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ABSTRACT
Recommender systems usually aim to optimize accuracy in a super-
vised setting. Due to various data biases, they often fail to enhance
other critical qualities that go beyond accuracy, such as diversity,
novelty, and serendipity. Prior studies focus on addressing the bias
in beyond-accuracy metrics from the provider’s perspective, such
as increasing the overall diversity of recommendations to com-
bat popularity bias. In this work, we take a user-centric approach
to this problem and demonstrate that users have distinct prefer-
ences for beyond-accuracy metrics. We hypothesize that users have
an implicit behavioral model that goes beyond optimizing their
choices only for accuracy. For instance, we assume that a user’s
purchase behavior is a mix of items that are more familiar to the
user (optimizing for accuracy), and new items that are aimed for
exploration (optimizing for novelty). We argue that a recommender
system should reflect users’ interest in such beyond-accuracy met-
rics. This perspective allows for a more holistic understanding of
users’ behavior and preferences leading to more fine-grained per-
sonalized recommendations. To this end, we propose a post-ranking
greedy optimization algorithm that ensures recommendations are
not only accurate but also meet users’ beyond-accuracy prefer-
ences. Through extensive experiments, we demonstrate our pro-
posed method’s ability to balance the trade-off between ranking
accuracy and user-centric beyond-accuracy preferences.
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1 INTRODUCTION
Many systems deploy recommender systems (RSs) to assist users in
finding the target relevant content among the vast array of options
available. One of the most widely used classes of recommender
algorithms is collaborative filtering. These algorithms often ex-
ploit the user’s prior interactions to enhance the effectiveness of
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Figure 1: Mismatch between user’s performance expectations
based on their prior interactions and the actual performance
of the recommendation algorithm that may not be personal-
ized to meet those expectations.

the recommendations, measured by typical ranking-based metrics
(e.g., nDCG, Recall). Recent literature [8, 11] suggests that such a
methodology fails to account for crucial aspects of recommenda-
tion, including propagation of natural biases in data (e.g., popular
items) that may significantly impact the overall quality of recom-
mendations “beyond accuracy” (e.g., novelty, diversity) [6, 37]. For
instance, such algorithms might end up with high accuracy met-
rics by recommending a small set of popular items while carrying
the risk of gradually narrowing down the users’ areas of interest,
creating an effect similar to echo chambers [9].

The propagation of data biases in beyond-accuracy measure-
ments is extensively studied from the perspective of item providers [39,
40, 43]. A recurring theme in the debiasing literature often focuses
on a particular criterion to group items, framing the problem as a
building algorithm that fulfills a recommendation objective within
these groups. Grouping criteria are often either based on a demo-
graphic attribute (e.g., provider continent [15] or gender [5]) or
an interaction-based attribute (e.g., popularity [3]). The objective
could be goal oriented [27] or based on (weighted) parity among
groups [25].

In this work, we focus on goal-oriented beyond-accuracy debias-
ing from the users’ perspective; that is, users should receive recom-
mendations tailored to their preferences and/or behavior regarding
beyond-accuracy measurements. For instance, we see in Fig. 1 that a
user who has interacted with a sufficiently large set of items in their
profile (so excluding a cold-start user). Computing beyond-accuracy
measures on the set of items in the user profile shows that the user
has a preference for interacting with a wide range of categories
multiple times (having high redundancy and catalog coverage [37])
rather than novel and surprising items. Accordingly, it is intuitive to
expect that the beyond-accuracy measures proportionality remain
the same in a personalized recommendation list [38]. Therefore,
recommender systems should calibrate their recommendations to
account for it. We refer to this task as personalized beyond-accuracy
calibration (PBAC). A simplified use-case example of PBAC can be
found in the next-basket recommendation literature [4, 24] where
each user’s recommended basket is divided into a repeat and ex-
ploration part. The division is inspired by user grocery shopping
behavior that consists of regular weekly items (repeat), as well
as new items that have not appeared in the user’s basket before
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(explore). We see this as a specific case of PBAC, already demon-
strating the importance and significance of it in the next-basket
recommendation domain.

In particular, we aim to answer the following research questions:

RQ1 What is the extent of variations in user preferences for beyond-
accuracy metrics and is it possible to effectively group users
based on these preferences?

RQ2 How well do widely used recommendation algorithms ad-
dress beyond-accuracy variations in user preferences? Are
there any user groups that receive favorable recommenda-
tions regarding beyond-accuracy calibration?

RQ3 Can our proposed PBAC algorithm be used to determine the
optimal balance between accuracy and beyond-accuracy cali-
bration in a recommender system for different user groups?

RQ4 To what extent does the underlying recommendation algo-
rithm impact the effectiveness of our proposed PBAC re-
ranking model?

In order to answer RQ1 and RQ2, we utilize 𝐾-means clustering
as a criterion to group similar users according to their propen-
sity toward beyond-accuracy metrics. Our experiments on two
real-world datasets with diverse domains showcase that users sig-
nificantly differ in their preferences regarding beyond-accuracy
metrics. However, state-of-the-art collaborative filtering techniques
such as VAECF [26] andWMF [16] fail to account for this. We argue
that incorporating beyond-accuracy calibration into the recommen-
dation process is essential to ensure that the recommendations meet
the diverse needs and expectations of all users. Recommender sys-
tems are often trained in a pairwise or pointwise manner, making it
challenging to include calibration objectives in the training phase as
it is a list-wise property [35, 42]. As a result, in response toRQ3, we
propose a re-ranking mixed-integer optimization framework aim-
ing at simultaneously optimizing for accuracy and multi-objective
PBACmetrics to achieve the best trade-off between these objectives.
We further propose a greedy algorithm for solving this problem in
polynomial time and evaluate the performance of our algorithm for
all clusters of users on Movielens1M and Yelp datasets (Experimen-
tal setup is outlined in Sec. 5). Results demonstrate our proposed
method’s effectiveness in satisfying PBAC property for all clus-
ters of users, while maintaining the accuracy of recommendation.
Moreover, to address RQ4, we compare the performance of several
state-of-the-art recommendation algorithms in satisfying users’
preferences in terms of beyond-accuracy metrics after applying the
proposed model. Our key contributions, in summary, are as follows:

• We highlight the importance of beyond-accuracy calibration for
users by analyzing their preferences and the performance of
state-of-the-art collaborative filtering algorithms in representing
these preferences.
• We propose a re-ranking optimization algorithm capable of simul-
taneously optimizing accuracy and beyond-accuracy calibration
property in polynomial time.
• Through extensive experiments, we evaluate our algorithm on
two real-world datasets and compare it against five baseline
algorithms.

2 RELATEDWORK AND CONCEPTS

User-oriented algorithmic bias in recommendation. Algorith-
mic bias is the bias induced or propagated by algorithms’ mecha-
nisms [8]. Algorithmic bias is often studied either from the user
or item perspectives. User-oriented algorithmic bias is particularly
concerning as it can reinforce stereotypes and discrimination based
on various factors such as race, gender, and age [1, 12]. From the
users’ perspective, Ekstrand et al. [12] explore the disparities of
accuracies within groups of users with different demographic char-
acteristics and then propose a re-sampling method to address the
issue. Wang and Chen [38] demonstrate a disparity in the distri-
bution of beyond-accuracy metrics with respect to different user
characteristics and highlight the need for algorithms capable of ad-
dressing it. Moreover, Li et al. [25] propose an optimization method
to create parity between active and inactive user groups. Rahmani
et al. [30] perform extensive experiments on the generalizability of
the user-oriented algorithmic fairness method proposed by Li et al.
[25] under different grouping assumptions and diverse domains.
Their results indicate that grouping users based on a single attribute
or a cutoff (e.g., top 5% of most active users) is domain-dependent
with poor generalizability, requiring more nuanced and multidisci-
plinary approaches to algorithmic bias. Similarly, this paper exam-
ines the biases induced by algorithms from the user’s perspective.
Furthermore, we utilize K-means clustering to structurally divide
similar users in their tendency regarding beyond-accuracy metrics
into clusters by minimizing within-cluster distance. In contrast to
the previous works on user-oriented algorithmic bias, this work
aims to present each user with recommendations that match their
expectations.

Beyond-accuracy metrics in recommendation. Researchers
propose several beyond-accuracy metrics to evaluate the quality of
a recommendation algorithm. Smyth and McClave [34] propose the
average pairwise distance between items in a recommendation list
to measure recommender system diversity. A similar metric is pro-
posed by Ziegler et al. [44] to measure "intra-list similarity" scores
in which high values denote low diversity. Another line of research
in beyond-accuracy metrics focuses on improving such qualities
in recommender systems. For instance, Kamishima et al. [20] and
Abdollahpouri et al. [2] propose methods to enhance the long-tail
coverage of the recommendation algorithm. Pardos and Jiang [29]
investigate the filter bubble problem in a university course recom-
mendation system and propose a method for bursting the bubble by
recommending a more diverse set of items. This study utilizes the
metrics defined by prior works to extract users’ propensity towards
these qualities. However, we optimize recommendation algorithms
to meet users’ expectations by calibrating the recommendation list
accordingly.

Calibration fairness. There has recently been a renewed focus
on the calibration concept in the context of fairness in machine
learning and classification tasks [7]. Calibrated algorithms are those
in which the predicted proportions of the various classes match
the actual proportions of data points contained in the training
data [13]. This ensures that the algorithm is not biased towards
any one class, and that the predictions it makes are accurate and
reflective of the actual data. In recommendation tasks, Steck [36]
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Figure 2: The distribution of extracted beyond-accuracy met-
rics on each dataset.

proposes an iterative greedy algorithm for ensuring the distribution
of recommended movie genres is consistent with the users’ histor-
ical data. Rojas et al. [32] examine how the method proposed by
Steck [35] performs when dealing with bias in several collaborative
recommendation algorithms and the effect of genre calibration on
accuracy. Klimashevskaia et al. [22] study the impact of three dif-
ferent re-ranking-based (post-processing) calibration approaches,
analyzing how they can amplify or mitigate popularity bias in the
movie recommendation domain. Ariannezhad et al. [4] apply the
concept of calibration in the next-basket recommendation scenario,
where the division of recommended baskets into repeat and ex-
ploration sections [24] is based proportionally on the historical
interactions of the users in grocery shopping domain. Contrary
to the works surveyed, this paper focuses on calibrating beyond-
accuracy measurements in the recommendation list with the same
proportion as users’ profiles in training data.

3 BEYOND-ACCURACY CALIBRATION
In this section, we motivate the personalized beyond-accuracy cali-
bration concepts by undertaking both data and algorithmic analyses.
Firstly, we discuss the background and beyond-accuracy metrics,
and then we analyze users’ historical interactions to derive their
tendency towards beyond-accuracy qualities. In addition, we group
users according to their similar tendencies. Finally, we assess how
well state-of-the-art recommendation algorithms can match the
beyond-accuracy offered in their recommended list to the historical
preferences of the users. This assessment allows us to determine
the degree to which the algorithms are able to personalize recom-
mendations to individual user preferences.

3.1 Beyond-accuracy metrics
Prior studies [14, 19] define several metrics for evaluating the qual-
ity of recommender systems that go beyond accuracy. These met-
rics are selected based on the application and objective of the rec-
ommender system. Following the most widely adopted beyond-
accuracy metrics and preliminary correlation analysis, we select
the metrics with the least correlation with one another to capture
extractable characteristics. Hence, we choose four beyond-accuracy
metrics along with profile length as grouping criteria. This is be-
cause user profile length plays a crucial role in determining the
confidence of our estimates of tendencies toward beyond-accuracy
metrics. Although our selection is not comprehensive, we believe
these four metrics are representative of the full range of extractable

characteristics and are suitable for use in our experiments. The idea
and analysis we present are trivially applicable to any arbitrary set
of beyond-accuracy metrics.
(1) Global long-tail novelty (Nov.) measures the user’s willing-

ness to interact with unpopular items. The value ranges from
0 to infinity. Higher values indicate a higher tendency for the
user to interact with unpopular items. Following [6], we define
novelty as:

Novelty(P) = −1
| P |

∑︁
𝑖∈P

log2 (𝑝 (𝑖 ) ) , (1)

where P indicates the set of items in the user history and 𝑝 (𝑖)
is the popularity score of item 𝑖 .

(2) Co-occurrence-based surprise (Sur.) measures the user’s
interest in interacting with unexpected items. Formally defined
as:

𝑆𝑐𝑜−𝑜𝑐𝑐 (𝑖, P) =
1
| P |

∑︁
𝑗 ∈P

𝑃𝑀𝐼 (𝑖, 𝑗 ) , (2)

where 𝑃𝑀𝐼 (𝑖, 𝑗) denotes the pairwise mutual information score
between items 𝑖 and 𝑗 , i.e., the extent to which observed co-
occurrences differ from what is expected [18]. Given a pair of
items 𝑖 and 𝑗 , 𝑃𝑀𝐼 (𝑖, 𝑗) is calculated as follows:

𝑃𝑀𝐼 (𝑖, 𝑗) =
log2 (

𝑝 (𝑖, 𝑗 )
𝑝 (𝑖 )𝑝 ( 𝑗 ) )

− log2 (𝑝 (𝑖, 𝑗))
, (3)

where 𝑝 (𝑖) and 𝑝 ( 𝑗) indicate the probabilities that a user in-
teracts with items 𝑖 and 𝑗 , respectively, and 𝑝 (𝑖, 𝑗) shows the
probability that a user interacts with both items PMI values
range from−1 to 1, with−1 indicating no user interacts with the
two items together (negative co-occurrence) and 1 signifying
complete co-occurrence of the two items. Therefore, 𝑆𝑐𝑜−𝑜𝑐𝑐
also takes values from −1 to 1. The greater value of 𝑆𝑐𝑜−𝑜𝑐𝑐 is,
the more independent items a user has in their profile leading
to high surprise score. In this work, 𝑆𝑐𝑜−𝑜𝑐𝑐 of a user profile is
calculated by taking the mean value of the co-occurrence scores
based on all items rated before a specific item in the user profile.

(3) Coverage (Cov.) measures the user’s interest in the diversity
of item categories. Following [37], we define coverage as the
percentage of interacted categories in user profile:

Coverage(P) = 1
| 𝐶𝑎𝑡 |

���� ∪
𝑖∈P

𝐶𝑎𝑡 (𝑖 )
���� , (4)

where 𝐶𝑎𝑡 (𝑖) and | 𝐶𝑎𝑡 | indicate set of categories covered by
item 𝑖 and the total number of categories, respectively. Coverage
ranges within (0, 1], with 0 indicating coverage of no categories,
and 1 of all categories.

(4) Redundancy (Red.)measures howmany redundant categories
the users have interacted with. Redundancy complements cov-
erage, as coverage alone does not indicate the user’s willingness
to accept diverse recommendations [37]. Formally:

Redundancy(P) = 1 −

�� ∪
𝑖∈P

𝐶𝑎𝑡 (𝑖 )
��∑

𝑖∈P
��𝐶𝑎𝑡 (𝑖 ) �� , (5)

ranging within [0, 1), where 0 indicates that no redundant item
categories are in the user profile. The greater the value, the
more redundant item categories are in the user profile.
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3.2 Extracting user propensities
After defining the beyond-accuracy metrics of our interest, here we
leverage the historical interactions and calculate beyond-accuracy
metrics on the user profile based on the previously rated items.
Our goal is to examine how much existing datasets support our
hypotheses and how much users’ historical interactions differ in
terms of beyond-accuracy metrics.

To this aim, for each user, we calculate the beyond-accuracy
metrics (i.e., features used for user clustering) mentioned in Sec. 3.1.
Fig. 2 shows the min-max–normalized distribution of each value for
all users in the MovieLens1M and Yelp datasets. The Yelp dataset
shows more variation in user propensities. Among the analyzed
metrics, co-occurrence-based surprise shows the highest variation
in Yelp due to the high sparsity of the interaction matrix. In the
MovieLens1M dataset, we see a higher variation among coverage
and redundancy features indicating the role these metrics can play
in characterizing users’ expectations. The considerable variation of
extracted features from user preferences highlights the potential
benefit of clustering users. By grouping users with similar prefer-
ences, the underlying behavior and common expectations of these
groups can be revealed. This increased understanding of user be-
havior can inform personalized recommendations that better meet
their individual needs and preferences.

Therefore, we cluster users based on the extracted features with
the 𝐾-means algorithm. To find the optimal number of clusters,
we perform a preliminary experiment using the Elbow method
alongside the Silhouettes score for different values of𝐾 . Our analysis
of both datasets reveals the presence of four unique user groupswith
distinct behavior patterns. One cluster, for example, encompasses
users who are highly active and have a preference for novel items,
as observed in cluster 3 in the Yelp dataset. Another cluster consists
of less active users who show interest in a wide range of categories,
as seen in cluster 4 in the Yelp dataset (see Fig. 3). A greater number
of clusters would result in clusters with smaller user sizes and
little added value in minimizing inter-cluster variations. Table 1
shows the statistics of clustering results. We depict the center of
each cluster in Fig. 3. There is a considerable distance between the
cluster centroids. A closer look at the centroids in the MovieLens1M
reveals some interesting results. As an example, users in cluster
4 are highly active users (with 479.57 average interactions) and
are particularly interested in specific items with low coverage and
redundancy and the highest novelty score. In contrast, clusters 2
and 3 contain inactive users (24.33 and 47.95 average interactions,
respectively) with the difference that users in cluster 3 are interested
in a narrower range of categories. The Yelp dataset seems to exhibit
a similar pattern, suggesting that the𝐾-means algorithm can cluster
users to capture their behavioral differences, as intended.

3.3 Recommendation algorithm performance
on calibration

Next, we intend to analyze how different recommendation algo-
rithms, ranging from traditional to deep recommendation models,
serve different user clusters in calibrating their expectations in the
recommended lists. Particularly, we include three traditional meth-
ods (MF [23], BPR [31], andWMF [16]) and a deep recommendation
model (VAECF [26]). In addition, we include a non-personalized

baseline method, MostPop (ranking items based on their global
popularity), for further investigation and comparison. To this end,
we extract the beyond-accuracy features from the recommendation
lists generated by each recommendation algorithm. Based on a
feature vector for each user in the train data (expected output) and
the recommendation list (algorithm’s output), we can calculate the
distance between these two vectors as a measure of algorithm mis-
calibration. Miscalibration can be formally defined as the deviation
of the algorithm’s recommended items from the user’s historical
preferences in terms of beyond-accuracy metrics. Fig. 4 illustrates
the miscalibration of algorithms regarding beyond-accuracy met-
rics using Euclidean distance1 averaged over all users. The values
of this figure illustrate the incapability of current recommenda-
tion algorithms in satisfying users’ beyond-accuracy expectations.
Generally, all models have higher miscalibration on the Movie-
Lens1M dataset than Yelp. Among models, VAECF seems to be the
best-performing in beyond-accuracy calibration, followed by MF
and WMF, although this capability is domain-dependent. Moreover,
as expected, the MostPop model provides users with the highest
level of miscalibration by recommending the same popular items
to all clusters. Hence, it is imperative to devise techniques to in-
crease the system’s engagement rate by providing personalized
recommendations tailored to each user’s taste.

Table 1: Clusters statistics: |U| is the number of users in a
cluster, |T | is the number of interactions, | T ||U | is the average
number of interactions per user.

Dataset Cluster |U | | T | |T |
|U|

MovieLens1M

1 2503 363157 145.09
2 1143 27815 24.33
3 1715 82228 47.95
4 679 325630 479.57

Yelp

1 608 18866 31.03
2 534 30255 56.66
3 120 17740 147.83
4 905 21421 23.67

3.4 Summary
We summarize our findings as follows:
• Answer to RQ1: We calculate the beyond-accuracy metrics for
each user. The distribution of these metrics shows significant
variations among users in both MovieLens1M and Yelp, with
Yelp showing more variations. We use the 𝐾-means algorithm to
cluster users based on these metrics and find that there are four
distinct groups of users. The clustering results reveal that users in
different clusters have distinct preferences for beyond-accuracy
metrics, and the 𝐾-means algorithm successfully separates them
into clusters with meaningful differences. Such variations high-
light the need for personalizing beyond-accuracy qualities ac-
cordingly.

1The results obtained with other distance metrics (e.g., L1 norm and cosine distance)
are similar.
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Figure 3: User clusters centers for beyond-accuracy metrics
(best viewed in color).

Figure 4: Distance between user expectations and the pro-
vided recommendations.

• Answer to RQ2: Based on the analysis of the miscalibration of
recommendation algorithms in terms of beyond-accuracy met-
rics, it is clear that current models have a limited ability to satisfy
individual variations in user preferences. This is evident in the
high miscalibration values observed for all models, particularly
on MovieLens1M. Our analysis shows that there is no user group
that receives notably favorable recommendations in terms of
beyond-accuracy calibration. Even among the most active users
represented by clusters 1 and 4, the recommendations are highly
miscalibrated. This highlights the importance of devising tech-
niques that can effectively address individual variations in user
preferences for beyond-accuracy metrics.

4 PERSONALIZED BEYOND-ACCURACY
CALIBRATION ALGORITHM

4.1 Problem formulation
Let U and I be the set of users and items, respectively. We as-
sume user 𝑢 ∈ U is provided with a list of top-𝑆 items, 𝐿𝑆𝑢 , given
a predicted relevance score matrix, 𝑅 |U |×𝑆 . As analyzed in the
previous section, state-of-the-art recommender systems fail to gen-
erate beyond-accuracy-calibrated recommendations as they are
accuracy-optimized. We provide a re-ranking framework to cali-
brate the baseline recommendation list, such that the new list aligns
better with users’ preferences considering both PBAC and accuracy
objectives.

LetM = {M1,M2, ...MH} be a set of metrics that measures the
quality of recommendation beyond accuracy. Let P𝑢 be the set of
items user 𝑢 has interacted with in the training data. To measure
the miscalibration in a list over metricMk ∈ M, we calculate the
distance between the user’s expected outcome extracted from the
user profile, 𝑐𝑘𝑢 = Mk (P𝑢 ), and the recommended list, 𝑜𝑘𝑢 = Mk (𝐿𝑆𝑢 ),

Algorithm 1: The PBAC Greedy Polynomial Optimization
Input :U, I, 𝜆, 𝛼, 𝐾
Output : Item recommendation matrix 𝑋 ∗
/* 𝑋 ∗ is a |U | × 𝑆 binary matrix with 𝑋𝑢,𝑖 = 1 when the

item 𝑖 is recommended to user 𝑢 and 𝑋𝑢,𝑖 = 0
otherwise. */

1 𝑅← Run the baseline algorithm and store top-𝑆 scores for each
user

/* 𝑅 is a |U | × 𝑆 matrix of relevance scores */

2 Solve linear relaxation of MILP problem 6 (i.e., with 0 ≤ 𝑋𝑢𝑖 ≤ 1
instead of 𝑋𝑢𝑖 ∈ {0, 1})

3 Round optimal 𝑋𝑢𝑖 values to nearest integers
4 for 𝑢 ∈ U do
5 while

∑𝑆
𝑖=1𝑋𝑢𝑖 ≠ 𝐾 do

6 if
∑𝑆

𝑖=1𝑋𝑢𝑖 > 𝐾 then
7 𝑖′ ← argmin

𝑖

𝑅𝑢𝑖 ∀𝑖 ∈ {𝑖 | 𝑋𝑢𝑖 = 0}

8 𝑋𝑢𝑖′ ← 0
9 else
10 𝑖′ ← argmax

𝑖

𝑅𝑢𝑖 ∀𝑖 ∈ {𝑖 | 𝑋𝑢𝑖 = 1}

11 𝑋𝑢𝑖′ ← 1
12 end
13 end
14 end
15 return 𝑋 (≡ 𝑋 ∗ )

using a distance function d(.), e.g., cosine distance or 𝐿𝑝 norm
distance. We define the 𝜖-calibration objective as follows:

Definition 4.1. A recommender system satisfies𝜖-calibrationw.r.t. beyond-
accuracy metric Mk if

𝐺𝑘 (𝐿𝑆 ,U) =
1
|U |

∑︁
𝑢∈U
|d(𝑐𝑘𝑢 , 𝑜𝑘𝑢 ) | ≤ 𝜖 ∀𝑢 ∈ U

where𝐿𝑆 = {𝐿𝑆𝑢 }𝑢∈U . Also, it satisfies𝜖-PBAC requirementwhen𝐺𝑘 (𝐿𝑆 ,U) ≤
𝜖 ∀Mk ∈ M

In other words, a recommender system satisfies the 𝜖-PBAC
requirement if 𝐺𝑘 is less than or equal 𝜖 for all beyond-accuracy
metrics, where 𝐺𝑘 is the average distance (over users) between the
beyond-accuracy metrics of the recommended list and the user’s
profile. According to this definition, 𝜖 represents the degree of
strictness imposed by PBAC; when epsilon is zero the optimal
calibration is achieved. Note, nonetheless, excessive adherence to
PBAC may result in a loss of accuracy. Therefore, we optimize for
both PBAC and accuracy metrics.

4.2 Optimization model
This part outlines an algorithm that generates a calibrated list
by properly selecting 𝐾 items for each user 𝑢 among its top-𝑆
items, 𝐿𝑆𝑢 , where 𝐾 ≤ 𝑆 ≤ |I|. We define a binary decision matrix
𝑋 = [𝑋𝑢𝑖 ] |U |×𝑆 to denote whether the item 𝑖 is recommended
to user 𝑢 in the calibrated list. For each user 𝑢, we represent the
beyond-accuracy calibrated top-𝐾 list as a binary vector 𝑋𝑢 =
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[𝑋𝑢1, 𝑋𝑢2, ..., 𝑋𝑢𝑆 ] when
∑𝑆
𝑖=1 𝑋𝑢𝑖 = 𝐾 . We formulate this calibra-

tion as an optimization problem to maximize the total sum of rele-
vance scores constrained by 𝜖-calibration requirement as:

max
𝑋

∑︁
𝑢∈U

𝑆∑︁
𝑖=1

𝑅𝑢𝑖 .𝑋𝑢𝑖

s.t. G𝑘 (𝐿𝑆 (𝑋 ),U) ≤ 𝜖 ∀Mk ∈ M
𝑆∑︁
𝑖=1

𝑋𝑢𝑖 = 𝐾 𝑋𝑢𝑖 ∈ {0, 1}

(6)

where 𝐿𝑆 (𝑋 ) is the top-𝑆 lists, 𝐿𝑆 , induced from 𝑋 . Any feasible
solution of problem 6 recommends exactly 𝐾 items to each user
and is guaranteed to satisfy 𝜖-PBAC requirement. The optimal
solution has the highest sum of relevance to users possible under
the constraints. It can be challenging to select the appropriate 𝜖
value since a small value leads to an empty solution space, while
large values for 𝜖 have little impact on PBAC. Thus, we append
the PBAC constraint to the optimization objective as a regularized
penalty term with importance weight (hyper-parameter) 𝜆𝑘 for
each Mk . We also apply a weighting parameter 𝛼𝑢 for each user 𝑢.
We assume all the users are of the same importance and apply same
𝛼𝑢 to maximize total relevance score2. In summary, we replace the
objective function in probelm 6 with:∑︁

𝑢∈U

𝑆∑︁
𝑖=1

𝛼𝑢𝑅𝑢𝑖 .𝑋𝑢𝑖 −
∑︁
𝑗

𝜆𝑗 .G𝑗 (𝑋,U) (7)

We note that the proposed optimization problem is a mixed-integer-
linear programming (MILP) problem. Although MILP is an NP-hard
problem, we can use a wide variety of effective heuristic solvers
that provide a satisfactory and feasible solution in practice.3 We
also provide a greedy algorithm to make it suitable for the large-
scale recommendation settings by reducing the MILP to a Linear
Programming (LP) problem. This can be achieved by replacing the
binary constraint 𝑋𝑢𝑖 ∈ {0, 1} by 0 ≤ 𝑋𝑢𝑖 ≤ 1 (Lines 1 and 2 in
Algorithm 1) and rounding the optimal𝑋𝑢𝑖 values to nearest integer
(Line 3). For each user 𝑢, while the total number of recommended
items is not equal to 𝐾 (i.e.,

∑𝑆
𝑖=1 𝑋𝑢𝑖 ≠ 𝐾), we iteratively add

(remove) items with the highest (lowest) relevance scores (Lines 8
and 11). This iterative adding and removing naturally results in
the desired 𝐾 total number of items recommended to each user,
while only selecting the most relevant items. While our algorithm
does not provide the global optimum, our experiments indicate
that it can provide a near-optimal solution relatively quickly. The
pseudo-code is presented in Algorithm 1.

5 EXPERIMENTAL SETUP
In this section, we describe our experiments. To ensure reproducibil-
ity, we used the open-source recommendation toolkit Cornac [33],
and make our code open source upon acceptance.

Datasets. We use two public datasets, MovieLens1M and Yelp. We
apply 20-core pre-processing on the datasets to make sure each
user/item has sufficient feedback; i.e., each training user/item has
at least 20 ratings. Table 2 shows the specs of the datasets, where
|C𝑎𝑡 | is the number of categories in the dataset.

2We leave the impact of varying weights for different user groups to future work
3For instance, the Gurobi solver (https://www.gurobi.com).

Table 2: Characteristics of datasets

Dataset |U | |I | | T | | C𝑎𝑡 | %sparsity

Yelp 7,135 16,621 1,137,521 325 95.05%
MovieLens1M 6,040 3,260 998,538 18 94.93%

Evaluation. We perform a 80/20 temporal split on each dataset
for train and test data, respectively. For clustering, we extract the
users’ beyond-accuracy using the metrics introduced in Sec. 3 and
perform a 𝐾-means clustering. We use 𝐾 = 4 based on the elbow
method and silhouette score. To evaluate the models’ top-10 rec-
ommendation list, we employ well-known accuracy-based metrics
such as nDCG, Precision, and Recall, as well as the beyond-accuracy
metrics of Sec. 3.1. For the optimization experiment, we use the
same regularization weight for all beyond-accuracy metrics, i.e.,
𝜆 𝑗 = 𝜆 for all 𝑗 , and re-ranking is performed on baseline top-50
(𝑆 = 50) recommendation list4. Since accuracy and beyond-accuracy
metrics usually oppose each other [17], we define weighted average
recommendation performance (ARP) metric to evaluate the overall
performance of the models in terms of both types of metrics:

𝐴𝑅𝑃 (𝑤) = (1 −𝑤) · Δ(%𝐷𝑖𝑠𝑡 .) +𝑤 · Δ(%𝑛𝐷𝐶𝐺) (8)

Δ(%𝐷𝑖𝑠𝑡 .) is the percentage of improvement in miscalibration de-
gree (see Definition 4.1) and Δ(%𝑛𝐷𝐶𝐺) is the percentage of drop in
nDCG metric after optimization. The weighted ARP represents the
overall improvement of the recommendation system after optimiza-
tion. We considers three scenarios for evaluation: higher priority
for beyond-accuracy calibration (w=0.3), equal priority for both
(w=0.5), and higher priority for accuracy (w=0.7). We tune 𝜆 as a
hyperparameter to maximizes 𝐴𝑅𝑃 (0.5) on train data. The results
of an ablation study on various 𝜆 is in Sec. 6.

Baselines. We compare our approach to various traditional and
modern deep learning models, as suggested by Dacrema et al. [10]
including:
• MostPop: The most popular items are recommended to users
using a simple and non-personalized method. The measure of
popularity is the number of interactions.
• MF [23]: This is an ordinary matrix factorization which decom-
poses the user-item interaction matrix into lower dimension
rectangular matrices.
• WMF [16]: This matrix factorization method assumes latent
features are independent for a pair of items and assigns smaller
weights to negative samples.
• BPR [31]: BPR instantiates a zero mean Gaussian prior based on
the latent factors of users and items interaction matrix and adds
it to the supervised loss as an 𝐿2 regularization term.
• VAECF [26]: This method uses variational autoencoders with
multinomial Bayesian inference to estimate the parameters of a
generative model.

We implement our algorithm using these baselines to show how it
achieves the desirable performance on calibration metrics in overall
recommendation performance.
4Our preliminary experiments show an increase in 𝑆 enhances the model’s perfor-
mance, however, this comes with a much higher computational cost. 𝑆 = 50 appears
to be at the balance point of this trade-off.

https://www.gurobi.com
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Table 3: Performance of the baselines (N) and our proposed algorithm on the Yelp dataset. The evaluation metrics are calculated
based on the top-10 predictions in the test set. The gray highlight indicates the improvement in miscalibration measured by
Dist. metric compared to N.

Cluster Model Type Beyond-Accuracy Metrics Accuracy Metrics ARP(w)

Nov. Red. Cov. Sur. Dist. ↓ Precision Recall nDCG ARP(0.3) ARP(0.5) ARP(0.7)

C1

MostPop N 0.0 0.614 0.6344 0.5543 0.9428 0.0005 0.0005 0.0004 0 0 0
PBAC 0.0 0.6436 0.5682 0.5666 ↑1.0694% 0.9327 0.0005 0.0005 0.0004 0.7486 0.5347 0.3208

MF N 0.9281 0.2693 0.7673 0.0517 0.9511 0.0005 0.0006 0.0004 0 0 0
PBAC 0.8489 0.4782 0.5648 0.1006 ↑10.4032% 0.8521 0.0013 0.0011 0.0009 43.1101 64.9147 86.7192

WMF N 0.6119 0.5381 0.5115 0.8715 0.3548 0.0387 0.0552 0.0392 0 0 0
PBAC 0.6215 0.5368 0.5117 0.8682 ↑1.2637% 0.3503 0.0396 0.0579 0.0394 1.0299 0.8741 0.7183

BPR N 0.0 0.6437 0.5679 0.5676 0.9324 0.0005 0.0005 0.0004 0 0 0
PBAC 0.0121 0.6089 0.4955 0.5754 ↑4.4049% 0.8913 0.0005 0.0005 0.0004 3.0834 2.2024 1.3215

VAECF N 0.4144 0.5659 0.4821 0.9411 0.481 0.0627 0.084 0.0657 0 0 0
PBAC 0.5941 0.4946 0.553 0.8809 ↑27.0283% 0.351 0.0398 0.0532 0.0421 8.1607 -4.4177 -16.9961

C2

MostPop N 0.0 0.614 0.6344 0.5543 0.8902 0.0427 0.0318 0.0458 0 0 0
PBAC 0.0 0.6437 0.568 0.5666 ↑1.217% 0.8793 0.0431 0.0322 0.046 1.0013 0.8575 0.7137

MF N 0.9281 0.2693 0.7673 0.0517 0.8207 0.0047 0.0037 0.0049 0 0 0
PBAC 0.8356 0.4883 0.5607 0.097 ↑12.6833% 0.7166 0.0067 0.0055 0.006 15.4257 17.254 19.0823

WMF N 0.4473 0.5794 0.5761 0.5453 0.5863 0.0433 0.033 0.0452 0 0 0
PBAC 0.4673 0.5644 0.5619 0.5415 ↑4.3288% 0.5609 0.0412 0.0307 0.0444 2.5079 1.2939 0.0799

BPR N 0.0 0.6437 0.5679 0.5676 0.8793 0.0431 0.0322 0.0472 0 0 0
PBAC 0.0121 0.6076 0.4969 0.5748 ↑6.1119% 0.8255 0.0433 0.0323 0.0462 3.6015 1.928 0.2544

VAECF N 0.2202 0.5811 0.5862 0.6373 0.7006 0.0594 0.0451 0.0607 0 0 0
PBAC 0.4421 0.534 0.5542 0.6062 ↑23.0442% 0.5391 0.0358 0.0261 0.0386 5.1887 -6.7149 -18.6186

C3

MostPop N 0.0 0.614 0.6344 0.5543 1.0117 0.0783 0.0233 0.0786 0 0 0
PBAC 0.0 0.6435 0.5684 0.5666 ↑1.4443% 0.9971 0.085 0.025 0.0826 2.5593 3.3027 4.0461

MF N 0.9281 0.2693 0.7673 0.0522 0.921 0.0125 0.0031 0.0115 0 0 0
PBAC 0.8114 0.5055 0.5612 0.0905 ↑9.2198% 0.8361 0.0158 0.0041 0.0136 11.8476 13.5995 15.3514

WMF N 0.417 0.5809 0.5917 0.5718 0.748 0.0675 0.0201 0.0611 0 0 0
PBAC 0.4435 0.5584 0.5623 0.5691 ↑5.6991% 0.7054 0.0625 0.0185 0.0585 2.6922 0.6875 -1.3171

BPR N 0.0 0.6437 0.5679 0.5675 0.9969 0.085 0.025 0.0847 0 0 0
PBAC 0.0116 0.6134 0.4939 0.5753 ↑5.71% 0.94 0.0858 0.0249 0.0832 3.436 1.92 0.404

VAECF N 0.2274 0.5799 0.5737 0.6639 0.8199 0.0975 0.029 0.0946 0 0 0
PBAC 0.4717 0.5448 0.5319 0.6504 ↑18.7358% 0.6663 0.075 0.0223 0.0772 7.6089 0.191 -7.227

C4

MostPop N 0.0 0.614 0.6344 0.5543 0.7594 0.021 0.0358 0.0214 0 0 0
PBAC 0.0 0.6435 0.5682 0.5666 ↑0.7577% 0.7536 0.0209 0.0349 0.0213 0.4358 0.2213 0.0067

MF N 0.9281 0.2693 0.7673 0.0517 0.7256 0.0015 0.0019 0.0016 0 0 0
PBAC 0.8436 0.4862 0.5672 0.1057 ↑17.7504% 0.5968 0.0015 0.002 0.0016 13.2879 10.3128 7.3378

WMF N 0.5415 0.5526 0.569 0.5516 0.335 0.0206 0.0345 0.021 0 0 0
PBAC 0.545 0.5482 0.5622 0.5505 ↑2.3713% 0.3271 0.0198 0.0331 0.0203 0.7269 -0.3693 -1.4655

BPR N 0.0 0.6437 0.5679 0.5676 0.7536 0.0209 0.0349 0.0213 0 0 0
PBAC 0.0117 0.6072 0.5006 0.5743 ↑5.3275% 0.7134 0.0173 0.03 0.0188 0.2858 -3.0753 -6.4365

VAECF N 0.22 0.5958 0.5779 0.6468 0.5541 0.0345 0.0556 0.0366 0 0 0
PBAC 0.4204 0.5395 0.55 0.6032 ↑33.5595% 0.3681 0.02 0.0319 0.0214 11.0346 -3.982 -18.9986

Nov.: Global Long-tail Novelty, Red.: Redundancy, Cov.: Coverage, Sur.: Co-occurrence-based Surprise, Dist.: Euclidean Distance

Evaluation settings.We adopt the baseline algorithms with the
default parameter settings of their papers with embedding size of
50 for all baseline algorithms. We set the learning rate to 0.001.
Early stopping is applied and the best models are selected based on
cross-validation. The model parameters are updated using Adam
[21] as the optimization algorithm.

6 RESULTS AND DISCUSSION
In this section, notation N is used to represent the original baseline
top-10 recommendation while PBAC refers to our optimized re-
ranking method.

Improving beyond-accuracy. Fig. 5 presents the average miscali-
bration across all beyond-accuracy metrics for the users in various

clusters, both before and after optimization (see Definition 4.1). The
results of the baseline demonstrate that conventional collaborative
filtering algorithms are not effective for beyond-accuracy calibra-
tion (as mentioned in Sec. 3). Our proposed algorithm improves
(reduces) the miscalibration of recommendations for all users in the
Yelp dataset, as in Fig. 5b. The degree of improvement varies across
models and clusters, with the highest improvement observed in the
VAECF method and Cluster 4. The Dist. column in Table 3 shows
average improvement on miscalibration for Yelp across all base-
lines. A lower distance indicates less miscalibration. The reduction
of miscalibration degree among clusters (𝐶1,𝐶2,𝐶3,𝐶4) are (8.83%,
9.47%, 8.16%, 11.95%), demonstrating the effectiveness of our PBAC
algorithm in addressing varying user preferences. Comparing the
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Figure 5: Distance between train and recommendation list cluster centers before and after optimization. N refers to the baseline
performance before beyond-accuracy calibration.
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Figure 6: The change of accuracy and beyond-accuracy metrics with PBAC with respect to the 𝜆 parameter.

datasets, it can be observed that the Yelp dataset exhibits less vari-
ation among clusters for reducing miscalibration, with the PBAC
algorithm performing relatively consistent across all clusters.

The analysis of PBAC algorithm on different clusters in Movie-
Lens1M reveals a higher degree of variation, with some clusters
experiencing only slight improvement, while others show substan-
tial improvement. Notably, Fig. 5a, highlights that cluster 𝐶4 has
a significant reduction in miscalibration compared to other clus-
ters. This variation in improvement is attributed to the preferences
of users in that cluster. It can be seen in Fig. 3a that the center

of beyond-accuracy metrics of cluster 𝐶4 has a higher distance to
other clusters, indicating a greater degree of variance in user tastes.
This is due to underlying data characteristics, as Yelp has higher
sparsity but more balanced interactions (see [41]). In contrast, the
MovieLens1M dataset is heavily influenced by popularity, with cer-
tain items receiving the majority of ratings. This popularity bias,
as described in [3], limits the ability of baseline algorithms to rec-
ommend novel and unexpected items to satisfy the diverse tastes
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of users. As a result, the effectiveness of the PBAC algorithm in re-
ducing miscalibration may be limited compared to its performance
on the Yelp dataset.

Next, we investigate whether our proposed PBAC algorithm
improves the overall performance of recommendation with re-
spect to accuracy and beyond-accuracy calibration simultaneously,
i.e., whether our algorithm is capable of balancing multiple objec-
tives optimally. This can be addressed by observing the patterns
in 𝐴𝑅𝑃 (𝑤) columns in Table 3, which are the weighted average
between the percentage of improvement in miscalibration and the
changes in nDCG values after optimization (formally defined at
Eq. (8)); hence positive values indicate an overall improvement.
When assigning higher importance to beyond-accuracy calibration
in comparison to accuracy (ARP(0.3) column), all PBAC models
improve the overall recommendation performance. In the case of
equality of importance between the two objectives (ARP(0.5) col-
umn), the PBAC model outperforms the baselines in clusters𝐶1,𝐶2,
and𝐶3. As baseline models are already optimized for accuracy, one
may expect PBAC models to perform worse than baselines when
a higher weight is assigned to the accuracy objective (ARP(0.7)
column). Surprisingly, in many cases, PBAC models outperform the
accuracy-optimized baseline models as can be seen in the𝐴𝑅𝑃 (0.7)
column in Table 3, e.g., the MF model in cluster 𝐶1 with the value
of 86.72. Further, the average 𝐴𝑅𝑃 (𝑤) values for weights (0.3, 0.5,
0.7) is (6.8886, 5.0767, 3.2648) indicating an average improvement
over baselines in all three scenarios. Hence, our proposed PBAC
algorithm effectively balances the trade-off between accuracy and
beyond-accuracy calibration in recommender systems for various
user clusters. This addresses RQ3 and demonstrates the robustness
and versatility of the PBACmodel in optimizing multiple objectives
in a real-world setting.

Baseline recommender model dependency. The underlying
recommendation algorithm has a significant impact on the effec-
tiveness of the proposed PBAC re-ranking model. Because baseline
recommendation algorithms are inputs to PBAC re-ranking models,
so their performance is highly correlated with their effectiveness.
Investigating the reduction in miscalibration degree, Fig. 5b illus-
trate that in Yelp PBAC performs considerably better on the VAECF
baseline, followed by MF and BPR, with an average reduction of
(25.59%, 12.51%, and 5.38%) among the four clusters. Likewise, the
VAECF model exhibits a more substantial average miscalibration re-
duction than other methods on the MovieLens1M dataset, as shown
in Fig. 5a. Essentially this shows that VAECF is learning the un-
derlying user-item representation more accurately and in the most
unbiased way. This finding confirms the results reported in [28]
on the predictive ability of the VAECF model for beyond-accuracy
metrics. On the other hand, among all clusters and datasets, the
MostPop algorithm shows the lowest reduction in miscalibration
with an average improvement of 1.12%. This was expected as this
algorithm is non-personalized, and the items recommended by the
baseline recommendation list are similar for all users. Thus, cal-
ibrating over parameters such as novelty and surprise for users
with different tastes may be less effective since there is not enough
variety in recommended items. Comparing the average recommen-
dation performance (ARP), as can be seen in Table 3, the VAECF

model improves beyond accuracy calibration significantly; how-
ever, it sacrifices accuracy in the process. This results in negative
ARP when higher importance is assigned to accuracy objective,
i.e., ARP(0.7). Considering equal importance at ARP(0.5), we see
positive values for all models except VAECF in cluster 𝐶1, 𝐶2, and
𝐶3. In addition, when beyond-accuracy calibration is prioritized,
ARP(0.3), we can see positive average ARP values among all clus-
ters and baseline algorithms as expected from the PBAC model
performance (see Table Table 3). This result addresses RQ4 and
shows that collaborative filtering algorithms may have difficulty
learning user preferences and assigning high relevance scores to
items that appear to be relevant to users from both accuracy and
beyond-accuracy perspectives simultaneously. Consequently, the
effectiveness of the PBAC re-ranking model is affected by the rec-
ommendation algorithm and is often associated with trade-offs
between accuracy and beyond-accuracy calibration

Ablation study. We analyze the impact of the optimization reg-
ularization parameter 𝜆 from Eq. (7). The larger values of 𝜆 are
expected to produce recommendations calibrated to a user’s taste
in beyond-accuracy metrics. However, the excessive pursuit of cal-
ibration is unnecessary and could have an adverse impact on the
overall recommendation performance. Therefore, we are interested
in studying how different values of 𝜆 in Eq. (7) can influence the
overall performance of the recommender system, i.e., total accuracy
(nDCG, Recall), and beyond-accuracy metrics defined in Sec. 3.

As indicated in Fig. 6, 𝜆 exhibits a more “accuracy-centric” behav-
ior, indicating that this parameter affects overall system accuracy
more significantly than beyond-accuracy metrics, especially with
respect to coverage and redundancy. The reason why an excessively
high value of 𝜆 does not benefit us in the overall performance (the
combination of beyond-accuracy calibration and accuracy objec-
tive), can be explained by the fact that many long-tail and surprising
items lack sufficient preference scores (interactions), making it un-
clear whether including these items in recommendation lists will
actually result in user appreciation. Thus, choosing the appropriate
model parameters is essential to increasing the level of personaliza-
tion and overall utility of the marketplace.

7 CONCLUSION AND FUTUREWORK
This paper addresses the beyond-accuracy metrics calibration from
the users’ perspective. We demonstrated that users have eclectic
preferences when it comes to beyond accuracy qualities such as
diversity and novelty. We further showed that recommender sys-
tems designed to maximize accuracy fail to calibrate the generated
recommendations with respect to beyond-accuracy metrics. We
address this issue by utilizing user profile interactions and an effi-
cient re-ranking algorithm; the calibrated recommendations should
match user expectations for all clusters of users within a range
of tolerance. Extensive experiments confirm that our method can
achieve a desirable point in the trade-off between ranking accuracy
and beyond-accuracy calibration.

For future work, we plan to extend our analysis to multi stake-
holder settings, including producers or side-stakeholders, as an
additional objective in the optimization framework. We can also an-
alyze personalized beyond-accuracy calibrations in online settings
as users’ tastes change dynamically over time.
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