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ABSTRACT

This paper introduces LLM-Streamline, a pioneer work on layer pruning for large
language models (LLMs). It is based on the observation that different layers have
varying impacts on hidden states, enabling the identification of less important
layers to be pruned. LLM-Streamline comprises two parts: layer pruning, which
removes consecutive layers with the lowest importance based on target sparsity,
and layer replacement, a novel module that trains a lightweight network to replace
the pruned layers to mitigate performance loss. Additionally, a new metric called
stability is proposed to address the limitations of the widely used accuracy metric
in evaluating model compression. Experiments show that LLM-Streamline outper-
forms both previous and concurrent state-of-the-art pruning methods in terms of
both performance and training efficiency.
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Figure 1: The left side of the figure illustrates the LLM-Streamline workflow, which includes
layer pruning to remove consecutive layers and layer replacement where a lightweight network is
trained to replace the pruned layers. The right side of the figure presents the comparison results of
LLM-Streamline with the state-of-the-art (SOTA) pruning methods on 12 classification benchmarks
(details in Section 4.2) after pruning about 25% of the parameters on Llama2-7B. LLM-Streamline
achieves 11.2% higher relative accuracy than these methods, where the relative accuracy represents
the percentage of the original model’s accuracy retained by the pruning method.

1 INTRODUCTION

Large language models (LLMs) built on the Transformer architecture (Vaswani et al., 2017) have
gained widespread attention and are applied across diverse domains and tasks. However, as LLMs
increase in size, their hardware requirements escalate substantially, thereby constraining their applica-
bility and impeding their deployment in real-world scenarios. To reduce the hardware requirements
for deploying LLMs, research efforts have been devoted to developing compact models that maintain
high performance through model compression (Zhu et al., 2023; Wang et al., 2024). Currently,
model compression techniques are widely categorized into knowledge distillation (Hinton et al.,
2015; Gou et al., 2021; Li et al., 2022; Huang et al., 2022; Ho et al., 2022), quantization (Liu et al.,
2021; Gholami et al., 2022; Dettmers et al., 2022), and pruning (Louizos et al., 2017; Chen et al.,
2023; Frantar & Alistarh, 2023; Das et al., 2023; Sun et al., 2023; Xia et al., 2023). Knowledge
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Figure 2: The cosine similarity between the input and output hidden states of each layer in OPT-1.3B,
OPT-2.7B, OPT-6.7B, and Llama2-7B.

distillation achieves compression by transferring the capabilities of a larger teacher model to a smaller
student model. Quantization compresses the model by quantizing the weights to lower precision.
Alternatively, pruning compresses the model by eliminating unimportant parameters and modules.

This work focuses on the popular pruning methods. Previous approaches for LLM primarily prune
dense matrices (Ashkboos et al., 2024), attention heads (Michel et al., 2019; Voita et al., 2019),
filters (McCarley et al., 2019; Prasanna et al., 2020), or prune parameters to reduce an LLM’s hidden
dimension (Xia et al., 2023; van der Ouderaa et al., 2023; Hu et al., 2024). Despite their effectiveness,
these methods often result in structural irregularities, making it inflexible to store and deploy the
pruned models. In contrast, layer pruning method simply reduces the depth of LLMs. As the layers
of LLMs are stored in data structures like nn.ModuleList, layer pruning only requires removing
elements from this list, making it more flexible for application. Therefore, exploring an effective
layer-wise pruning method is crucial.

The core idea of layer pruning is to identify and remove less important layers in an LLM. Specifically,
the effect of each layer can be viewed as a transformation of the hidden states. If the input and output
hidden states of a particular layer are highly similar, such as exhibiting high cosine similarity, we
can say that the layer has a small impact on adjusting the hidden states. As illustrated in Fig. 2, our
pilot study shows that certain contiguous layers indeed have smaller impact on the hidden states,
indicating they are less important and suitable for pruning. Some concurrent works (Song et al., 2024;
Kim et al., 2024; Yang et al., 2024; Men et al., 2024; Gromov et al., 2024) also explore layer pruning.
These studies either prune unimportant layers directly without further training (Song et al., 2024;
Men et al., 2024) or fine-tune the pruned model to enhance performance (Kim et al., 2024; Yang et al.,
2024; Gromov et al., 2024). Directly removing layers can lead to more performance degradation.
While parameter-efficient fine-tuning techniques like LoRA (Hu et al., 2021) are used to train the
pruned LLM, fine-tuning the model to make the original non-contiguous layers compensate for the
performance degradation is not an easy task (details in Section 2.3).

In this work, we propose a layer pruning method called LLM-Streamline, which exhibits advantages
in both performance and training efficiency while requiring less training data. LLM-Streamline
comprises two components: layer pruning and layer replacement. According to a certain target
sparsity, the first step removes consecutive layers with the lowest importance from the original LLM.
Subsequently, we train a lightweight network to replace the pruned layers, aiming to recover the
performance degradation caused by pruning. We can employ various architectures for this lightweight
network, including a feed-forward neural network (FFN), a SwiGLU-based feed-forward neural
network (SwiGLU), and a Transformer layer.

Additionally, we find that existing accuracy metrics for evaluating model compression methods
have limitations. Specifically, in natural language understanding tasks that involve multiple-choice
classification, a compressed model may guess correct answers for samples on which the original
model was uncertain, resulting in an overestimation of the compression performance. To address this
issue, we propose a new metric named stability, which measures the consistency of predictions before
and after pruning, considering the prediction confidence of the original model.
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Overall, this paper makes the following contributions:

• We propose LLM-Streamline, a layer-wise pruning algorithm that demonstrates superior
effectiveness and efficiency compared to concurrent methods. To mitigate the potential
performance degradation caused by pruning, we propose to use a lightweight network to
approximate the functionality of the pruned layers.

• We propose a new metric called stability, which considers both the prediction confidence
of the original model and the consistency of predictions before and after pruning. Stability
provides a more accurate reflection of the pruned model’s performance in classification tasks
compared to the widely used accuracy metric.

• We conduct experiments on 12 well-known classification benchmarks and 3 generation
benchmarks. Our results show that for an LLM with 7B or 13B parameters and a 25%
pruning rate, we can maintain 93% performance in classification tasks and 77% in generation
tasks without requiring a lot of training data, outperforming existing SOTA pruning methods.

2 LLM-STREAMLINE

The workflow of the LLM-Streamline framework, shown in Fig. 1 (a), comprises two main steps:
layer pruning and layer replacement. First, we prune redundant layers from the LLMs. Then, we
train a lightweight network to replace the pruned layers to restore the model’s performance.

2.1 LAYER REDUNDANCY IN LLMS

LLMs primarily utilize a Transformer architecture, consisting of a series of Transformer decoder
layers. These layers adopt a residual structure, so the effect of each Transformer layer can be viewed
as a transformation of the input hidden states. Assuming that the parameters of the ℓ-th layer f are
denoted as θ(ℓ), and its input hidden states are represented by x(ℓ), the layer f can be expressed as

x(ℓ+1) = x(ℓ) + f(x(ℓ), θ(ℓ)). (1)

In Eq. 1, the ℓ-th layer f contributes a transformation f(x(ℓ), θ(ℓ)) to the input x(ℓ). Therefore, we
assess the importance of each layer in LLMs by evaluating its impact on the input hidden states. We
use the cosine similarity cos (·, ·) between input x(ℓ) and output x(ℓ+1) as a metric. Essentially, a
higher cosine similarity between the input and output of a layer indicates lower importance, and vice
versa. This interpretation arises from the observation that a high cosine similarity suggests the layer’s
transformation is minimal, making it more amenable to pruning.

To measure the importance of different layers in LLMs, we randomly select samples from the pre-
training data (details in Section 4.1). We then record the hidden states generated by the LLMs for
these samples and compute the cosine similarity between the input and output hidden states of each
layer. The computation of cosine similarity can be formalized as follows,

cos (x(ℓ),x(ℓ+1)) = E
(x

(ℓ)
i ,x

(ℓ+1)
i )∈D

 1

L

L∑
j=1

x
(ℓ)
i,j · x

(ℓ+1)
i,j

∥x(ℓ)
i,j ∥ · ∥x

(ℓ+1)
i,j ∥

 , (2)

where D denotes the recorded hidden states from different samples, x(ℓ)
i , x(ℓ+1)

i ∈ Rd×L denotes
the input and output hidden states of the i-th sample respectively, d denotes the hidden size and L
denotes the sequence length of each sample.

To mitigate the effects of model size and model structure, we conduct experiments on four models
OPT-1.3B, OPT-2.7B, OPT-6.7B (Zhang et al., 2022), and Llama2-7B (Touvron et al., 2023). The
results, illustrated in Fig. 2, show that there is high cosine similarity between the input and output of
several consecutive layers in all models, indicating a low level of importance.

Discussion I: Why not use other similarity to measure the importance of layers? In deep learning,
cosine similarity is widely employed to measure the similarity between two vectors (Chen et al., 2020;
Chen & He, 2021; Reimers, 2019). Alongside it, dot product and Euclidean distance are also utilized,
but they additionally consider vector magnitude. Current research suggests that the hidden states of
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Transformers with the Pre-Norm architecture tend to grow as the depth of layers increases (Liu et al.,
2023). This trend leads to a bias where deeper layers in the model have higher dot product similarity,
while earlier layers have smaller Euclidean distances. Consequently, we opt for cosine similarity,
which is agnostic to the magnitude of the vectors.

Discussion II: Why not use perplexity as the metric to measure the importance of layers? Some
concurrent layer pruning work uses perplexity as the metric to measure the importance of layers (Song
et al., 2024; Kim et al., 2024). Specifically, they remove each layer one at a time, measuring the
change in perplexity of the model on the pre-training data, and eliminate the layer that causes the
least change. This process is repeated multiple times to remove several layers. However, we think
perplexity is a highly data-sensitive metric, which results in different layers being removed when
pruning with different pre-training data. This also results in a situation where, although the perplexity
of the pruned model on the pre-training data used for pruning is low, it performs poorly on other
datasets. In contrast, the cosine similarity is highly stable and always leads to the same pruned layers
on different pre-training data. We conduct detailed experiments in the Appendix A to demonstrate
that perplexity is a highly data-sensitive metric and performs poorly on downstream tasks.

2.2 LAYER PRUNING

As Fig. 2 shows, the less important layers are often contiguous. Hence, given number of pruned
layers n determined by a target sparsity, we remove n contiguous layers by finding the initial layer
ℓ∗(n) corresponding to the highest cosine similarity for pruning:

ℓ∗(n) = argmax
ℓ

cos(x(ℓ),x(ℓ+n)), (3)

where we randomly select samples from the pre-training data to compute the cosine similarity between
x(ℓ) and x(ℓ+n), as outlined in Eq. 2.

2.3 LAYER REPLACEMENT

After the layer pruning process, we aim to replace the pruned layer with a lightweight network that
has much fewer parameters. The rationale is that these layers contribute only minor transformations
to the input. Therefore, we hypothesize that the cumulative effect of these layers can be approximated
by a lightweight network. Specifically, after identifying the initial layer ℓ∗(n) for pruning, we use
(x(ℓ∗),x(ℓ∗+n)) as the training data to train the lightweight network using mean squared error (MSE)
loss, which can be formalized as follows:

min
h

E
(x

(ℓ∗)
i ,x

(ℓ∗+n)
i )∈DMSE(h(x

(ℓ∗)
i ),x

(ℓ∗+n)
i ), (4)

where h denotes the lightweight network, D denotes the recorded hidden states of samples.

Discussion: Layer Replacement or Fine-Tuning Pruned LLMs? Here, we discuss why opt for
layer replacement, instead of using common Parameter-Efficient Fine-Tuning (PEFT) methods such
as LoRA (Hu et al., 2021) and QLoRA (Dettmers et al., 2023) after layer pruning.

First, from the perspective of resource overhead, layer replacement is more adaptable to hardware
resource constraints compared to other methods. Fine-tuning the model using the PEFT methods
requires storing the model’s weights, activation values, and the optimizer state of the PEFT module in
the GPU during training. In contrast, layer replacement involves two stages: dataset construction and
model training. The first stage only requires storing the model’s weight and the forward computation
overhead, and the second stage only requires storing of the lightweight network’s weight, activation
values of lightweight network, and the optimizer state of lightweight network. Therefore, layer
replacement can also be implemented under conditions of hardware resource constraints.

Second, layer replacement uses a lightweight network to replace the pruned layer, and distills the
knowledge of the pruned layer into the lightweight network using the MSE loss function. Unlike
layer replacement, we speculate that training the model after pruning with LoRA is a process of
redistributing the function of the pruned layers across the remaining layers. Therefore, substituting the
pruned layers with a lightweight network could be a less challenging training task than redistributing
the function of the pruned layers across the remaining layers. In the experiments of Section 4.7, we
demonstrate that layer replacement has better performance compared to LoRA.
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Dataset #TP #FN #FP #TN

C3 543 257 210 815

CHID 269 563 177 993

Race-M 380 95 129 832

Race-H 938 305 353 1902

Model TP FN FP TN

Llama2-7B 1.12 0.87 0.94 1.02

w/ pruning 1.13 0.84 0.88 0.92

Table 1: (a) Number of samples in TP,FN,FP, and TN. (b) The PPL standard deviation results
(×10−3) for Llama2-7B and its pruned version on Race-H.

3 METRICS FOR EVALUATING PRUNED MODELS

Accuracy is the most commonly used metric for evaluating LLMs in classification tasks. However,
accuracy may overestimate the performance of the model after compression, since it does not take
into account the consistency of the model’s answers before and after compression. In this section, we
analyze such limitation and propose a novel metric for evaluating compressed models.

3.1 SHORTCOMING OF ACCURACY METRIC

When evaluating the natural language understanding capabilities of LLMs, most existing benchmarks
frame the task as a classification task. A classification task with k choices and comprising N samples
is denoted as T = {(xi, ci,1, ci,2, ..., ci,k, yi)}Ni=1, where xi represents the question in the i-th sample,
ci,j represents the j-th choices, and yi represents the correct choice. The input to the classification
task consists of a question accompanied by multiple choices, and the LLM is required to select the
correct answer from these choices. Typically, each choice is concatenated with the question to form
multiple sentences, and the perplexity (PPL) of each sentence is computed. The choice corresponding
to the sentence with the lowest PPL is selected as the answer.

Typically, model pruning results in decreased model performance. However, when we evaluate the
model pruned by the method described in Sec 2.2, we unexpectedly observe the accuracy of the
pruned model has been improved on some classification tasks. We define M to denote the original
LLM, M̄ to denote the compressed LLM, and ŷ(M) to denote the choice predicted by the model
M. To further investigate this phenomenon, we analyze the experimental results using the confusion
matrix (Li et al., 2024). Specifically, we count the number of samples and average standard deviation
(std) for the PPL of the samples for each term of the confusion matrix. The calculation of the std for
the PPL of the i-th sample is defined as follows:

PPLi,j = PPL(M(xi, ci,j)),PPLi =

∑k
j=1 PPLi,j

k
, stdi =

√∑k
j=1(PPLi,j − PPLi)2

k − 1
, (5)

where PPLi,j denotes the PPL for the sentence created by question xi and choice ci,j of the model
before pruning, stdi denotes the std for PPL of the i-th sample. A higher stdi value indicates the
LLM exhibits greater confidence in answering the question xi.

Each term of the confusion matrix is defined as follows,

• TP
[
ŷi(M) = yi ∧ ŷi(M̄) = yi

]
is a set of samples where the model answers correctly

both before and after pruning.
• FN

[
ŷi(M) = yi ∧ ŷi(M̄) ̸= yi

]
is a set of samples where the model answers correctly

before pruning but incorrectly after pruning.
• FP

[
ŷi(M) ̸= yi ∧ ŷi(M̄) = yi

]
is a set of samples where the model answers incorrectly

before pruning but correctly after pruning.
• TN

[
ŷi(M) ̸= yi ∧ ŷi(M̄) ̸= yi

]
is a set of samples where the model answers incorrectly

both before and after pruning.

Table 1 presents the counts of samples in TP, FN, FP, TN in sevaral datasets, and also the PPL standard
deviation in Race-H dataset. We can observe that the std for TP and TN is significantly higher than
that for FN and FP. This indicates that the model is more uncertain about the FN and FP samples.
In addition, the samples in FP constitute a considerable proportion of the total samples, implying
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that the model may guess the correct answer for a significant portion after pruning. This phenomenon
suggests that the accuracy metric may overestimate the performance of the compressed model.

3.2 STABILITY METRIC

We propose a novel metric stability to evaluate the performance of LLMs after pruning, i.e.,

Stability(M,M̄) =

∑N
i=1

(
exp (stdi) · 1[i∈TP∪TN]

)∑N
i=1 exp (stdj)

, (6)

where the identifier 1[i∈TP∪TN] is used to indicate whether the i-th sample belongs to TP and TN.
We use stdi as the weight of the i-th sample. Because the std of different samples varies significantly,
to mitigate the influence of samples with excessively large standard deviations, we apply the exp
function to moderate the weight differences among samples. Different from accuracy, stability focuses
on the model’s confidence in its answers and the consistency between the model before and after
pruning on a task, aligning more closely with the goal of model pruning, i.e., ensuring the pruned
model remains as similar as possible to the original model.

4 EXPERIMENTS

In this section, we first compare our proposed method, LLM-Streamline, with several popular pruning
methods to demonstrate its effectiveness (4.4). Next, we analyze the impact of different sizes and
structures of lightweight networks on model performance (4.5) and evaluate performance under
various pruning ratios (4.6). Finally, we compare our layer replacement approach with the well-
known PEFT method, LoRA (Hu et al., 2021) (4.7), showing that layer replacement offers superior
performance and reduced memory overhead.

4.1 SETUP

We conduct experiments on popular open-source LLMs, including Llama2-7B and Llama2-13B (Tou-
vron et al., 2023). Following previous work (Men et al., 2024; Yang et al., 2024), we perform
experiments with a 25% pruning rate and extract data from pre-training dataset SlimPajama which
contains data from different domains for layer pruning and layer replacement. Sheared LLaMa (Xia
et al., 2023) finds that the performance degradation of pruned models varies across different domains,
and proposes determining the distribution of data from different domains based on the degree of
performance degradation. Therefore, we randomly sample the data based on the distribution used
by Sheared LLaMa (Xia et al., 2023), finally constructing the dataset containing 30,000 pieces of
data. We randomly select 500 samples from this dataset and input them into LLMs, generating Fig. 2,
and use these 500 data samples for layer pruning. All 30,000 pieces of data are used to train the
lightweight network. We utilize two types of lightweight networks: a Feed-Forward Neural Network
(FFN), referred to as Ours (FFN), and a Transformer Layer, referred to as Ours (Layer). The FFN is
randomly initialized, while the Transformer Layer inherits the parameters from the first pruned layer.
Additionally, we explore a purely pruning approach without incorporating any lightweight network,
denoted as Ours (None). Further experimental details are available in the Appendix C.1.

4.2 BENCHMARK

We use 12 natural language understanding benchmarks for evaluation: CMNLI (Xu et al., 2020),
HellaSwag(HeSw) (Zellers et al., 2019), PIQA (Bisk et al., 2020),CHID (Zheng et al., 2019),
WSC (Levesque et al., 2012),CommonSenseQA(CoQA) (Talmor et al., 2018), BoolQ (Clark et al.,
2019),MMLU (Hendrycks et al., 2020), CMMLU (Li et al., 2023),Race-High/Middle (Lai et al.,
2017), C3 (Sun et al., 2020). The tasks in these benchmarks are formalized as classification tasks,
so we refer to these benchmarks as classification benchmarks. For these benchmarks, we use both
accuracy and stability as metrics for evaluating the models. Additionally, we include 3 benchmarks:
XSum (Narayan et al., 2018), GSM8K (Cobbe et al., 2021) and StrategyQA (Geva et al., 2021), to
demonstrate the LLM’s performance on generation tasks after pruning. We refer to these tasks as
generation benchmarks. Following the evaluation framework of OpenCompass (Contributors, 2023),
we use accuracy to evaluate StrategyQA and GSM8K, and use ROUGE1 to evaluate Xsum.

6
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LLM Method Ratio Benchmarks Average RPC3 CMNLI CHID BoolQ WSC CoQA HeSW PIQA Race-M Race-H MMLU CMMLU

Llama2-7B

Dense 0.00% 43.8 33.0 41.6 70.8 37.5 66.7 71.3 78.1 33.1 35.5 46.8 31.8 49.2 100.0
LLMPruner 24.8% 29.7 33.4 28.4 58.7 40.4 48.5 54.6 72.0 22.9 22.0 25.3 25.0 38.4 78.0
SliceGPT 25.4% 31.5 31.6 18.5 59.9 43.3 49.6 47.5 68.3 27.0 29.4 28.8 24.8 38.4 78.0

LaCo* 27.0% 39.7 34.4 36.1 64.1 40.4 45.7 55.7 69.8 23.6 22.6 26.5 25.2 40.3 81.9
Ours (None) 24.0% 40.2 34.4 21.5 67.3 40.4 51.7 59.7 69.0 35.2 34.7 44.6 28.9 44.0 89.4
Ours (FFN) 25.0% 40.7 33.0 22.8 65.9 38.5 60.6 61.2 71.2 38.0 38.7 47.0 31.7 45.8 93.1
Ours (Layer) 24.0% 43.3 33.0 24.1 67.5 36.5 59.2 61.1 71.5 34.8 37.0 45.5 29.4 45.2 91.9

Llama2-13B

Dense 0.00% 47.5 33.0 47.2 71.5 51.0 66.8 74.8 79.8 60.0 58.1 55.8 38.7 57.0 100.0
LLMPruner 24.4% 29.5 33.0 29.5 58.0 47.1 43.7 54.7 72.7 21.9 22.5 25.2 24.9 38.6 67.7
SliceGPT 23.6% 38.6 30.5 18.3 37.8 42.3 38.3 45.6 61.9 24.0 25.0 30.6 25.6 34.9 61.2

LaCo* 24.6% 44.9 32.9 40.1 64.0 52.9 52.7 64.4 74.3 56.6 54.5 45.9 32.6 51.3 90.0
Ours (None) 24.6% 47.0 33.0 36.5 62.3 64.4 58.8 66.6 73.5 60.2 58.3 54.8 38.4 54.5 95.6
Ours (FFN) 25.4% 45.8 33.0 37.1 67.4 37.5 64.4 67.9 74.0 58.6 58.2 55.7 38.6 53.2 93.3
Ours (Layer) 24.6% 45.7 33.0 38.0 66.2 36.5 63.8 69.1 75.1 58.0 57.4 55.1 39.2 53.1 93.2

Table 2: Accuracy of pruning methods on classification benchmarks. “*” indicates that we refer to
the results in the original paper. Retained performance (RP) represents the percentage of the original
model’s performance retained by the pruning method.

LLM Method Ratio Benchmarks AverageC3 CMNLI CHID BoolQ WSC CoQA HeSW PIQA Race-M Race-H MMLU CMMLU

Llama2-7B

LLMPruner 24.8% 72.8 94.0 74.1 70.8 87.5 71.0 79.9 86.8 52.4 55.2 53.3 65.9 72.0
SliceGPT 25.4% 53.2 35.4 53.3 77.1 80.8 75.3 71.6 78.7 90.7 85.3 60.3 56.7 68.2

Ours (None) 24.0% 76.6 38.7 65.3 81.4 87.5 74.7 80.7 81.0 73.7 67.9 80.1 70.8 73.2
Ours (FFN) 25.0% 79.8 100 64.1 83.1 93.3 80.7 84.7 84.6 85.1 79.0 87.5 82.5 83.7
Ours (Layer) 24.0% 79.8 100 64.4 86.3 95.2 81.7 85.3 85.6 81.8 79.0 82.4 71.0 82.7

Llama2-13B

LLMPruner 24.4% 71.6 100 69.2 70.5 65.4 69.5 77.8 86.7 42.3 35.6 48.1 52.3 65.8
SliceGPT 23.6% 62.2 39.5 51.4 27.1 68.3 65.5 64.9 75.6 45.3 43.4 52.7 52.9 54.1

Ours (None) 24.6% 84.2 99.9 71.8 77.4 46.2 82.2 85.7 86.5 83.3 83.6 89.1 83.8 81.1
Ours (FFN) 25.4% 85.7 100 72.5 79.8 59.6 89.2 89.4 89.7 84.8 83.3 93.6 90.7 84.9
Ours (Layer) 24.6% 87.4 100 74.1 81.3 58.6 89.0 90.5 90.5 84.2 83.0 92.5 85.5 84.7

Table 3: Stability of pruning methods on classification benchmarks. The stability of the original
model is 1.0, because stability is measured by comparing the prediction results of the original model.

4.3 BASELINE

We compare several pruning methods that prune the attention heads, the filters of the FFN layer, and
the hidden dimension, as well as the concurrent layer-pruning methods LaCo. In addition, ShortGPT
and UIDL (Men et al., 2024; Gromov et al., 2024) can be considered as a variant of our approach,
i.e., Ours (None). We also discuss layer pruning methods which use perplexity as the metric, such as
SLEB (Song et al., 2024), in Appendix A.

LLM-Pruner (Ma et al., 2023) prunes attention heads, FFN layer filters, and hidden dimensions by
using gradients and activations to estimate the importance of these modules.

SliceGPT (Ashkboos et al., 2024) prunes hidden dimensions. It inserts dimensionality reduction
matrices into the model and employs Principal Component Analysis (PCA) to initialize and compress
the matrices, and then merge them with the original weight matrix to reduce the model’s size.

LaCo (Yang et al., 2024) prunes layers by dividing the layers into groups, each consisting of multiple
consecutive layers, and compresses them separately, whereas our method simply compresses a piece
of consecutive layers. LaCo merges consecutive layers by averaging their parameters whereas we
train an additional lightweight network to replace these layers.

4.4 MAIN RESULTS

We present accuracy and stability for different methods on the classification benchmarks in Table 2
and Table 3, respectively, and Table 4 for the generative benchmarks. The results demonstrate
that our proposed LLM-Streamline consistently outperforms the baseline methods. Specifically, in
classification tasks, LLM-Streamline surpasses LLM-Pruner by 7% in accuracy and 12% in stability
on Llama2-7B, and by 16% in accuracy and 19% in stability on Llama2-13B. LLM-Streamline also
surpasses LaCo by 5% in accuracy on Llama2-7B. For generation tasks, LLM-Streamline retains
nearly 77% of Llama2-7B and Llama2-13B’s capabilities, significantly outperforming other pruning
methods. We find that almost all of the pruning methods fail on the GSM8K dataset. However,
sufficient training can gradually restore the model’s performance on math tasks, and the specific
experimental results are shown in Table 28 of Appendix E.8.
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LLM Method Ratio Benchmarks Average RPXsum GSM8K StrategyQA

Llama2-7B

Dense 0.00% 19.4 16.5 60.2 32.0 100.0
LLMPruner 24.8% 16.4 0.61 44.2 20.4 63.8
SliceGPT 25.4% 12.4 3.34 45.7 20.5 64.1

LaCo* 27.1% 15.6 - - - -
Ours (None) 24.0% 14.8 1.97 41.8 19.5 60.9
Ours (FFN) 25.0% 18.6 2.16 46.5 22.4 70.0
Ours (Layer) 24.0% 20.2 1.82 52.1 24.7 77.2

Llama2-13B

Dense 0.00% 23.7 29.0 58.1 36.9 100.0
LLMPruner 24.4% 17.5 1.9 43.7 21.0 56.9
SliceGPT 23.6% 5.0 1.9 38.3 15.1 40.9

LaCo* 24.6% 14.5 - - - -
Ours (None) 24.6% 17.7 2.35 46.0 22.0 59.6
Ours (FFN) 25.4% 21.4 4.10 59.6 28.4 77.0
Ours (Layer) 24.6% 21.8 4.70 57.3 27.9 75.6

Table 4: Evaluations on generation benchmarks. “*” indicates that we refer to the results in the
original paper.

Layer-Random Layer-First Layer-Last Layer-Avg FFN† FFN SwiGLU† SwiGLU

Accuracy 45.1 45.2 45.6 44.4 46.0 45.8 43.8 44.2

Stability 81.2 82.7 81.9 79.2 80.7 83.7 82.6 83.3

Table 5: Comparison of different lightweight networks on classification benchmarks in terms of
average accuracy and stability metrics, where “†” indicates that the intermediate size of the added
lightweight network is half that of the default LLM’s intermediate size.

Additionally, comparing the average stability (Average) in Table 3 with the retrained performance
(RP) in Table 2 reveals that stability is often much lower than accuracy. We also observe that accuracy
on Race-M and Race-H even increases after model pruning. Furthermore, we find that without using
any lightweight network, Llama2-13B achieves the highest accuracy on classification benchmarks,
but its stability on classification benchmarks and performance on generation benchmarks are lower.
These results indicate that pruned models tend to make correct guesses on some classification
questions that they are uncertain, highlighting the limitations of accuracy as a sole measure of
pruning method performance. We also conduct experiments on OPT-1.3B, OPT-2.7B, OPT-6.7B,
Baichuan-7B, Baichuan-13B, Baichuan2-7B, Baichuan2-13B (Yang et al., 2023), Llama3.1-8B,
Llama3.1-70B (Dubey et al., 2024) and Mixtral-8x7B-v0.1 (Jiang et al., 2024). Details can be found
in Appendix E.1, Appendix E.2, Appendix E.3, Appendix E.4, Appendix E.5 and Appendix E.6. In
addition, we compare the performance of LLM-Streamline with other methods at a higher pruning
ratio of approximately 50%, and the results can be found in Appendix E.7. We also evaluate the
inference speed of the models pruned using each method, and the results can be found in Appendix D.

4.5 IMPACT OF DIFFERENT LIGHTWEIGHT NETWORKS

While FFN achieves the best result, Transformer layer still has performance potential. We
perform experiments with Llama2-7B using various lightweight network architectures, including
Feed-Forward Neural Networks (FFN), SwiGLU-based Feed-Forward Neural Networks (SwiGLU),
and Transformer layers. We also explore various initialization methods for the Transformer Layer,
including random initialization (Layer-Random), inheritance of the first pruned layer (Layer-First),
inheritance of the last pruned layer (Layer-Last), and averaging the pruned layers (Layer-Avg). The
average accuracy and stability metrics across all the classification benchmarks are presented in
Table 5, with detailed results on each benchmark available in Appendix E.9. The results show that
FFN achieves the best results. Meanwhile, for the Transformer Layer, inheriting the pruned first
layer yields the best results. In contrast, the performance of Layer-Avg, inspired by LaCo, shows that
averaging weights does not achieve the same effectiveness as the pruned first layer.

In addition, we plot the validation loss curves during the training process for different lightweight
networks, as shown in Fig. 3. We can observe that FFN and SwiGLU have already converged by
the 10th epoch, whereas the loss of Transformer Layer is still decreasing. This indicates that the
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Figure 3: Validation loss curves during training of (a) FFN and SwiGLU; (b) Transformer layer.

5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75
#Params (B)

80

85

90

95

100

St
ab

ili
ty

25%

20%

11%

2%

Llama2-7B
Ours pruned Llama2-7B

1 2 3 4 5 6 7
#Params (B)

40

42

44

46

48

A
cc

ur
ac

y

25%
20%

11%

2%
Llama2-7B
OpenLlama-3B-v2
TinyLlama-1.1B
Ours pruned Llama2-7B

Figure 4: (a) Stability of the pruned Llama2-7B at different pruning ratios. (b) Accuracy of the pruned
Llama2-7B at different pruning ratios, compared to the original Llama2-7B, OpenLlama-3B-v2, and
TinyLlama-1.1B. Metrics are averaged across classification benchmarks.

Transformer layer still has potential, and further training could yield better results, but this would
require more computing resources.

4.6 IMPACT OF DIFFERENT PRUNING RATIOS

The performance of the pruned model is linearly correlated with the number of parameters
at modest pruning ratios. To verify the model’s performance at various modest pruning ratios, we
evaluate our method not only at the approximately 25% pruning ratio but also at ratios of around 2%,
11%, and 20% on Llama2-7B. The average stability and accuracy metrics across all the classification
benchmarks are shown in Fig. 4, with details on each benchmark presented in Appendix E.10. By
comparing the performance of the original Llama2-7B, TinyLlama-1.1B, OpenLlama-3B-v2, and
Llama2-7B pruned at various ratios, we observe a linear correlation between the performance of both
the pruned models and the pre-trained original models relative to the number of parameters. This
suggests that the performance of models pruned using our method is comparable to that of pre-trained
models with the same number of parameters.

4.7 COMPARISON OF LAYER REPLACEMENT AND LORA

Layer Replacement outperforms LoRA in both performance and GPU memory consumption.
We compare the performance of layer replacement with LoRA. Since layer replacement is trained
based on hidden states with a different training objective than LoRA, we additionally train one epoch
using the language model loss for layer replacement when comparing it with LoRA. The training
details can be found in the Appendix C.2. For layer replacement, we freeze the original model’s
weights and train only the lightweight network. In the case of LoRA, we set the rank to 128 to align
the number of parameters trained with those of the lightweight networks. We randomly extract 30,000
samples from SlimPajama-6B for layer replacement training and also test with the entire dataset to
evaluate the limited impact of extensive data on performance (details in Appendix E.8). For LoRA,
we use 300,000 samples from SlimPajama-6B. Table 6 presents the average accuracy and stability
across all classification benchmarks, with detailed results available in Appendix E.11. The findings
indicate that layer replacement surpasses LoRA in both accuracy and stability, while also requiring
significantly less GPU memory and training data.
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Layer-First Layer-Last Layer-Avg FFN† FFN SwiGLU† SwiGLU LoRA
Accuracy 46.7 46.8 46.2 45.8 46.3 44.4 45.5 44.5
Stability 85.7 85.6 83.9 83.4 85.2 84.7 84.7 82.1

GPU Memory (G) 27.8 27.8 27.8 25.6 27.0 25.3 26.4 56.4

Table 6: Comparison of layer replacement and LoRA on classification benchmarks in terms of average
accuracy metrics across all benchmarks, where “†” indicates that the intermediate size of the added
lightweight network is half that of the default LLM’s intermediate size.

Method Metric Need Training Training Data Data Size Training Module Trainig Method
SLEB Perplexity No None None None None

ShortGPT Cosine Similarity No None None None None
UIDL Cosine Similarity Yes C4 164M LoRA-Adapter QLoRA
LaCO Cosine Similarity Yes Unpublished 1B Full Parameters Fine-tuning

Shortened Llama Taylor
Perplexity Yes SlimPajama

Alpaca
627B
50k

Full Parameters
LoRA-Adapter

Fine-tuning
LoRA

LLM-Streamline Cosine Similarity Yes SlimPajama 30k Lightweight
Network

Training
Lightweight Network

Table 7: Comparison of concurrent layer pruning methods, with the metric indicating the importance
of layers. Shortened Llama consists of two training stages: initial continual pre-training on the
SlimPajama dataset, followed by LoRA fine-tuning on the Alpaca dataset.

5 RELATED WORK

Previous pruning methods for LLMs primarily focus on pruning dense matrices (Ashkboos et al.,
2024), attention heads (Michel et al., 2019; Voita et al., 2019), filters (McCarley et al., 2019; Prasanna
et al., 2020), or hidden dimension (Xia et al., 2023; van der Ouderaa et al., 2023). These approaches
often lead to structural irregularities, making pruned models less flexible for deployment. In contrast,
layer pruning, which only alters the model’s depth, is easier to deploy. Concurrent works in layer
pruning alongside LLM-Streamline include LaCo (Yang et al., 2024), ShortGPT (Men et al., 2024),
UIDL (Gromov et al., 2024), SLEB (Song et al., 2024), and Shortened Llama (Kim et al., 2024).

LaCo (Yang et al., 2024) divides layers into groups of consecutive layers and compresses them by
replacing the consecutive layers with averaged parameter weights. ShortGPT (Men et al., 2024) uses a
BI score, equivalent to cosine similarity, to assess layer importance and remove less important layers.
Similarly, UIDL (Gromov et al., 2024) uses angular distance, also equivalent to cosine similarity,
to determine and remove less important layers, and employs QLoRA to enhance performance.
SLEB (Song et al., 2024) calculates layer importance using perplexity and discards those deemed
insignificant. Shortened Llama (Kim et al., 2024) explores various layer selection metrics and
examines the effectiveness of using continual pre-training and LoRA after pruning. The differences
between these layer pruning methods and LLM-Streamline are summarized in Table 7.

Unlike traditional layer pruning methods, LLM-Streamline fundamentally differs by retraining a
lightweight model to replace the pruned layers, rather than removing them directly with or without
training the pruned model. LLM-Streamline reduces both computation time and resource consumption
compared to layer pruning methods (Shortened Llama, LaCo, UIDL) that necessitate retraining.
Additionally, LLM-Streamline better preserves the performance of the original LLM compared to
concurrent layer pruning methods.

6 CONCLUSION

In this paper, we propose LLM-Streamline, a layer pruning-and-replacement algorithm for LLMs. We
also identify shortcomings in the existing accuracy metric and propose a new metric called stability
for evaluating model compression. Extensive experiments show that this layer replacement method
using a lightweight network outperforms previous state-of-the-art pruning methods and demonstrates
superior effectiveness and efficiency compared to concurrent layer pruning methods.
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A COMPARISON OF COSINE SIMILARITY AND PERPLEXITY

To demonstrate the sensitivity of perplexity, referencing the SLEB (Song et al., 2024), we prune
the Llama2-7B model with different pre-training datasets, including SlimPajama, C4 and wikitext.
The experimental results are presented in Table 8. When pruning with cosine similarity, the layers
pruned are consistent across different datasets, whereas when pruning with perplexity, the layers vary,
indicating the sensitivity of perplexity. In addition, we evaluate the model after pruning with the
SlimPajama dataset, and the experimental results are shown in Table 9. This indicates that the model
pruned with perplexity shows lower perplexity on the dataset used for pruning, but performs worse
on downstream tasks.

LLM Dataset
Pruned Layers

Perplexity Cosine Similarity

Llama2-7B
SlimPajama 9,10,11,12,21,23,25,27 22,23,24,25,26,27,28,29

wikitext 9,10,11,12,21,23,24,27 22,23,24,25,26,27,28,29
C4 8,9,11,12,22,23,24,25 22,23,24,25,26,27,28,29

Table 8: Pruned layers using perplexity and cosine similarity for pruning.

LLM Metric Perplexity*
Benchmarks

Average RP
C3 CMNLI CHID BoolQ WSC CoQA HeSW PIQA Race-M Race-H MMLU CMMLU Xsum GSM8k StrategyQA

Llama2-7B
Dense 6.23 43.8 33.0 41.6 70.8 37.5 66.7 71.3 78.1 33.1 35.5 46.8 31.8 19.4 16.5 60.2 45.7 100.0

Cosine Similarity 19.7 40.2 34.4 21.5 67.3 40.4 51.7 59.7 69.0 35.5 34.7 44.6 28.9 14.8 1.97 41.8 39.1 85.6
Perplexity 12.1 37.6 33.0 34.2 61.7 36.5 47.3 56.5 71.4 22.1 21.6 25.9 24.8 17.1 1.74 33.2 35.0 76.6

Table 9: Detailed results of accuracy of using perplexity and cosine similarity for pruning. “Perplex-
ity*” refers to the Perplexity of the pruned model on SlimPajama. Using perplexity as the metric can
be considered as SLEB, while using cosine similarity as the metric can be considered as a variant of
our approach, i.e., Ours (None)(details in Section 4.1).

B DATA DISTRIBUTION

We extract the training data from different domains based on the data distribution strategy proposed
in Sheared-LLaMa (Xia et al., 2023). The detailed data distribution is shown in Table 10.

CC GitHub Book StackExchange Wiki ArXiv C4

SlimPajama-6B 54.1% 4.2% 3.7% 2.8% 3.1% 3.4% 28.7%
Ours 36.1% 0.8% 9.1% 1.0% 3.1% 0.7% 49.2%

Table 10: The proportion of different domains randomly selected from the SlimPajama-6B dataset.

C TRAINING IMPLEMENTATION DETAILS

C.1 LIGHTWEIGHT NETWORK TRAINING DETAILS

For both the FFN structure and the SwiGLU structure, the learning rate is set to 1e-3 and the weight
decay is 1e-4. For the Transformer layer, the learning rate is set to 1e-5 and the weight decay is 1e-3.
The model is trained using a batch size of 32 over 20 epochs. On a single A800 GPU, the training
duration for the lightweight network is approximate 5 hours (for the Transformer layer).

C.2 POST TRAINING DETAILS

For layer replacement, in order to have a fairer comparison with LoRA, we conduct one epoch of
post-training with a learning rate of 5e-5, a weight decay of 1e-3, and a batch size of 32. This process
takes less than an hour on a single A800 GPU. For LoRA, the model is trained one epochs with a

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

learning rate of 1e-4, a weight decay of 1e-3, and a batch size of 32. Since the amount of training data
used is ten times that of layer replacement, it take approximately 10 hours to complete the training on
a single A800 GPU.

D INFERENCE SPEED COMPARISON

As shown in the Table 11, we evaluate the inference speed of various pruning methods at similar
pruning ratio when generating sequences of length 128. The results indicate that the acceleration
effect of LLM-Streamline is slightly inferior to that of SliceGPT and LLM-Pruner.

Llama2-7B Dense LLM-Pruner SliceGPT Ours(None) Ours(FFN) Ours(Layer)

Pruning Ratio (%) 0.00 24.8 25.4 24.0 25.0 24.0
Inference Speed (tokens/s) 19.87 25.91 27.20 25.68 25.88 25.68

Table 11: The inference speed of models pruned using different methods.

E DETAILED EXPERIMENTAL RESULTS

E.1 EXPERIMENTAL RESULTS OF OPT-6.7B

We conduct experiments on OPT-6.7B. The experimental results are shown in Table 12, Table 13 and
Table 14. The results indicate that our proposed LLM-Streamline is superior to the previous SOTA
method.

LLM Method Ratio
Benchmarks

Average RP
C3 CMNLI CHID BoolQ WSC CoQA HeSW PIQA Race-M Race-H MMLU CMMLU

OPT-6.7B

Dense 0.00% 38.7 32.9 21.6 64.6 41.4 54.8 63.3 75.4 25.1 25.4 24.7 25.5 41.1 100
SliceGPT 25.6% 40.0 31.2 19.5 37.9 36.5 38.2 45.6 65.8 25.8 26.0 25.8 24.8 34.8 84.7

Ours (None) 24.0% 27.6 32.5 12.7 44.8 36.5 20.6 26.5 52.1 22.1 22.4 23.6 25.2 28.9 70.3
Ours (FFN) 25.0% 37.6 32.1 18.7 63.7 37.5 41.8 55.9 73.2 22.7 22.2 24.4 24.9 37.9 92.2
Ours (Layer) 24.0% 36.4 32.0 18.9 62.4 38.5 45.1 54.3 74.0 23.6 24.2 24.3 25.2 38.2 92.9

Table 12: Accuracy of different pruning methods on classification benchmarks by pruning OPT-6.7B.

LLM Method Ratio
Benchmarks

Average
C3 CMNLI CHID BoolQ WSC CoQA HeSW PIQA Race-M Race-H MMLU CMMLU

OPT-6.7B

SliceGPT 25.6% 66.4 39.8 73.1 30.1 79.4 75.2 73.7 82.5 72.5 69.1 68.9 67.2 66.5
Ours (None) 24.0% 56.2 62.5 71.4 41.5 87.5 48.6 50.5 57.1 63.4 62.2 62.3 62.7 60.5
Ours (FFN) 25.0% 74.1 36.1 77.4 74.2 90.4 82.4 88.4 92.0 68.3 63.9 74.7 65.0 73.9
Ours (Layer) 24.0% 72.1 35.5 76.1 72.1 91.4 83.6 87.0 91.6 72.9 71.2 78.1 70.1 75.1

Table 13: Stability of different pruning methods on classification benchmarks by pruning OPT-6.7B.

LLM Method Ratio
Benchmarks

Average RP
Xsum GSM8K StrategyQA

OPT-6.7B

Dense 0.00% 13.4 2.2 54.3 23.3 100.0
SliceGPT 25.6% 14.9 2.5 40.8 19.4 83.3

Ours (None) 24.0% 4.9 0 0 1.6 6.87
Ours (FFN) 25.0% 14.8 0.8 43.6 19.7 84.5
Ours (Layer) 24.0% 18.4 2.5 44.4 21.8 93.6

Table 14: Accuracy of different pruning methods on generation benchmarks by pruning OPT-6.7B.

E.2 EXPERIMENTAL RESULTS OF BAICHUAN-7B AND BAICHUAN-13B

We conduct experiments on Baichuan-7B and Baichuan-13B. The experimental results are shown in
Table 15, Table 16 and Table 17. The results indicate that our proposed LLM-Streamline is superior
to the previous SOTA method.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

LLM Method Ratio
Benchmarks

Average RP
C3 CMNLI CHID BoolQ WSC CoQA HeSW PIQA Race-M Race-H MMLU CMMLU

Baichuan-7B

Dense 0.00% 55.8 35.3 91.3 61.4 39.4 58.4 65.3 77.6 29.5 30.4 43.7 43.8 52.7 100
LLMPruner 24.2% 43.7 33.9 65.9 40.5 36.5 48.2 52.2 68.1 22.6 22.0 24.2 25.3 40.2 76.3
Ours (None) 24.2% 33.2 32.7 25.8 60.8 36.5 36.0 34.6 58.7 22.1 21.5 25.7 38.8 35.5 67.4
Ours (FFN) 25.1% 53.1 36.3 69.4 53.1 36.5 48.7 53.2 69.4 23.2 24.5 37.7 39.1 45.4 86.1
Ours (Layer) 24.2% 55.0 36.0 77.4 48.1 36.5 49.8 54.3 69.0 22.9 23.8 39.8 41.1 46.1 87.5

Baichuan-13B

Dense 0.00% 61.5 36.4 91.5 65.8 49.0 64.2 69.1 78.2 48.1 46.0 54.8 55.3 60.0 100
Ours (None) 24.7% 48.8 34.8 50.2 62.2 40.4 46.4 56.7 68.2 30.6 27.7 52.9 55.1 47.8 79.7
Ours (FFN) 25.5% 58.3 35.1 77.5 64.1 36.5 57.7 58.2 69.4 26.5 28.8 53.1 54.3 51.6 86.0
Ours (Layer) 24.7% 59.1 36.1 83.7 62.0 36.5 58.2 59.4 71.8 27.8 25.0 52.3 56.1 52.3 87.2

Table 15: Accuracy of different pruning methods on classification benchmarks by pruning Baichuan-
7B and Baichuan-13B.

LLM Method Ratio
Benchmarks

Average
C3 CMNLI CHID BoolQ WSC CoQA HeSW PIQA Race-M Race-H MMLU CMMLU

Baichuan-7B

LLMPruner 24.2% 70.2 40.0 71.4 24.9 91.4 75.3 75.9 82.4 68.8 66.8 54.7 53.6 64.6
Ours (None) 24.2% 55.5 45.1 31.3 76.8 93.3 64.7 50.1 61.0 68.9 65.9 74.0 60.8 62.3
Ours (FFN) 25.1% 84.1 77.8 75.6 65.4 93.3 76.5 83.1 84.3 77.1 70.3 74.2 74.6 78.0
Ours (Layer) 24.2% 86.3 79.3 82.3 40.7 93.3 77.6 81.3 83.5 75.8 71.0 75.9 75.6 76.9

Baichuan-13B
Ours (None) 24.7% 67.2 75.8 54.1 66.6 51.0 74.9 74.6 78.5 52.3 55.2 82.7 89.3 68.5
Ours (FFN) 25.5% 85.7 87.3 82.1 81.3 43.3 81.2 81.7 79.8 46.6 61.1 84.3 83.7 74.8
Ours (Layer) 24.7% 88.6 92.7 89.3 72.9 43.3 83.5 86.1 88.2 49.2 52.1 83.4 90.4 76.6

Table 16: Stability of different pruning methods on classification benchmarks by pruning Baichuan-
7B and Baichuan-13B.

LLM Method Ratio
Benchmarks

Average RP
Xsum GSM8K StrategyQA

Baichuan-7B

Dense 0.00% 19.1 9.84 55.5 28.1 100
LLMPruner 24.2% 12.6 1.74 40.4 18.2 64.8
Ours (None) 24.2% 0.3 0 0 0.1 0
Ours (FFN) 25.1% 19.3 2.11 41.1 20.8 74.0
Ours (Layer) 24.2% 18.2 1.36 38.7 19.4 69.0

Baichuan-13B

Dense 0.00% 24.6 27.1 61.1 37.6 100
Ours (None) 24.7% 2.1 1.2 12.3 5.2 13.8
Ours (FFN) 25.5% 23.1 2.1 47.3 24.2 64.4
Ours (Layer) 24.7% 22.2 2.4 43.2 22.6 60.1

Table 17: Accuracy of different pruning methods on generation benchmarks by pruning Baichuan-7B
and Baichuan-13B.

E.3 EXPERIMENTAL RESULTS OF BAICHUAN2-7B AND BAICHUAN2-13B

We conduct experiments on Baichuan2-7B and Baichuan2-13B. The experimental results are shown
in Table 18, Table 19 and Table 20. The results indicate that our proposed LLM-Streamline is superior
to the concurrent SOTA method, LaCo.

LLM Method Ratio
Benchmarks

Average RP
C3 CMNLI CHID BoolQ WSC CoQA HeSW PIQA Race-M Race-H MMLU CMMLU

Baichuan2-7B

Dense 0.00% 64.4 33.4 85.5 63.1 42.3 63.1 67.6 76.1 51.1 52.5 54.7 57.1 59.2 100
LLMPruner 24.2% 39.9 33.9 70.6 50.0 42.3 38.7 52.7 70.4 22.3 22.8 24.9 24.9 41.1 69.4

LaCo* 24.2% 50.9 33.0 76.2 56.2 42.3 47.3 52.3 68.5 27.7 29.0 31.5 31.2 45.5 76.9
Ours (None) 24.2% 45.7 33.0 58.0 62.6 36.5 41.9 46.3 62.4 25.6 27.4 43.0 46.5 44.1 74.5
Ours (FFN) 25.1% 58.2 33.0 74.1 61.2 36.5 47.6 54.3 68.0 29.1 30.5 52.1 56.7 50.1 84.6
Ours (Layer) 24.2% 60.4 34.9 72.2 62.7 36.5 48.8 52.5 67.0 35.5 36.8 54.0 56.3 51.5 87.0

Baichuan2-13B

Dense 0.00% 65.6 33.2 86.7 66.8 42.3 65.6 71.1 78.1 68.9 67.2 59.6 61.3 63.9 100
LaCo* 24.7% 61.1 33.0 76.7 62.4 44.2 55.5 60.7 68.9 57.8 56.9 51.4 53.7 56.9 89.0

Ours (None) 24.7% 59.1 34.4 81.9 61.8 36.5 53.9 61.9 71.0 63.0 60.4 50.3 57.9 57.7 90.3
Ours (FFN) 25.5% 63.0 33.0 81.7 60.1 36.5 54.7 62.1 70.5 71.1 68.2 57.1 58.2 59.7 93.4
Ours (Layer) 24.7% 63.5 33.0 84.1 62.0 38.5 56.9 63.0 72.0 70.2 66.3 59.1 60.2 60.7 95.0

Table 18: Accuracy of different pruning methods on classification benchmarks by pruning Baichuan2-
7B and Baichuan2-13B. “*” indicates that we refer to the results in the original paper.
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LLM Method Ratio
Benchmarks

Average
C3 CMNLI CHID BoolQ WSC CoQA HeSW PIQA Race-M Race-H MMLU CMMLU

Baichuan2-7B

LLMPruner 24.2% 62.2 50.6 75.1 55.5 63.5 66.0 80.3 87.0 54.2 51.7 50.0 46.9 61.9
Ours (None) 24.2% 68.5 98.1 63.8 69.1 84.6 61.3 67.3 72.0 50.6 48.0 69.3 74.5 68.9
Ours (FFN) 25.1% 81.1 98.1 77.1 68.2 84.6 66.5 78.1 77.3 61.2 57.7 87.3 89.2 77.2
Ours (Layer) 24.2% 83.3 92.8 74.9 67.6 84.6 68.0 77.2 80.9 64.1 62.9 89.2 88.6 77.8

Baichuan2-13B
Ours (None) 24.7% 85.0 88.7 86.5 85.1 82.7 79.5 82.2 85.1 84.6 83.0 74.2 85.6 83.5
Ours (FFN) 25.5% 86.4 99.0 87.2 84.7 82.7 77.6 83.2 85.7 83.2 81.1 90.2 91.7 86.1
Ours (Layer) 24.7% 87.9 99.0 89.0 87.1 84.7 80.2 84.9 86.9 89.4 87.0 91.7 92.5 88.4

Table 19: Stability of different pruning methods on classification benchmarks by pruning Baichuan2-
7B and Baichuan2-13B.

LLM Method Ratio
Benchmarks

Average RP
Xsum GSM8K StrategyQA

Baichuan2-7B

Dense 0.00% 21.0 24.8 60.0 35.3 100
LLMPruner 24.2% 14.5 1.4 10.8 8.9 25.2

LaCo* 24.2% 12.0 - - - -
Ours (None) 24.2% 12.1 1.7 30.7 14.8 41.9
Ours (FFN) 25.1% 15.9 2.7 37.1 18.6 52.7
Ours (Layer) 24.2% 16.8 2.3 34.8 18.0 51.0

Baichuan2-13B

Dense 0.00% 25.3 53.2 65.9 48.1 100
LaCo* 24.7% 12.3 - - - -

Ours (None) 24.7% 17.2 3.3 37.2 19.2 39.9
Ours (FFN) 25.5% 21.3 3.1 48.8 24.4 50.7
Ours (Layer) 24.7% 20.9 5.5 51.3 25.9 53.8

Table 20: Accuracy of different pruning methods on generation benchmarks by pruning Baichuan2-7B
and Baichuan2-13B. “*” indicates that we refer to the results in the original paper.

E.4 EXPERIMENTAL RESULTS OF LLAMA3.1-8B AND LLAMA3.1-70B

We conduct experiments on Llama3.1-8B and Llama3.1-70B. The experimental results are shown
in Table 21 and Table 22. The results indicate that our proposed LLM-Streamline is superior to the
previous SOTA method.

LLM Method Ratio
Benchmarks

Average RP
C3 CMNLI CHID BoolQ WSC CoQA HeSW PIQA Race-M Race-H MMLU CMMLU

Llama3.1-8B

Dense 0.00% 65.3 33.0 73.8 68.2 36.5 69.8 74.7 81.1 71.6 64.5 66.8 52.5 63.2 100
SliceGPT 23.9% 38.4 32.1 21.3 37.8 38.5 38.0 39.9 58.7 21.9 23.3 25.8 25.2 33.4 52.8

Ours (None) 24.4% 42.3 33.7 19.3 52.3 36.5 30.7 28.4 58.9 36.6 33.3 39.1 34.4 36.9 58.4
Ours (Layer) 24.4% 55.9 34.5 54.5 67.6 36.5 62.5 62.6 74.5 64.8 55.9 64.9 51.5 57.1 90.6

Llama3.1-70B

Dense 0.00% 74.8 33.0 81.6 76.5 37.5 73.0 79.9 83.9 86.8 80.5 79.3 68.8 71.3 100
SliceGPT 29.1% 40.4 31.9 18.9 37.8 37.5 41.0 45.3 61.0 24.1 24.8 37.5 30.5 35.9 50.4

Ours (None) 30.3% 66.1 37.5 58.1 69.0 46.2 61.8 68.4 75.7 81.7 73.2 70.4 62.0 64.2 90.0
Ours (Layer) 30.3% 68.9 34.7 70.0 72.5 42.3 68.9 74.4 79.3 86.8 81.5 78.6 68.2 68.8 96.5

Table 21: Accuracy of different pruning methods on classification benchmarks by pruning Llama3.1-
8B and Llama3.1-70B.

LLM Method Ratio
Benchmarks

Average
C3 CMNLI CHID BoolQ WSC CoQA HeSW PIQA Race-M Race-H MMLU CMMLU

Llama3.1-8B
SliceGPT 23.9% 63.2 37.0 38.5 35.6 98.1 60.7 59.3 71.2 39.0 46.1 42.1 47.4 53.2

Ours (None) 24.4% 59.9 47.0 39.0 57.0 100 49.8 43.4 64.7 53.4 54.5 57.8 61.4 53.7
Ours (Layer) 24.4% 78.5 49.7 59.9 75.0 100 80.3 84.8 86.5 87.3 86.1 90.8 89.1 80.7

Llama3.1-70B
SliceGPT 29.1% 55.6 45.4 32.1 36.1 98.1 58.8 59.6 72.0 32.9 39.6 48.7 45.9 49.3

Ours (None) 30.3% 77.6 43.6 64.5 73.0 91.4 76.8 84.6 85.0 92.4 89.3 84.1 81.4 78.6
Ours (Layer) 30.3% 86.7 95.7 76.1 77.7 95.2 89.5 92.6 93.4 97.2 96.3 95.9 94.6 90.9

Table 22: Stability of different pruning methods on classification benchmarks by pruning Llama3.1-
8B and Llama3.1-70B.
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E.5 EXPERIMENTAL RESULTS OF MIXTRAL-8X7B-V0.1

We conduct experiments on Mixture of Experts(MoE) model Mixtral-8x7B-v0.1. The experimental
results are shown in Table 23 and Table 24.

LLM Method Ratio
Benchmarks

Average RP
C3 CMNLI CHID BoolQ WSC CoQA HeSW PIQA Race-M Race-H MMLU CMMLU

Mixtral-8x7B-v0.1
Dense 0.00% 54.1 33.0 48.6 68.4 56.7 68.2 76.2 81.7 72.4 70.9 71.3 52.8 62.9 100.0

Ours (None) 24.9% 39.0 33.0 26.9 62.8 39.4 45.6 55.4 70.2 41.3 43.3 67.7 39.2 47.0 74.7
Ours (Layer) 24.9% 51.2 34.4 41.5 66.3 56.7 62.0 68.3 77.9 54.5 55.7 69.9 50.2 57.4 91.3

Table 23: Accuracy of LLM-Streamline on classification benchmarks by pruning Mixtral-8x7B-v0.1.

LLM Method Ratio
Benchmarks

Average
C3 CMNLI CHID BoolQ WSC CoQA HeSW PIQA Race-M Race-H MMLU CMMLU

Mixtral-8x7B-v0.1
Ours (None) 24.9% 66.9 98.9 62.4 76.4 38.5 69.3 72.4 80.6 57.0 60.3 79.1 64.4 68.9
Ours (Layer) 24.9% 83.6 87.6 76.2 81.3 100 86.8 90.4 90.8 67.8 69.0 85.3 80.4 83.3

Table 24: Stability of LLM-Streamline on classification benchmarks by pruning Mixtral-8x7B-v0.1.

E.6 EXPERIMENTAL RESULTS OF OPT-1.3B AND OPT-2.7B

We also conduct experiments on small models (OPT-1.3B and OPT-2.7B). The experimental results
are shown in Table 25. The results indicate that our proposed LLM-Streamline is superior to the
previous SOTA method, across different pruning rates.

LLM Method Ratio
Benchmarks

Average RP
PIQA WinoGrande HellaSwag ARC-easy ARC-challenge OpenBookQA

OPT-1.3B

Dense 0.00% 72.4 59.3 53.7 51.0 29.5 23.4 48.2 100.0
SliceGPT 18.1% 67.6 53.6 35.7 51.1 23.1 20.2 41.9 86.9

Ours(None) 19.4% 57.2 51.7 29.1 32.5 22.7 13.2 34.4 71.4
Ours(FFN) 18.1% 68.8 58.4 39.1 54.3 23.3 23.3 44.5 92.3

Dense 0.00% 72.4 59.3 53.7 51.0 29.5 23.4 48.2 100.0
SliceGPT 25.8% 65.5 52.8 34.2 48.8 24.4 17.0 40.5 84.0

Ours(None) 27.1% 52.2 51.1 25.7 26.6 20.5 14.0 31.7 65.8
Ours(FFN) 25.8% 66.4 56.0 36.8 51.6 22.2 21.0 42.3 87.8

Dense 0.00% 72.4 59.3 53.7 51.0 29.5 23.4 48.2 100.0
SliceGPT 33.6% 62.4 52.6 32.2 45.4 23.1 16.6 38.7 80.3

Ours(None) 34.8% 50.5 51.5 25.8 26.2 20.3 14.6 31.5 65.4
Ours(FFN) 33.6% 62.9 52.1 33.9 48.3 20.8 20.6 39.8 82.6

OPT-2.7B

Dense 0.00% 73.8 61.0 45.9 60.9 26.8 25.0 48.9 100.0
SliceGPT 16.8% 69.6 56.3 40.4 56.2 27.5 20.2 45.0 92.0

Ours(None) 17.8% 61.2 54.1 33.8 41.2 24.1 15.8 38.4 78.5
Ours(FFN) 16.8% 70.7 60.4 42.9 57.8 25.3 24.4 46.9 95.9

Dense 0.00% 73.8 61.0 45.9 60.9 26.8 25.0 48.9 100.0
SliceGPT 25.7% 69.1 55.0 37.9 53.9 26.7 18.2 43.5 89.0

Ours(None) 26.7% 59.7 53.4 33.5 38.1 24.3 15.4 37.4 76.5
Ours(FFN) 25.7% 67.0 59.5 40.3 54.6 24.7 22.2 44.7 91.4

Dense 0.00% 73.8 61.0 45.9 60.9 26.8 25.0 48.9 100.0
SliceGPT 34.6% 64.8 54.1 35.6 50.0 26.5 18.0 41.5 84.9

Ours(None) 35.6% 56.6 52.9 31.5 37.6 24.1 14.9 36.3 74.2
Ours(FFN) 34.6% 65.3 55.3 36.3 51.4 24.5 21.0 42.3 86.5

Table 25: Accuracy of different pruning methods by pruning OPT-1.3B and OPT-2.7B.

E.7 EXPERIMENTAL RESULTS OF LLAMA2-7B AT AROUND 50% PRUNING RATIO

We conduct experiments on Llama2-7B at a higher pruning ratio of approximately 50%. The
experimental results are shown in Table 26 and Table 27. The results indicate that our proposed
LLM-Streamline is superior to the previous SOTA method.
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LLM Method Ratio
Benchmarks

Average RP
C3 CMNLI CHID BoolQ WSC CoQA HeSW PIQA Race-M Race-H MMLU CMMLU

Llama2-7B

Dense 0.00% 43.8 33.0 41.6 70.8 37.5 66.7 71.3 78.1 33.1 35.5 46.8 31.8 49.2 100.0
LLMPruner 49.2% 26.4 33.2 17.3 43.5 38.5 25.4 32.7 59.2 22.3 21.7 23.4 24.8 30.7 63.4
SliceGPT 48.3% 26.5 32.1 15.4 38.1 42.3 28.1 30.9 53.6 23.6 23.1 25.2 25.3 30.4 61.8

Ours (None) 48.0% 33.1 34.0 17.3 55.4 36.5 31.0 34.3 56.3 26.8 27.2 34.9 27.9 34.6 70.3
Ours (Layer) 48.0% 39.7 33.0 27.7 62.1 36.5 44.3 45.2 63.6 24.6 24.3 33.2 28.1 38.5 78.3

Table 26: Accuracy of different pruning methods on classification benchmarks by pruning Llama2-7B
at a higher pruning ratio of approximately 50%.

LLM Method Ratio
Benchmarks

Average
C3 CMNLI CHID BoolQ WSC CoQA HeSW PIQA Race-M Race-H MMLU CMMLU

Llama2-7B

LLMPruner 49.2% 63.6 96.2 60.8 33.8 87.5 51.5 55.5 70.9 47.8 48.1 56.9 58.1 60.9
SliceGPT 48.3% 48.0 34.9 54.7 19.0 83.7 57.7 52.7 63.4 71.2 61.5 52.2 58.1 54.8

Ours (None) 48.0% 73.2 63.0 62.2 65.2 95.2 52.2 52.5 62.6 48.2 52.5 61.4 58.8 62.3
Ours (Layer) 48.0% 80.8 100 67.7 79.5 95.2 65.3 66.1 76.0 58.7 57.3 63.8 59.4 72.5

Table 27: Stability of different pruning methods on classification benchmarks by pruning Llama2-7B
at a higher pruning ratio of approximately 50%.

E.8 RESULTS OF SUFFICIENT POST-TRAINING

Following the method outlined in Section 4.7, We conduct experiments using the entire SlimPajama-
6B for post-training, and the results are presented in Table 28. As shown, using the entire dataset
resulted in a slight improvement, but at a significant computational cost, requiring 100 times the
computational time.

LLM Method Training data size
Benchmarks

Average RP
C3 CMNLI CHID BoolQ WSC CoQA HeSW PIQA Race-M Race-H MMLU CMMLU Xsum GSM8k StrategyQA

Llama2-7B
Dense - 43.8 33.0 41.6 70.8 37.5 66.7 71.3 78.1 33.1 35.5 46.8 31.8 19.4 16.5 60.2 45.7 100.0

Layer-First 30k 43.9 33.0 29.8 70.8 36.5 59.6 64.3 73.4 36.6 37.4 44.9 30.0 19.7 2.05 54.8 42.5 93.0
Layer-First 5.49M 43.5 33.0 33.2 68.8 46.2 61.1 66.5 76.0 31.8 29.9 47.3 31.8 18.2 10.6 58.6 43.8 95.8

Table 28: Detailed accuracy results with different training data volumes.

E.9 DETAILED RESULTS OF DIFFERENT LIGHTWEIGHT NETWORKS

The detailed results of accuracy and stability of different lightweight networks on different classifica-
tion benchmarks are shown in Table 29 and Table 30. We can observe that FFN achieves the best
results. Meanwhile, for the Transformer Layer, inheritance of the pruned first layer yields the best
results.

LLM Method Ratio
Benchmarks

Average RP
C3 CMNLI CHID BoolQ WSC CoQA HeSW PIQA Race-M Race-H MMLU CMMLU

Llama2-7B

Dense 0.00% 43.8 33.0 41.6 70.8 37.5 66.7 71.3 78.1 33.1 35.5 46.8 31.8 49.2 100.0
Layer-Random 24.0% 42.5 33.0 27.0 65.9 36.5 58.0 58.8 70.2 35.0 36.0 46.3 31.4 45.1 91.7

Layer-First 24.0% 43.3 33.0 24.1 67.5 36.5 59.2 61.1 71.5 34.8 37.0 45.5 29.4 45.2 91.9
Layer-Last 24.0% 43.5 33.0 29.0 64.5 41.4 56.8 61.5 71.6 34.5 35.0 46.0 30.8 45.6 92.7
Layer-Avg 24.0% 42.1 33.0 26.7 66.3 36.5 57.7 59.4 69.9 34.3 34.5 43.3 28.5 44.4 90.2

FFN† 26.0% 40.6 33.0 24.2 67.5 36.5 58.4 59.5 71.4 41.9 41.4 46.3 30.8 46.0 93.5
FFN 25.0% 40.7 33.0 22.8 65.9 38.5 60.6 61.2 71.2 38.0 38.7 47.0 31.7 45.8 93.1

SwiGLU† 26.0% 41.9 33.0 24.3 68.5 36.5 55.8 57.9 69.6 29.9 33.3 43.4 31.6 43.8 89.0
SwiGLU 25.0% 40.9 33.0 22.1 67.0 36.5 56.9 59.1 70.0 33.8 35.0 45.6 30.8 44.2 89.8

Table 29: Detailed accuracy results of different lightweight networks on different classification
benchmarks, where “†” indicates that the intermediate size of the added lightweight network is half
that of the default LLM’s intermediate size.
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LLM Method Ratio
Benchmarks

Average
C3 CMNLI CHID BoolQ WSC CoQA HeSW PIQA Race-M Race-H MMLU CMMLU

Llama2-7B

Layer-Random 24.0% 79.9 100 68.2 83.8 95.2 77.4 82.0 83.2 69.9 71.9 85.1 77.4 81.2
Layer-First 24.0% 79.8 100 64.4 86.3 95.2 81.7 85.3 85.6 81.8 79.0 82.4 71.0 82.7
Layer-Last 24.0% 81.0 100 73.5 84.9 82.7 81.3 85.8 85.4 82.3 76.3 83.0 66.9 81.9
Layer-Avg 24.0% 80.7 100 68.5 84.4 95.2 78.9 82.8 82.5 73.0 70.7 74.6 58.8 79.2

FFN† 26.0% 79.9 100 65.4 82.1 95.2 78.7 80.7 81.7 74.7 70.3 84.9 74.6 80.7
FFN 25.0% 79.8 100 64.1 83.1 93.3 80.7 84.7 84.6 85.1 79.0 87.5 82.5 83.7

SwiGLU† 26.0% 78.5 100 64.5 78.9 95.2 75.4 80.9 82.1 89.3 87.1 80.7 78.4 82.6
SwiGLU 25.0% 78.9 100 63.5 84.4 95.2 77.0 82.2 82.3 85.7 82.4 87.9 79.7 83.3

Table 30: Detailed stability results of different lightweight networks on different classification
benchmarks, where “†” indicates that the intermediate size of the added lightweight network is half
that of the default LLM’s intermediate size.

E.10 DETAILED RESULTS OF DIFFERENT PRUNING RATIO

The detailed results of accuracy and stability on LLMs under different pruning ratios on different
classification benchmarks are shown in Table 31 and Table 32. The experiment results show that the
performance of the pruned model is linearly correlated with the number of parameters, demonstrating
the effectiveness of our method.

LLM Method Ratio
Benchmarks

Average RP
C3 CMNLI CHID BoolQ WSC CoQA HeSW PIQA Race-M Race-H MMLU CMMLU

Llama2-7B

Dense 0.00% 43.8 33.0 41.6 70.8 37.5 66.7 71.3 78.1 33.1 35.5 46.8 31.8 49.2 100.0
FFN† 2.0% 43.6 33.0 41.0 71.5 36.5 65.4 70.7 77.5 36.1 38.1 46.3 31.6 49.3 100.0
FFN† 11.0% 42.1 33.0 35.1 69.0 37.5 63.4 67.8 75.6 35.2 37.0 46.5 29.9 47.7 97.0
FFN† 20.0% 42.3 33.0 29.0 70.2 36.5 62.7 63.8 72.3 37.8 37.7 45.7 28.8 46.7 94.9
FFN† 26.0% 40.6 33.0 24.2 67.5 36.5 58.4 59.5 71.4 41.9 41.4 46.3 30.8 46.0 93.5

TinyLlama-1.1B Dense 0.00% 38.3 34.6 30.4 56.4 47.1 48.8 54.5 71.3 24.1 25.8 25.8 25.0 40.2 100.0
OpenLlama-3B-v2 Dense 0.00% 43.0 33.0 31.1 60.6 37.5 58.7 65.3 77.0 25.1 26.9 27.0 25.3 42.5 100.0

Table 31: Detailed accuracy results of different pruning ratios on different classification benchmarks,
where “†” indicates that the intermediate size of the added lightweight network is half that of the
default LLM’s intermediate size.

LLM Method Ratio
Benchmarks

Average
C3 CMNLI CHID BoolQ WSC CoQA HeSW PIQA Race-M Race-H MMLU CMMLU

Llama2-7B

FFN† 2.0% 95.8 100 93.2 86.5 95.2 96.2 97.8 97.1 93.0 89.5 95.5 89.7 94.1
FFN† 11.0% 90.4 100 82.5 91.4 94.2 90.2 93.4 92.7 89.6 82.7 84.6 72.0 88.6
FFN† 20.0% 81.6 100 71.9 86.0 95.2 84.4 87.3 87.9 85.2 78.6 78.1 67.7 83.7
FFN† 26.0% 79.9 100 65.4 82.1 95.2 78.7 80.7 81.7 74.7 70.3 84.9 74.6 80.7

Table 32: Detailed stability results of different pruning ratios on different classification benchmarks,
where “†” indicates that the intermediate size of the added lightweight network is half that of the
default LLM’s intermediate size.

E.11 DETAILED RESULTS OF LAYER REPLACEMENT AND LORA

The detailed results of accuracy and stability of different layer replacement strategies and LoRA on
different benchmarks are shown in Table 33 and Table 34. The results show that layer replacement
outperforms LoRA in both accuracy and stability.
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LLM Method Ratio
Benchmarks

Average RP
C3 CMNLI CHID BoolQ WSC CoQA HeSW PIQA Race-M Race-H MMLU CMMLU

Llama2-7B

Dense 0.00% 43.8 33.0 41.6 70.8 37.5 66.7 71.3 78.1 33.1 35.5 46.8 31.8 49.2 100.0
Layer-First 24.0% 43.9 33.0 29.8 70.8 36.5 59.6 64.3 73.4 36.6 37.4 44.9 30.0 46.7 94.9
Layer-Last 24.0% 44.9 33.0 29.4 69.2 36.5 58.9 63.5 74.1 37.8 37.8 46.5 30.4 46.8 95.1
Layer-Avg 24.0% 43.9 33.0 30.1 67.5 36.5 58.3 62.5 72.3 36.6 36.1 46.2 31.9 46.2 93.9

FFN† 26.0% 41.6 33.0 25.8 62.6 36.5 58.9 62.1 72.3 41.9 40.2 44.4 30.5 45.8 93.1
FFN 25.0% 43.8 33.0 27.0 68.7 36.5 60.7 63.5 72.4 37.4 35.4 45.3 31.5 46.3 94.1

SwiGLU† 26.0% 44.0 33.0 27.9 61.2 36.5 57.2 61.7 71.2 30.3 32.9 45.0 31.9 44.4 90.2
SwiGLU 25.0% 43.2 33.0 27.1 67.0 36.5 58.2 62.1 71.2 35.1 35.7 45.8 30.8 45.5 92.5

LoRA 24.0% 43.2 33.0 27.6 63.5 36.5 57.7 62.4 71.7 30.7 32.9 43.5 30.8 44.5 90.4

Table 33: Detailed accuracy results of layer replacement and LoRA on different classification
benchmarks, where “†” indicates that the intermediate size of the added lightweight network is half
that of the default LLM’s intermediate size.

LLM Method Ratio
Benchmarks

Average
C3 CMNLI CHID BoolQ WSC CoQA HeSW PIQA Race-M Race-H MMLU CMMLU

Llama2-7B

Layer-First 24.0% 82.7 100 74.3 84.7 95.2 85.7 89.1 88.6 84.1 82.2 84.5 77.2 85.7
Layer-Last 24.0% 83.2 100 73.8 87.9 95.2 89.5 85.8 88.7 84.7 82.1 83.1 72.9 85.6
Layer-Avg 24.0% 81.0 100 72.3 67.0 95.2 84.1 87.4 86.6 87.3 82.2 90.5 73.7 83.9

FFN† 26.0% 82.0 100 71.4 75.4 95.2 82.9 86.6 87.2 79.0 75.3 85.1 81.0 83.4
FFN 25.0% 80.6 100 72.0 83.5 95.2 85.4 87.7 87.2 84.5 81.0 85.4 79.3 85.2

SwiGLU† 26.0% 80.0 100 71.4 63.1 95.2 80.5 86.1 85.1 90.4 87.7 89.2 87.7 84.7
SwiGLU 25.0% 81.6 100 72.9 67.3 95.2 81.8 86.5 85.3 87.7 84.8 90.0 83.3 84.7

LoRA 24.0% 81.9 100 73.4 59.1 95.2 81.6 84.8 85.3 85.2 81.3 82.1 75.3 82.1

Table 34: Detailed stability results of layer replacement and LoRA on different classification bench-
marks, where “†” indicates that the intermediate size of the added lightweight network is half that of
the default LLM’s intermediate size.

F LIMITATION

Our method achieves SOTA results compared to existing pruning methods, but its performance
still falls short of other commonly used model compression methods, e.g., quantization. Therefore,
we plan to enhance the performance of our pruning method and explore combining it with other
compression and inference acceleration techniques to make it more practical.
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