allows us to generalize to unseen setups, and at inference time, we use the predicted node scores
to search efficiently over the space of interventions. To address the third challenge, We develop a
Bayesian formulation that allows to integrate the “counterfactual” information with the score pre-
dictions. Next, we describe each component in more detail.
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4.1 THE Event Tree: A TREE OF POSSIBLE FUTURES

We now describe the main data structure that we use to represent the search problem - the Event
Tree. The event tree is designed to provide a searchable data structure for realizable sequences of
events. To make these searches efficient, we represent the system behavior at the semantic level.
These could be any key interactions between system components, like manufacturing an item in
supply chains, or a protein binding the DNA to regulate the expression of a gene. Importantly, in
our approach, we require that it is possible to compute the state of the system right after an event.

Each node corresponds to a sequence of semantic events. The node’s children correspond to real-
izable continuations of the event sequence. Namely, all possible events that could happen after the
sequence Su. We now formally describe the node properties and the expansion of the event tree.

Tree Nodes. A node u of the event tree corresponds to the subset of interventions Yu ⊂ Y that share
the same prefix of semantic events. Each node has a unique prefix Su ≜ (s1, s2, . . . su). Specifically,
after the shared prefix, different sequences of events may follow for different y ∈ Yu.

The root node describes the set of possible interventions at t = 0 and its sequence of events Sroot is
empty. Its intervention subset is Yroot = Y . See Figure 2, top.

We define wu
y as the state of the system after it evolved from y ∈ Y and yielded the sequence Su.

Then, a “world-state” of a node is defined as the set Wu =
{
wu

y |y ∈ Yu

}
.

Given the world state of a current node, we propose an event-driven forward model f(·). It takes
as input a state wu

y and outputs the next immediate semantic event. We parallelized it on a GPU to
detect possible futures for the world state Wu. Appendix I describes the forward model in detail.

Node Expansion. Suppose we decide to expand node u. We apply the forward model f(·) to
each wu

y ∈ Wu. A new node u′ is composed of all f(wu
y ) that share a same next semantic event

s′. Then, the event sequence of the child node u′ is Su′ = concat(Su, s
′); the intervention set is

Yu′ = {y|Q(y) has prefix Su′}.

Expanding the tree can be viewed as a tessellation refinement of the intervention space Y . At each
step, we pick one cell and split it into multiple cells, where each child cell represents a different
event that occurs after a shared sequence of events, represented by the parent cell.

If the tree is fully expanded, it covers all possible futures. However, expanding the whole tree is
expansive, as it grows exponentially with its depth. In the next subsection, we discuss how one can
learn a scoring function and use it to guide an efficient tree search.

4.2 ASSIGNING AND LEARNING A SCORING FUNCTION FOR NODES

To search the tree for a node that satisfies the goal, we prioritize which node to expand by learning
a scoring function that assigns scores for nodes, conditioned on the instruction g. There are three
key challenges in learning a score function. First, we do not have ground-truth (target) scores for
tree nodes, and it is unclear what would be an effective assignment of scores. Second, the training
data contains only positive examples of correctly designed plans. Finally, we wish to leverage the
information about the faulty observed cascade, which is only available during inference time.

To motivate our approach, consider the following naive approach to set target scores. For a given
tree, let the “target” u∗ be the node that represents the ground-truth sequence Su∗ . A natural choice
for setting scores would be to set V (u∗) = 1, and set all other scores to zero. However, this provides
little guidance for searching the tree, as no signal is provided until the search hits the target node.
Instead, a desired property of the learning algorithm would be to guide the search by assigning
monotonically increasing scores along the path from the root to u∗.

To address the three challenges we design a principled probabilistic approach for setting the score
function. We train our model to predict the likelihood that a sample from Yu, when rolled out, will
satisfy the instruction g.

V (u) = Pr (Q(y) satisfies g|y ∈ Yu, g) . (1)
Here, nodes on the path from the root to u∗ are assigned monotonically increasing scores, as the
tessellation gets finer and concentrates on Yu∗ . Additionally, this probabilistic perspective allows us
to take a maximum-likelihood approach at inference time to prioritize nodes.
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We use the maximum likelihood estimate of V (u) to calculate the ground-truth scores for training.
For that, we take a finite sample of Ŷroot ⊂ Y , collecting say 106 points, and use it to expand the
tree. The node’s score is then the fraction of the samples from Ŷu that reach the target node u∗.

V̂ (u) = Pr
(
yi ∈ Ŷu∗ |yi ∈ Ŷu, g

)
=

∥∥∥Ŷu∗ ∩ Ŷu

∥∥∥ / ∥∥∥Ŷu

∥∥∥ . (2)

Nodes outside that sequence get a score of 0. In Section 5, we empirically explore alternative
approaches for assigning ground-truth scores to nodes.

Counterfactual update for the score function. During inference, we observe a cascade that does
not satisfy the instruction, and are asked to retrospectively suggest a better solution. How can the
observed cascade be used to find a solution? The probabilistic score function we defined allows us
to formalize this problem in a Bayesian setting. We treat the model predictions as a prior for the
true score, and the information about the observed cascade as evidence. We then ask how to update
the score function given the observed evidence. Formally, our goal is to solve Eq. (1) when it is
conditioned by the evidence, V (u|Suobs doesn’t satisfy g).

During training, our model learns to estimate the unconditioned score function V (·). In the ap-
pendix, we show that we can express the Bayesian update of the scores in terms of V (uobs), V (u),

V (u|Suobs doesn’t satisfy g) = V (u)− V (uobs) · fr(yobs, yu). (3)
where fr(uobs, u) = Pr(y ∈ Yuobs |y ∈ Yu) is the probability that an intervention y ∈ Yu will result
in sequence with prefix Suobs . It is estimated in a fashion similar to Eq. (2).

A model for the score function. Next, we describe the representation and architecture for modelling
the score function. The model takes as inputs the instruction g and sequence of events Su that define
the node u, and predicts a scalar score with ground-truth labels according to Eq. (2).

A naive approach is to represent Su as a sequence. However, such representation may not convey
well the relations describing the cascade of events. For illustration, in the following sequence of
collision events [(A, B), (C, D), (A, E)], the collision (A,E) is driven by (A,B), because A is com-
mon for both, while (C,D) is less relevant for describing the events that lead to (A,E). Instead, we
transform each sequence to a Directed Acyclic Graph (DAG) that captures relations in the cascade
of events. A node in this DAG is an event that involves some elements. Each edge represents an
element shared by two subsequent events. See Figure 3 for a concrete illustration.

Architecture We use a Graph Neural Network (GNN) to parameterize our score function. We
represent the graph as a tuple (A,X,E, z) where A ∈ {0, 1}n×n is the graph adjacency matrix,
Y ∈ Rn×d is a node feature matrix, E ∈ Rm×d′

is an edge feature matrix, and z ∈ Rd′′ is a global
graph feature. We chose to use a popular message passing GNN model (Battaglia et al., 2018). We
describe its architecture in detail in the appendix.

4.3 INFERENCE

Our agent searches the tree for the maximum scored node uMAX . Then, it randomly selects an
intervention from its intervention subset y ∈ YuMAX

. We consider two variants.

Maximum likelihood search: The agent performs a tree search that expands the most likely nodes.
At any given step, the agent stores a sorted list of nodes together with their likelihood scores, it then
picks the highest scoring node from this list and expands it. The node children are then added to the
list with their predicted scores, and the agent resorts the list.

We limit the tree search to expand only 80 nodes, whereas in our test bed a full event tree, which
contains all possible realizations, have billions of nodes, ∼ × 2.8 per unit of depth (empirically).

Counterfactual search: Here we explain how we leverage the information in the observed cascade
for inference. Consider the case where the sequence of the solution is complex and the observed
sequence diverges from the solution at a late point. In this case, it is likely that a part of the observed
chain will be informative about the solution, and will diverge at some point. To use that informa-
tion, we apply the Bayesian correction (Eq. 3) term to the predicted score of every node along the
observed sequence. We pick the highest scoring node, and initialize the search up to that node. Then
we continue the search as described by the “Maximum likelihood search”. In practice, we trim the
observed sequence, at Nobserved nodes. Nobserved is a hyper-parameter.
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5 EXPERIMENTS

We compared our approach to state-of-the-art baselines, including human performance. Then, we
follow with an ablation study to examine the contributions of different components in our approach.
Next, we describe our experimental protocol, compared methods, and evaluation metrics.

5.1 A SIMULATION BENCHMARK
� = [(cyan, purple), (red, black), (yellow, purple), (red, yellow), 

(purple, gray), (cyan, wall), (yellow, black),…]

Red Yellow Cyan Purple

Purple-
Cyan #1

Purple-
Yellow #3

Yellow-
Black #6

Red-
Yellow #4 Purple-

Gray #5
Wall-

Cyan #7

Red-
Black #2

…

Figure 3: Illustrates transforming a sequence of
events (top) to a DAG (bottom). It corresponds to
the video in Figure 1 bottom.

We designed a well-controlled environment
that share key ingredients with real-world sys-
tems of cascading events. 1 Making it (1)
sensitive to initial conditions, to allow a di-
verse set of future cascades, (2) containing di-
verse scenes, each describing a unique dynam-
ical system. (3) including semantic goals that
depend on intermediate outcomes; and (4) can
benchmark counterfactual scenarios.

Scenes. In our test-bed, several spheres move
freely on a frictionless table, colliding with
each other and with static pins within a confined
four-walled space (Figure 1). Each episode de-
scribes a different scene, which includes tens of
collisions. Instructions. A structured instruc-
tion describes (i) A pivot element to manipulate
“Push: green ball”; (ii) A target semantic event (collision) to fulfill “Target: red hits black pin”; and
(iii) constraints, of two possible types. First, is a “count” constraint. It resembles constraining the
total amount of resources available on a logistic chain. It specifies an accumulated number of colli-
sions, on all the paths from the pivot to the target, e.g. “Chain Count: 3”. Second, is a “bottleneck”
constraint, which resembles a bottleneck along a logistic chain. It enforces a specific collision that
lies on any path that starts from the pivot and reaches the target collision, e.g. “Bottleneck: red hits
top wall”. The appendix describes the instruction generation process with more examples. The task.
The objective of the agent is to intervene with the initial state of the scene, by setting the velocity
vector of the pivot object to reach a set of collisions specified by the instruction. This often requires
a precise “trick shot”, that requires detailed reasoning on how downstream events will roll out.

Dataset: We generated a dataset with ∼46K scenes (we limited generation time to 80 hours),
each includes 4-6 moving balls, 0-2 pins, and 4 walls and up to 5 semantic instructions (∼4.25 on
average). The data is split by unique scenes, into 470 unseen scenes for test, 69 scenes for selecting
hyper-parameters (val. set), and the rest are used for training. See Appendix H for more details.

5.2 EXPERIMENT DETAILS

Compared Methods: We compared the following methods. (1) ROSETTE (Reasoning On SE-
manTic TreEs): Our approach described in Section 4. Search uses the “counterfactual” variant
of the tree search (Section 4.3), by first expanding the nodes along the “observed” sequence. (2)
ROSETTE-max-l.: Like #1, but using “Maximum likelihood search” (Section 4.3) - not using the
“observed” sequence. For a fair comparison, we make sure that ROSETTE expands the same number
of nodes in total as ROSETTE-max-l. (3) (Qi et al., 2021), The SOTA on PHYRE, using a learned
forward model, goal-satisfaction classifier and exhaustive search. For a fair comparison we replace
their learned forward model by the full simulator of Makoviychuk et al. (2021). (4) Cross Entropy:
A standard planner (de Boer et al., 2005; Greenberg et al., 2022) that optimizes the objective function
learned by compared method (3). (5) Sequential: Using a sequential representation for a tree chain,
instead of a DAG. Specifically, we represent the sequence as a graph with edges along the sequence.
(Litany et al., 2022) compared a recurrent versus standard synchronous propagation in GNN mod-
els and found them empirically equivalent. (6) Deep Sets regression: Embedding the instruction
and the initial world state to predict a continuous intervention. We embed the objects’ initial posi-
tions and velocities using the permutation-invariant “Deep Sets” architecture (Zaheer et al., 2017),

1Examples: link #1, link #2, link #3. Code and data will be released upon publication.
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and use an L2 loss with respect to ground-truth interventions in the “counterfactual” training sam-
ples. (7) Random: Sample interventions at random from an estimated distribution of ground-truth
interventions. More details appear in the appendix.

Ablation: We also carry a thorough ablation study: First, we explore alternative approaches to
label node scores along the ground-truth sequence. Linear: Linearly increases the score by V (u) =
depth(u)/depth(u∗). Step: Give a fixed medium score to nodes along the sequence, and a maximal
score to the target node: V (u) = 0.5+0.51u∗(u). Dirac-Delta: Sets V (u) = 1u∗(u), this baseline is
equivalent to naive approach discussed in Section 4.2. Second, we compare the “Counterfactual” to
the “Maximum Likelihood” search by emphasizing the former effect with a dataset that employs
more complex instructions using a third constraint, and compare the two types of search across
“Easy” and “Hard” instructions. We describe this dataset in the appendix. Last, we test how ablating
parts of the instruction affects the ROSETTE model performance. Implementation details of the
baselines and ablations are described in Section D.

TREE SIMULATOR
SUCCESS SUCCESS

RANDOM NA 17.6 ± 0.3%
DEEPSET REGRESSION NA 18.4 ± 0.5%
(QI ET AL., 2021) NA 21.1 ± 0.9%
CROSS ENTROPY NA 20.9 ± 0.4%
SEQUENTIAL 52.4 ± 0.6% 43.1 ± 0.3%

ROSETTE (OURS) 60.8 ± 0.3% 48.8 ± 0.3%

TREE
SUCCESS

DIRAC DELTA 33.5 ± 1.6%
STEP 45.1 ± 1.0%
LINEAR 48.7 ± 0.7%
ROSETTE-MAX-L (OURS) 59.7 ± 0.3%

Table 1: Success rates. (Left) Our approach and baselines. TREE is not applicable to the first three
baselines since they do not use an event tree. (Right) Variants of the score function (see Ablation).

ACO (3 constraints)Figure 4: Comparing “Counterfactual”
search (ROSETTE) with “Maximum likeli-
hood” search (ROSETTE-max-l) for 2 levels
of instruction complexity (“Hard”: 2 or more
constraints) and for two levels of “count” in-
structions (“5+”: 5 or more ). Using the ob-
served cascade, ROSETTE performs better
in complex scenarios.

Evaluation metrics: For each episode and goal,
we predict an intervention and evaluate their success
rate using the following metrics. Simulator success
rate: The success rate when rolling out the predicted
intervention using a physical simulator (Makoviy-
chuk et al., 2021). This metric mimics experiment-
ing in the real world. Tree success rate (where
applicable): Each node in the tree represents a se-
quence of events. A tree based algorithm selects a
node. A “tree success” is when the selected node’s
sequence satisfy the instruction. This metric evalu-
ates the performance of the score function and tree
search, independently from errors that may be intro-
duced due to the event-driven forward model.

We further measured refinements of these metrics by
conditioning on various properties of the instruction
and scene. (1) Condition tree success rate on in-
struction type: Unconstrained: The instruction only specifies target collisions. Bottleneck: also
contains an “bottleneck” constraint. Count: contains a “count” constraint. B&C: contains both
“bottleneck” and “count” constraints. (2) Condition tree success rate on complex scenarios: (2.1)
Instructions with 2 or more constraints are marked as “Hard”, and the rest as “Easy”; (2.2) Instruc-
tions with a “count” constraint value ≥ 5 are considered hard. Complex scenario conditioning was
evaluated on the complex instruction dataset. Using the main dataset demonstrate a similar trend
(See appendix K). We report mean value and standard error of the mean across 5 model seeds.

5.3 HUMAN EVALUATION

To assess a human baseline, we conducted a user study with Amazon Mechanical Turk. We designed
a game, where a player is given a video of the observed cascade and is asked to select one of 44
combinations of orientations (11) and speeds (4). The game is based on 30 test episodes. For com-
paring with ROSETTE, we select the one (of 44) which is nearest (in L2) to ROSETTE’s predicted
velocity. Appendix Section C, describes the experiment design and further analysis of the results.
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6 RESULTS

We first compare the performance of ROSETTE with baseline methods and human performance. We
then study it properties in greater depth, through a series of ablation experiments. Finally, we discuss
the results of the baselines in Appendix A.1, and we provide qualitative examples in Appendix B.

Table 1 (Left) describes the Tree and the Simulator success rates of ROSETTE and compared meth-
ods. ROSETTE achieves the highest success rate for both the “Tree” success rate (60.8%) and the
“Simulated” success rate (48.8%). Achieving ∼80% conversion rate from Tree to Simulated. The
random baseline success rate is (17.6%), which is close to the performance of the regression model.
We conjecture that the regression model fails, because it can’t “imagine” the outcomes of the input
states as ROSETTE can. The Sequential approach is the strongest baseline, reaching Tree = 52.4%
and Simulated = 43.1% success rates.

Next, we describe the success rate in the human study. ROSETTE achieves the highest average
success rate (43.3% ± 1.3% vs 23.9% ± 2.6%). Humans displayed a large range of success rates,
with the best human achieving 41.4%, while the median and worst humans were 25% and 10%.
ROSETTE performed more persistent, with 46.6%, 43.3% and 40% for the best, median, and worst.

Ablation experiments: (1) Table 1 (Right) shows the advantage of the probabilistic formulation
of the score function (ROSETTE-max-l), compared to the several heuristics described in Section 5.
The strongest baseline (“Linear”) only reaches 48.7% vs. 59.7% for ROSETTE-max-l. (2) Fig-
ure 4 quantifies the benefit gained by using “Counterfactual” search (ROSETTE) over Maximum-
Likelihood search (Section 4.3). ROSETTE shows a relative improvement of 7.7% (45.1% vs
41.9%) for complex instructions. (3) Table 2 (Appendix A) allows an in-depth examination of the
strengths and weaknesses of ROSETTE, across 4 types of ablations, as described in Section 5. First,
we observe that the sequential baseline can find target collisions that depend on a bottleneck col-
lision, as well as ROSETTE. However, it fails with “count” instructions (46.3% vs 60.8%), since
it has no capacity for that reasoning task. Second, we observe that ROSETTE effectively uses the
instruction, since any ablated part of the instruction hurt the respective success rate.

7 DISCUSSION

In this paper, we took a first step towards understanding how to affect a complex system of cascading
events. We presented a new learning setup, called Cascade, where an agent observes a cascade of
events in a dynamical system and is asked to intervene and change its initial state to make the
system meet a given goal. We use an event-tree representation and a principled probabilistic score
function for searching efficiently over the space of interventions. We also describe an approach to
counterfactually reason about an observed cascade during the tree search.

Our approach is best applied in problems that are naturally described by event-driven dynamics.
As an example, consider cascading failures in power grids (Schäfer et al., 2018). Here, semantic
events are failures of nodes (transformers, power generators, . . . ) or edges (power lines). The power
flow obeys a known set of ODE for a given grid. When flow exceeds a powerline capacity, that
line fails (an event), resulting in an effectively different grid and a different set of ODEs that govern
the dynamics. The transmission system operator may wish to define goals like “no more than three
failures”, “no more than n people affected”, “that important node must not fail”. We elaborate on
this use-case and other use-cases, such as logistics and evolution of natural disasters in Appendix J.

One important question remains, how do studies that use our toy testbed can generalize to real-world
scenarios. We believe it can follow a similar paths as in other areas of AI where approaches mature
from toy datasets to realistic problems: First, by creating a benchmark dataset for a real-world
domain, annotated with semantic events. Some fields have datasets that can be very natural for
the problem we discussed. These may include logistics (Appendix J), evolution of natural disasters
and their consequences (Zuccaro et al., 2018), and cascading failures in power grids Schäfer et al.
(2018). Second, an event-driven forward model (EDFM) needs to be trained using this dataset.
Domain specific properties can be used to improve the accuracy and robustness of an EDFM learned.
Finally, given the EDFM, our approach can be applied.
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Reproducibility Statement We provide full experimental detail about our approach and baselines
in Appendix D. Appendix E describes the model architecture, feature represntation, and the data
for training the scoring model for the event tree. Appendix H describes the details about the data
generation. Appendix I describes the derivation and implementation of the event driven forward
model. Finally, Appendix C describes the details about the user study.
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Alex Smola. Deep sets. In NIPS, 2017.

Giulio Zuccaro, Daniela De Gregorio, and Mattia Federico Leone. Theoretical model for cascading
effects analyses. International Journal of Disaster Risk Reduction, 2018.

12

https://doi.org/10.1145/3306346.3322977


Under review as a conference paper at ICLR 2023

A ADDITIONAL RESULTS

Here we describe additional results and provide further discussion.

UNCONSTRAINED BOTTLENECK COUNT B & C
ROSETTE (OURS) 76.5 ± 0.8% 68.5 ± 1.0% 60.8 ± 0.7% 49.5 ± 0.5%
-COUNT 75.8 ± 0.9% 68.4 ± 0.8% 6.1 ± 0.6% 17.1 ± 0.5%
-BOTTLENECK 76.4 ± 0.9% 21.5 ± 1.1% 61.1 ± 1.2% 34.1 ± 0.7%
-COUNT -BOTTLENECK 76.6 ± 0.8% 21.4 ± 1.1% 6.1 ± 0.5% 4.2 ± 0.3%
-FULL 60.8 ± 0.5% 32.7 ± 0.9% 11.7 ± 0.5% 6.6 ± 0.1%
SEQUENTIAL 77.9 ± 0.4% 66.9 ± 1.3% 46.3 ± 1.3% 36.5 ± 1.3%

Table 2: Ablation study. In red, results that perform much worse than ROSETTE.

A.1 BASELINE RESULTS DISCUSSION

(Qi et al., 2021) baseline: We believe that the (Qi et al., 2021) baseline fails for three main reasons:
(1) The baseline does not use an event-based representation. (2) It employs a classifier that is trained
to provide an all-or-none signal, rather than guiding the search. The ablation study (Table 1, right)
demonstrates the importance of guiding the search (compare “Ours” 59.7% vs “Dirac-Delta” 33.5%
) (3) The baseline architecture cannot reason over the temporal DAG structure of a cascade, as our
GNN can. The importance of capturing the DAG structure is demonstrated when comparing “Our”
(60.8%) to the SEQUENTIAL baseline (52.4%) (Table 1, left)

Existing Planners: We wish to provide further insight into why it is challenging to apply existing
planners to this setup. The main challenge is that the optimization objective is given in semantic
terms about the end goal. To apply a Cross-Entropy-Method (CEM) planner, we derive a corre-
sponding objective function by training a classifier that checks if the goal was achieved for a given
scene and plan. Specifically, we used the existing SoTA PHYRE classifier Qi et al. (2021). A
main drawback is that classifiers provide an “all or none” signal, hence fail in guiding the plan-
ner through optimization. Conversely, our approach provides a score (Eq. 1) that monotonically
increases through the tree, and it is constructed to assist the search.

B QUALITATIVE EXAMPLES

Here we provide links to qualitative examples that we uploaded to YouTube. They are best viewed
in ×0.25 slow motion. The YouTube account we use is anonymous.

For each episode, we show a side-to-side video of the observed cascade, the ROSETTE successful
case, and ROSETTE-max-l failure case. The instruction is displayed on top of each video.

• Push: cyan ball, Target: blue hits red, Bottleneck: cyan hits bottom wall, Chain Count: 6
In this example, ROSETTE semantically follows the first 10 collisions (in chonological
order) as in the observed cascade. It then diverges from the observed cascade, making
the blue hit the red. The cyan pivot comes into play already on the 1st collision, and the
agent adjusts its velocity such that it shall yield the goal. The ROSETTE-max-l baseline,
hits the target, however it fails with the count constraint. The bottleneck collision occurs,
but not on the chain from the pivot to the target. See the complete video here: https:
//youtu.be/RCKFBRrCRw0

• Push: cyan ball, Target: green hits red, Bottleneck: purple hits red, Chain Count: 4
In this example, ROSETTE semantically follows the first 5 collisions (in chonological
order) as in the observed cascade. The cyan pivot comes into play on the 3rd colli-
sion. It then diverges from the observed cascade, and follows another chain of events,
making the purple hit the red, and concluding with the target hit within 4 collisions in
the chain that started at the cyan ball. This task is too hard for the ROSETTE-max-l
baseline, as it completely fails to satisfy the instruction. See the complete video here:
https://youtu.be/4s9MmY2J__I

• Push: green ball, Target: green hits cyan, Bottleneck: green hits purple, Chain Count: 5
In this example, ROSETTE semantically follows the first 6 collisions (in chonological
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order) as in the observed cascade. It then diverges from the observed cascade, making
the green hit the purple, fulfiling the bottleneck constraint. The cyan pivot comes into
play only on the 6th collision, and the agent adjusts its velocity such that both the tar-
get and the count constraint will by satisfied. The ROSETTE-max-l baseline, hits the
bottleneck, however it fails to hit the target. See the complete video here: https:
//youtu.be/iMedd_7YndQ

• Push: yellow ball, Target: cyan hits red, Bottleneck: purple hits red, Chain Count: -
In this example, ROSETTE semantically follows the first 5 collisions (in chonological or-
der) as in the observed cascade. The yellow pivot comes into play only on the 5th colli-
sion, and the agent adjusts its velocity to satisfy the bottleneck constraint and the target.
The ROSETTE-max-l baseline, completely fails in this task. See the complete video here:
https://youtu.be/QLMTD6R2Z54

• Push: red ball, Target: blue hits red, Bottleneck: red hits bottom wall, Chain Count: -
In this example, ROSETTE semantically follows the first 4 collisions (in chonological or-
der) as in the observed cascade. The red pivot comes into play already on the 2nd collision,
and the agent adjusts its velocity to satisfy the bottleneck constraint and the target. The
ROSETTE-max-l baseline, satisfy the bottleneck but does not satisfy the target. See the
complete video here: https://youtu.be/vT1ivd1ECJs

• Push: yellow ball, Target: blue hits purple, Bottleneck: blue hits right wall, Chain Count: -
In this example, ROSETTE semantically follows only the first 2 collisions (in chonolog-
ical order) as in the observed cascade. The red pivot comes into play on the 3rd colli-
sion, and the agent adjusts its velocity to satisfy the bottleneck constraint and the target.
The ROSETTE-max-l baseline, completely fails in this task. See the complete video here:
https://youtu.be/rgzWBfx-LqY

Importantly, these examples demonstrate the usefulness of the observed cascade for tree search.
ROSETTE followed the observed cascade along the part of the path that was useful to satisfy the
instruction. It diverged from the path when necessary, and found a solution when long cascades
were essential, while ROSETTE-max-l struggled.

Finally, we note that this observation is also quantitatively supported: As we show in Figure 4 and
Figure A.3. When conditioning the Tree Success rate on producing long cascades, with Chain count
constraint values greater or equal to 5, ROSETTE performs at 34.8± 0.8%, while ROSETTE-max-l
performs at 31.3 ± 1.1%, showing ∼11.1% improvement. For Chain count values smaller than 5,
they are statistically equivalent 75.1± 0.4% and 75.4± 0.4%.

C USER STUDY

We conducted a user study with Amazon Mechanical Turk (AMT) using 30 test episodes. We
designed a game where a player (rater) is given a video of the observed cascade and is asked to
select one of 44 combinations of orientations (11) and relative speeds (4) (magnitude of velocity).
One combination of orientation and speed was aligned with the ground-truth solution, and the rest
were spaced in relation to that solution. In an offline stage, we tested which of the other orientations
and speeds satisfy the goal and included those as valid solutions. We allowed the players to freely
replay the observed video. We paid 1$ per game.

Figure A.1 shows one test episode. The upper panel provides an instruction that states the goal of
that specific episode. On the left, we provide a set of simple guidelines. The center panel provides
the observed (failed) video. The right panel shows the initial frame, overlaid with the set of pos-
sible orientations and a set of HTML radio buttons to select the orientation and speed. The upper
tab provides a set of four examples with solutions and explanations. Those examples are given in
Figure A.2.

To maintain the quality of the queries, we only picked users with AMT “masters” qualification,
demonstrating a high degree of approval rate over a wide range of tasks. Furthermore, we also
executed a qualification test with a few curated episodes that are very simple. To qualify users,
we made sure they do not randomly pick an answer by only qualifying users who completed 5
episodes and had a single error at most. Additionally, we deleted queries from one qualified user,
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Figure A.1: One test episode of the user study. See Section C for details.

who submitted answers at a rate of 3-4 episodes per minute, as we qualitatively observed that it
should take 1-3 minutes to complete an episode.

Qualified users received a bonus of 0.5$, accompanied with the following message:

Thank you for doing the qualification batch for our colliding balls game.
Our full study is now online. You can start doing it. Please remember to PLAY
THE VIDEO and use it to decide about your answer. And also, take another look
at the examples, as they can provide more intuition about the task.

11 players have passed our qualification tests, playing 25 episodes on average. Table 3 compares the
human success rate with ROSETTE and a Random baseline. Showing Average, Median and Best
statistics. For the Median and Best statistics, we only included users who played a minimum number
of 20 episodes (8 of 11 users).

Average Median Best

Random 17.6 ± 1.1%
Humans 23.9 ± 2.6% 25% 41.4%

ROSETTE 43.3 ± 1.3% 43.3% 46.7%

Table 3: Success rate statistics for the user study. ± error denotes the standard error of the mean
(S.E.M) across the samples.

D ADDITIONAL EXPERIMENTAL DETAILS

D.1 HYPERPARAMETER TUNING

We train the model and baselines for 15 epochs. Batch size was set to 8192 to maximize the GPU
memory usage. We use the PyTorch’ default learning rate for Adam (Kingma & Ba, 2015) (0.001).
For inference, we set Nobserved to 9, the maximal tree depth to 30, we sample 106 initial states and
expand 80 nodes per episode which takes ∼13 seconds. The GNN uses 5 layers, with a hidden state
dimension of 128. Hyper parameters were tuned one at a time, during an early experiment on a
validation set.
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Figure A.2: Examples provided in the user study. See Section C for details.
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D.2 RANDOM BASELINE

We sample an intervention at random from an estimated distribution of ground-truth interventions.
The distribution is estimated by calculating a 2D-histogram with 30 × 30, and approximating the
distribution within each bin to be uniform.

D.3 DEEPSET REGRESSION BASELINE

Overview: For the Deepset regression baseline, we embed the instruction and the initial world state
to predict a continuous intervention. We use the permutation-invariant “Deep Sets” architecture
(Zaheer et al., 2017), and use an L2 loss with respect to ground-truth interventions in the “counter-
factual” training samples.

The input to the Deepset architecture (Zaheer et al., 2017) is a set of feature vectors. Each feature
vector corresponds to a dynamic or static object in the scene. The output is a vector ∈ R2, for
predicting the controlled velocity of the pivot object.

Feature representation: Each feature vector in the set is represented by a concatenation of the
following fields [obj feat(o), instruction emb, position, velocity], where obj feat(o) is defined
by Eq. (4), instruction emb, is defined by Eq. (7), position, velocity are the initial position and
velocity of the object, as given by the observed cascade.

Labels and loss: For ground-truth labels, we use the ground-truth velocity of the solution. We use
a L2 loss comparing the ground-truth labels with the output of the Deepset architecture.

D.4 (QI ET AL., 2021) BASELINE

Overview: Qi2021 is the state-of-the-art approach for solving PHYRE. It uses a learned forward
model, a learned goal-satisfaction classifier, and exhaustive search. For a fair comparison with our
analytic event-driven forward model, we replace their learned forward model by a full simulator
(Makoviychuk et al., 2021).

Therefore, for the goal-satisfaction classifier, in each frame, we replace the set of input feature
vectors coming from the region-proposal-interaction-network (RPIN) of (Qi et al., 2021) by a set
of feature vectors corresponding to each object in the scene, and its kinematic state as given by the
simulator. To condition the classifier on the goal, we concatenate the instruction representation to
each feature vector.

Feature representation: Each feature vector of an object in a frame, is represented by a con-
catenation of the following fields [obj feat(o), instruction emb, position, velocity, time], where
obj feat(o) is defined by Eq. (4), instruction emb, is defined by Eq. (7), position, velocity, time
are the respective readings from the simulator in the frame.

Positive and Negative examples: For training the goal-satisfaction classifier with positive exam-
ples, we use the simulation of the solution cascade. For negative examples, we use the simulation of
the observed cascade.

Classifier Architecture: We use the classifier architecture of (Qi et al., 2021), as provided in their
public implementation, with the following adaptations: (1) We replace the RPIN representation by
the simulator-driven representation described above. (2) We allow replacing the last fully connected
layer by a multi-layer-perceptron (MLP) (3) We allowed more than four equally spaced input frames.

Simulator configuration: The RPIN forward model is a fixed timestamp model, working at 1
frame-per-second. In the full simulator we used (Makoviychuk et al., 2021), we observed that it
does not perform well in such a coarse-grained resolution, making objects to sometimes go through
the walls. Therefore, we increased the simulator resolution to 10 frames-per-second.

Hyperparam search: We searched for the best hyper-parameters configuration that minimizes the
validation loss over the following ranges: Number of MLP hidden-layers ∈ [0, 1, . . . 6], Number of
input frames ∈ [4, 6, 10, 20], batch-size ∈ [128, 256]. Number of training epoch was set according
to early stopping on the validation set.
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Finally, we used the following hyper-parameters to evaluate the model performance on the test set:
Number of MLP hidden-layers = 2, Number of input frames = 4 (as in (Qi et al., 2021) paper),
batch-size=128, Number of training epoch = 17.

Evaluation: For evaluation, we randomly selected a subset of 208 episodes (10% of the test subset
), because inference for a single episodes took ∼5.5 minutes.

D.5 CROSS ENTROPY BASELINE

Overview: The cross entropy method is a black box optimizer for solving optimization problems.
We used (Qi et al., 2021) baseline’s classifier as our objective function. At each step, we sampled
100 points and updated the sampling distribution based on their score. We have repeated this process
for 100 iterations, and chosen the highest scored intervention for evaluation. Our code is based on a
standard implementation Greenberg et al. (2022) of the cross entropy method.

For evaluation, we randomly selected a subset of 208 episodes (10% of the test subset), because
inference for a single episodes took ∼4 minutes.

D.6 SEQUENTIAL BASELINE

We used the validation set to select the number of layers for this baseline, ∈ [5, 10, 20, 30]. There
wasn’t any significant difference when using 5 or 10 layers, and the success rate degraded for 20 or
30 layers. Therefore, we used 5 layers for evaluating performance on the test set.

D.7 INSTRUCTION ABLATION BASELINES

We report the “count” and “bottleneck” ablations by zeroing their respective features in the instruc-
tion and using the same model weights that were used to report the performance of the ROSETTE
model. We did not retrain the model for these cases because the ROSETTE model was trained to
handle these cases, as is evident by the “Unconstained” metric.

For ablating the “full” instruction, we retrained the model, while completely zeroing the representa-
tion vector of the input instruction.

E IMPLEMENTATION DETAILS OF THE MODEL OF THE SCORE FUNCTION

We use a Graph Neural Network (GNN) to parameterize our score function. We represent the graph
as a tuple (A,X,E, z) where A ∈ {0, 1}n×n is the graph adjacency matrix, Y ∈ Rn×d is a node
feature matrix, E ∈ Rm×d′

is an edge feature matrix, and z ∈ Rd′′ is a global graph feature. we
chose to use a popular message passing GNN model (Battaglia et al., 2018) that maintains learnable
node, edge and global graph representations.

Architecture The model is composed of several message passing layers, Lk ◦ · · · ◦L1 where each
Li updates all representations, i.e.:

Xi+1, Ei+1, zi+1 = Li(A,Xi, Ei, zi; θi),

Each layer Li updates the features sequentially: the node and edge features are updated by aggre-
gating local information, while the global feature is updated by aggregating over the whole graph.
We denote the parameters of the MLPs that are used in a layer Li as θi, and note that these are the
only learnable parameters in the model. At the last layer i = k we use a single dimension for the
global feature, i.e., d′ = 1, which is then used as the score of the event node.

Feature representation We describe next the feature representation of the inputs to the node fea-
ture matrix Y , the edge feature matrix E, and the global graph feature z.

We start by describing a feature representation of any of the dynamic and static objects in the scene:
An object o feature representation, noted by obj feat(o), is a concatenation of the following fields
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obj feat(o) = [one hot(o), is stationary, is active,

instruct inner prod, bottleneck ind, count, count ind], (4)

where one hot(o) is a one-hot vector ∈ R12, as represented by the instruction; is stationary indi-
cates whether the object is stationary; is active means that in the context of a current collision, the
object dynamics were coming from a collision chain that included the pivot; instruct inner prod
is the results of an inner product of one hot(o) with each of the 5 object representations at the in-
struction embedding (Section H.3). Finally, bottleneck ind, count, count ind are copied from the
instruction embedding.

The graph node and edge features are derived from the DAG representation (Figure 3). Each
row of the node feature matrix Y concatenates the two objects that participate at a collision
[obj feat(obja), obj feat(objb)]. Each row at the edge feature matrix E represents obj feat(o) of
the object on that edge.

Last, the global feature z is a copy of the instruction embedding Eq. (7).

Training data For calculating the training labels of the score function, we traverse the semantic tree
along the ground-truth sequence of the solution cascade and collect the positive labels using Eq. (2).
If the event tree cannot reproduce the solution sequence of a sample (due to errors accumulated by
the event-driven forward model), then Eq. (2) cannot be calculated, and we drop that sample from
the training set. We collect negative examples (with V = 0) by (1) taking the child nodes that
diverge from the path to the ground-truth solution. (2) Traverse a random path along the tree with
the same length as the ground truth sequence, and set the score of all the nodes along that path to
0. Note that setting the scores of every node along these paths to V = 0 is a heuristic and may
introduce some label noise with respect to negative examples. Additional research may be required
to analyze the label-noise consequences and address it.

F COUNTERFACTUAL UPDATE FOR THE SCORE FUNCTION

In this section, we derive the expression of the score function update according to the observed
cascade (Eq. (3)). We start the derivation by repeating the preliminary derivation steps introduced
in the main text in more detail.

During inference, we observe a cascade that does not satisfy the instruction, and are asked to retro-
spectively suggest a better solution. How can the information can be used to find a better solution?
The probabilistic score function allows us to formalize this problem in a Bayesian setting. We treat
the model predictions as a prior for the true score, and the information about the observed cascade
as evidence. We then ask how to update the score function given the observed evidence. Formally,
we condition Eq. (1) by the evidence, V (u|Suobs doesn’t satisfy g).

We denote the set of interventions that satisfy the instruction g as Gg ⊂ Y , and the evidence by E.
Note that an equivalent definition for the unconditioned score function V (·) is

V (u) = Pr (Q(y) satisfies g|y ∈ Yu, g)

= Pr (y ∈ Gg|y ∼ U (Yu))

Our evidence is that for a particular ỹ ∈ Yobs, we have ỹ /∈ Gg . Now, by definition, every y, y′ ∈ Yobs

share the same observed cascade Suobs . Therefore, the evidence E can be equally formulated as
y′ /∈ Gg for any y′ sampled uniformly from Yuobs , y′ ∼ U(Yuobs). For brevity, we set Yobs = Yuobs .

The conditioned score function is then,

Pr (y ∈ Gg|y ∼ U (Yu) , E)

We use the law of total probability and write,
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Pr (y ∈ Gg|y ∼ U (Yu) , E)

=Pr (y ∈ Ggy ∼ U (Yu) , E, y ∈ Yobs) Pr (y ∈ Yobs|y ∼ U (Yu) , E)

+Pr (y ∈ Gg|y ∼ U (Yu) , E, y ∈ Y c
obs) Pr (y ∈ Y c

obs|y ∼ U (Yu) , E)

=Pr (y ∈ Gg|y ∼ U (Yu ∩ Yobs) , E) Pr (y ∈ Yobs|y ∼ U (Yu) , E)

+Pr (y ∈ Gg|y ∼ U (Yu ∩ Y c
obs) , E) Pr (y ∈ Y c

obs|y ∼ U (Yu) , E)

Furthermore,

Pr (y ∈ Yobs|y ∼ U (Yu) , E) = Pr (y ∈ Yobs|y ∼ U (Yu))

Pr (y ∈ Y c
obs|y ∼ U (Yu) , E) = Pr (y ∈ Y c

obs|y ∼ U (Yu))

As the conditioned event y ∈ Yobs is independent of E.

The relations between node Uobs and u can be one of the three: a) the observed node is a descendant
of u (and therefore Yu ∩ Yobs = Yu) b) u and the observed node belong to different branches, and
therefore Yu ∩ Yobs = ∅, or c) u is a descendant of the observed node (and therefore Yu ∩ Yobs =
Yobs). However, uobs represents a complete cascade rather than a partial sequence, and therefore the
observed node does have any children, and we can ignore c).

Let us consider each case separately.

u and the observed node are along different paths. In this case,

Yu ∩ Yobs = ∅
Yu ∩ Y c

obs = Yu

Pr (y ∈ Y c
obs|y ∼ U (Yu)) = 1

Pr (y ∈ Yobs|y ∼ U (Yu)) = 0,

and we’re left to evaluate Pr (y ∈ Gg|y ∼ U (Yu) , E). Since the evidence in this case provides
information about a set that y is not conditioned on, it is independent of y, and therefore we conclude
with,

Pr (y ∈ Gg|y ∼ U (Yu) , E) = Pr (y ∈ Gg|y ∼ U (Yu)) = V (u)

u is a descendant of the observed node. Here,

Yu ∩ Yobs = Yobs

Pr (y ∈ Yobs|y ∼ U (Yu)) = fr(yobs, yu)

In this case,

Pr (y ∈ Gg|y ∼ U (Yu) , E)

=Pr (y ∈ Gg|y ∼ U (Yu ∩ Yobs) , E) fr(yobs, yu)

+Pr (y ∈ Gg|y ∼ U (Yu ∩ Y c
obs) , E) (1− fr(yobs, yu))

=Pr (y ∈ Gg|y ∼ U (Yobs) , E) fr(yobs, yu)

+Pr (y ∈ Gg|y ∼ U (Yu ∩ Y c
obs) , E) (1− fr(yobs, yu)) (5)

Now,

Pr (y ∈ Gg|y ∼ U (Yobs) , E)

=Pr (y ∈ Gg|y ∼ U (Yobs) , {∀y′ ∈ Yobs, y
′ /∈ Gg})

=0
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Since the evidence indicates that for every y′ ∈ Yobs the resulting sequence Suobs does not satisfy
the goal. Furthermore,

Pr (y ∈ Gg|y ∼ U (Yu ∩ Y c
obs) , E) = Pr (y ∈ Gg|y ∼ U (Yu ∩ Y c

obs)) (6)

As E does not add information when we sample from (Yu ∩ Y c
obs).

Therefore,

Pr (y ∈ Gg|y ∼ U (Yu) , E) = Pr (y ∈ Gg|y ∼ U (Yu ∩ Y c
obs)) (1− fr(yobs, yu))

Now

Pr (y ∈ Gg|y ∼ U (Yu)) = Pr (y ∈ Gg|y ∼ U (Yu ∩ Yobs)) fr(yobs, yu)

+ Pr (y ∈ Gg|y ∼ U (Yu ∩ Y c
obs)) (1− fr(yobs, yu))

Namely,

V (u) = V (uobs) · fr(yobs, yu) + Pr (y ∈ Gg|y ∼ U (Yu ∩ Y c
obs)) (1− fr(yobs, yu))

or

Pr (y ∈ Gg|y ∼ U (Yu ∩ Y c
obs)) =

V (u)− V (uobs) · fr(yobs, yu)
1− fr(yobs, yu)

.

Plugging this back to Eq. 6 we obtain:

Pr (y ∈ Gg|y ∼ U (Yobs) , E) = V (u)− V (uobs) · fr(yobs, yu)

which is our final result.

G RELATION TO CAUSAL-INFERENCE

The DAG representation (Section 4.2) is useful for graphically representing one instance of a cas-
cade, but we intentionally avoid naming it a Causal DAG, because it can’t represent dependencies
between events that are not explicitly observed in the video. E.g., in the example [(A, B), (C, D),
(A, E)] in Section 4.2, it may be that (A,E) depends on (C,D) because C blocks D from reaching
to E before A do. The event tree can simulate this behaviour, while the DAG (C,D) ; (A,B)-¿(A,E)
is unaware of it. From a formal causal inference perspective (Pearl, 2000), our event tree is the
part of our approach that can be related to the formal ”Structured” Causal Model (SCM). As it is a
generative model that reflects the data generation process; it can account for complex dependencies
between events; and every edge corresponds to a function, namely, the event-driven forward model.

H DATA GENERATION DETAILS

H.1 VIDEO GENERATION DETAILS

In this section, we describe the generation process of the dynamical scene. We first create an “un-
perturbed” video. Then, we perturb the video by modifying the velocity of a specific element, which
will be later designated as the pivot. We let the perturbed video roll out, validate that it is indeed
semantically different than the unperturbed video, and label it as the “observed” video. The unper-
turbed video can now be used as reference for our instruction generation process. It is a realization
of a specific, complex, semantic chain of events that is both semantically different than the perturbed
(“observed”) video and is also feasible, e.g, by setting the intervention value as to revert the pertur-
bation. This flow guarantees that we can ask meaningful instructions on the “observed” that are
guaranteed to be realizable.
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The unperturbed video. We construct the unperturbed video by iteratively adding spheres and
collisions in a physical simulator (IsaacGym (Makoviychuk et al., 2021)) increasing the video com-
plexity. We start by placing a sphere in the confined four-walled space and assign it a random
velocity.

The dynamics of a sphere moving freely in a confined square area can be expressed analytically. We
pick a random time t1, hitting velocity, and hitting angle for the first collision. We analytically solve
for the initial position and velocity at t0 = 0 that will result in the a collision at t1 with the specific
hitting velocity and angle. We assign these value to a randomly colored sphere.

Due to discrepancies between the simulator dynamics and the kinematic analytic model, we roll out
the dynamical system in the simulator, and record the system state immediately after a collision.

We continue adding spheres iteratively. Given a state at ti, we randomly select a sphere Oi from the
existing spheres, collision time ti+1, hitting angle and velocity. We solve analytically and find the
initial position and velocity at t0 = 0 that will result in a collision with Oi corresponding parameters.
We roll out the dynamical system, and update the velocities and positions records after each collision
with the empirical values from the simulator.

Our simple kinematic model assumes the target sphere and the newly added move freely. However,
other spheres may cross their trajectories, resulting in an a collision that will distract the spheres from
their designated path. However, this simply means that the planned random collision was replaced
by a different collision. Since we update our records of the resulting collisions and corresponding
output velocities and positions using the simulator, this does not pose any serious limitations.

The observed video. We pick a random sphere from the set of spheres and assign it a different
velocity at t = 0. We roll out the system in the simulator and log all resulting collisions. We validate
that the resulting collision sequence is different than the unperturbed video collision sequence. We
now have two videos that differ only in the initial velocity of a specific sphere, but result in a
substantially different semantic chain of events.

H.2 INSTRUCTION GENERATION DETAILS

We describe the instruction generation process when given an “observed” video, and a “counterfac-
tual” video that displays an alternative cascade of events.

Given a ground-truth video, its sequence of collisions, and a pivot, we randomly sample an in-
struction: Starting by randomly sampling a target collision from the sequence. And then, we ran-
domly sample up to two constraints that accompany the goal. For constructing the constraints, we
first represent the sequence of collisions using a DAG, in a similar fashion as described in Fig-
ure 3, then we use standard NetworkX functionality (Hagberg et al., 2008) for graph traversal:
(1) We use “dag.ancestors()” to get a list of nodes for the “bottleneck” constraint. (2) We use
”all simple paths()” to count the nodes in a chain reaction between the pivot and the target collision.

To avoid trivial goals, we drop an instruction if it is fulfilled by the observed video (rather than the
“counterfactual” video). We sample up to 5 unique instructions for each scene (∼4 on average).

H.3 INSTRUCTION FEATURE REPRESENTATION

We assume perfect lexical perception, and provide the agent with the a structured vector representa-
tion of each instruction, by concatenating the following fields:

instruction emb = [target obj a, target obj b, pivot obj, bottleneck obj a,

bottleneck obj b, bottleneck ind, count, count ind], (7)

where target obj a, target obj b are the object representations of the target collision. pivot obj
represents the pivot. bottleneck obj a, bottleneck obj b, bottleneck ind represent the two “bot-
tleneck” objects and a binary indicator scalar. If an “bottleneck” constraint is not applicable for
an instruction, we them all to 0. count, count ind are 2 scalar values: One for the number of
collisions of the chain “count” constraint, and another used as a binary indicator for the “count”
constraint. Similarly if a “count” constraint is not applicable for an instruction, we set both count
and count ind to 0.
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Finally, note that each object is represented by a one-hot vector ∈ R12, because the environment has
12 types of unique objects: 6 colored balls, 2 static pins, and 4 walls.

H.4 COMPLEX INSTRUCTIONS DATASET

For the complex instructions dataset, we add a third object centric constraint that counts the number
of interactions a specific object makes on the paths from the pivot to the target collision. It resembles
constraining the amount of resources available per instance on a logistic chain. With an additional
constraint we can test our approach on a more challenging task that has a large variety of instructions
that have 2 or more constraints. We split the evaluation set to “Hard” instructions that have 2 or
more constraints, and “Easy” instruction with 0-1 constraints. We generated instructions for the
same scenes as in the main dataset, which yields ∼4.5 instructions per scene. The test set consists
of 2190 episodes, where 54% are “Hard” instructions.

I THE FORWARD MODEL

In our physical setup, the dynamics are prescribed by the position and velocity cji =

(posji , vel
j
i ), j = 1 . . . n of each of n objects in the environment. The world state wu

i of a node
u is then a tuple

wu
i = (c1i , c

2
i , ...c

n
i , ti), (8)

where for the root node ti = 0 for all xi.

The forward module takes as input a world state wi it outputs the next semantic event (s′), and a state
f(wi) = w′

i = (c′
1
i , c

′2
i , ...c

′n
i , t

′
i) immediately after the predicted semantic event at t′i. The section

is divided into three parts. First, we describe the analytical equations that control if two objects will
collide. Then we show how can leverage the analytic model to efficiently branch out from a node in
the event tree. Finally, we fill in the missing details and present the full forward model.

The collision detector. Assume two spheres i = α, β moving freely on a plane with an initial
velocity of vi and position ri at t = 0. Each sphere has a radius of li. If the two sphere collide, then,
at the moment of collision, the spheres intersect at a single point. We can use a simple geometric
calculation to find their planar distance. The distance between the center of spheres is lα+ lβ , while
the vertical distance between the two centers is |lα − lβ |. The resulting planar distance is then:

d =
√
(lα + lβ)2 − (lα − lβ)2 = 2

√
lαlβ . (9)

Therefore, in order to check if the spheres collide, we can check if the planar distance between the
two spheres is ever equal to d,

∥r(t)∥2 = ∥rα + vα · t− rβ − vβ · t∥2 = d2 (10)

This is a quadratic equation in t, which we can solve for analytically. If the discriminant is non-
negative, the collision time corresponds to the smaller root. The spheres’ velocities immediately
after the collision are given by:

v′
1 = v1 − 2m2

m1 +m2

⟨v1 − v2,y1 − y2⟩
∥y1 − y2∥2

· (y1 − y2) (11)

v′
2 = v2 − 2m2

m1 +m2

⟨v1 − v2,y1 − y2⟩
∥y1 − y2∥2

· (y2 − y1) (12)

Likewise, it is trivial to obtain an analytical expression for the collision time and output velocity of a
collision between a freely moving sphere and each of the static walls bounding the spheres (should
the collision occur). The sphere’s velocity in the direction orthogonal to the walls flips, while the
parallel velocity remains the same.
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Parallelizing collision detection. The collision detector provides an analytic condition that vali-
dates whether a specific collision occurs.

(∆r ·∆v)2 − 4(∥∆r∥2 − d2)∥∆v∥2 > 0 (13)

Eqs. 9-13 can be solved in parallel for multiple tuples of (r1,v1, r2,v2) on a GPU using packages
such as PyTorch. Given an intervention set of Yu, and a corresponding world-state set Wu, we iterate
over all possible collisions Sij = (Oi, Oj). For each collision between object i and j we can apply
our collision detector by extracting the corresponding coordinates ciw, c

j
w, tw from w ∈ Wu (Eq 8).

We can do in parallel for all world states w ∈ Wu. If a collision is predicted, we construct a new
node child u′ of u. We associate with it the interventions for which the collision detector returned a
non-null time for the collision, Y ′

u, the corresponding set of post-collision world state W ′
u, and the

event sequence S′
u = concat(Su, (Oi, Oj))

The complexity is quadratic in the number of object rather than linear in the number of interventions.
This allows us to apply our algorithm with a high number of interventions, and therefore enable us
to consider delicate sequences of collision that would require refined ”trick shots”.

This approach considers every two objects Oi, Oj as moving freely. However, another object in the
environment, e.g, Ok, may interact with Oi (without loss of generality) before the collision. This
necessarily means that the collision time tik precedes tij . In order to account for this, we hold an
additional structure that maintains the minimal collision time for every w ∈ Wu. We update it as we
iterate over all possible collisions. Then, we associate each w ∈ Wu and its corresponding y ∈ Yu

to the event node corresponding to the collision with the earliest collision time.

J ADDITIONAL SETUPS

Here, we present examples for additional setups for which our formalism can be applied.

J.1 LOGISITICS

While logistics is a complex field, we describe a simple model that captures the essential components
of a logistics problem.

Consider a large logistics enterprise that needs to coordinate shipping from multiple locations. The
enterprise has multiple carriers (e.g, trucks or airplanes) vi, i = 1..m and routes them between
logistic centers at rj , j = 1..n.

A plan is a schedule for each carrier τj , where a schedule τj is a sequence of arrivals and departures
between various logistic centers,

τj = {(r0j , t0in, t0out), (r1j , t1in, t1out), ...}

Not all plans are feasible. Each carrier can travel at a range of velocities, resulting in a range of
arrival times to the possible destinations. Carriers can exchange cargo is they are present at the same
logistic center.

Now, assume a logistic center is suddenly shut down. Rescheduling all carriers is unfeasible, as some
may be already committed to a route, or may not be easily diverted (e.g., are airborne). Furthermore,
recomputing a new plan for the complete enterprise might be computationally heavy. Finally, it
seems reasonable that re-planning of only the routes of carriers that were suppose to arrive to the
closed logistic center may be enough. We denote those k carriers as the rescheduled carriers. Note
that while only some of routes may be re-planned, other carriers might be affected as well due to a
cascade of delays or even cargo exchange cancellations.

Such re-planning may be constrained by semantic instruction. For example: ”Carrier X should only
make two deliveries”, ”Carrier Y should meet carrier Z before meeting Carrier W”, etc. .

We now cast this problem into our general framework, described in Section 4. An event is the arrival
or departure of a carrier to a logistic center. Each intervention y ∈ Y is a set of plans the rescheduled
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carriers,
y = (τ0, τ1, ..., τk).

A world state wj is the position of the k carriers at different time ((p0j , t
0
j ), ..., (p

k
j , t

k
j )) The forward

model takes as input a world state and outputs all world state that obey the following two rules: 1)
At least one carrier moved to a different logistic center. 2) The transition of carriers follow physical
constraints. If carrier i can move at velocity range [vimin, v

i
max] and it moves between two logistics

centers ra and rb, then the transition time must be in[
∥ra − rb∥
vimax

,
∥ra − rb∥
vimin

]
. (14)

For simplicity, we assume that there is no cargo limit.

The expressions for the induced probability, Eqs. 2 -3, remains the same.

J.2 FAILURE CASCADES IN POWER GRIDS

Cascading failures in power grid may cause large blackout with substantial economical damage
Schäfer et al. (2018). Cascading Power failures may be induced due to random fluctuations and can
develop on orders of seconds. Human operators or complex control mechanism may not be able
react in time. The transmission system operator may use an event-driven forward model to find fast
automated reactions for unseen dynamical configurations to avoid cascading failures.

Here, semantic events are failures of nodes (nodes; e.g., transformers, power generators, etc.) or
power lines (edges). Power flow follows a known set of ODE for a given grid (eqs 14-15 in Schäfer
et al. (2018)):

d

dt
θi = ωi, (15)

Ii
d

dt
ωi = Pi − γiωi +

N∑
j=1

Kij sin (θj − θi) , (16)

where, θi, ωi are the dynamical variable at node i, Pi is the power input (or output) at node i, and
Kij is a weighted adjacency matrix representing the grid connectivity. If at some point in time the
flow Fij exceeds the powerline capacity αkij , α ∈ [0, 1] (eqs 1-2), the line fails. This condition can
be formally written as

Fij (t) = Kij sin (θj (t)− θi (t)) > αKij .

If the line fails, the dynamics are governed by a new effective coupling matrix Kij, and the dynamics
in Eqs. 15-16 changes accordingly.

A failure of a node may induce outage to some region. The transmission system operator (TSO)
might define goals such as “no more than three failures”, “the maximal number of affected people
should be less than n”, “these highly important nodes should not fail” etc.

J.3 EVOLUTION OF NATURAL DISASTERS

Finally, another use case is the evolution of natural disasters. Zuccaro et al. (2018) provides a full
description of an event tree. It models transitions between events like a “seismic shock” which
can lead to “landslide” and result with “traffic accident”, and how taking preventive measures like
“evacuate population” can influence the total damage caused by the crisis.

K COMPLEX SCENARIO CONDITIONING FOR THE MAIN DATASET

In Figure A.3 we provide the results for complex scenario conditioning for the main dataset (with
two type of constraints). The results demonstrate a similar trend as in the complex instruction dataset
in Figure 4.
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AC (2 constraints)
Figure A.3: Comparing “Counterfactual” search (ROSETTE) with “Maximum likelihood” search
(ROSETTE-max-l) for 2 levels of instruction complexity (“Hard”: 2 or more constraints) and for
two levels of “count” instructions (“5+”: 5 or more ). Here we use the main dataset. Using the
observed cascade, ROSETTE performs better in complex scenarios.
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