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Abstract

Local search is a key tool in combinatorial optimization. Once an operator is set, the
method starts from a random solution and iteratively moves to a candidate neighbor.
Typically, the best neighbor is sought, which requires visiting all neighbors, an
approach that can be computationally expensive since it requires to recalculate the
fitness function. Recently, neural networks have been employed with considerable
success to predict the best move in a single shot, thereby reducing computational
cost. However, this short-sighted approach, like traditional local search, tends to get
stuck in local optima. To address this limitation, we propose neural models capable
of predicting the optimal move after k local search steps, effectively learning the k-
step trajectory that maximizes improvement in the objective function. Preliminary
experiments on the Maximum Cut problem, which motivated this proposal, show
that incorporating an imitation learning loss into the conventional reinforcement
learning pipeline not only accelerates convergence but also achieves impressive
performance, with 99% accuracy in selecting the optimal move within 3-step
neighborhoods.

1 Motivation

Local Search (LS) methods Hoos and Stν̈tzle [2018] are a cornerstone in combinatorial optimization,
where simple, iterative modifications, such as flipping a bit in a binary vector, are used to explore the
solution space. Popular techniques like Tabu Search Glover [1989], and other metaheuristics Blum
and Roli [2003] rely on LS as a fundamental building block to improve candidate solutions. How-
ever, these methods typically require evaluating a vast number of potential moves, which can be
computationally demanding.

To overcome this limitation, recent advances have led to the development of neural network-based
approaches that mimic the iterative improvement process Chen and Tian [2019], Wu et al. [2021],
Garmendia et al. [2023]. We refer to these as Neural Improvement (NI) methods. Like classical LS
methods, NI iteratively refines candidate solutions; however, NI methods directly choose the optimal
move without exhaustively evaluating all neighboring candidates. The underlying neural network is
trained on a set of instances and candidate solutions to propose modifications that enhance solution
quality. During inference, these models can be applied to unseen instances to propose iterative
modifications without the need for additional solution evaluation.

Predicting an optimal trajectory over k steps is inherently more complex than predicting a single move.
One-step NI methods often rely solely on reinforcement learning (RL) Sutton [2018], selecting actions
based on reward signals corresponding to improvements in the objective function. Unfortunately,
RL can be data-inefficient and slow to converge, a problem that is exacerbated when extending
predictions to k-step trajectories, where the number of possible move sequences grows with respect
to k.
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Figure 1: Accuracy of models where the Neural Improvement model is tasked with classifying the
moves that lead to the greatest improvement in 3 steps on a Maximum Cut instances with Erdős–Rényi
graphs of 20 nodes. The hybrid training (IL+RL) is performed with summing the two losses with
equal weight.

To address these challenge, we propose a hybrid approach that integrates RL with imitation learning
(IL) Hussein et al. [2017]. By computing optimal trajectories through exhaustive search on small
instances during training, we generate explicit imitation labels that guide the learning process. This
additional supervision has been shown to significantly accelerate convergence in other deep learning
tasks Hester et al. [2018]. Our preliminary experiments on the Maximum Cut problem Goemans and
Williamson [1995] support this idea. In fact, we have seen that combining RL and IL not only speeds
up convergence but also substantially improves accuracy compared to using either method alone. As
illustrated in Figure 1, our NI network predicts the move that best improves the objective within a
3-step neighborhood with 99% accuracy.

These impressive results motivate a deeper investigation into the mechanisms behind the performance
gains achieved by combining RL and IL in the context of k-step trajectory prediction.

2 Hypothesis

Both RL and IL offer distinct advantages while also exhibiting inherent limitations when employed
independently in training neural models for combinatorial optimization. IL accelerates training
by providing explicit guidance through expert or optimal action labels; however, it may neglect
near-optimal moves that, although not strictly optimal, are crucial for robust generalization across
diverse problem instances. In contrast, RL rewards actions that are sufficiently good (even if not
optimal), enabling the model to explore a broader range of promising moves. Nevertheless, RL
often suffers from data inefficiency, as it requires extensive exploration in vast action spaces and
tends to exhibit high variance during the early stages of training. This variance arises because many
suboptimal actions are sampled before consistently promising trajectories are identified, frequently
leading to premature convergence on suboptimal policies.

Based on these observations, we hypothesize that a hybrid training framework integrating both RL
and IL will combine their complementary strengths while mitigating their weaknesses, making it
particularly well-suited for k-step trajectory prediction. The explicit guidance from IL is expected
to expedite convergence by steering the model toward optimal moves early in training, while the
explorative capacity of RL should enable the model to learn from near-optimal actions and enhance
its generalization across varied instances. Collectively, this combined approach is anticipated to
yield superior performance in both convergence speed and final solution quality compared to models
trained exclusively with either RL or IL.
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3 Research Questions

To rigorously test our hypothesis, we propose to investigate the following research questions:

1. Performance and Convergence:
• Does the hybrid RL-IL approach converge faster and produce higher quality solutions,

compared to training solely with RL or IL?
2. Loss Balancing Strategy:

• What is the optimal strategy for dynamically balancing the contributions of the RL and
IL losses during training?

3. Comparison with Conventional Local Search:
• How does the neural-based hybrid approach compare to traditional LS methods in

terms of solution quality and computational cost?

4 Methods

Our method targets a combinatorial optimization problem in which a candidate solution is iteratively
improved by a neural model that emulates a classical LS strategy. At each iteration, the model selects
a move (for example, a bit flip in a binary representation of a solution to the Max Cut problem) that is
expected to yield the greatest improvement in the objective function.

4.1 Hybrid RL-IL Framework

Our training framework combines two complementary components:

• Imitation Learning (IL): For each problem instance and a candidate solution, an optimal
trajectory of k steps is computed by exhaustive search. The first move from this trajectory is
used as the target action, serving as a direct imitation signal.

• Reinforcement Learning (RL): Simultaneously, the model is trained with RL, where
rewards are assigned based on the actual improvement in the objective function produced by
the chosen moves.

The overall loss function is defined as:

Ltotal = αILLIL + αRL LRL,

where LIL is the imitation loss, LRL is the reinforcement learning loss, and αRL and αIL are the
scaling factors that balance the contribution of the RL and IL losses, respectively.

4.2 Dynamic Gradient Normalization

To ensure that both the IL and RL components contribute effectively during training, we adopt a
dynamic gradient normalization strategy. Specifically, for the current mini-batch, we compute the
gradients with respect to the network parameters θ and determine their norms:

∥gIL∥ =

(∑
i

∥gIL,i∥2
)1/2

, ∥gRL∥ =

(∑
i

∥gRL,i∥2
)1/2

.

where gIL = ∇θLIL and gRL = ∇θLRL are the gradients computed with the IL and RL losses,
respectively.

Then, we choose a target effective gradient norm µ for each component. Setting µ = 0.5 ensures that
when both gradients are combined, the total effective gradient norm is centered around 1.

To normalize the contributions, we scale each loss by a factor inversely proportional to its gradient
norm. Specifically, we define:

αIL =
µ

∥gIL∥+ ϵ
, αRL =

µ

∥gRL∥+ ϵ
,

where ϵ is a small constant (e.g., 10−8) to avoid division by zero.
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