
Under review as a conference paper at ICLR 2024

PERMUTATIONS IMPROVE PERFORMANCE IN
THREE-DIMENSIONAL BIN PACKING PROBLEM

Anonymous authors
Paper under double-blind review

ABSTRACT

In recent years, with the advent of deep learning and reinforcement learning, re-
searchers have begun to explore the use of deep reinforcement learning to solve
the three-dimensional bin packing problem. However, current innovations in the
3D bin packing problem primarily involve modifications to the network archi-
tecture or the incorporation of heuristic rules. Efforts to improve performance
from the perspective of function approximation are relatively scarce. As is well
known, one of the crucial theoretical foundations of deep learning is the abil-
ity of neural networks to approximate many functions. As such, we propose a
method based on approximation theory that uses permutations to better approx-
imate policy functions, which we refer to as Permutation Packing. Nonetheless,
due to the high memory requirements when the number of permutations is large,
we also propose a memory-efficient variation of Permutation Packing, which we
call Limited-Memory Permutation Packing. Both methods can be efficiently inte-
grated with existing models. We demonstrate the effectiveness of both Permuta-
tion Packing and Limited-Memory Permutation Packing from both theoretical and
experimental perspectives. Furthermore, based on our theoretical and experimen-
tal results, we find that our methods can effectively improve performance even
without retraining the model.

1 INTRODUCTION

Bin packing problems are typically described in terms of the geometric composition of large objects
and small items: the large object is defined as empty and needs to be filled with small items. The
primary focus is on improving the layout of items during the packing process to maximize benefits.
From an engineering perspective, the goal of the packing process is usually to maximize the utiliza-
tion of raw materials. Even minor improvements in layout can lead to significant material savings
and lower production costs, which is of great significance for large manufacturers. With the devel-
opment of the economy and society, the bin packing problems encountered in real life are becoming
increasingly complex, and people are seeking higher benefits. During the development of the entire
industry and other sectors, such as timber production, steel production, glass production, etc., trans-
portation naturally plays an important role. Therefore, more complex bin packing problems have
emerged and continue to evolve, such as combining two-dimensional bin packing problems with
vehicle routing problems, three-dimensional bin packing problems with constraints such as heavy
items not pressing lighter ones, and large items not pressing lighter ones, and their variants.

Deep Learning (DL) has achieved impressive success on a variety of traditional AI tasks. This in-
cludes classifying images, generating new images, and playing complex games. A common feature
of all these tasks is that they involve objects of very high dimensions. In fact, when expressed
in mathematical terms, the image classification problem is the problem of approximating a high-
dimensional function defined on image space with a set of discrete values corresponding to the
category of each image. The dimensionality of the input space is usually three times the number of
pixels in the image, where 3 is the dimensionality of the color space. The image generation problem
is the problem of generating samples from a distribution given a set of samples from an unknown
high-dimensional distribution. The game of Go problem is about solving a kind of Bellman equa-
tion in dynamic programming, because the optimal policy satisfies such an equation. For complex
games, the Bellman equation is formulated over a vast space. All of these are achieved by using DL
to approximate high-dimensional functions accurately.

1

Under review as a conference paper at ICLR 2024

In recent years, people have begun to explore the use of Deep Reinforcement Learning (DRL) to
solve combinatorial optimization problems. Various algorithms have been proposed to solve the
three-dimensional bin packing problem (Hu et al., 2017; Duan et al., 2019; Jiang et al., 2021; Zhang
et al., 2021; Li et al., 2022; Zhao et al., 2021b;a). However, the innovations of these methods fo-
cus on modifying the network architecture, defining new states, and adding heuristic rules. To our
knowledge, thus far, no one has demonstrated the effectiveness of their methods from the stand-
point of approximation theory. Therefore, we propose our method grounded in the foundations of
approximation theory. In the process of using DRL to solve the three-dimensional bin packing prob-
lem, the input to the neural network includes the length, width, and height of the box. Obviously,
when the length, width, and height of the box are interchanged, the output of an excellent neural
network should remain unchanged. Based on this point, combined with permutations, we propose
Permutation Packing. Also, as the number of permutations increases, the memory consumption of
Permutation Packing significantly increases. Therefore, we use the Taylor series to improve Per-
mutation Packing and propose Limited-Memory Permutation Packing. Permutation Packing and
Limited-Memory Permutation Packing can be easily integrated into existing models, and from the
experimental results, the performance of the model is improved even without retraining the model
after adding Permutation Packing or Limited-Memory Permutation Packing.

Our contributions are mainly in the following two aspects:

1. Combined with Permutation, we propose Permutation Packing, and we demonstrate the
effectiveness of Permutation Packing both theoretically and experimentally.

2. Using Taylor expansion, we provide an effective approximation of the policy function in
Permutation Packing. Based on this, we propose Limited-Memory Permutation Packing,
which significantly reduces memory consumption. Similarly, we demonstrate the effective-
ness of Limited-Memory Permutation Packing both theoretically and experimentally.

2 RELATED WORK

Algorithms to solve the three-dimensional bin packing problem can be broadly categorized into four
types: exact algorithms, approximation algorithms, metaheuristic algorithms, and learning-based
algorithms. Exact algorithms are few and far between, offering the highest quality of solutions but
at the slowest speeds, currently capable of handling at most 12 boxes. Approximation algorithms
are generally designed based on certain heuristic rules. These algorithms tend to solve problems rel-
atively quickly, but the quality of the solutions largely depends on the effectiveness of the heuristic
rules. A good heuristic rule requires the algorithm designer to have an in-depth understanding of
the bin packing problem. In some cases, we can also perform some theoretical analysis of approxi-
mation algorithms, such as time complexity and worst-case performance. Metaheuristic algorithms,
such as simulated annealing, genetic algorithms, particle swarm optimization, typically require a
longer time and cannot guarantee the quality of the solution. Their advantage is that they usually
improve the solution over time and perform well in the absence of good heuristic rules. Learning-
based algorithms, generally speaking, are faster than metaheuristic algorithms and can even be faster
than most approximation algorithms, but the model training time is long. When the length, width,
or height of the bin change, or when the distribution of the box’s length, width, or height varies, the
model must be retrained. Furthermore, due to the large action space, learning-based algorithms can
currently handle at most 120 boxes during training because of the complexity of the 3D BPP. Re-
cently proposed algorithms are basically hybrid algorithms and cannot be classified as a single type
among the four types of algorithms, but combine the advantages of two or three types of algorithms.

Due to space constraints, we will only introduce some representative papers for each type of algo-
rithm. The current most accurate algorithm (Silva et al., 2019) takes several hours to solve a packing
problem with only 12 items, which is obviously not efficient enough for practical use. For approx-
imation algorithms, Parreño et al. (2008) proposed Empty Maximal Space. Empty Maximal Space
strictly requires boxes to be placed only in certain specified positions. At the time, Empty Maximal
Space significantly improved packing efficiency. Even now, many algorithms only choose from a
few positions specified by Empty Maximal Space when deciding where to place boxes. There are
the most metaheuristic algorithms, with common metaheuristic algorithms being used, such as sim-
ulated annealing (Fenrich et al., 1989; Zhang et al., 2007), genetic algorithms (Kang et al., 2012;
Corcoran III & Wainwright, 1992; Whitley & Starkweather, 1990; Karabulut & İnceoğlu, 2004;

2

Under review as a conference paper at ICLR 2024

Gonçalves & Resende, 2013; Wu et al., 2010; de Andoin et al., 2022), ant colony optimization
Silveira et al. (2013), and quantum algorithms (De Andoin et al., 2022; Bozhedarov et al., 2023;
V. Romero et al., 2023). As for learning-based algorithms, Hu et al. (2017) was the first to use deep
reinforcement learning to solve the 3D BPP. The work of (Duan et al., 2019; 2022; Zhang et al.,
2021; Jiang et al., 2021; Zhao et al., 2021b;a) is based on (Hu et al., 2017), modifying the network
structure, redefining the state in the Markov process, and adding some heuristic rules.

3 BACKGROUND

3.1 APPROXIMATION THEORY

Compared to 5, 4 is closer to 3 because |4 − 3| < |5 − 3|. For functions f(x), g(x), and h(x),
assuming their domain is Ω ∈ Rm and their images are one-dimensional, we want to know which
of f and g is closer to h in Ω.

First, we define ||f(x)||Ω,p =
(∫

Ω
|f(x)|pdx

)1/p
. To evaluate whether f or g is closer to h, we

merely need to compare the magnitudes of ||f − h||Ω,p and ||g − h||Ω,p.

The values of p we commonly use are 1, 2, and +∞. When p = +∞, we have ||f ||Ω,p =
supx∈Ω |f(x)|.

3.2 DEFINITION OF THE PROBLEM

Figure 1: The coordinate system of bin.

All rectangular cuboid boxes are required to be packed into a rectangular cuboid bin. The length
and width of the bin are predetermined, but the height is flexible. The length and width of the bin
are denoted by L and W respectively. A coordinate system is employed to describe the positions of
the items and the bin, with (0, 0, 0) defined as the coordinates of the left-front-bottom vertex of the
bin. There are N boxes, with the length, width, and height of the i-th box denoted as li, wi, hi re-
spectively. Once all boxes are packed into the bin, the coordinates of each item are fixed. (xi, yi, zi)
represents the coordinates of the right-rear-top vertex of the i-th item. Figure 1 visually illustrates
the coordinate axes. The objective is to:

minH (1)

where H = maxi∈{1,2,...,N} zi.

The constraints include:

1. Boxes must be entirely within the bin.

2. Boxes must not overlap each other.

3. Diagonal placement of boxes is not permitted.

3

Under review as a conference paper at ICLR 2024

If the length, width, and height of all boxes are known from the outset, the problem is classified as
an offline 3D BPP. Conversely, if the dimensions of just one box are known at each decision stage,
indicating a fixed packing sequence, the problem is recognized as an online 3D BPP.

3.3 FORMULATING 3D BPP AS A MARKOV DECISION PROCESS

State: In the 3D BPP, the state can be divided into two categories: the state of the boxes that have
not yet been packed into the bin, usually described by their length, width, and height; and the state
of the boxes that have been packed into the bin. For the state of boxes that have been loaded into
the bin, in addition to being described by their length, width, and height, it also involves the internal
conditions of the bin. There are two main ways to describe the interior of the bin currently, one is
using a height map (Zhao et al., 2021a), which can be seen as an overhead view of the bin. Using
the concept of pixels in an image, each pixel in the height map represents a height; the other is to
directly give the position and orientation of each box in the bin (Li et al., 2022). We denote the state
at time t as St.

Action: In the offline 3D BPP, actions can be divided into three categories. The first is index action.
We select one from N boxes; the second is orientation action. As shown in Figure 2, there are 6
orientation actions; the third is position action. Position action can be regarded as choosing the x
and y coordinates of the bottom left vertex of the box. As for why the z coordinate is not involved,
if the same x and y coordinates correspond to multiple z coordinates, the smallest z coordinate is
chosen by default. In the online 3D BPP, since the packing order is fixed, there is no index action,
only orientation action and position action. We denote the action at time t as at. The decision on
which action to take is determined by the policy function π(St), which is approximated by a neural
network. The output of the neural network is a probability vector, each component of which is non-
negative, and the sum of all components is 1. Each component represents the probability of taking
the corresponding action.

Reward: The reward is set as the loading rate ru =
∑N

i=1 liwihi

LWH .

x
0.0 0.5 1.0 1.5 2.0 2.5 3.0

y
0.00.51.01.52.02.53.0

z

0.0
0.5
1.0
1.5
2.0
2.5
3.0

x
0.0 0.5 1.0 1.5 2.0 2.5 3.0

y
0.00.51.01.52.02.53.0

z

0.0
0.5
1.0
1.5
2.0
2.5
3.0

x
0.0 0.5 1.0 1.5 2.0 2.5 3.0

y
0.00.51.01.52.02.53.0

z

0.0
0.5
1.0
1.5
2.0
2.5
3.0

x
0.0 0.5 1.0 1.5 2.0 2.5 3.0

y
0.00.51.01.52.02.53.0

z

0.0
0.5
1.0
1.5
2.0
2.5
3.0

x
0.0 0.5 1.0 1.5 2.0 2.5 3.0

y
0.00.51.01.52.02.53.0

z

0.0
0.5
1.0
1.5
2.0
2.5
3.0

x
0.0 0.5 1.0 1.5 2.0 2.5 3.0

y
0.00.51.01.52.02.53.0

z

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Figure 2: Six orientations.

4 METHOD

Firstly, we provide the definition of permutation.

Definition 1 (permutation) A permutation of a set S is defined as a bijection from S to itself.

We assume S = {1, 2, ..., n} and consider a permutation σ of S, where σ(i) = ji. We define
the action of a permutation on a vector such that if x = (x1, x2, ..., xn) ∈ Rn, then σ(x) =
(xj1 , xj2 , ..., xjn). Following this, we define a fixed permutation.

Definition 2 (fixed permutation) f is a function, Ω ⊆ Rn, x ∈ Ω and f(x) ∈ R. A permutation
σ is said to be fixed permutation of f in Ω if f(σ(x)) = f(x),∀x ∈ Ω.

It is clear that the identity mapping belongs to the category of fixed permutations. Subsequently, we
present the following theorem:

Theorem 1 f∗, f is a function, Ω ⊆ Rn, x ∈ Ω, f(x) ∈ R and p ≥ 1. σ1, σ2, ..., σm is fixed
permutation of f∗ in Ω. ∀i ∈ {1, 2...,m}, σi(Ω) = Ω. f, f∗,Ω is measurable. ||f ||Ω,p < +∞ and
||f∗||Ω,p < +∞. Then we have

||
∑m

i=1 f(σi(x))

m
− f∗(x)||Ω,p ≤ ||f(x)− f∗(x)||Ω,p (2)

4

Under review as a conference paper at ICLR 2024

If p > 1 and measure of Ω is larger than 0 ,Equality holds if and only if f(σ1(x) −
f∗(σ1(x)), f(σ2(x))− f∗(σ2(x)), ..., f(σm(x))− f∗(σm(x)) are proportional.

In Theorem 1, f can be viewed as a neural network and f∗ is considered as the ideal policy function.
Theoretically, when the length, width, and height of a box are interchanged, the output of the ideal
policy function should remain the same since the box itself does not change. The input to a neural
network can be considered as a vector encompassing the length, width, and height of all boxes. The
swapping of the dimensions – length, width, and height – can be viewed as a form of permutation.
After applying this permutation to the input, the output remains unchanged. This implies that the
ideal policy function possesses fixed permutations that are not identity mapping.

As for the conditions under which equality holds in Theorem 1, given that f is a neural net-
work, it is virtually impossible to meet the condition that f(σ1(x) − f∗(σ1(x)), f(σ2(x)) −
f∗(σ2(x)), ..., f(σm(x)) − f∗(σm(x)) are proportional, as long as these m fixed permutations
are not all identical. Hence, using

∑m
i=1 f(σi(x))

m to approximate the ideal policy function is more
effective.

Based on this, we designed Permutation Packing, as shown in Algorithm 1. In Algorithm 1, Ran-
domInstance() denotes the random generation of a sample. SampleRollout(πt,i) is indicative of an
action being randomly chosen based on πt,i, with the probability of each action being chosen equal
to the numerical value of its corresponding component. πt,i[at,i] represents the at,i-th component
of πt,i. The term ru(SN+1,i) represents the loading rate when the state is ru(SN+1,i), while b(S1,i)
denotes the baseline for the sample S1,i.

Algorithm 1 Permutation Packing

Input: neural network f(S;θ), batch size B, number of Epochs E, significance α, the quantity of
boxes N , fixed permutation σ1, σ2, ..., σm

1: Init θ
2: for epoch = 1, 2, .., E do
3: S1,i ← RandomInstance(), ∀i ∈ {1, 2, ..., B}
4: for t = 1, .., N do
5: πt,i ←

∑m
j=1 f(σj(St,i),θ)

m , ∀i ∈ {1, 2, ..., B}
6: at,i ← SampleRollout(πt,i), ∀i ∈ {1, 2, ..., B}
7: According to at,i, Update St+1,i;
8: end for
9: ∇L← 1

B

∑B
i=1

(
b(S1,i)− ru(SN+1,i))∇θ(

∑N
t=1 log πt,i[at,i])

)
10: θ ← Adam(θ,∇L)
11: end for

We observe that in comparison to the original algorithm, which requires only one input, Permutation
Packing involves m inputs. When m is large, this significantly increases memory consumption.
Hence, with a view to reducing memory usage, we aim to preserve the single-input characteristic of
the original algorithm.

Theorem 2 f is a function Ω ⊆ Rn, xi ∈ Ω, i = 1, 2, ...,m. x0 =
∑m

i=1 xi

m f is 3 times differen-
tiable at x0.∑m

i=1 f(xi)

m
= f(x0) +

1

2m

m∑
i=1

(xi − x0)
THf (x0)xi + o(max

i∈{1,2,...,m}
||xi − x||3) (3)

where Hf (x0) denotes the Hessian matrix of function f at point x0.

According to Theorem 2, we can approximate
∑m

i=1 f(σi(x))

m with f(
∑m

i=1 σi(x)

m)+ 1
2m

∑m
i=1(σi(x)−∑m

i=1 σi(x)

m)THf (
∑m

i=1 σi(x)

m)σi(x).

However, in Permutation Packing, the last layer of the neural network f(S;θ) is a Softmax function,
meaning each component of f(σj(St,i),θ) , j = 1, 2, ...,m is non-negative and the sum of all

5

Under review as a conference paper at ICLR 2024

components equals 1. Therefore, for πt,i =
∑m

j=1 f(σj(St,i),θ)

m , each component of πt,i is non-
negative and the sum of all components equals 1.

For f(
∑m

i=1 σi(x)

m) + 1
2m

∑m
i=1(σi(x)−

∑m
i=1 σi(x)

m)THf (
∑m

i=1 σi(x)

m)σi(x), it’s challenging to en-
sure that each component is non-negative and the sum equals 1. As a result, we consider the neural
network without the last Softmax layer and introduce the Limited-Memory Permutation Packing,
as shown in Algorithm 2. Computing the Hessian Matrix is challenging in common deep learning
frameworks. For Hg(

∑m
j=1 σj(St,i)

m ,θ) in Algorithm 2, we can employ Equation 4 to avoid direct
computation of the Hessian Matrix.

xTHf (x0)y = ∇
(
xT∇f(x0)

)
y (4)

In Equation 4, x, y are vectors composed of constants, and∇f(x0) denotes the gradient of function
f at x0. By applying Equation 4, we can achieve our objective by simply calculating the gradient
twice.

Algorithm 2 Limited-Memory Permutation Packing

Input: neural network without last Softmax layer g(S;θ), batch size B, number of Epochs E, steps
per epoch T , significance α, the quantity of boxes N , fixed permutation σ1, σ2, ..., σm

1: Init θ
2: for epoch = 1, 2, .., E do
3: S1,i ← RandomInstance()
4: for t = 1, .., N do
5: πt,i ← Softmax

(
g(

∑m
j=1 σj(St,i)

m ,θ) + 1
2m

∑m
j=1(σj(St,i) −

∑m
j=1 σj(St,i)

m)T

Hg(
∑m

j=1 σj(St,i)

m ,θ)σj(St,i)
)

, ∀i ∈ {1, 2, ..., B}
6: at,i ← SampleRollout(πt,i)
7: According to at,i, Update St+1,i

8: end for
9: ∇L← 1

B

∑B
i=1

(
b(S1,i)− ru(SN+1,i))∇θ(

∑N
t=1 log πt,i[at,i])

)
10: θ ← Adam(θ,∇L)
11: end for

5 EXPERIMENT

5.1 EXPERIMENTAL PARAMETER SETTING

We instantiated our approach on two state-of-the-art network architectures, namely RCQL (Li et al.,
2022) and attend2pack (Zhang et al., 2021).

Both RCQL and attend2pack utilized Adam (Kingma & Ba, 2014) as the optimizer, and the training
was guided by the Rollout algorithm (Kool et al., 2019). When the p value in the Rollout algorithm
exceeded 0.95, the learning rate was reduced by 5%. The Rollout algorithm was executed for 500
epochs, each consisting of 10 steps, a batch size of 64, and a significance level of 0.05. Both models
employed LayerNorm (Ba et al., 2016) for normalization. They incorporated multi-head attention
layers or their variants, with 8 heads, each of size 16, and 3 such layers or variants. The feedforward
layer consisted of two fully connected layers, with output dimensions of 512 and 128, and activation
functions being ReQUr (Yu et al., 2021) and ReQU (Li et al., 2019). The test set encompassed
16384 samples, with the lengths, widths, and heights of the boxes in both the test and training sets
randomly generated with equal probability from integers between 10 and 50.

For attend2pack-specific hyperparameters, the initial learning rate was set at 10−5. The C value
from the original paper (Zhang et al., 2021) was 10. The model included 3 convolutional layers, all
with 4 output channels. The first convolutional layer had 2 input channels, while the second and
third convolutional layers had 4 input channels.

6

Under review as a conference paper at ICLR 2024

For RCQL-specific hyperparameters, the initial learning rate was 10−4, the length of the recurrent
FIFO queue was 20, the context size of the packed state was 30, and the context size of the unpacked
state was minN, 100.

For St, we have:

St = (l1, l2, ..., lN , w1, w2, ..., wN , h1, h2, ..., hN , ...)

We used a maximum of six fixed permutations, where σ1 is the identity mapping, and the other five
fixed permutations are as follows:

σ2(St) = (l1, l2, ..., lN , h1, h2, ..., hN , w1, w2, ..., wN , ...)

σ3(St) = (w1, w2, ..., wN , l1, l2, ..., lN , h1, h2, ..., hN , ...)

σ4(St) = (w1, w2, ..., wN , h1, h2, ..., hN , l1, l2, ..., lN , ...)

σ5(St) = (h1, h2, ..., hN , l1, l2, ..., lN , w1, w2, ..., wN , ...)

σ6(St) = (h1, h2, ..., hN , w1, w2, ..., wN , l1, l2, ..., lN , ...)

In Tables 1 and 2, we only used σ1 and σ2. In Table 3, when the number of fixed permutations is m,
we used σ1, σ2, ..., σm.

Our comparison encompassed both traditional and learning-based algorithms: 1) Genetic Algorithm
with Deepest Bottom Left Heuristic (GA+DBLF) (Wu et al., 2010), where the population size and
number of generations were set at 120 and 200 respectively; 2) Extreme Point (EP) (Crainic et al.,
2008); 3) Largest Area Fit First (LAFF) (Gürbüz et al., 2009); 4) EB-AFIT packing algorithm
(Baltacioglu, 2001); 5) MTSL (Duan et al., 2019); 6) Multimodal (MM) (Jiang et al., 2021); 7)
attend2pack (A) (Zhang et al., 2021); 8) RCQL (R) (Li et al., 2022).

5.2 EXPERIMENTAL RESULTS

Table 1: The experimental outcomes for varying N with L = 120,W = 100. Both figures outside
and inside parentheses exclude the % symbol. The figure outside the parentheses denotes the aver-
age loading rate following seven experimental repetitions, while the figure within the parentheses
signifies the standard deviation.

N 25 50 100

GA+DBLF 60.24(1.74) 62.43(1.61) 65.87(1.76)
EP 62.64(0) 61.69(0) 62.87(0)
LAFF 62.48(0) 61.40(0) 60.67(0)
EB-AFIT 61.36(0) 60.71(0) 63.06(0)
MTSL 65.48(2.04) 65.71(2.82) 51.19(2.39)
MM 68.00(2.08) 68.32(2.60) 68.65(1.58)
A 72.96(1.38) 74.29(1.55) 73.40(3.49)
A+P(Our) 74.15(2.45) 74.98(2.23) 74.38(2.52)
A+P+T(Our) 76.59(2.38) 76.51(1.53) 76.76(2.03)
A+LP(Our) 74.17(2.09) 74.65(2.17) 74.22(1.67)
A+LP+T(Our) 76.46(2.31) 76.09(1.45) 76.39(2.05)
R 69.76(2.57) 70.37(1.78) 71.06(3.81)
R+P(Our) 71.57(1.05) 71.59(2.28) 72.77(1.77)
R+P+T(Our) 73.46(1.22) 73.84(2.98) 74.00(2.56)
R+LP(Our) 71.24(2.98) 71.24(1.78) 72.40(2.20)
R+LP+T(Our) 73.28(1.96) 73.58(2.33) 73.66(1.78)

7

Under review as a conference paper at ICLR 2024

Table 2: The experimental outcomes for varying L,W with N = 100. The numerical representa-
tions in the table retain the same meanings as those outlined in Table 1.

(L,W) (140,120) (160,140) (180,160)

GA+DBLF 60.14(1.96) 63.34(3.78) 61.69(2.29)
EP 62.93(0) 65.18(0) 64.22(0)
LAFF 61.42(0) 62.46(0) 62.15(0)
EB-AFIT 62.49(0) 60.39(0) 62.66(0)
MTSL 59.97(3.89) 61.13(2.27) 55.18(1.84)
MM 70.74(2.90) 69.06(3.17) 70.28(3.35)
A 73.88(2.02) 74.92(2.60) 74.79(2.30)
A+P(Our) 75.86(1.71) 75.18(2.24) 75.61(1.49)
A+P+T(Our) 77.56(1.03) 77.36(1.52) 77.60(1.39)
A+LP(Our) 75.31(2.82) 74.51(2.29) 75.62(2.85)
A+LP+T(Our) 77.13(2.01) 77.22(2.69) 77.57(2.26)
R 72.61(1.70) 71.78(2.67) 72.65(2.31)
R+P(Our) 73.37(2.86) 73.16(2.96) 73.49(1.63)
R+P+T(Our) 75.52(1.99) 75.58(2.39) 76.06(1.23)
R+LP(Our) 73.29(1.18) 72.88(1.99) 73.03(2.58)
R+LP+T(Our) 75.15(2.13) 75.18(2.90) 75.48(2.89)

Tables 1 and 2 present the results of our experiments. In our methodology, ”P” signifies Permu-
tation Packing, while ”LP” stands for Limited-Memory Permutation Packing. The absence of ”T”
implies that our method is only used during the testing stage, while the presence of ”T” indicates
that our method is employed during both the training and testing stages. From table, it is evident that
the strategy ”A+LP+T” delivers the best performance across various settings of ”N”, ”L” and ”W”.
Comparing Permutation Packing and Limited-Memory Permutation Packing, we find that the per-
formance of Limited-Memory Permutation Packing is not as good. This is due to Limited-Memory
Permutation Packing being an approximation of Permutation Packing. Next, when we compare the
effects of incorporating our method solely during the testing stage versus both stages, it is clear that
using our method during both stages outperforms using it solely in the testing stage. Finally, com-
paring the effects of integrating our method only during the testing stage with the original model
shows that even when our method is applied only during testing, performance is enhanced. Hence,
even if one does not wish to retrain the model, using our method can still boost its performance.

Table 3 presents the experimental results for varying numbers of fixed permutations. As can be
observed, increasing the number of fixed permutations can enhance the model’s performance, albeit
the magnitude of improvement is not substantial.

Table 3: The experimental outcomes for varying m with L = 120,W = 100, N = 100. Both
figures outside and inside parentheses exclude the % symbol. The figure outside the parentheses
denotes the average loading rate following seven experimental repetitions, while the figure within
the parentheses signifies the standard deviation.

m 2 3 4 5 6

A+P 74.38(2.52) 74.71(1.41) 74.82(1.20) 74.94(2.92) 75.08(2.94)
A+P+T 76.76(2.03) 76.87(2.18) 76.88(2.25) 76.96(1.10) 77.07(1.43)
A+LP 74.22(1.67) 74.67(2.11) 74.81(2.87) 74.86(2.56) 74.94(2.29)
A+LP+T 76.39(2.05) 76.63(1.20) 76.83(2.17) 76.96(1.93) 77.00(2.67)

8

Under review as a conference paper at ICLR 2024

Table 4 provides the memory usage during training for different numbers of fixed permutations. It
is evident that as m increases, the memory consumption of Limited-Memory Permutation Packing
is significantly less than that of Permutation Packing.

Table 4: The details of memory consumption during model training when the batch size is set to 32
and N = 100. Under these conditions, the memory usage of the original model stands at 1.4G.

m 2 3 4 5 6

A+P+T 2.1G 3.1G 4.0G 5.0G 5.9G
A+LP+T 1.4G 1.6G 1.8G 1.9G 2.1G

Table 5 presents the per-step training time for a batch size of 64, with L = 120, W = 100, and
N = 100. It can be observed that the training time of Permutation Packing aligns closely with
that of the original model, while the training time for the Limited-Memory Permutation Packing is
approximately 7% longer than the original model.

Table 5: The per-step training time for a batch size of 64, with L = 120, W = 100, and N = 100.

method A A+P+T A+LP+T R R+P+T R+LP+T

time(s) 510 518 542 428 441 462

6 CONCLUSION

In this paper, we propose Permutation Packing and Limited-Memory Permutation Packing based on
approximation theory. Both methods can be seamlessly integrated with existing models to improve
performance. Remarkably, considerable performance enhancement is still achieved even without
retraining the models. Although the performance of Limited-Memory Permutation Packing is less
than that of Permutation Packing, its memory consumption is significantly reduced when the number
of permutations is high.

Theoretically speaking, our method is not only applicable to three-dimensional bin packing prob-
lems but can also be extended to other tasks. For instance, it can be seamlessly extended to two-
dimensional bin packing problems, where the ideal strategy function’s output should remain in-
variant when the length and width inputs to the network are swapped in the two-dimensional bin
packing problem. It also has the potential for straightforward extension to other domains, in im-
age classification problems, image data is typically square. For most datasets, images rotated by
π
2 , π,

3π
2 should belong to the same class, and these rotations can be viewed as permutations. In ad-

dressing partial differential equation problems using neural networks, we can identify fixed permu-
tations of non-identity mapping in some partial differential equations. For example, in the equation
∆u = 0, (x, y) ∈ Ω = [0, 1] × [0, 1] with boundary conditions u(x, y) = f(x, y), (x, y) ∈ ∂Ω,
where f(x, y) is known and f(x, y) = f(y, x), we can infer that u(x, y) = u(y, x).

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv:1607.06450,
2016.

Erhan Baltacioglu. The distributer’s three-dimensional pallet-packing problem: A human
intelligence-based heuristic approach. Technical report, AIR FORCE INST OF TECH WRIGHT-
PATTERSON AFB OH SCHOOL OF ENGINEERING AND MANAGEMENT, 2001.

9

Under review as a conference paper at ICLR 2024

AA Bozhedarov, AS Boev, SR Usmanov, GV Salahov, EO Kiktenko, and AK Fedorov. Quantum and
quantum-inspired optimization for solving the minimum bin packing problem. arXiv:2301.11265,
2023.

Arthur L Corcoran III and Roger L Wainwright. A genetic algorithm for packing in three dimen-
sions. In Proceedings of the 1992 ACM/SIGAPP symposium on Applied computing: technological
challenges of the 1990’s, pp. 1021–1030, 1992.

Teodor Gabriel Crainic, Guido Perboli, and Roberto Tadei. Extreme point-based heuristics for three-
dimensional bin packing. INFORMS Journal on Computing, 20(3):368–384, 2008.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Mikel Garcia De Andoin, Izaskun Oregi, Esther Villar-Rodriguez, Eneko Osaba, and Mikel Sanz.
Comparative benchmark of a quantum algorithm for the bin packing problem. In 2022 IEEE
Symposium Series on Computational Intelligence (SSCI), pp. 930–937, 2022.

Mikel Garcia de Andoin, Eneko Osaba, Izaskun Oregi, Esther Villar-Rodriguez, and Mikel Sanz.
Hybrid quantum-classical heuristic for the bin packing problem. In Proceedings of the Genetic
and Evolutionary Computation Conference Companion, pp. 2214–2222, 2022.

Olivier Delalleau and Yoshua Bengio. Shallow vs. deep sum-product networks. Advances in neural
information processing systems, 24, 2011.

Jiahui Duan, Xialiang Tong, Fei Ni, Zhenan He, Lei Chen, and Mingxuan Yuan. A data-driven col-
umn generation algorithm for bin packing problem in manufacturing industry. arXiv:2202.12466,
2022.

Lu Duan, Haoyuan Hu, Yu Qian, Yu Gong, Xiaodong Zhang, Jiangwen Wei, and Yinghui Xu. A
multi-task selected learning approach for solving 3d flexible bin packing problem. In Proceedings
of the 18th International Conference on Autonomous Agents and MultiAgent Systems, pp. 1386–
1394, 2019.

Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks. In Conference
on learning theory, pp. 907–940, 2016.

R Fenrich, R Miller, and QF Stout. Hypercube algorithms for some np-hard packing problems. In
Proceedings of the Fourth Conference on Hypercube Concurrent Computers and Applications,
pp. 769–76, 1989.

José Fernando Gonçalves and Mauricio GC Resende. A biased random key genetic algorithm for 2d
and 3d bin packing problems. International Journal of Production Economics, 145(2):500–510,
2013.

M Zahid Gürbüz, Selim Akyokuş, İbrahim Emiroğlu, and Aysun Güran. An efficient algorithm for
3d rectangular box packing. 2009.

Haoyuan Hu, Xiaodong Zhang, Xiaowei Yan, Longfei Wang, and Yinghui Xu. Solving a new 3d
bin packing problem with deep reinforcement learning method. arXiv:1708.05930, 2017.

Yuan Jiang, Zhiguang Cao, and Jie Zhang. Learning to solve 3-d bin packing problem via deep
reinforcement learning and constraint programming. IEEE transactions on cybernetics, 2021.

Kyungdaw Kang, Ilkyeong Moon, and Hongfeng Wang. A hybrid genetic algorithm with a new
packing strategy for the three-dimensional bin packing problem. Applied Mathematics and Com-
putation, 219(3):1287–1299, 2012.

Korhan Karabulut and Mustafa Murat İnceoğlu. A hybrid genetic algorithm for packing in 3d with
deepest bottom left with fill method. In International Conference on Advances in Information
Systems, pp. 441–450, 2004.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv:1412.6980,
2014.

10

Under review as a conference paper at ICLR 2024

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
ICLR, 2019.

Bo Li, Shanshan Tang, and Haijun Yu. Better approximations of high dimensional smooth functions
by deep neural networks with rectified power units. Communications in Computational Physics,
27(2):379–411, 2019.

Dongda Li, Zhaoquan Gu, Yuexuan Wang, Changwei Ren, and Francis CM Lau. One model packs
thousands of items with recurrent conditional query learning. Knowledge-Based Systems, 235:
107683, 2022.

Shiyu Liang and R. Srikant. Why deep neural networks for function approximation? In International
Conference on Learning Representations, 2017.

Hrushikesh N Mhaskar. Neural networks for optimal approximation of smooth and analytic func-
tions. Neural computation, 8(1):164–177, 1996.

Francisco Parreño, Ramón Alvarez-Valdés, Jose Manuel Tamarit, and Jose Fernando Oliveira. A
maximal-space algorithm for the container loading problem. INFORMS Journal on Computing,
20(3):412–422, 2008.

Philipp Petersen and Felix Voigtlaender. Optimal approximation of piecewise smooth functions
using deep relu neural networks. Neural Networks, 108:296–330, 2018.

Everton Fernandes Silva, Tony Wauters, et al. Exact methods for three-dimensional cutting and
packing: A comparative study concerning single container problems. Computers & Operations
Research, 109:12–27, 2019.

Miguel Espinheira Silveira, Susana Margarida Vieira, and João Miguel Da Costa Sousa. An aco
algorithm for the 3d bin packing problem in the steel industry. In International Conference on In-
dustrial, Engineering and Other Applications of Applied Intelligent Systems, pp. 535–544, 2013.

Matus Telgarsky. Representation benefits of deep feedforward networks. arXiv:1509.08101, 2015.

Matus Telgarsky. Benefits of depth in neural networks. In Conference on learning theory, pp.
1517–1539, 2016.

Sebastián V. Romero, Eneko Osaba, Esther Villar-Rodriguez, Izaskun Oregi, and Yue Ban. Hybrid
approach for solving real-world bin packing problem instances using quantum annealers. Scien-
tific Reports, 13(1):11777, 2023.

Qingcan Wang and Weinan E. Exponential convergence of the deep neural network approximation
for analytic functions. Science China Mathematics, 61(10):1733–1740, 2018.

Darrell Whitley and Timothy Starkweather. Genitor ii: A distributed genetic algorithm. Journal of
Experimental & Theoretical Artificial Intelligence, 2(3):189–214, 1990.

Yong Wu, Wenkai Li, Mark Goh, and Robert De Souza. Three-dimensional bin packing problem
with variable bin height. European journal of operational research, 202(2):347–355, 2010.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks, 94:
103–114, 2017.

Haijun Yu, Xinyuan Tian, E Weinan, and Qianxiao Li. Onsagernet: Learning stable and interpretable
dynamics using a generalized onsager principle. Physical Review Fluids, 6(11):114402, 2021.

Defu Zhang, Lijun Wei, Qingshan Chen, and Huowang Chen. Combinatorial heuristic algorithm for
three-dimensional binning problem. Journal of Software, 18(9):2083–2089, 2007.

Jingwei Zhang, Bin Zi, and Xiaoyu Ge. Attend2pack: Bin packing through deep reinforcement
learning with attention. arXiv:2107.04333, 2021.

Hang Zhao, Qijin She, Chenyang Zhu, Yin Yang, and Kai Xu. Online 3d bin packing with con-
strained deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 35, pp. 741–749, 2021a.

Hang Zhao, Yang Yu, and Kai Xu. Learning efficient online 3d bin packing on packing configuration
trees. In International Conference on Learning Representations, 2021b.

11

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 PROOF OF THEOREM 1

Proof Let h(x) = f(x)− f∗(x), ∀i ∈ {1, 2, ...,m}

||h(x)||Ω,p =

(∫
Ω

|h(x)|pdx
) 1

p

=

(∫
Ω

|h(σi(x))|pdσi(x)

) 1
p

=

(∫
σ−1
i (Ω)

|h(σi(x))|p
∣∣∣∣det(∂σi(x)

∂x
)

∣∣∣∣ dx)
) 1

p

=

(∫
Ω

|h(σi(x))|pdx)
) 1

p

= ||h(σi(x))||Ω,p

(5)

In Equation 5, the fourth equality sign is justified by the properties of the Jacobian matrix ∂σi(x)
∂x .

Given the definition of permutation, each row and column of this matrix contains only one element
with the value 1, while all other elements are 0. According to the definition of the determinant, the
determinant of ∂σi(x)

∂x is either 1 or -1. Thus, the absolute value of the determinant of ∂σi(x)
∂x equals

1. Considering that σi is a bijection and σi(Ω) = Ω, it can be shown that Ω = σ−1
i (Ω).

||
∑m

i=1 f(σi(x))

m
− f∗(x)||Ω,p

=

(∫
Ω

∣∣∣∣∑m
i=1 f(σi(x))

m
− f∗(x)

∣∣∣∣p dx)
1
p

=

(∫
Ω

∣∣∣∣∑m
i=1 f(σi(x))

m
− mf∗(x)

m

∣∣∣∣p dx)
1
p

=

(∫
Ω

∣∣∣∣∑m
i=1 f(σi(x))

m
−
∑m

i=1 f
∗(σi(x))

m

∣∣∣∣p dx)
1
p

=

(∫
Ω

∣∣∣∣∑m
i=1 h(σi(x))

m

∣∣∣∣p dx)
1
p

=
1

m

(∫
Ω

∣∣∣∣∣
m∑
i=1

h(σi(x))

∣∣∣∣∣
p

dx

) 1
p

=
1

m
||

m∑
i=1

h(σi(x))||Ω,p

≤ 1

m

(
m∑
i=1

||h(σi(x))||Ω,p

)
= ||h(x)||Ω,p = ||f(x)− f∗(x)||Ω,p

(6)

In Equation 6, the ” ≤ ” is a manifestation of the Minkowski inequality. Within the context of the
Minkowski inequality, for p > 1 and the measure of Ω greater than zero, equality is achieved if
and only if h(σ1(x)), h(σ2(x)), ..., h(σm(x)) are all proportional to each other. The penultimate
equality arises from the application of Equation 5.□

A.2 PROOF OF THEOREM 2

Proof Firstly, we conduct a Taylor expansion of function f at point x0:

f(x) = f(x0) +∇f(x0)
T (x− x0) +

1

2
(x− x0)

THf (x0)(x− x0) + o(||x− x0||3) (7)

12

Under review as a conference paper at ICLR 2024

Here,∇f(x0) denotes the gradient of f at x0. Thus, we obtain:
m∑
i=1

f(xm) =

m∑
i=1

(
f(x0) +∇f(x0)

T (xi − x0) +
1

2
(xi − x0)

THf (x0)(xi − x0)

+ o(||xi − x0||3)
)

= mf(x0) +∇f(x0)
T (

m∑
i=1

xi −mx0) +
1

2

m∑
i=1

(xi − x0)
THf (x0)(xi − x0)

+ o(max
i∈{1,2,...,m}

||xi − x0||3)

= mf(x0) +∇f(x0)
T (mx0 −mx0) +

1

2

m∑
i=1

(xi − x0)
THf (x0)(xi − x0)

+ o(max
i∈{1,2,...,m}

||xi − x0||3)

= mf(x0) +
1

2

m∑
i=1

(xi − x0)
THf (x0)(xi − x0) + o(max

i∈{1,2,...,m}
||xi − x0||3)

= mf(x0) +
1

2

m∑
i=1

(xi − x0)
THf (x0)xi

− 1

2

m∑
i=1

(xi − x0)
THf (x0)x0 + o(max

i∈{1,2,...,m}
||xi − x0||3)

= mf(x0) +
1

2

m∑
i=1

(xi − x0)
THf (x0)xi

+
1

2
(mx0 −

m∑
i=1

xi)
THf (x0)x0 + o(max

i∈{1,2,...,m}
||xi − x0||3)

= mf(x0) +
1

2

m∑
i=1

(xi − x0)
THf (x0)xi + o(max

i∈{1,2,...,m}
||xi − x0||3)

(8)

□

A.3 GENERALIZABILITY

In our research, we primarily examine the model’s generalizability in two aspects: one is the gener-
alization over the distribution of box dimensions (length, width, height), and the other is the gener-
alization over the amount of boxes.

Table 6 presents the results of the model’s generalizability over box dimensions, with the base model
parameters set as L = 120,W = 100, N = 100. The first row labeled a, b denotes that the lengths,
widths, and heights of the boxes in the test dataset are generated from a uniform distribution of
integers ranging from a to b. We observe that, akin to other neural networks, the neural policy
exhibits a certain degree of generalizability within a particular range. Despite the absence of boxes
with dimensions of 5-9 and 51-55 in the training data, the model still performs remarkably well.
However, when the divergence between the training data distribution and the testing data distribution
becomes significant, performance degrades for both the base model and our proposed model.

Table 7 illustrates the model’s generalizability with respect to the number of boxes, with the base
model parameters set as L = 120,W = 100, N = 100. The first row marked Nt refers to the
number of boxes in the test set. We find that when Nt = 200, the model’s generalizability is
relatively commendable. Nevertheless, when Nt = 400 or Nt = 800, the model’s performance
tends to deteriorate.

13

Under review as a conference paper at ICLR 2024

Table 6: The experimental outcomes for varying m with L = 120,W = 100, N = 100. Both
figures outside and inside parentheses exclude the % symbol. The figure outside the parentheses
denotes the average loading rate following seven experimental repetitions, while the figure within
the parentheses signifies the standard deviation.

a, b 5,55 3,60 1,70

A 73.40(1.55) 71.09(2.44) 68.02(2.54)
A+P+T 76.37(1.02) 73.35(2.36) 69.27(2.93)
A+LP+T 76.08(3.70) 74.08(1.85) 69.39(3.17)

Table 7: The experimental outcomes for varying m with L = 120,W = 100, N = 100. Both
figures outside and inside parentheses exclude the % symbol. The figure outside the parentheses
denotes the average loading rate following seven experimental repetitions, while the figure within
the parentheses signifies the standard deviation.

Nt 200 400 800

A 72.84(2.16) 70.78(2.37) 64.97(5.09)
A+P+T 75.60(3.83) 71.58(2.06) 66.30(3.79)
A+LP+T 75.10(2.39) 71.37(2.00) 65.40(4.68)

14

	Introduction
	Related Work
	background
	Approximation theory
	Definition of the problem
	Formulating 3D BPP as a Markov Decision Process

	Method
	Experiment
	EXPERIMENTAL PARAMETER SETTING
	EXPERIMENTAL results

	conclusion
	Appendix
	Proof of Theorem 1
	Proof of Theorem 2
	generalizability

