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Abstract

Storage is increasingly a practical bottleneck to
scaling large language model (LLM) systems with
personalization, co-location, and other use cases
that require storing the pretrained base model plus
multiple finetuned models. To this end, we pro-
pose GPT-Zip for post-finetuning compression.
GPT-Zip uses quantization and sparsification to
efficiently compress finetuned models by exploit-
ing their closeness to the pretrained base model.
Specifically, we demonstrate that the difference
between the finetuned models and the pretrained
base model can efficiently be quantized into 2 bits
and pruned with 95% sparsity together – provid-
ing up to 52 times overall size reduction. Thus,
GPT-Zip avoids the linear growth in memory
costs required for naive storage. We show that
this compression can be achieved without per-
formance degradation, as measured by evalua-
tions on several tasks from the Natural Instruc-
tions dataset. Surprisingly, GPT-Zip sometimes
improves accuracy over uncompressed models.
We demonstrate the efficacy of GPT-Zip on
four finetuned OPT-1.3B models and show that
GPT-Zip reduces the storage cost by 16 times
more than existing LLM compression techniques
while attaining significantly better performance.

1. Introduction
In recent years, we have witnessed the remarkable success
of Generative Pretrained Transformer models (known as
GPT or OPT) (Brown et al., 2020; Radford et al., 2019;
Vaswani et al., 2017; Zhang et al., 2022b) in various com-
plex language applications. Since it is hard to access large
task-specific data to train these models from scratch, it is
common practice to first pretrain a base model on a large
dataset for better initialization and then finetune the base

*Equal contribution 1Stanford University 2ETH Zurich. Corre-
spondence to: Berivan Isik <berivan.isik@stanford.edu>.

ICML 2023 Workshop on Efficient Systems for Foundation Mod-
els. This workshop does not have official proceedings and this
paper is non-archival.

model for task-specific and personalized experiences (Sanh
et al., 2022). While finetuning yields state-of-the-art results,
every time we finetune the base model for a new task, we
end up with a new model (as large as the base model) with
a new set of parameters for each task. This brings a massive
obstacle in their storage and deployment since these models
have billions of parameters.

One way of efficiently storing these finetuned models is
to compress them individually by using the recent large
language model (LLM) compression techniques such as
ZeroQuant (Yao et al., 2022), nuQmm (Park et al., 2022),
LLM.int8() (Dettmers et al., 2022), GPT-Q (Frantar
et al., 2023), and SparseGPT (Frantar & Alistarh, 2023).
However, these are typically efficient one-shot techniques
for LLMs and cannot achieve ambitious compression gains
without performance degradation. On the other hand,
AdaRound (Nagel et al., 2020), BitSplit (Wang et al.,
2020a), AdaQuant (Hubara et al., 2021), BRECQ (Li et al.,
2021), OBQ (Frantar & Alistarh, 2022), and OBS (Hassibi
et al., 1993b; Singh & Alistarh, 2020; Frantar et al., 2021)
can compress the models more aggressively without a sig-
nificant performance loss, but they are not scalable to LLMs
since they require computationally expensive steps that scale
with the number of parameters – such as computing the in-
verse Hessian or retraining.

In this work, we propose a compression framework called
GPT-Zip1, explicitly designed for compressing finetuned
LLMs (i) in an efficient one-shot way without retraining,
(ii) achieving ambitious compression gains such as 2-bit
quantization and 95% sparsity simultaneously, (iii) while
preserving the performance of the original finetuned model.
Surprisingly, our experiments demonstrate that the finetuned
models compressed with GPT-Zip sometimes outperform
the original uncompressed finetuned models with respect to
many metrics, including the accuracy on the finetuned task.
More concretely, different from existing LLM compression
techniques, GPT-Zip quantizes and prunes the difference
∆ between the finetuned model and the base model. Thus,
whenever we finetune the base model for a new task, we
only need to store the compressed ∆ instead of the full
finetuned model. Our contributions can be summarized as:

(1) We propose GPT-Zip – the first compression technique

1GPT-Zip is the name for the algorithm, not an acronym.
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specifically designed for finetuned LLMs. We hope it will
accelerate research on LLMs by allowing significantly more
efficient storage of finetuned models (typically much more
numerous and needed than the base models).

(2) We introduce two variants of GPT-Zip, one for quan-
tization alone; and one for quantization and sparsification
together.

(3) We show that having 2-bit quantization and 95% spar-
sity together yields up to 52 times compression of finetuned
OPT-1.3B models without significant performance degra-
dation with respect to accuracy on several tasks from the
Natural Instructions dataset. This corresponds to a 16 times
improvement over the prior LLM compression methods.

Related Work. We provide a summary of the literature on
model compression, LLM compression, and efficient LLM
finetuning in Appendix A.

2. Compressing Finetuned LLMs
We are interested in efficiently storing many finetuned mod-
els initialized from the same pretrained base model. We
discover that compressing the difference ∆ between the
finetuned and the base model provides significantly higher
storage gains than compressing the finetuned model directly,
even if we use state-of-the-art LLM compression techniques
such as GPTQ (Frantar et al., 2023). To this end, we con-
sider a base model with weights WB pretrained to a local
minimum in error and a target model with weights WT

finetuned from WB for a downstream task. The finetuned
model can be decomposed as WT = WB +∆ with layer-
wise summations. Our goal is to compress ∆ to ∆̂ such that
the new target model ŴT = WB + ∆̂ incurs a minimal in-
crease in error. Following (Frantar & Alistarh, 2022; 2023;
Frantar et al., 2023), we do layer-wise compression, i.e., we
compress ∆l = WT,l −WB,l for each layer l separately
and independently. In the rest of the paper, since we always
work with layer l, we drop the subscript l for simplicity.
Thus, we denote by WB ∈ Rm×n the weights of the base
model at layer l, WT ∈ Rm×n the weights of the target
finetuned model at layer l, X ∈ Rn×k the input to the layer
l with k input samples, ∆ ∈ Rm×n the difference between
the target finetuned model WT and the base model WB ,
and ∆̂ ∈ Rm×n its compressed version. Then, our goal is
to solve the following optimization problem:

min
∆̂∈Rm×n

E(∆̂) ≡ min
∆̂∈Rm×n

∥(WB + ∆̂)X− (WB +∆)X∥22

≡ min
∆̂∈Rm×n

∥∆̂X−∆X∥22.

(1)

We first introduce GPT-ZipQ in Section 2.1, which quan-

tizes ∆ by minizing the error E(∆̂) in (1). Then in
Section 2.2, we propose GPT-ZipQ,S which combines
GPT-ZipQ with a simple sparsification step.

2.1. Quantization: GPT-ZipQ

Similarly to (Frantar et al., 2023; Hassibi et al., 1993a), we
take a greedy approach and quantize one parameter from ∆
at a time. To find which parameter to quantize next for the
minimal increase in error and how to update the rest of the
full-precision (not-yet-quantized) parameters to compensate
for the error, we first simplify the objective in (1). We
start by rewriting the ℓ2 error E(∆̂) as a summation of the
squared error of each row in ∆ as E(∆̂) =

∑m
i=1 Ei(∆̂i,:),

where Ei(∆̂i,:) = ∥∆̂i,:X−∆i,:X∥22 and ∆i,: is the i-th
row of ∆. Then, the equivalent objective is

min
∆̂∈Rm×n

E(∆̂) ≡ min
∆̂∈Rm×n

m∑
i=1

∥∆̂i,:X−∆i,:X∥22. (2)

Now, we note three key observations which simplify our
layer-wise ∆ compression problem in (2) to the problem
setup in the state-of-the-art layer-wise LLM quantization
works (Frantar & Alistarh, 2022; Frantar et al., 2023):

(1) We can assume that ∂E(∆̂)
∂∆i,:

≈ 0 since both the base and
the finetuned models are well-trained.

(2) Removing a parameter from one row does not affect the
output of another row, i.e., there is no Hessian interaction
between different rows. This allows us to work only with
the smaller n× n Hessian corresponding to individual rows.

(3) The Hessian of the quadratic objective Ei(∆̂i,:) =

∥∆̂i,:X − ∆i,:X∥22 is H = 2XXT and same for all the
rows since ∆i,:X is fixed (not affected by compression).

Although their problem is different than ours since they care
about quantizing the weights themselves (and not ∆), both
OBQ (Frantar & Alistarh, 2022) and GPTQ (Frantar et al.,
2023) propose greedy solutions to the same simplified layer-
wise compression problem under the same observations
above. The greedy approach in OBQ quantizes each row
independently by quantizing one parameter at a time while
updating the full-precision (not-yet-quantized) parameters
to compensate for the error due to quantizing that last pa-
rameter. Denoting by F the set of remaining full-precision
parameters in ∆ and by HF the Hessian of the parameters
from this set; OBQ suggests the following rules (by adapting
it to our problem of compressing ∆) to determine which pa-
rameter δq from ∆ to quantize next and the corresponding
optimal update uF for all the parameters in F :

δq = argmin
δq

(quant(δq)− δq)
2

[H−1
F ]qq

, uF = −δq − quant(δq)
[H−1

F ]qq
· (H−1

F ):,q.,

(3)
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where quant(·) is the rounding operation that rounds the
input to the nearest value on the quantization grid, [H−1

F ]qq
denotes the q-th diagonal entry of the inverse Hessian, and
(H−1

F ):,q is its q-th column. OBQ algorithm with these two
rules runs until all the parameters are quantized. However,
the inverse Hessian must be recomputed every step after
removing δq from F . This requires, for each row, inverting
an n × n matrix at each of the O(n) steps with a compu-
tational complexity Θ(n3) – giving an overall runtime of
O(n4) to finish quantizing the whole row. Unfortunately,
this complexity is too high to scale this approach to even
moderate-size layers with ∼ 10K parameters. As an alter-
native to this costly inverse operation, Frantar & Alistarh
(2022) proposes using one-step Gaussian elimination by
essentially removing the q-th row and column of the inverse
Hessian directly, which has Θ(n2) time complexity:

(H−1
F )−q =

(
H−1

F − 1

[H−1
F ]qq

(H−1
F ):,q(H

−1
F ):,q

)
−q

,

(4)

where (H−1
F )−q is the inverse of HF with row and col-

umn q removed. This eliminates the full recomputation
of the Hessian every step, speeds up OBQ significantly to
the overall runtime of O(n3) for quantizing the whole row,
and makes it applicable for neural networks as large as
ResNet-50 (He et al., 2016) and BERT (Devlin et al., 2019).
However, O(m · n3) runtime per layer is still infeasibly
slow for LLMs from the GPT family. Therefore, we follow
a similar approach as GPTQ and quantize the parameters of
∆ in an arbitrary but fixed order instead of finding the opti-
mal parameter to quantize at every step. In other words, for
each row, instead of finding which δq to quantize next, we
quantize the parameters in an arbitrary but same order for
each row. This way, we can generate a list of (H−1

F )−q’s in
(4) only once for one row and use the same inverse Hessian
for all the other rows since H = 2XXT is the same for all
the rows in the same layer. Our experimental results verify
the observation of Frantar et al. (2023) that fixing the order
of quantizing parameters beforehand does not significantly
increase error. This way, the total runtime for the whole
layer reduces to O(max{m · n2, n3}) – providing enough
speed up to run it on LLMs in a few GPU hours.

Similar to (Frantar et al., 2023), we apply GPT-ZipQ to
B = 128 columns at a time for a more memory-efficient
computation by requiring the storage of fewer inverse Hes-
sians. More specifically, we only need to recompute the new
inverse Hessian after quantizing all the parameters in the set
P of B columns as follows:

uF = −(δP − quant(δP ))([H−1
F ]PP )

−1(H−1
F ):,P ,

(5)

(H−1
F )−P =

(
H−1

F − (H−1
F ):,P ([H

−1
F ]PP )

−1(H−1
F )P,:

)
−P

.

(6)

With these modifications, we reach enough runtime and
memory efficiency to run GPT-ZipQ on OPT-1.3B in a
few GPU hours without a memory problem.

2.2. Quantization Followed by Pruning: GPT-ZipQ,S

We observe that the quantized ∆̂ after running GPT-ZipQ

is still quite compressible. Even with hard thresholding
based on the magnitude (which has been shown to work
surprisingly well in smaller-scale models for various tasks
(Han et al., 2016; 2015; Isik, 2021)) of the quantized pa-
rameters, we show that we can remove up to 95% of the
parameters from quantized ∆̂ and still maintain the same
performance. We refer to this combination of GPT-ZipQ

and hard thresholding as GPT-ZipQ,S .

3. Experiments
Overview: We demonstrate the efficacy of GPT-Zip on
several tasks from the Nautural Instructions (NI) dataset
(Mishra et al., 2022; Wang et al., 2022) and compare it
against the state-of-the-art LLM compression framework,
GPTQ (Frantar et al., 2023). More specifically, we pick four
tasks from the NI dataset, namely Answer Verification (AV),
Irony Detection (ID), Toxic Language Detection (TLD),
and Word Semantics (WS); and finetune OPT-1.3B (Zhang
et al., 2022a) on each of them separately. We provide the
details of finetuning in Appendix B. Then, we compare
the accuracy of the base OPT-1.3B model, uncompressed
finetuned model, and compressed finetuned models on all
four tasks. Here, our main goal is to preserve the accuracy
of the original uncompressed finetuned model on the main
task it was finetuned for, while not suffering from significant
performance degradation on the other three tasks as well.

During the quantization step in GPT-Zip, to compute the
Hessian matrix H = XXT , we need to use calibration data.
For each finetuned model, we use 128 random 2048 token
segments from the task it was finetuned for. For instance,
to compress the OPT-1.3B model finetuned for the AV task,
we use token segments from the AV task during calibration.
This means that when evaluating a task other than AV, such
as ID, TLD, or WS, GPT-Zip is actually not calibrated
on the evaluation task – which provides us the zero-shot
performance of GPT-Zip. Similar to (Dettmers et al., 2022;
Frantar et al., 2023), we perform standard uniform per-row
asymmetric quantization on the min-max grid.

Baselines: We compare GPT-Zip against the state-of-the-
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art LLM compression framework, GPTQ (Frantar et al.,
2023), which has the same runtime as GPT-Zip. Since
we care about storing a pretrained base model and multiple
finetuned models; we compare the required size for storing
both the base and finetuned models. Our difference from
GPTQ is in how we compress and store the finetuned models,
whereas we can treat the base model in the same way, i.e.,
we can either compress it in the same way or leave it uncom-
pressed. While GPTQ directly compresses the weights of
the finetuned model WT , GPT-Zip compresses the differ-
ence ∆ = WT −WB between the target finetuned model
WT and the base model WB . The new finetuned model is
then reconstructed as ŴT = WB + ∆̂. The reported size
of the finetuned model for GPT-Zip is then the size of the
compressed ∆̂, instead of WT .

Results: We provide the results for OPT-1.3B finetuned for
TLD in Table 1. Due to the page limit, we present the results
for the other finetuned models tuned for AV, ID, and WS in
Appendix C. We evaluate the finetuned models compressed
with GPT-Zip (with different quantization and sparsity
combinations) in terms of accuracy on all four tasks AV, ID,
TLD, and WS and compare them with the finetuned mod-
els compressed with GPTQ, as well as the uncompressed
finetuned model and the uncompressed base model. Addi-
tionally, we provide a comparison between GPT-Zip and
GPTQ in Figure 1 on OPT-1.3B models finetuned for TLD
and AV tasks. In the figure, we only plot the accuracy on
the main task which is TLD for (left) and AV for (right)
by choosing the best number of bits and sparsity combina-
tions from Tables 1 and 2. As can be seen from the tables
and the figure, GPTQ degrades the accuracy on all the tasks
down to 0% for 2-bit quantization; whereas GPT-Zip is
able to compress more than 5 times of this rate while still
preserving the accuracy.

In our experiments, after compressing the finetuned model
ŴT with GPTQ or the difference ∆̂ with GPT-Zip;
we pack, zip, and store the compressed parameters fol-
lowing the implementation in https://github.com/
PanQiWei/AutoGPTQ. At evaluation time, we read the
finetuned model ŴT from the disk and test it or read ∆̂,
reconstruct ŴT = WB + ∆̂, and test it. Notice from Ta-
ble 1 that even with the same quantization level, finetuned
model ŴT compressed with GPTQ takes significantly more
space than ∆̂ compressed with GPT-Zip – indicating that
the entropy of the quantized ∆̂ is much smaller than that
of the quantized finetuned model ŴT. This supports our
earlier claim that the difference ∆ is significantly more
compressible than the finetuned model WT itself.

4. Conclusion
In this work, we take the first step towards a paradigm shift
for efficient compression of finetuned models by discovering

Figure 1: GPT-Zip vs GPTQ on compressing finetuned
OPT-1.3B models tuned for (left) TLD and (right) AV
tasks. For GPT-Zip, best quantization-sparsity combina-
tions have been selected from Tables 1 and 2.

Table 1: Comparison of GPT-Zip with GPTQ (Frantar
et al., 2023). Base model is OPT-1.3B. Finetuned model is
OPT-1.3B tuned on TLD from NI dataset. Sparsity is the
fraction of parameters that are set to zero. “# Bits” refers
to the number of bits the parameters are quantized into. The
size of the base model is 2.6 GB for all baselines. The main
evaluation task is TLD since the model is finetuned for TLD.

Method Final Size # Bits Sparsity TLD AV ID WS
(Finetuned) (main task)

base model directly - - - 14.88 50.41 58.14 19.23
uncomp. finetuned model 2.6 GB 16 0 29.73 49.26 50.61 14.00

GPTQ (Frantar et al., 2023) 795.63 MB 4 0 32.11 49.40 45.88 15.70
GPT-ZipQ (ours) 522.07 MB 4 0 33.10 49.39 59.37 15.37
GPT-ZipQ,S (ours) 253.53 MB 4 0.90 33.61 49.19 59.72 17.93
GPT-ZipQ,S (ours) 203.28 MB 4 0.95 31.65 50.54 59.02 18.06
GPT-ZipQ,S (ours) 154.20 MB 4 0.99 19.26 50.44 59.19 18.79

GPTQ (Frantar et al., 2023) 695.10 MB 3 0 29.49 47.88 51.66 8.27
GPT-ZipQ (ours) 426.97 MB 3 0 33.07 49.42 59.72 15.52
GPT-ZipQ,S (ours) 241.25 MB 3 0.90 34.04 49.49 59.72 17.72
GPT-ZipQ,S (ours) 196.63 MB 3 0.95 31.77 50.48 59.02 18.04
GPT-ZipQ,S (ours) 151.83 MB 3 0.99 18.84 51.04 59.37 18.71

GPTQ (Frantar et al., 2023) 517.04 MB 2 0 0 0 0 0
GPT-ZipQ (ours) 280.84 MB 2 0 35.75 49.39 59.89 15.91
GPT-ZipQ,S (ours) 213.89 MB 2 0.90 35.87 49.16 60.25 17.44
GPT-ZipQ,S (ours) 180.06 MB 2 0.95 32.55 49.88 59.02 18.29
GPT-ZipQ,S (ours) 146.34 MB 2 0.99 20.32 50.54 59.54 18.74

that the difference between the models is much more com-
pressible than the models themselves. We believe our work
will motivate further research in exploiting this phenomenon
as the interest and need for numerous finetuned models in-
crease. Clearly, storing so many finetuned models will be
a bottleneck in making them accessible. Our framework,
GPT-Zip, closes this gap by compressing the difference
between the finetuned models and the base model; and pro-
vides up to 16 times improvement in the compression rate
over the state-of-the-art without performance degradation.

Limitations and Broader Impact. In the evaluation of
GPT-Zip, similar to other LLM compression works, we
only considered task accuracy and compression rate. How-
ever, compression might impact other properties of the fine-
tuned model as well, such as fairness (Hooker et al., 2020),
data leakage, and over-personalization. We believe these
considerations deserve more attention from the community.
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A. Related Work
In this section, we first briefly summarize the model compression literature by focusing on the prior work that is most
relevant to us, then go over the recent LLM compression techniques, and finally discuss prior work on efficient finetuning of
LLMs.

Model Compression. The recent progress in machine learning applications has come with the challenge of storing and
deploying overparameterized models on resource-constrained devices. This has motivated significant efforts in various
model compression approaches such as pruning (Elsen et al., 2020; Frankle & Carbin, 2019; Han et al., 2016; Hassibi et al.,
1993b; Isik, 2021; Isik et al., 2023; 2022; LeCun et al., 1989; Park et al., 2020; Renda et al., 2020), quantization (Banner
et al., 2018; Choi et al., 2020; Idelbayev et al., 2021; Jacob et al., 2018; Jung et al., 2019; Li et al., 2016; Wang et al.,
2019b; Young et al., 2020), low-rank factorization (Idelbayev & Carreira-Perpinan, 2020; Ioannou et al., 2015; Sainath
et al., 2013), Bayesian compression (Dai et al., 2018; Federici et al., 2017; Louizos et al., 2017a;b; Molchanov et al., 2017),
and knowledge distillation (Hinton et al., 2015; Polino et al., 2018; Wang et al., 2019a). Among them, some specifically
have focused on transformer models and proposed quantization (Frantar & Alistarh, 2022; Hubara et al., 2021; Li et al.,
2021; Nagel et al., 2020; Wang et al., 2020a), pruning (Chen et al., 2021b; Fan et al., 2020; Hou et al., 2020; Khetan &
Karnin, 2020; Kwon et al., 2022; Lagunas et al., 2021; Li et al., 2020; Lin et al., 2020; Liu et al., 2021b; Sajjad et al., 2023;
Voita et al., 2019; Xin et al., 2020; Yao et al., 2021; Zhou et al., 2020), low-rank factorization (Chen et al., 2021a; Liu et al.,
2021a), and knowledge distillation (Jiao et al., 2020; Liu et al., 2021a; Sun et al., 2019; Wang et al., 2020b) methods for
transformers. While these methods achieve a good tradeoff between the compression ratio and final performance, they
require computationally expensive operations such as retraining and inverting large matrices (e.g., Hessian). As a result,
even for models up to ≈ 100 million parameters, compression takes a few GPU hours. This makes it infeasible to scale them
to orders of magnitude larger models, such as LLMs from the GPT family. In this work, we aim to achieve a significantly
better compression-performance tradeoff without suffering from high computational costs and compress finetuned LLMs in
less than a few GPU hours.

Large Language Model Compression. The transformer compression methods mentioned in the previous paragraph,
although achieving appealing compression-performance tradeoffs, are not scalable to LLMs. Therefore, there has been a
recent interest in developing alternative techniques specifically for larger models at the cost of some performance drop.
For instance, SparseGPT (Frantar & Alistarh, 2023) is significantly faster than the prior transformer pruning methods
(Frantar & Alistarh, 2022; Hubara et al., 2021) – making it applicable to LLMs. Similarly, GPTQ (Frantar et al., 2023),
ZeroQuant (Yao et al., 2022), nuQmm (Park et al., 2022), LLM.int8() (Dettmers et al., 2022) avoid costly operations
present in (Frantar & Alistarh, 2022; Li et al., 2021; Nagel et al., 2020) to scale up transformer quantization methods to
LLMs. However, eliminating these costly operations comes with a price. The existing LLM compression techniques do not
enjoy the same compression-performance gains as the smaller-scale model compression methods since they compromise
optimality for computational efficiency. In this work, while compressing the finetuned models, we aim to enjoy both
computational efficiency and a much better compression-performance tradeoff by exploiting the closeness between the base
and finetuned models.

Efficient Finetuning of Large Language Models. Another line of work that is relevant to us are the recent efforts in the
efficient finetuning of transformer models. Due to the high computational cost of finetuning the whole base model, more
efficient ways for finetuning have attracted attention from the community (Liu et al., 2022). Some earlier efforts include
training only adapters (Bapna & Firat, 2019; Houlsby et al., 2019; Rebuffi et al., 2017) (trainable layers inserted between the
frozen layers of the base model), finetuning only a sparse subnet of the base model while keeping the rest frozen (Guo et al.,
2021; Sung et al., 2021), and finetuning in a lower-dimensional subspace (Aghajanyan et al., 2021). More recently, low-rank
adapters for LLMs called LoRA, have been introduced to freeze some layers in the base model and train low-rank adapters
on top of them (Hu et al., 2022). LoRA has successfully finetuned LLMs with billions of parameters in a computationally
efficient way while achieving reasonable performance. However, we note that the low-rank adapters in LoRA are only added
to the self-attention layers to avoid drastic performance drops. Hence the other layers are still being fully finetuned as usual,
which limits the potential storage efficiency LoRA can provide. Our work is tangential to efficient finetuning efforts since we
are interested in compressing fully finetuned models for two reasons: (1) we need immediate solutions to the high storage
cost of increasingly many fully finetuned models to accelerate research, and (2) efficiently finetuned models do not reach the
same performance as the fully finetuned models which are trained without computational concerns (Ding et al., 2022).
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B. Additional Experimental Details
We finetune the OPT-1.3B model on four different classification tasks from the natural instructions dataset, namely, Answer
Verification (AV), Irony Detection (ID), Toxic Language Detection (TLD), and Word Semantics (WS). For each task, we use
80% of the data for finetuning and the remaining 20% for evaluation. We apply AdamW (Loshchilov & Hutter, 2017) with
a learning rate 1e − 5, β = (0.9, 0.999), and weight decay 0.01. We finetune for 1 epochs with a batch size of 16 and a
maximum sequence length of 2048. We use the same hyperparameters for all tasks. We finetune all models on 8 NVIDIA
RTX A6000 with a data parallel degree of 4 and a pipeline parallel degree of 2.

After finetuning, we compress the finetuned models using GPT-Zip and GPT-Q. For all methods, our calibration data
consists of 128 random sequences from the training data.

C. Additional Experimental Results
We now provide additional results we had to skip in the main body due to the page limit. Figure 2 shows the comparison
between GPT-Zip and GPTQ on the OPT-1.3B models finetuned for ID and WS tasks from the NI dataset. For the
GPT-Zip curve, the best combinations of the number of quantization and sparsity are selected. More detailed results on all
four tasks are provided in Tables 2, 3, and 4.

Figure 2: GPT-Zip vs GPTQ on compressing finetuned OPT-1.3B models tuned for (left) ID and (right) WS tasks. For
GPT-Zip, best quantization-sparsity combinations have been selected from Tables 3 and 4.
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Table 2: Comparison of GPT-Zip with GPTQ (Frantar et al., 2023). Base model is OPT-1.3B. Finetuned model is OPT-1.3B
tuned on ID from NI dataset. Sparsity is the fraction of parameters that are set to zero. “# Bits” refers to the number of bits
the parameters are quantized into. The size of the base model is 2.6 GB for all baselines. The main evaluation task is AV
since the model is finetuned for AV.

Method Final Size # Bits Sparsity AV ID TLD WS
(Finetuned) (main task)

base model directly - - - 50.41 58.14 14.88 19.23
uncomp. finetuned model 2.6 GB 16 0 51.46 41.68 25.96 13.94

GPTQ (Frantar et al., 2023) 795.31 MB 4 0 51.04 38.53 30.38 13.35
GPT-ZipQ (ours) 461.47 MB 4 0 51.83 57.39 27.47 15.47
GPT-ZipQ,S (ours) 172.60 MB 4 0.90 51.17 59.37 23.49 17.72
GPT-ZipQ,S (ours) 125.55 MB 4 0.95 50.90 59.37 20.21 18.48
GPT-ZipQ,S (ours) 80.94 MB 4 0.99 50.67 58.84 16.53 18.99

GPTQ (Frantar et al., 2023) 694.53 MB 3 0 50.21 27.85 36.78 13.32
GPT-ZipQ (ours) 362.35 MB 3 0 50.84 56.39 27.44 15.57
GPT-ZipQ,S (ours) 162.42 MB 3 0.90 51.30 59.37 23.54 17.83
GPT-ZipQ,S (ours) 119.24 MB 3 0.95 50.84 59.54 20.11 18.40
GPT-ZipQ,S (ours) 79.01 MB 3 0.99 50.51 58.67 16.55 19.12

GPTQ (Frantar et al., 2023) 515.87 MB 2 0 0 0 0 0
GPT-ZipQ (ours) 224.57 MB 2 0 50.58 55.69 26.19 15.57
GPT-ZipQ,S (ours) 128.70 MB 2 0.90 51.66 59.37 20.97 17.96
GPT-ZipQ,S (ours) 100.09 MB 2 0.95 50.94 59.54 18.15 18.48
GPT-ZipQ,S (ours) 73.93 MB 2 0.99 50.44 58.67 15.83 18.87

Table 3: Comparison of GPT-Zip with GPTQ (Frantar et al., 2023). Base model is OPT-1.3B. Finetuned model is OPT-1.3B
tuned on ID from NI dataset. Sparsity is the fraction of parameters that are set to zero. “# Bits” refers to the number of bits
the parameters are quantized into. The size of the base model is 2.6 GB for all baselines. The main evaluation task is ID
since the model is finetuned for ID.

Method Final Size # Bits Sparsity ID AV TLD WS
(Finetuned) (main task)

base model directly - - - 58.14 50.41 14.88 19.23
uncomp. finetuned model 2.6 GB 16 0 62.35 51.00 33.31 17.03

GPTQ (Frantar et al., 2023) 793.81 MB 4 0 60.95 50.67 28.63 18.11
GPT-ZipQ (ours) 294.57 MB 4 0 61.82 51.43 22.49 18.29
GPT-ZipQ,S (ours) 81.44 MB 4 0.90 60.42 50.18 16.27 19.07
GPT-ZipQ,S (ours) 51.18 MB 4 0.95 59.72 50.54 15.56 19.15
GPT-ZipQ,S (ours) 24.60 MB 4 0.99 58.14 50.54 15.03 19.23

GPTQ (Frantar et al., 2023) 692.66 MB 3 0 56.04 21.55 18.82 13.24
GPT-ZipQ (ours) 240.76 MB 3 0 61.30 50.67 22.31 18.48
GPT-ZipQ,S (ours) 55.32 MB 3 0.90 60.07 50.44 15.80 18.92
GPT-ZipQ,S (ours) 35.84 MB 3 0.95 58.67 50.58 15.31 19.25
GPT-ZipQ,S (ours) 22.31 MB 3 0.99 58.32 50.61 14.99 19.25

GPTQ (Frantar et al., 2023) 516.67 MB 2 0 0 0 0 0
GPT-ZipQ (ours) 146.23 MB 2 0 61.12 50.48 21.50 18.71
GPT-ZipQ,S (ours) 41.68 MB 2 0.90 58.67 50.54 15.39 19.25
GPT-ZipQ,S (ours) 32.99 MB 2 0.95 58.49 50.44 15.29 19.23
GPT-ZipQ,S (ours) 21.81 MB 2 0.99 58.49 50.47 15.09 19.36
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Table 4: Comparison of GPT-Zip with GPTQ (Frantar et al., 2023). Base model is OPT-1.3B. Finetuned model is OPT-1.3B
tuned on ID from NI dataset. Sparsity is the fraction of parameters that are set to zero. “# Bits” refers to the number of bits
the parameters are quantized into. The size of the base model is 2.6 GB for all baselines. The main evaluation task is WS
since the model is finetuned for WS.

Method Final Size # Bits Sparsity WS AV ID TLD
(Finetuned) (main task)

base model directly - - - 19.23 50.41 58.14 14.88
uncomp. finetuned model 2.6 GB 16 0 61.80 50.71 46.94 30.28

GPTQ (Frantar et al., 2023) 792.47 MB 4 0 56.05 50.71 40.81 22.20
GPT-ZipQ (ours) 447.49 MB 4 0 55.07 50.71 56.04 32.27
GPT-ZipQ,S (ours) 132.61 MB 4 0.90 30.60 50.15 58.84 23.05
GPT-ZipQ,S (ours) 88.24 MB 4 0.95 25.42 50.64 59.02 18.69
GPT-ZipQ,S (ours) 47.10 MB 4 0.99 21.17 50.90 58.67 15.80

GPTQ (Frantar et al., 2023) 692.14 MB 3 0 40.32 47.35 1.40 18.73
GPT-ZipQ (ours) 344.15 MB 3 0 54.76 50.71 56.39 32.22
GPT-ZipQ,S (ours) 121.86 MB 3 0.90 30.66 50.18 59.02 23.22
GPT-ZipQ,S (ours) 83.01 MB 3 0.95 25.84 50.77 59.02 18.66
GPT-ZipQ,S (ours) 44.70 MB 3 0.99 21.09 50.67 59.02 15.55

GPTQ (Frantar et al., 2023) 519.40 MB 2 0 0 0 0 0
GPT-ZipQ (ours) 201.86 MB 2 0 53.15 50.71 56.04 32.13
GPT-ZipQ,S (ours) 91.86 MB 2 0.90 27.73 50.28 59.19 18.62
GPT-ZipQ,S (ours) 65.93 MB 2 0.95 23.94 50.41 59.54 16.79
GPT-ZipQ,S (ours) 40.38 MB 2 0.99 20.68 50.48 58.84 15.39
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