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ABSTRACT

In this work, we propose an alternative to the Marginal Likelihood (MaL) ob-
jective for learning representations with latent variable models, Complete Latent
Likelihood (CoLLike). We analyze the objectives from the perspective of match-
ing joint distributions. We show that MaL corresponds to a particular KL diver-
gence between some target joint distribution and the model joint. Furthermore, the
properties of the target joint explain such major malfunctions (from the represen-
tation learning perspective) of MaL as uninformative latents (posterior collapse)
and high deviation of the aggregated posterior from the prior. In the CoLLike
approach, we use a sample from the prior to construct a family of target joint
distributions, which properties prevent these drawbacks. We utilize the complete
likelihood both to choose the target from this family and to learn the model. We
confirm our analysis by experiments with low-dimensional latents, which also in-
dicate that it is possible to achieve high-accuracy unsupervised classification using
CoLLike objective.

1 INTRODUCTION

In the latent variable setting, the model defines a joint distribution over both observed variables x
and latent variables z, while the training data contains only observed variables. The problem can be
treated as an unknown z|x target conditional distribution. There are at least two possible solutions to
this problem: try to come up with a meaningful target z|x distribution and train the model similarly
to a supervised setting, or give up and focus on matching only marginals in the x domain. The latter
is the choice of the MaL objective. In this work, we follow the former approach. However, instead
of picking up a single target conditional we construct an entire family of possible distributions and
use the model likelihood to decide which conditional to use as a target.

To construct a family of possible conditionals, we use a sample from prior of the same size as the
dataset in the observed domain. All possible assignments of observed samples to latent ones span a
family of empirical joint distributions. This can be represented as permutations of the latent samples.
Despite the size of the permutations set being tremendous and growing as a factorial of the dataset
size, the search of the permutation with the best likelihood can be done efficiently using combina-
torial optimization. The resulting optimization procedure resembles the expectation maximization
algorithm (Dempster et al., 1977), where expectation is replaced with the combinatorial assignment
problem. Furthermore, since the proposed algorithm uses gradient-free optimization for obtaining
the target distribution, the objective can be seamlessly applied to both continuous and discrete latent
variables, while the discrete latents case is challenging for approaches based on the MaL(Mnih &
Gregor, 2014; Mnih & Rezende, 2016; Tucker et al., 2017).

We analyze the objectives from the perspective of matching joint distributions. We show that MaL
corresponds to a specific choice of the target z|x conditional, while our approach takes into con-
sideration family of possible conditionals. The choice of target conditional is responsible for two
major failures that arise during training with the MaL objective: inability to learn informative latents,
also known as ”posterior collapse” (Bowman et al., 2016; Razavi et al., 2019; He et al., 2019), and
divergence between the prior and the aggregated posterior (Hoffman & Johnson, 2016; Makhzani
et al., 2015; Zhao et al., 2019; Kim & Mnih, 2018). These characteristics are vital for latent vari-
able models because posterior collapse prevents learning meaningful representation and sampling
from the regions of high deviation of the latent marginals are subjected to severe quality degradation
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(Rosca et al., 2018). The form of the target joint also motivates the success of the complete likeli-
hood in these challenges. Namely, the target distribution for CoLLike has high mutual information
and matches prior.

We verify our analysis with experiments. In this work, we focus on low-dimensional latent variables
to perform a direct comparison with the exact MaL. Models trained with CoLLike stably maintain
high mutual information and low divergence from the prior. In turn, MaL inevitably leads either to
posterior collapse or to a highly divergent aggregated posterior. Previously, for simple linear mod-
els, it has been shown that there is posterior collapse during the optimization of the exact likelihood
Lucas et al. (2019). Our experiments demonstrate that it can as well happen with expressive models
trained with exact likelihood. Along with informativeness and latent distribution matching, CoL-
Like indicates no degradation of likelihood compared to MaL. Furthermore, we show that CoLLike
objective alone can achieve high accuracy in unsupervised classification.

We show that CoLLike unifies a range of existing approaches that lack probabilistic justification.
Constrained K-means (Bennett et al., 2000), Permutation Invariant Training (Yu et al., 2017; Luo &
Mesgarani, 2019), and Noise as Target Bojanowski & Joulin (2017) are among these approaches.
This allows us to extend them to different factorizations of the joint and perform analysis from
the probabilistic perspective. Furthermore, CoLLike bridges likelihood and optimal transport (OT)
frameworks. From this perspective, the negative likelihood plays the role of both mapping from
latent to visible domain and distance function.

2 COMPLETE LIKELIHOOD OBJECTIVE

In the regular latent variable setting, we are given a dataset {x1, ..., xN} and the model pθ(x, z) =
pθ(x|z)p(z). The missing z can be treated as the missing pδ(z|x) part of the target joint. If we
cannot come up with a reasonable z|x target, we can at least match the marginals in the observed
domain with KL(pδ(x)||pθ(x)) in hope that the model will learn an informative relation between x
and z. This is equivalent to the maximization of MaL:

LMaL(θ) =

N∑
i=1

log pθ(xi) =

N∑
i=1

log

∫
pθ(xi, z)dz (1)

Justification of the MaL comes from the equivalence of maximization of (1) and minimization of
the Kullback–Leibler divergence KL(pδ(x)||pθ(x)) which measures the discrepancy between the
target empirical data distribution pδ(x)

1 and the model distribution pθ(x) (Murphy, 2022, 4.2.2).
Note that this justifies MaL only for learning distributions of observed variables, not learning repre-
sentations. The fact that MaL does not promote informativeness (Alemi et al., 2018) clearly shows
the lack of justification of MaL for learning representation because informativeness is undoubtedly
a fundamental requirement for any useful representation.

Despite the family of all possible target p(z|x) distributions being tremendous, we do not need to
consider it entirely. Firstly, the target distribution must be informative. Secondly, the marginal of
the target joint distribution in the latent domain should match the prior p(z). The fixed prior implies
that the desired marginal distribution of z is known. These requirements can be interpreted (Huszár,
2017) as Infomax principle (Linsker, 1988). It is not hard to get a rich family of distributions with
such properties. We can obtain a collection (z1, ..., zN ) by sampling from the prior and pair this
collection with the dataset (x1, ..., xN ). The pairing produce an empirical distribution. Empirical
distribution attains highest possible Mutual Information (MI) under the assumption that there are no
repeated values of x in the dataset (see Appendix B for derivation). This ensures the first require-
ment. Sampling from the prior addresses the second requirement, since the collection of z samples
converges to p(z) (Cover & Thomas, 2006, Theorem 11.2.1). However, the sampling effects can
be a significant problem for high-dimensional latents. We express each pairing as some permuta-
tion π, which produces a complete collection ((x1, zπ(1)), ..., (xN , yπ(N))) and an empirical joint
pδπ(x, z) = pδ(x)pπ(z|x). Given a family of distributions, we need to decide which member of
the family is our target. We propose to pick the one with the highest complete likelihood relying on
the model inductive biases. For this target we then once again optimize the complete likelihood of

1We find the Greek letter δ especially suitable for data distribution because it is consonant with ”data” and
reflects the delta-function-like form of the empirical distribution.
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the (xi, zπ∗(i)) pairs with the optimal permutation π∗. These considerations lead us to the CoLLike
objective:

LCL(θ, π) =

N∑
i=1

log pθ
(
xi, zπ(i)

)
(2)

which we maximize both with respect to θ and π. An alternative view on the objective can be the
following: we sample z values from prior and assume that they are ground truth targets for the
training dataset with unknown pairing. Figure 1 depicts the main difference between the objectives:
CoLLike maximizes specific points of the joint distribution, while MaL is aimed at maximization of
whole lines along the joint.

Figure 1: Illustration of the CoLLike (left) and MaL (right) objectives. Triangles depicts sample val-
ues. Filled circles represent pθ(x, z) for all possible (x, z) pairs. Double circles indicate optimal π.
Bold lines and double circles are areas of the joint to be maximized.

3 OBJECTIVE ANALYSIS

We start our analysis by proving that MaL corresponds to the matching of a specific joint distribution
and the model joint:

KL(pδ(x)pθ(z|x)||pθ(x, z)) = Ex,z∼pδ(x)pθ(z|x)

[
log

pδ(x)pθ(z|x)
pθ(x)pθ(z|x)

]
= Ex∼pδ(x)

[
log

pδ(x)

pθ(x)

]
= Ex∼pδ(x) [log pδ(x)]− Ex∼pδ(x) [log pθ(x)] = C − 1

N

∑
i

log pθ(xi) = C − 1

N
LMaL(θ)

where C is a constant. The joint KL form of the MaL brings new perspectives on the objective.
It might be tempting to think about MaL as a workaround for unknown latents that allows you not
to specify the target z|x conditional. However, the joint form reveals that the target conditional is
actually specified and equals pθ(z|x) if we ask what distribution we want to mimic. This implies
that we are aiming to keep the model posterior unchanged. In addition, the form also highlights the
intimate connection between MaL and posterior.

CoLLike and a common variational (Jordan et al., 1999) approximation of MaL, Evidence Lower
Bound (ELBO), can also be expressed as KL divergences between joint distributions (see Table
1). We refer to Appendix A for derivation of the equivalence. Note the elegant similarity between
objectives which becomes obvious in the joint KL form. All divergences share the model pθ(x, z)
as the second argument, which implies that the first argument is the target joint distribution. For all
objectives the target joint contains the data distribution pδ(x) as a marginal in x domain, thus the
only difference is in the target z|x conditional. Therefore, all the considered objectives belong to the
family of the following form:

L(θ) = KL(pδ(x)p(z|x)||pθ(x, z)) = KL(pδ(x)p(z|x)||pθ(x)pθ(z|x))
= KL(pδ(x)||pθ(x)) + Epδ(x) [KL(p(z|x)||pθ(z|x))] (3)

Since the second term in (3) is non-negative, all objectives in the family are lower bounds on the
likelihood up to an additive constant. Note that the z|x target conditional is used to minimize the
overall divergence. This affects the second term of (3) to make the lower bound tighter.

2qϕ(z|x) is an approximate posterior distribution parametrized by ϕ.
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Table 1: Considered objectives and their joint KL forms.

Original Objective Joint KL form

CoLLike
∑N

i=1 log pθ
(
xi, zπ(i)

)
KL(pδ(x)pπ(z|x)||pθ(x, z))

MaL
∑N

i=1 log pθ(xi) KL(pδ(x)pθ(z|x)||pθ(x, z))

ELBO2 ∑N
i=1 Ez∼qϕ(z|xi)

[
log pθ(xi,z)

qϕ(z|xi)

]
KL(pδ(x)qϕ(z|x)||pθ(x, z))

Despite the common traits, the objectives are different. We will highlight a few differences and go
deeper in the following sections. Firstly, the target conditional for CoLLike pπ(z|x) is empirical,
while its counterparts pθ(z|x) and qϕ(z|x) are not. Secondly, in MaL approach, we construct a
particular joint distribution pδ(x)pθ(z|x) and use it as a target joint, while, in CoLLike, we construct
an entire family of joint distributions with desired properties. Thirdly, the target posterior is readily
available in CoLLike and ELBO cases, while for MaL it could be intractable. Furthermore, CoLLike
can be seamlessly applied to discrete variables, while optimization of ELBO for discrete latents
is challenging (Mnih & Gregor, 2014; Mnih & Rezende, 2016; Tucker et al., 2017). Lastly, the
CoLLike objective allows learning models with a reverse factorization pθ(x)pθ(z|x), while MaL and
ELBO do not. Reverse factorization is another inductive bias that can be useful or not. Furthermore,
it can be significantly faster compared to regular factorization if pθ(x) is assumed to be uniform and
p(z|x) is factorized.

3.1 MUTUAL INFORMATION OF THE TARGET DISTRIBUTION

Mutual Information is the key property of the joint distribution in a latent variable setting. It charac-
terizes how dependent the observed and latent variables are. We would like to know what MI value
our model is targeted at for each objective. Since our objective can be expressed as KL divergence
between model and target joint distributions (Table 1), we can investigate MI values for each target
joint. We define MI between x and z under p(x, z) distribution as:

MI(p(x, z)) = Ex,z∼p(x,z)

[
log

p(x, z)

p(x)p(z)

]
(4)

For MaL, the MI of the target pδ(x)pθ(z|x) is determined by the model’s current posterior pθ(z|x).
Most models have no class preferences at initialization, which results in low MI of pδ(x)pθ(z|x).
Moreover, we are aimed at keeping it unchanged, since we are using the current posterior as our
target posterior. So, low MI at initialization might induce learning non-meaningful factorized joint
throughout the training procedure. Since for ELBO the approximate posterior aligns to the true
model posterior this argument is applicable to ELBO too. Furthermore, uninformative posterior is a
common problem when learning a latent variable model (Bowman et al., 2016; Alemi et al., 2018;
Lucas et al., 2019; Razavi et al., 2019; He et al., 2019) known as ”posterior collapse”.

CoLLike target is an empirical joint distribution. It represents a deterministic mapping and has
constantly high MI by construction, as shown in Appendix B. Therefore, we are aimed at mimicking
a high MI distribution with our model distribution. Furthermore, CoLLike can be interpreted as some
realization of InfoMax principle Huszár (2017), where prior limits the entropy and deterministic
mapping maximize MI.

3.2 MATCHING IN THE LATENT DOMAIN

The joint form of the objectives from Table 1 is convenient for obtaining a perspective on distribution
matching in the latent space. After treating pδ(x)pθ(z|x) as a joint pδθ(x, z) and rewriting the
original MaL objective as:

KL(pδ(x)||pθ(x)) = KL(pδθ(x, z)||pθ(x, z)) = Ex,z∼pδθ(x|z)pδθ(z)

[
log

pδθ(x|z)pδθ(z)
pθ(x|z)pθ(z)

]
= Ez∼pδθ(z) [KL (pδθ(x|z)||pθ(x|z))] +KL(pδθ(z)||pθ(z)) (5)
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we see that matching in x space requires matching in z space. Namely, KL(pδθ(z)||pθ(z)) = 0,
where pδθ(z) is called an aggregated posterior. It signifies that even though MaL is constructed such
that z given x conditional part of the KL between joints is zero, we end up in a situation where none
of the model marginals match target marginals. Moreover, the learning signal from the first term of
(5) might be significantly larger compared to the second term signal if the dimensions of x and z
differ a lot. This might lead to a sacrifice of the second divergence in favor of the first one.

Matching in a latent domain is considered as a known challenge of latent variable modelling (Hoff-
man & Johnson, 2016). Mismatch with prior results in unnatural samples from areas with high
deviation of aggregated posterior from the prior (Rosca et al., 2018). A number of works is focused
on this problem. They either utilize additional losses that penalize discrepancy between marginals
(Makhzani et al., 2015; Zhao et al., 2019; Kim & Mnih, 2018) or introduce a learnable prior (Bauer
& Mnih, 2019; Tomczak & Welling, 2018).

In turn, CoLLike addresses this problem by constructing a conditional, which marginal matches
prior in the latent domain. Obviously, the target marginal in x domain for CoLLike is always
pδ(x). In turn, the target aggregate posterior is always a sample from the prior since pδπ(z) =∫
x
pδ(x)pπ(z|x)dx = pϵ(z) for all π values, where pϵ(z) is the distribution of the sample produced

by sampling from the prior. While it is intuitively obvious that the empirical distribution converges
to the underlying distribution, one can show that KL between the empirical sample and the prior
converges in probability to 0 (Cover & Thomas, 2006, Theorem 11.2.1).

4 ALGORITHM

The objective (2) includes maximization with respect to two parameters: π and θ. We approach
it by alternating3 between maximization with respect to π and θ. We apply stochastic minibatch
technique similar to Bojanowski & Joulin (2017), which performs maximization of both π and θ
for a minibatch instead of the entire dataset and returns the latents back to the dataset in the optimal
order. Furthermore, we interpret maximization with respect to π as a linear sum assignment problem
(LAP) to utilize efficient combinatorial optimization techniques (see Appendix D for the derivation).
Algorithm 1 describes the resulting stochastic optimization procedure.

Algorithm 1 Stochastic optimization of CoLLike

Require: X = (x1, ..., xN ), pθ(x, z) = pθ(x|z)p(z), batch size B, learning rate η
Sample Z = (z1, ..., zN ) from prior (zi ∼ p(z))
while not converged do

Sample random indices (i1, ..., iB)
Compute matrix C ∈ RB×B , for which Cq,k = log pθ(xiq , zik)
Compute π∗ that maximizes (2) for (xi1 , ..., xiB ), (zi1 , ..., ziB ) by applying LAP solver to C
θ ← θ − η∇θLCL(θ, π

∗)
Put (zi1 , ..., ziB ) back into Z in the optimal order (zπ∗(i1), ..., zπ∗(iB))

end while

The core of the algorithm is in computation of the matrix C and optimal permutation π∗. Both parts
are potentially computationally intense and challenging.

Computation of the matrix C requires B2 forward passes. Note that backward passes are not re-
quired for this step, hence, memory requirements are mild. Furthermore, in this work we focus on
low-dimensional discrete latents. Assuming the number of categories K of the latent variable z is
lower than B, the number of all possible values of z in log pθ(xiq , z) equals K instead of B. Thus,
we can calculate all needed values of C using only K ·B forward passes instead of B2. In the super-
vised case, we only need the θ update part of the entire algorithm, which requires B forward passes
and B backward passes. As a rough estimate, we can assume that forward and backward passes
take the same time, CoLLike will then require K/2 more compute time compared to the supervised
setting.

3This is similar to EM algorithm Dempster et al. (1977) in the sense that EM alternates between maxi-
mization of the lower bound tightness (expectation step) and maximization of the the resulting tight bound
(maximization step).

5



Under review as a conference paper at ICLR 2023

To find π∗ we use Hungarian algorithm Kuhn (1955) as a LAP solver. The algorithm requires the
cost matrix C ∈ RB×B as input to produce the optimal permutation π∗ in the form of optimal
ordering of (zi1 , ..., ziB ) indices. The complexity of the algorithm is O(B3). The complexity of
the LAP solver potentially limits the applicability of CoLLike to large batch sizes. However, for
batch sizes regularly used in practice, solving LAP results in only a minor increase in the overall
computation time. For instance, in our experiments, we used batch size 64. Solving the LAP took
orders of magnitude less time compared even to the supervised setting. See Appendix E for detailed
timings. We also highlight that optimization with large batches is not only challenging but also
could significantly reduce generalization (Xing et al., 2018; You et al., 2019; 2020). However, as
gracefully shown by Huszár (2017), this kind of minibatch combinatorial optimization provides only
locally optimal solutions. Nevertheless, the size of the gap between local global optimum is still to
be determined.

The result of Algorithm 1 is a trained model. However, we are interested in the posterior
pθ(z|x). For low-dimensional categorical z, we can exactly compute the posterior using Bayes
rule pθ(z|x) = pθ(x, z)/pθ(x) since pθ(x) =

∑
i pθ(x, z = i) is tractable. For other cases, we can

fit an approximate posterior using regular variational techniques. We can also use CoLLike objec-
tive to obtain estimates of z values. After training model with CoLLike objective we have X and Z
arrays that are matched. We add new x samples to X and sample extra z values from the prior to
extend Z. The inference can then be performed by optimizing 2 with respect to π.

5 CONNECTIONS

Connections with existing techniques not only give alternative perspectives on CoLLike objective,
but also provide probabilistic grounding to some existing algorithms. Many well-known objectives
actually use CoLLike while being motivated as an ad-hoc empirical risk minimization. We show
that these objectives not only seem reasonable but are also probabilistically motivated.

While traditional K-means algorithm (MacQueen, 1967; Lloyd, 1982) has a probabilistic grounds
(Murphy, 2022, 21.4.1.1), its constrained counterpart (Bennett et al., 2000) lacks probabilistic jus-
tification. Constrained K-means is equivalent to CoLLike under factorized Gaussian pθ(x|z) and
uniform categorical p(z), which has a number of states equal to the number of clusters. This con-
nection allows extending the constrained K-means approach to different generative distributions and
priors. Nevertheless, a probabilistic interpretation is present in Jitta & Klami (2018), however, the
choice of the complete likelihood as an objective is not explained.

Permutation Invariant Training (PIT) (Yu et al., 2017; Luo & Mesgarani, 2019) used in source sepa-
ration solutions can also be expressed as CoLLike objective. For instance, in cocktail part problem,
we want to separate a mixture of K sources. During training, we have K isolated mixture compo-
nents and a network that produces K estimates of the components based on a single mixture. We
don’t know which network output corresponds to which source and we pick a permutation that pro-
duces minimal total mismatch between outputs and sources. This procedure corresponds to training
a latent variable model with CoLLike objective, where a categorical latent variable of dimension
K determines the source identity. In this setting, we treat mixture components as samples in the
dataset.

The closest predecessor of the CoLLike is Noise As Target (NAT) (Bojanowski & Joulin, 2017).
This is an unsupervised approach to learn an image encoder. In this approach, the representations
produced by a network are assigned to a fixed collection of vectors sampled from the uniform dis-
tribution on a sphere. After this, the network parameters are adjusted to make encodings closer
to the assigned vectors. This approach is equivalent to CoLLike with reverse model factorization
pθ(x, z) = pθ(z|x)p(x) and factorized Gaussian pθ(z|x). Another approaches that obtain clear
probabilistic interpretation using CoLLike include: Sinkhorn Autoencoders (Patrini et al., 2019),
simultaneous clustering and representation learning (Asano et al., 2020), and (Jeong & Song, 2019).

Bojanowski & Joulin (2017) noticed that NAT objective has Optimal Transport (OT) roots. OT
framework can be used to measure discrepancy between distributions. Particularly, for a given non-
negative cost function c the optimal transport distance between distributions pδ and pϵ is defined
as

OT (pδ, pϵ) = min
γ∈Γ(pδ,pϵ)

Ex,z∼γ(x,z) [c(x, z)]
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Table 2: Results for tractable categorical latents. MNIST, CIFAR – BPD; AG News – NLL.

Dataset Objective Accuracy ↑ NLL/BPD ↓ Agg. KL ↓ MI ↑
CIFAR CoLLike 14.5 3.45 0.01 2.20
CIFAR MaL 14.0 3.46 0.74 1.50
MNIST CoLLike 14.1 1.27 0.01 1.95
MNIST MaL 12.5 1.29 1.61 0.58

AG News CoLLike 82.1 250.79 0.00 1.32
AG News MaL 31.6 249.73 0.00 0.00

where Γ(pδ, pϵ) is the set of all joint distributions on x and z with marginals pδ(x) and pϵ(z) re-
spectively. Furthermore, if we use a parametric model pθ in place of pϵ we can fit it by minimizing
the distance. Note that in this case we minimize the function that already has a min function inside.

When both pδ and pϵ are empirical, the search space Γ becomes countable and finite. Now it contains
only pairings between points in pδ and points in pϵ. Given an arbitrary initial pairing, we can express
all other pairings through permutation applied to either x or z. In this case, the cost becomes

OT (pδ, pϵ) = min
π∈Π

∑
i

c
(
xi, zπ(i)

)
where Π is the set of all permutation functions. This expression is almost the CoLLike objective
(2). Choosing the cost function c to be − log pθ(x, z) and switching to maximization make them
equivalent4. Thus, CoLLike bridges maximum likelihood methods with OT. This connection allows
bringing latest developments in OT to improve likelihood-based methods. Furthermore, in Appendix
C, we provide an example of the equivalence between CoLLike and Wasserstein distance. In the
case, the model’s complete likelihood plays the roles of both a mapping from z to x domain and a
distance metric.

6 EXPERIMENTS

In this work, we focus on low-dimensional discrete latents. This type of latent variables allows
to perform direct comparison with the exact likelihood. Furthermore, we emphasize our focus on
learning useful z|x instead of simplifying the model with factorized x|z conditional.

Models with tractable likelihood are perfect for comparing likelihood-based algorithms because they
remove the problem of the likelihood estimation precision. For this type of models, all quantities of
interest can be computed exactly. Moreover, tractable likelihood allows comparing CoLLike directly
with MaL instead of its approximations like ELBO.

ActNorm

Inv. 1x1 Conv.

A�ne Coupling

...

G
lo

w

Transformer Block

...

Transformer Block

+ +

Emb.Emb. Emb. Emb.

Figure 2: Architectures used for image (left) and text (right) domains. For image domain, the three
flow blocks are repeated 21 (CIFAR) and 14 (MNIST) times. Every coupling block is conditioned
on z.

We use MNIST (LeCun et al., 1998) and CIFAR (Krizhevsky, 2009) datasets for image modality
and AG News (Zhang et al., 2015) for text domain. All these datasets are equipped with class labels.

4A cautious reader might note that for continuous variables non-negativity of log pθ can be violated, how-
ever, all model densities used in practice are finite and the corresponding cost can be made positive just by an
additive constant which does not change the optimization problem.
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For images, we train a Glow-like normalizing flow conditioned on a discrete latent variable with 10
categories through all coupling layers. For text we use a Transformer Language Model conditioned
on a discrete latent variable with 4 categories using additive embedding for all tokens. The size
of the discrete variables is equal to the number of classes in the underlying dataset. Small number
of categories allows to compute exact marginal likelihood value and speed up computation of the
cost matrix C in Algorithm 1. The schematic representations of the architectures are provided in
Figure 2.

Table 2 presents the results of training the latent variable models for CoLLike and MaL objectives
averaged across 4 runs. Both objectives exhibit similar performance in terms of likelihood across
datasets. However, other characteristics vary.

MI is high for CoLLike objective on every dataset. Furthermore, it attains approximately maximal
value for AG News and CIFAR. MI for MaL objective ranges from zero to values significantly lower
than those of CoLLike. Zero MI indicates posterior collapse cases, which are mainly observed in
ELBO optimization and recently discovered by Lucas et al. (2019) for MaL applied to simple linear
models. This experiment indicates important observation: posterior collapse can as well happen in
deep latent variable models during optimization of exact MaL despite usually being corresponded
to the structure of ELBO. Importantly, for the MNIST dataset, half of the experiments exhibits
posterior collapse.

CoLLike exhibits near-zero aggregated KL for all experiments. It implies that the model joint
marginal in the latent domain perfectly matches the prior. For MaL, aggregated KL is zero only
for AG News dataset which also has uninformative factorized joint. For other datasets, aggregated
posterior significantly deviates from the prior. We also note that for MNIST dataset, MaL puts all
probability mass to a single category in half of the runs.

To estimate the quality of unsupervised classification, we perform the optimal assignment of latent
categories to classes. For all cases except CoLLike objective on AG News dataset, the quality of
the unsupervised classification is similar and is low. On AG News the unsupervised accuracy is
exceptionally good. However, the variance of the proposed solution is relatively high. The standard
deviation of the accuracy across 4 runs is 5.4 with the highest value of 87.1 and the lowest of 73.3.
In the following section, we show that it is possible to achieve significantly higher unsupervised
accuracy and lower variance by latent variable ensembling.

Overall, CoLLike clearly outperforms MaL in the tractable likelihood setting. Moreover, it shows
high unsupervised classification accuracy for text modality. For MaL, experiments depict a variety
of possible failures from posterior collapse to degenerate aggregated posterior, which extends find-
ings of (Lucas et al., 2019) to expressive models and exact likelihood. However, despite CoLLike
producing informative latents in terms of MI, unsupervised classification might be challenging even
in these cases. We believe that the key to high-performance unsupervised classification should be in
the right inductive biases in conditioning and probabilistic model type.

6.1 LATENT ENSEMBLING

To reduce the high variance of CoLLike unsupervised classification accuracy and increase its ac-
curacy we propose to perform ensembling of multiple models trained on the same data but using
different seeds at initialization. Although there is no correspondence between labels for latent vari-
able models, we can try to find the labels assignment based on the agreement between them. This
approach is motivated by direct cluster ensembling (Boongoen & Iam-on, 2018). The agreement
between two labels of different ensemble members is the number of intersecting samples with those
labels. To align the latents we iteratively find the assignment with the highest intersection between
labels. Finally, we find the assignment between aligned latents and ground truth labels.

In our experiments, we use 8 models per ensemble and train 4 independent ensembles. The simplest
ensembling method is averaging of the predictions. It increases the mean unsupervised accuracy
from 82.1 to 84.5 and reduces the standard deviation from 5.4 to 1.7. We further significantly im-
prove these results by utilizing the agreement score, which is also used for alignment of the labels.
We pick top-k models with highest maximum coherence across other models in the ensemble. Aver-
aging predictions of those top-k models further increases accuracy to 86.6 and lowers the standard
deviation to 0.2.
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Figure 3: Comparison of ensembled CoLLike with supervised (a) and unsupervised/few-shot meth-
ods(b).

We compare CoLLike results with the following unsupervised and supervised approaches: PET and
iPET (Schick & Schütze, 2021), EFL (Wang et al., 2021), LM-BFF (Gao et al., 2021), DocSCAN
(Stammbach & Ash, 2021). DocSCAN is purely unsupervised, while other approaches rely on
engineering multiple textual descriptions of classes (prompts) or labeled data. All methods use
heavy pre-trained Transformers (Vaswani et al., 2017) as an initialization, while in CoLLike we
use small 2-layer Transformer with random initialization. Figure 3a presents the comparison of the
methods. CoLLike clearly outperforms both unsupervised and most of the supervised methods. To
determine how much training data we need without, possibly laborious, prompt engineering we use
DeBERTa v3 (He et al., 2021). We vary training set sizes from 32 to 2048 and apply additional
ensembling of 8 models with different initializations and train-validation splits. Figure 3b reveals
that CoLLike can be a better alternative to labeling more than a hundred samples, which, in turn,
requires an extensive data analysis. Besides, note the high difference between the ensemble and the
single model for small dataset sizes in a supervised setting, which is an interesting result by itself.

7 DISCUSSION AND FUTURE WORK

In this work, we propose to switch from the MaL paradigm of matching only marginals in the ob-
served domain to CoLLike paradigm of finding an exact target joint by selection from a family of
joints with desirable properties. Furthermore, we show that matching of marginals utilized by MaL
corresponds to a specific choice of target joint, which motivates such failures as posterior collapse
and divergence between target and model marginals in the latent domain. We experimentally show
the ability of CoLLike to learn useful representations. Connection of CoLLike with OT allows to
borrow techniques from the latter. For instance, Sinkhorn Relaxation (Cuturi, 2013) can be used to
speed up the assignment problem. Investigation of alternatives to complete likelihood for target se-
lection is of special interest. The right inductive biases for inducing useful properties using CoLLike
are still to be discovered, at least until we want to get the desired without specifying what we want.
We believe that the further extension of CoLLike to high-dimensional latents would be exciting and
challenging. Other lines of research can be devoted to the application of other divergences to the
constructed family of joint target candidates and extension of CoLLike to learnable priors.

8 REPRODUCIBILITY

To promote reproducibility we open-source our code the link is hidden for double-blind review, check
the supplementary materials. Furthermore, we describe details of flow architectures in Appendix
F.1 and Transformers in Appendix F.2. Along with models, we describe details of the training
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procedures and data pre-processing. We also devote special attention to setting all necessary seeds,
including CUDA, and to removing stochasticity from the BPE tokenizer.
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Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q. Weinberger (eds.), Advances in Neural
Information Processing Systems 26: 27th Annual Conference on Neural Information Processing
Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United
States, pp. 2292–2300, 2013. URL https://proceedings.neurips.cc/paper/
2013/hash/af21d0c97db2e27e13572cbf59eb343d-Abstract.html.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the
em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1–38,
1977. ISSN 00359246. URL http://www.jstor.org/stable/2984875.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of
the 59th Annual Meeting of the Association for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long
Papers), Virtual Event, August 1-6, 2021, pp. 3816–3830. Association for Computational Lin-
guistics, 2021. doi: 10.18653/v1/2021.acl-long.295. URL https://doi.org/10.18653/
v1/2021.acl-long.295.

10

http://proceedings.mlr.press/v80/alemi18a.html
https://openreview.net/forum?id=Hyx-jyBFPr
http://proceedings.mlr.press/v89/bauer19a.html
http://proceedings.mlr.press/v89/bauer19a.html
https://www.microsoft.com/en-us/research/publication/constrained-k-means-clustering/
https://www.microsoft.com/en-us/research/publication/constrained-k-means-clustering/
http://proceedings.mlr.press/v70/bojanowski17a.html
http://proceedings.mlr.press/v70/bojanowski17a.html
https://doi.org/10.1016/j.cosrev.2018.01.003
https://doi.org/10.18653/v1/k16-1002
http://www.elementsofinformationtheory.com/
https://proceedings.neurips.cc/paper/2013/hash/af21d0c97db2e27e13572cbf59eb343d-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/af21d0c97db2e27e13572cbf59eb343d-Abstract.html
http://www.jstor.org/stable/2984875
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295


Under review as a conference paper at ICLR 2023

Junxian He, Daniel Spokoyny, Graham Neubig, and Taylor Berg-Kirkpatrick. Lagging inference
networks and posterior collapse in variational autoencoders. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. URL https://openreview.net/forum?id=rylDfnCqF7.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: decoding-enhanced
bert with disentangled attention. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https:
//openreview.net/forum?id=XPZIaotutsD.

Matthew D Hoffman and Matthew J Johnson. Elbo surgery: yet another way to carve up the varia-
tional evidence lower bound. In Workshop in Advances in Approximate Bayesian Inference, NIPS,
volume 1, 2016.

Ferenc Huszár. Unsupervised learning by predicting noise: an information max-
imization view. https://www.inference.vc/unsupervised-learning-by-
predicting-noise-an-information-maximization-view-2/, 2017. Accessed:
2022-11-17.

Yeonwoo Jeong and Hyun Oh Song. Learning discrete and continuous factors of data via alter-
nating disentanglement. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings
of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, pp. 3091–
3099. PMLR, 2019. URL http://proceedings.mlr.press/v97/jeong19d.html.

Aditya Jitta and Arto Klami. On controlling the size of clusters in probabilistic clustering. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul. An introduction
to variational methods for graphical models. Mach. Learn., 37(2):183–233, 1999. doi: 10.1023/A:
1007665907178. URL https://doi.org/10.1023/A:1007665907178.

Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In Jennifer G. Dy and Andreas
Krause (eds.), Proceedings of the 35th International Conference on Machine Learning, ICML
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A DERIVATION OF KL FORMS OF THE CONSIDERED OBJECTIVES

Equivalence between CoLLike objective (2) and its KL divergence form from Table 1 can be derived
as follows:

KL(pδ(x)pπ(z|x)||pθ(x, z)) = Ex,z∼pδ(x)pπ(z|x)

[
log

pδ(x)pπ(z|x)
pθ(x, z)

]
= Ex,z∼pδ(x)pπ(z|x) [log pδ(x)pπ(z|x)− log pθ(x, z)] (6)

= C − Ex,z∼pδ(x)pπ(z|x) [log pθ(x, z)]

= C − 1

N

N∑
i=1

log pθ(xi, zπ(i))

= C − 1

N
LCLL(θ, π) (7)

where the first term in (6) is treated as constant with the assumption that all samples from pδ(x) take
distinct values, which is reasonable for such high-dimensional objects as images, texts, and sounds.
Thus, the KL form of the objective is equivalent to the CoLLike objective up to a multiplicative
factor and an additive term. For proof of the constancy see Appendix B.

The derivation of equivalence between (1) and its KL from Table 1 is as follows

KL(pδ(x)pθ(z|x)||pθ(x, z)) = Ex,z∼pδ(x)pθ(z|x)

[
log

pδ(x)pθ(z|x)
pθ(x)pθ(z|x)

]
= Ex∼pδ(x)

[
log

pδ(x)

pθ(x)

]
= Ex∼pδ(x) [log pδ(x)]− Ex∼pδ(x) [log pθ(x)]

= C − 1

N

∑
i

log pθ(xi)

= C − 1

N
LMaL(θ)

The KL form of ELBO objective from Table 1 can be found in many works Zhao et al. (2019);
Kingma & Welling (2019), however, we provide a derivation here to make the paper self-contained.

KL(pδ(x)qϕ(z|x)||pθ(x, z)) = Ex,z∼pδ(x)qϕ(z|x)

[
log

pδ(x)qϕ(z|x)
pθ(x, z)

]
= Ex∼pδ(x) [log pδ(x)] + Ex,z∼pδ(x)qϕ(z|x)

[
log

qϕ(z|x)
pθ(x, z)

]
= C − Ex∼pδ(x)Ez∼qϕ(z|x)

[
log

pθ(x, z)

qϕ(z|x)

]
= C − 1

N

∑
i

LELBO(xi, ϕ, θ)

B ENTROPY AND MUTUAL INFORMATION OF EMPIRICAL JOINT

In this appendix we derive some useful properties of the empirical joint distributions produced by
sampling from the prior. The joint distribution pδ(x)pπ(z|x) depends on π. We focus on how π
influences such distribution characteristics as entropy and mutual information.

Consider a joint distribution over discrete x and z. This kind of distribution can be visualized as a
table, such as depicted in Figure 4. If there are multiple samples taking the same value both in x
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Figure 4: Example of three joint distributions with discrete x and z. Lines on the left and in the
bottom depict the number of samples from empirical marginals with the corresponding value of
the random variable. Squares reflect the joint probability value. Each line crossing the square
corresponds to 1/N probability added to the corresponding (x, z) random variable pair.

and z domain, the permutation can change the entropy of the joint. For instance, for the distribution
on the left, the entropy H(pδ(x)pπ(z|x)) = −( 14 log

1
4 + 1

4 log
1
4 + 1

2 log
1
2 ) ≈ 1.04 nats. For the

distribution in the center, the entropy H(pδ(x)pπ(z|x)) = −(4· 14 log
1
4 ) ≈ 1.39 nats. So, depending

on π we might end up with more and less entropic distributions.

However, when we restrict any empirical marginal to take only distinct values, like in the right part
of Figure 4, the situation changes. Namely, each distinct pair (x, z) can be chosen at most once,
because to choose it twice we need a duplicate sample in both domains. This can be verified using
the right part of Figure 4. Just try to construct a joint with some square having grater than one
line assuming that each value x marginal has only one line. Moreover, for x, this is a reasonable
assumption since usually the domain of x is high-dimensional. For the case, the joint will contain N
non-zero points each with probability 1/N . Thus, the entropy of the empirical distribution is equal
−
∑N

n=1
1
N log 1

N = logN .

The observation above allows to easily derive mutual information of the empirical joint. Mutual
information is defined as

MI(p(x, z)) = Ex,z∼p(x,z) log
p(x, z)

p(x)p(z)
= Ex,z∼p(x,z) log

p(z|x)
p(z)

Under the assumption that pδ(x) contains only distinct elements the conditional pδπ(z|x) ≡ 1 for
all values x from the pδ(x). So, choosing x uniquely determines the value of z, as can be seen from
the right part of Figure 4. Then the mutual information is given by

MI(pδ(x)pπ(z|x)) = Ex,z∼pδ(x)pπ(z|x) log
pδπ(z|x)
pδπ(z)

= Ez∼pδπ(z) log
1

pδπ(z)
= H(pδπ(z)) (8)

So, the mutual information is always equal to the entropy of the empirical prior. It is possible to show
that the value is the maximum possible one. This becomes obvious from the entropic factorization
of the mutual information

MI(p(x, z)) = H(p(z))− Ex∼p(x) [H(p(z|x))] (9)

Since the entropy is non-negative, the mutual information can be decreased only through the second
term of (9), which equals 0 because z value is completely determined by x.

When we try to extend the observations above to continuous cases we face the following challenge:
empirical distribution has infinite values at the sample points. This drives the differential entropy as
well as mutual information to infinity. However, adding noise to the empirical distribution solves
this problem. Adding uniform noise with the interval smaller than the precision of the floating point
makes the entropy finite and constant with respect to π. One can show that the resulting mutual
information of the empirical joint also equals logN .
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C WASSERSTEIN DISTANCE AND COLLIKE

Optimal Transport cost becomes Wasserstein distance when c is a metric. A very illustrative example
from this family is equality of Wasserstein-2 (c is the Euclidean distance) and CoLLike for some
setups. Specifically, the following objective can be produced both by Wasserstein distance and
CoLLike

LW (θ) = min
π∈Π

∑
i

(
xi − fθ(zπ(i))

)2
To get this objective from OT perspective we define the model distribution to be produced by passing
a fixed sample from prior through a deterministic decoder fθ(z). The result is an empiric distribution
in x domain. Wasserstein distance between two empiric distributions is determined by optimal
pairing between points from data distribution pδ(x) and model distribution spanned by empiric
latents. The same objective is produced by factorized Gaussian pθ(x|z) and uniform prior p(z).

This connection demonstrates that the model pθ(x|z) defines both mapping from z to x domain and
”topology” of the x space (how we measure distance between objects). However, approaches based
on the Wasserstein distance are limited to continuous variables, while CoLLike is applicable both for
discrete and continuous domains. Moreover, CoLLike provides a probabilistic basis for the choice
of the cost function.

D OPTIMAL PAIRING BY COMBINATORIAL OPTIMIZATION

Having at hand log-likelihood values for all possible xi zj pairs, we are ready to find the optimal
permutation. A naive way to do so is to evaluate the sum 2 for every possible permutation π.
Despite we need only to sum different pre-computed values, the search space for π is tremendous N !.
However, we can cast this problem to a combinatorial optimization one. Following Papadimitriou
& Steiglitz (1982), the assignment problem is stated as follows

minimize
∑
i,j

ci,jai,j

subjected to
∑
i

ai,j = 1 j = 0, ..., N∑
j

ai,j = 1 i = 0, ..., N

ai,j ∈ {0, 1}
where ci,j is the cost of picking the element i, j and ai,j is the indicator variable. The constrains
of this problem define a set of permutation matrices. By choosing the cost to be negative log-
likelihood and replacing indicator variable with permutation we end up with CoLLike objective.
This combinatorial optimization problem can be solved efficiently with Hungarian algorithm Kuhn
(1955) with complexity of O(N3).

E THE COMPLEXITY OF THE LAP SOLVER

Figure 5 depicts dependency between LAP problem size and time consumed by Hungarian algorithm
to solve the problem. The input to the algorithm is a matrix C ∈ RB×B , where B is the size of the
problem.

F MODELS DESCRIPTION

F.1 NORMALIZING FLOWS

We use Glow-like normalizing flow for all image experiments. We choose the learning rate by start-
ing from 1e−2 and gradually decrease it until there is no instabilities during training. No extensive
learning rate search was done. Below we provide details on the model parameters.

CIFAR model:
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Figure 5: Time to solve LAP with Hungarian algorithm for different sizes of the problem.

• architecture: Glow

• number of flows per scale: 7

• flow coupling: affine

• coupling net: ResNet, 3 blocks, hidden size 96

• permutation flow: invertible 1× 1 convolution with lower-upper factorization

• normalization flow: ActNorm

• number of scales: 3

• scale factor: 2 height, 2 width

MNIST model (same as CIFAR except the number of scales):

• architecture: Glow

• number of flows per scale: 7

• flow coupling: affine

• coupling net: ResNet, 3 blocks, hidden size 96

• permutation flow: invertible 1× 1 convolution with lower-upper factorization

• normalization flow: ActNorm

• number of scales: 2

• scale factor: 2 height, 2 width

During training we use marginal likelihood to validate both MaL and CoLLike. We did not search
over possible optimizers, and use Adam (Kingma & Ba, 2015) with default parameters. The vali-
dation split is chosen to be 0.05 because no significant variations of the likelihood were observed
during training. To summarize, we use the following parameters both for CoLLike and MaL:

• epochs: 256

• learning rate: 5e−5 - MNIST; 2e−4 - CIFAR

• batch size: 64

• validation part of the training set: 0.05

• validation criterion: marginal likelihood

• optimizer: Adam, β = (0.9, 0.999); ϵ = 1e−8

As data pre-processing step, we used only dequantization with uniform noise, with the range equal
to the quantization step.
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F.2 TRANSFORMER

We used simple two-layer transformer across our experiments. The model description:

• number of layers: 2
• hidden size: 128
• feedforward dimension: 128
• embedding dimension: 128
• number of attention heads: 4
• number of embeddings: 4000

The training details are similar to CIFAR configuration:

• epochs: 256
• learning rate: 2e−4 - CIFAR
• batch size: 64
• validation part of the training set: 0.05
• validation criterion: marginal likelihood
• optimizer: Adam, β = (0.9, 0.999); ϵ = 1e−8

In pre-processing step, we truncate the sequences longer than 192 tokens. Truncation affects less
than 0.3% of the samples. Nevertheless, the tokenizer is trained on the full-length sequences. Data
pre-processing can be summarized as follows:

• maximum length truncation: 192
• BPE tokenization
• vocabulary size: 4000
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