
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SELFREFLECT: CAN LLMS COMMUNICATE THEIR
INTERNAL ANSWER DISTRIBUTION?

Anonymous authors
Paper under double-blind review

ABSTRACT

The common approach to communicate a large language model’s (LLM) uncer-
tainty is to add a percentage number or a hedging word to its response. But is this
all we can do? Instead of generating a single answer and then hedging it, an LLM
that is fully transparent to the user needs to be able to reflect on its internal belief
distribution and output a summary of all options it deems possible, and how likely
they are. To test whether LLMs possess this capability, we develop the SelfReflect
metric, an information-theoretic distance between a given summary and a distribu-
tion over answers. In interventional and human studies, we find that SelfReflect
indicates even slight deviations, yielding a fine measure of faithfulness between a
summary string and an LLM’s actual internal distribution over answers. With Self-
Reflect, we make a resounding negative observation: modern LLMs are, across the
board, incapable of revealing what they are uncertain about, neither through rea-
soning, nor chains-of-thoughts, nor explicit finetuning. However, we do find that
LLMs are able to generate faithful summaries of their uncertainties if we help them
by sampling multiple outputs and feeding them back into the context. This simple
approach shines a light at the universal way of communicating LLM uncertainties
whose future development the SelfReflect score enables.

1 INTRODUCTION

When large language models (LLMs) are uncertain about a response, either because the query is
ambiguous or because they are factually unsure, they should indicate it. Consider the example in
Fig. 1. The LLM’s internal distribution comprises a variety of answers, so it is not enough to just
output the greedy response. While existing uncertainty quantification approaches augment the greedy
response (or any other single sample from the distribution) with a numerical measure of uncertainty
(Aichberger et al., 2024; Fadeeva et al., 2023; Fomicheva et al., 2020; Malinin and Gales, 2020) or
verbalize the confidence in the response (Lin et al., 2022; Yona et al., 2024), this offers limited insight
into the model’s beliefs: we do not see the full range of cities the LLM believes are plausible, nor the
variety of supporting information (e.g., that Paris hosts the French government).

We believe we can do better than this. An answer string s generated by an LLM is expressive enough to
describe a distribution over all answer strings the LLM could generate. We can therefore use a single
string s to summarize the LLM’s distribution pθ (A | q) over responses A to a query q. We see this in
the “self-reflective uncertainty” example of Fig. 1: A single string conveys the relative degrees of
belief in different cities, and covers the detailed facts of all answers of the distribution. Communicating
uncertainty like this, through a string rather than a number, is a new paradigm for uncertainty
quantification – so novel that there exists no way to benchmark it. Our contribution is thus twofold:

First, we define a benchmark that evaluates whether a given self-summary string faithfully represents
an LLM’s internal distribution over possible responses. The underlying challenge here is to measure
whether a single string “carries the same information” as a distribution over strings, in some
information-theoretic sense that takes into account both mentioned facts and their relative likelihoods.
Our theoretical analysis yields the SelfReflect metric. It scores how well a self-summary string is
predictively sufficient of a distribution of answer strings. To ensure that this measure of faithfulness
is robust in practice, we conduct controlled experiments on both free-form and closed-form question
datasets. We find that the SelfReflect score precisely discriminates good from bad (and almost-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

LLM's internal
distribution pθ (A |q)

User query : What is the main city of France?q

Numerical uncertainty: ('The capital of France is Paris.', 75%)
Verbalized uncertainty: 'I'm very sure that the capital of France is Paris.'
Self-reflective uncertainty: 'I'm 75% sure that it's Paris, its capital and commercial hub, but it could also be Toulouse or Marseille.'

Paris. The capital of France is Paris.

It's Paris, which hosts its government
and many commercial hubs.

Marseille is one of France's most
popular and vibrant cities.

It's Paris.

It's Toulouse.

The capital of France is Paris.

Its main city is Paris.

Normal (greedy) answer: 'The capital of France is Paris.'

Figure 1: LLMs have internal answer distributions about user queries. Rather than just sampling an
output, possibly combined with a percentage, LLMs should generate a string that is self-reflective of
their internal distribution, summarizing all possibilities and which they find the most likely.

good) summaries of answer distributions, and that it agrees with human judgements, in both cases
outperforming other possible benchmark metrics such as LM judges and embedding distances.

Second, we use the SelfReflect metric to test whether 20 modern LLMs can generate self-reflective
uncertainty strings. We make a resounding negative observation: Neither explicit prompting, nor
reasoning, nor SFT and DPO fine-tuning enable an LLM to faithfully summarize its internal beliefs.
Its output may have a summary-style format, but it mentions arbitrary possibilities, not those that
the LLM actually believes in. It is, however, possible to give honest insights into the internal answer
distributions by explicitly i.i.d. sampling an LLM and returning this back for summarization.

These findings mark but the start of this new avenue of uncertainty quantification, and, in extension,
of fundamentally making LLMs aware of their internal uncertainties. We expect that future advances
along our SelfReflect benchmark metric will unlock more honest and trustworthy LLM interactions.

2 RELATED WORK

2.1 UNCERTAINTY IN LLMS

Most work on uncertainty in LLMs associates a single numerical expression of uncertainty to a
specific string like the greedily decoded response. Since LLMs are, in essence, probabilistic next-
token classifiers, one can attempt to read their uncertainty off their token logits (Aichberger et al.,
2024; Fadeeva et al., 2023; Fomicheva et al., 2020; Malinin and Gales, 2020). These methods can
be extended to longer LLM answers for example by searching for fact tokens and extracting their
logits (Fadeeva et al., 2024) and made more human-readable by transforming the numeric uncertainty
into a string like “I am very sure that...” (Lin et al., 2022; Yona et al., 2024). Still, these approaches
quantify the uncertainty of only a single element of the LLM’s internal distribution.

So how can the full uncertainty of the LLM’s distribution be captured? Farquhar et al. (2024) cluster
answers sampled from the LLM’s internal distribution semantically and calculate an entropy over the
clusters. This considers the full distribution over strings, but it still reduces the uncertainty to a single
number and presents this number alongside a single string from the distribution. Moving towards
richer uncertainty explications, Xu et al. (2024) generate multiple samples from an LLM, use GPT-4
to summarize the distribution of samples and train the LLM to output such summaries. Similarly,
Yang et al. (2024b) train an LLM to output strings that delineate which facts it is uncertain about. This
is arguably one of the richest ways to express an LLM’s uncertainty. But both papers, focusing on the
generation of summaries rather than on evaluation, use simple LM judges to rate the summary strings.
As we show in Section 4.1, LM judges can not discern how faithfully a string reflects a distribution
over strings beyond relatively simple good vs bad cases. Our SelfReflect gives a better-founded and
more precise metric to compare whether a summary string contains the same information as the
LLM’s internal distribution, enabling to further develop this new avenue of LLM uncertainties.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 SUMMARIZATION

Testing whether a summary of a long document is good has a long history in natural language
processing (NLP) (Zhang et al., 2024). Summaries are traditionally rated in terms of consistency with
the long document, relevance of the chosen information, and fluency and coherence of their sentences
(Fabbri et al., 2021), as rated by humans or recently by LM judges (Jain et al., 2023). In modern
LLM-generated summaries, fluency and coherence are usually granted, so that the focus lays on the
consistency and relevance of the summary, in other words, whether it contains the same information
as the long document. This fundamental question dates back to the Cloze test (Taylor, 1953). This
test, originally designed for human language learners, masks out words from the long document and
asks to fill them in. Summarization metrics like BLANC (Vasilyev et al., 2020) run this test twice,
once when conditioning an NLP model on the summary and once without. If the summary contains
correct information, the NLP model should fill in better words. The masked-out performance can be
quantified either as an accuracy gain (Vasilyev et al., 2020) or, more softly, as a pseudo log-likelihood
(Shin et al., 2019; Wang and Cho, 2019; Salazar et al., 2020; Kauf and Ivanova, 2023).

Since our SelfReflect metric also quantifies the quality of a summary, we base it off Cloze-like
masked-out tasks. But there is a twist: The summary string s does not summarize another string
but a distribution over strings pθ (A | q). This means we must go beyond comparing s to a specific
string a ∼ pθ (A | q), to quantifying how faithfully s represents the density over the string space
that pθ (A | q) defines, i.e., to all possible answers and how likely they are. To this end, we re-think
masked-out tasks from the lens of sufficient statistics in the following section.

3 DISTANCES BETWEEN SUMMARY STRINGS AND DISTRIBUTIONS OF STRINGS

Our main challenge is to find a distance that quantifies the extent to which a summary string carries
the same information as an LLM’s internal answer distribution. We build a theoretical foundation for
sufficient statistics in string spaces in Section 3.1 and develop the SelfReflect metric in Section 3.2.

3.1 SUMMARIES AS PREDICTIVE SUFFICIENT STATISTICS

B

ΘQ A(1:N) S

Figure 2: Graphical model for the suf-
ficiency that SelfReflect quantifies.

Suppose we have an LLM (which we denote LLMθ),
prompted with a random query Q. We posit that this puts
us in a state ΘQ, which allows us to sample random re-
sponses B. We are interested in summarizing this distribu-
tion over responses. LetA(1:N) := (A(1), . . . , A(N)) ∈ XN

be a set of responses sampled from LLMθ, where X is the
space of finite strings.1 Consider a summarization function
ψ : XN −→ X that, given A(1:N), generates a summary
S := ψ(A(1:N)). What criteria should ψ satisfy if its sum-
maries are to exactly capture LLMθ’s distribution over B?

Continuing the example from Fig. 1, we can see that an ideal summary of A(1:N) should neither omit
important details from the answer distribution nor add extra details. For example, a summary stating
“The capital of France is Paris” would ignore the LLM’s belief in Marseille or Toulouse, whereas a
summary stating “The capital of France is Paris but for a period in history, it was Orléans” would be
adding unfaithful details. The same holds for the relative likelihood of answers: the ideal summary
should state that the capital of France is most likely Paris, and not Toulouse or Marseille, because
this answer has a higher probability mass in the LLM’s internal distribution. This indicates that an
ideal summary should capture exactly the same information about the answer distribution as that
contained in the sampled answers. We can formalize this in terms of mutual information,
Definition 3.1 (Ideal summary). An ideal summary S of answers A(1:N) of an LLM satisfies

I
{
A(1:N) ;B

}
= I {S ;B} (1)

Here, I {Y ;Z} denotes the mutual information between Y and Z. Intuitively, for any subsequent
answer B from the LLM, the information about B contained in A(1:N) is exactly captured by S.

1These N samples may be generated independently and identically to B, but we do not require this; for
example, the distribution over subsequent answers could depend on the previous answers.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

This definition is closely tied to the notion of predictive sufficiency (Lauritzen, 1974), whereby
a statistic T (X(1:N)) of observations X(1:N) is called sufficient if it satisfies p

(
X | X(1:N)

)
=

p
(
X | T (X(1:N))

)
for any subsequent observation X . In fact, we can reframe Definition 3.1:

Proposition 3.1 (Connection to predictive sufficiency). For an ideal summary S of answers A(1:N),

I
{
A(1:N) ;B

}
= I {S ;B} ⇐⇒ p

(
B | A(1:N)

)
= p (B | S) (2)

Intuitively, the ideal summary S is a predictive-sufficient statistic of the answers A(1:N) for B.

From Definition 3.1 and Proposition 3.1, we see that a measure of how much p
(
B | A(1:N)

)
diverges

from p (B | S) would be a good metric for measuring how faithfully S reflects the sampled answers
A(1:N). Towards this, we formulate a Cloze-task based on masked-token prediction that constitutes
a simple yet equivalent characterization of the desired predictive sufficiency. Let Bi denote the ith
word of B and let B−i := (Bj)j ̸=i denote all other words of the answer. We propose predicting the
missing word Bi from the rest of the words B−i with the extra context of either the sampled answers
A(1:N) or their summary S. Identical behavior in this masked-token prediction task turns out to be
equivalent to predictive sufficiency (and hence, Definition 3.1):

Proposition 3.2 (Informal; towards the SelfReflect metric). For answers A(1:N) and their summary
S, under mild conditions on all involved distributions and support of B, we have:

p
(
B | A(1:N)

)
= p (B | S) ⇐⇒ for all masking indices i, p

(
Bi | A(1:N), B−i

)
= p (Bi | S,B−i) (3)

Full details and proofs of Propositions 3.1 and 3.2 are given in Appendix A. Proposition 3.2 motivates
us to measure the divergence between the distributions p (Bi | S,B−i) and p

(
Bi | A(1:N), B−i

)
as

a tractable metric for the quality of a summary, forming the basis of the SelfReflect metric.

3.2 THE SELFREFLECT METRIC

Proposition 3.2 tells us we can use a sequence of masked-out tasks to quantify whether a summary
s contains the same information about LLMθ’s distribution pθ (B | q) as a sequence of N samples
from that distribution. We approximate this task using a second judge LLM, LLMJ , to estimate the
conditional distribution over masked-out words. Intuitively, irrespective of whether we show the
sampled answers or their ideal summary, a judge LLM should predict the same masked tokens.

Concretely, we sample a new response B at temperature 1 from LLMθ, mask out one word Bi, and
ask LLMJ to predict Bi given the remainder of the answer B−i, the query q, and either the summary
s or a sequence a(1:N) of N samples from pθ

(
A(1:N) | q

)
, see Fig. 3. This yields two distributions

pJ
(
Bi | Q = q, A(1:N) = a(1:N), B−i = b−i

)
and pJ (Bi | Q = q, S = s,B−i = b−i), over the vo-

cabulary space of LLMJ which we compare using the 1-Wasserstein distance.2 We marginalize over
B and index i to satisfy the requirements of Proposition 3.2. Finally, we take the expectation over all
summaries that a summarization strategy ψ writes for each question in the dataset:

mSelfReflect(ψ) = E
Q,A(1:N),B,i

[
W1

(
pJ (Bi | Q,ψ(Q), B−i), pJ

(
Bi | Q,A(1:N), B−i

))]
(4)

Here, ψ is any method that makes LLMθ output a summary of its internal distribution in response
to a query.3 We estimate Eq. (4) via Monte Carlo sampling with 1000 queries per dataset, a set of
N = 50 samples A(1:N) per query, and masked-out tasks over M = 50 samples of B for all possible
i. These are relatively conservative settings that take 67 minutes to calculate the benchmark score on
a node of 8 NVIDIA A100 GPUs. In Appendix B, we show that we can also reduce to 9 minutes or
even below one minute if the goal is not to reach a benchmark metric precise to multiple digits but
rapid development or reward signals. Literature notes that Cloze-like evaluations are often limited by
synonyms (Kauf and Ivanova, 2023), so we post-hoc flatten pJ with τ = 5. We quantitatively find
this improves discriminability since especially Instruction-tuned LLMJ models otherwise place too
much mass on one specific masked-out word. We discuss further design choices in Appendix C.

2If LLMJ is a black-box model that only returns the top-predicted word, i.e., pJ are one-hot vectors, our
1-Wasserstein comparison simplifies into an accuracy that tests whether the two predicted words are equal.

3While the link to sufficiency only holds if ψ depends only on a(1:N), the metric is well-defined whether the
summary generation involves taking samples in-between or generating a summary answer for q in other ways.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

<|im_start|>user
Who was the first Australian prime minister?
<|im_end|>

<|im_start|>assistant
I'm 70% that the first Australian prime minister

was Sir Edmund Barton, elected in 1901, but it
could also be Andrew Fisher or Edmund Deakin.

<|im_end|>

<|im_start|>user
We now show a text with a missing word "_". Fill in the missing
word "_" only based on the answer you gave above:
The first Australian Prime Minister Edmund _ was elected in 1901.
Please provide only the missing word "_", not the whole sentence.
<|im_end|>

<|im_start|>assistant

<|im_start|>user
Who was the first Australian prime minister?
Sample 50 answers to this question.
<|im_end|>

<|im_start|>assistant
a_1 = "The first Australian prime minister, Sir

Edmund Barton, was elected in 1901."
[...]

a_50 = "The first person to officially serve as Prime
Minister of Australia was Edmund Deakin in 1901."

<|im_end|>
<|im_start|>user
We now show a text with a missing word "_". Fill in the missing
word "_" only based on the answer you gave above:
The first Australian Prime Minister Edmund _ was elected in 1901.
Please provide only the missing word "_", not the whole sentence.
<|im_end|>

<|im_start|>assistant

candidate
summary s

i.i.d. samples
from

pasted into context
pθ (A |q)

Predicted token vector: pJ(Bi |q, s, b−i) = (0.70, 0.28, 0.01, . . .) Predicted token vector: pJ(Bi |q, a(1:N), b−i) = (0.78, 0.18, 0.01, . . .)

mSelfReflect (s) = 𝒲1 (pJ(Ai |q, s, a−i) , pJ(Ai |q, a(1:N), a−i))pJ(Bi |q, s, b−i) pJ(Bi |q, a(1:N), b−i)

question q

task with
masked-out
answer b−i

"Barton"

"Deakin"

"Fisher""Barton"

"Deakin"

"Fisher"

mSelfReflect(s) = W1
(
pJ(Bi | q, s, b−i) , pJ

(
Bi | q, a(1:N), b−i

))
Figure 3: To test whether a summary string s contains the same information as a set of samples a(1:N),
SelfReflect prompts an LLM twice. First, it provides the summary as context; next, it provides the
concatenated samples. SelfReflect then compares the resulting distributions via a masked-out task.

We explore different choices of LLMJ and find that SelfReflect is robust to the exact choice, see the
quantitative results in Appendix D and the qualitative example in Appendix E. We find that Qwen
2.5 Instruct (Yang et al., 2024a) captures both textual details and the implicit relative certainties in
summaries or concatenated samples in its context even when they are subtle. The 7B model provides
results almost on par with the 72B model, so we choose it for efficiency.

4 CAN SELFREFLECT SCORES QUANTIFY HOW GOOD SUMMARIES ARE?

We now verify that the SelfReflect metric works as a benchmarking tool, based on three pillars:
Distinguishing hand-crafted good and bad summaries on free-form questions, a simplified study on
multiple-choice QA answer distributions, and a comparing it to which summaries humans deem
faithful. In all studies, we compare SelfReflect to several other possible benchmarking metrics.

Baselines. While developing SelfReflect, we experimented with approaches from various roots for
comparing a summary string s to a set of strings a(1:N). First, Summarization treats a(1:N) as a single
document and assesses the summary s in terms of consistency, fluency, relevance, and coherence (Jain
et al., 2023). Second, LM Judge prompts LLMJ to rate how well s matches a(1:N), following the
chain-of-thoughts prompt of Xu et al. (2024). Third, we turn to the neighboring field of calibration.
Wang and Holmes (2024) argue that calibration can be seen as a distance to a centroid. We implement
this in Embedding by comparing embeddings of s to a(1:N). Finally, for Opt. transport (Peyré et al.,
2019), we let LLMJ split s into a “distribution” over atomic statements and likelihoods, compute a
pairwise entailment matrix and return the Earth Mover’s distance to pθ (A | q).
Ablations. We also ablate key characteristics of SelfReflect (SR). SR-logl replaces the Wasserstein
distance over the whole logit vector with only the log probability assigned to the masked-out word
given either context. SR-PMI (SelfReflect with Pointwise Mutual Information) even removes the
one-by-one masked-out task and directly compares the log likelihoods of the full answers A(1:N);
analogous to Proposition 3.1. SR-sampling-free uses the masked-out task, but compares the masked-
out logit vectors given the summary to predictions of LLMθ given q, instead of putting sampled
answers into the context of LLMJ . SR-P(True) changes from a generative to a discriminative masked-
out task, asking LLMJ whether several candidates words fit or not (via the P(True) method of
(Kadavath et al., 2022)), given either the summary or the samples. More details are in Appendix F.

4.1 STUDY 1: DISTINGUISHING GOOD FROM BAD AND ALMOST-GOOD SUMMARIES

We first conduct an interventional study to test whether summaries that we know are good are judged as
better than summaries that we know are bad. To this end, we take 3×1, 000 open-ended questions from
Natural Questions (Kwiatkowski et al., 2019), TriviaQA (Joshi et al., 2017), and SimpleQA (Wei et al.,
2024), and let Qwen 2.5 7B Instruct generate 50 answers each. We then give these answer distributions
to Gemini 2.0 Flash and prompt it to generate good summaries, containing all possibilities, details,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Given pairs of good and bad summaries, we measure how often the SelfReflect score, and
other benchmark metrics, correctly assign a better score to the good summary to verify that they work
as benchmarking metrics. We test multiple pairs of good and bad summaries, e.g., lacking possibilities
or lacking details. Mean ± 95% confidence interval. Per-dataset results are in Appendix H.

Metric
Good summaries vs

bad summaries
Good vs

almost-good
Detailed vs
truncated

Verbalized uncertainty vs
only majority answer

Verbalized vs
or-concatenated

Percentage vs
or-concatenated

Summarization 93.33%±0.89% 39.72%±1.87% 53.05%±6.04% 19.90%±5.66% 58.12%±7.00% 64.92%±6.77%

LM Judge 98.33%±0.46% 47.32%±1.91% 59.92%±5.93% 19.37%±5.60% 34.55%±6.74% 35.08%±6.77%

Opt. Transport 80.16%±1.43% 60.78%±1.87% 39.69%±5.92% 48.69%±7.09% 52.88%±7.08% 69.11%±6.55%

Embedding 96.50%±0.66% 65.49%±1.82% 65.65%±5.75% 10.99%±4.44% 43.98%±7.04% 36.65%±6.83%

SR-logl 96.37%±0.67% 85.90%±1.33% 86.64%±4.12% 58.12%±7.00% 40.84%±6.97% 49.21%±7.09%

SR-PMI 88.40%±1.15% 33.64%±1.81% 53.44%±6.04% 25.65%±6.19% 14.14%±4.94% 20.42%±5.72%

SR-sampling-free 88.26%±1.15% 54.85%±1.90% 73.28%±5.36% 38.74%±6.91% 35.08%±6.77% 38.22%±6.89%

SR-P(True) 65.29%±1.70% 81.91%±1.47% 69.47%±5.58% 87.96%±4.62% 71.73%±6.39% 86.39%±4.86%

SelfReflect 98.77%±0.40% 93.20%±0.96% 93.13%±3.06% 85.34%±5.02% 72.77%±6.31% 80.10%±5.66%

and relative likelihoods, and bad summaries, which alter key facts of the good summaries, but keep
their remaining style (human-written summaries reach equivalent results in Appendix G). We then
calculate which score SelfReflect gives to the summaries, and in how many percent of the good-bad
pairs it correctly gives the good summary a better (lower) score than the bad one.

Table 1 shows that SelfReflect correctly discriminates good from bad in 98.77% of cases. But several
other baseline metrics also score over 90%. So we make the task harder by comparing good to
almost-good summaries, which only contain facts that are faithful to the answer distribution, but
leave out some possibilities and details. SelfReflect gives the good summary a better score than
the almost-good summaries in 93.2% of all questions. The other metrics, including the LM judge
used in literature, can no longer distinguish these fine-grained quality differences and are thus not
good for benchmarking. We ablate this multiple times, finding the SelfReflect score also correctly
notices when a summary does not mention all written details, or when it does not mentions all options
but only the majority answer. Even when a summary mentions all options (“It is ... or ... or ...”),
SelfReflect assigns a yet better score to a summary that also faithfully delineates in words or numbers
which options are how likely. The SelfReflect score picks these subtle differences up better than
all other benchmarking metrics, matched only twice by its own SR-P(True) ablation. Further, all
these tests checked whether SelfReflect can distinguish the quality of individual summaries. In later
benchmarks, which average over thousands of summaries per method, averaged SelfReflect scores
will become even more exact by the law of large numbers, making SelfReflect a precise benchmarking
tool that allows to iteratively develop summary-generating methods.

4.2 STUDY 2: DISTANCES OF MULTIPLE-CHOICE DISTRIBUTIONS

Table 2: Agreement (rank corr.) between
SelfReflect, and others, and a special bench-
mark metric for MMLU. Mean ± 95%.

Metric Per Question Whole Dataset

Summarization 0.45±0.03 0.80±0.00

LM Judge 0.76±0.02 1.00±0.00

Opt. Transport 0.67±0.02 0.82±0.00

Embedding -0.24±0.04 0.19±0.02

SR-logl 0.59±0.03 1.00±0.00

SR-PMI 0.07±0.03 0.20±0.00

SR-sampling-free 0.51±0.03 0.80±0.00

SR-P(True) 0.57±0.03 1.00±0.00

SelfReflect 0.65±0.03 1.00±0.00

Next, we investigate SelfReflect in a narrower setup.
We generate 2×1,000 answer distributions for MMLU
(Hendrycks et al., 2021), a multiple-choice dataset with
choices A, B, C, and D for each question, with Gemma
3 12B (non-Instruct) (Gemma Team et al., 2025), and
Qwen 2.5 7B Instruct. To give a spectrum of different-
quality summaries, we create summaries of the form

“The answer is most likely C (54% sure), but it could also
be B (32% sure) or A (14% sure).” that either match
the true ratio of answers, mention the most likely an-
swer only, are overconfident, or give random percent-
ages. These simple summary strings allow testing how
well SelfReflect and the baseline metrics capture distri-
butional faithfulness. As a reference-metric for faithfulness in this narrow setup, we compute the
true Wasserstein distance between the distribution described in the summary and that of the test-set
answers. We then calculate the correlation of the ranks that SelfReflect assigns to the summaries of a
question and that which the reference metric assigns to see whether they agree.

Table 2 shows that most metrics have a positive rank correlation with the reference metric. The LM
judge metric even slightly outperforms SelfReflect on this particular task, indicating that SelfReflect
may be slightly noisy on individual questions when summaries contain exact probabilities. However,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Agreement of metrics with human preference (consensus over five raters) on a pairwise
summary preference task, using Krippendorff’s α (values in [-1, 1]; positive numbers indicate
agreement). Also shown is Krippendorff’s α between individual human raters. Mean ± 95% CI.

all bad vs good bad vs greedy bad vs CoT good vs greedy good vs CoT greedy vs CoT

Summarization 0.480±0.050 0.950±0.046 0.910±0.050 0.940±0.046 -0.211±0.156 -0.067±0.135 0.260±0.121

LM Judge 0.517±0.046 0.940±0.048 0.920±0.058 0.930±0.046 -0.063±0.152 -0.015±0.151 0.267±0.128

Opt. Transport 0.487±0.047 0.850±0.076 0.779±0.085 0.679±0.104 0.098±0.155 0.265±0.132 0.191±0.146

Embeddings 0.435±0.047 0.750±0.081 0.799±0.087 0.477±0.125 -0.363±0.136 0.331±0.135 0.490±0.121

SR-PMI 0.436±0.053 0.820±0.081 0.890±0.067 0.769±0.080 -0.246±0.156 0.029±0.147 0.246±0.114

SR-sampling-free 0.530±0.045 0.829±0.076 0.870±0.071 0.799±0.080 0.025±0.143 0.241±0.131 0.340±0.141

SR-P(True) -0.032±0.052 -0.029±0.138 -0.335±0.124 -0.474±0.120 0.311±0.147 0.409±0.125 -0.024±0.143

SelfReflect 0.690±0.036 0.990±0.015 0.850±0.066 0.850±0.070 0.489±0.131 0.599±0.103 0.329±0.125

Human vs human 0.723±0.027 0.988±0.013 0.906±0.035 0.871±0.048 0.441±0.075 0.636±0.064 0.452±0.069

when we compute the average score across all questions, as it will later be used in the benchmark,
SelfReflect, like two of its ablations and LM Judge, achieves a perfect agreement with the reference
metric. This shows SelfReflects generic power as benchmark metric, even in this special case.

4.3 STUDY 3: DO THE RATINGS ALIGN WITH HUMAN RATINGS?

Finally, we assess whether SelfReflect scores are aligned with human judgements. We conduct a
user study using 200 open-ended questions from the TriviaQA dataset (Joshi et al., 2017). For each
question, we generate ten sample responses using Phi-4 (Abdin et al., 2024), and four summaries: a
good summary and a bad summary, generated using Gemini 2.0 Flash as in Section 4.1; a greedy
summary, i.e., the greedy response of Phi-4; and a Chain of Thought (CoT) summary, using Phi-4
to reason about possible answers and then summarize its reasoning. Note that the greedy and CoT
summaries are not based on the actual samples. All prompts are provided in Appendix F. Raters
were shown the question, the ten sample answers, and two of the summaries, and asked to choose
which best summarized the set of samples. Each question/summary combination was evaluated by
5 raters. To assess agreement between human raters, we calculate Krippendorff’s α. Alternative
agreement metrics such as Cohen’s kappa or Fleiss’ kappa are not appropriate here since each rater
only rates a subset of the combinations. We then calculate Krippendorff’s α between the majority
human preference and that of SelfReflect and other scores. Further details are in Appendix J.

As we see from Table 3, SelfReflect has the highest overall alignment with the majority human
judgement (α = 0.690). This is close to the inter-human alignment (α = 0.723) and significantly
higher than any of the competing methods or ablations. Looking into the individual summary types,
we see all metrics other than SR-P(True) have good alignment with humans on the bad vs good,
bad vs greedy, and bad vs CoT comparisons. However, the other metrics show poor agreement
with humans on the more nuanced good vs greedy and good vs CoT. For all pairs of summary type,
SelfReflect is close to inter-human agreement and either the most aligned with the majority human
preference, or has overlapping 95% confidence intervals with the most aligned metric.

5 CAN LLMS GENERATE SELF-REFLECTIVE RESPONSES?

Now that we have a metric to benchmark how well summaries summarize the distribution of LLM
answers, we explore the performance of different summarization methods, that is: can one (somehow)
make LLMs reflect on and summarize their own internal distributions?

5.1 EXPERIMENTAL SETUP

We distinguish two broad categories of methods: A) Sample & summarize: draw multiple independent
samples from the LLM, and then feed them back to the LLM to summarize them, B) Single-decoding:
methods which utilize only one decoding, requiring the LLM to reflect on its internal distribution
on its own. We consider three single-decoding methods: a) Basic: a prompt asking the LLM for a
summary of all possible answer options; b) CoT: a prompt inducing chain-of-thoughts reasoning about
the possible answers and then summarizing them; c) Greedy: Simply return the greedy-decoding
answer without summarizing all possibilities; we use this as a baseline. The Greedy baseline is, in

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: SelfReflect score ↓ (×10−3 for readability). The results in small font are relative to Greedy.
pθ(A|q) unimodal is the proportion of questions for which the LLM always gives the same answer.

Model pθ (A | q) Single-decoding methods Sample & summarize

unimodal Greedy Basic CoT N=10 N=20

Qwen2.5 0.5B Instruct (Yang et al., 2024a) 7% 96 95−1 94−2 96−0 96−0

Qwen2.5 1.5B Instruct (Yang et al., 2024a) 17% 94 94−0 92−2 87−7 87−7

Qwen2.5 3B Instruct (Yang et al., 2024a) 27% 97 99+2 99+2 91−6 89−8

Qwen2.5 7B Instruct (Yang et al., 2024a) 36% 96 99+3 101+5 91−5 90−6

Qwen2.5 14B Instruct (Yang et al., 2024a) 52% 92 97+5 99+7 86−6 85−7

Qwen2.5 32B Instruct (Yang et al., 2024a) 49% 96 102+6 105+9 91−5 91−5

Qwen2.5 72B Instruct (Yang et al., 2024a) 50% 91 94+3 96+5 85−6 84−7

Phi 4 14B (Abdin et al., 2024) 36% 92 92−0 93+1 85−7 84−8

Ministral 8B Instruct 2410 (Jiang et al., 2024) 25% 107 106−1 105−2 101−6 100−7

Llama 3.1 70B Instruct (Meta AI, 2024a) 51% 92 92−0 95+3 87−5 87−5

Llama 3.3 70B Instruct (Meta AI, 2024b) 63% 94 98+4 104+10 89−5 88−6

Llama 4 Scout 17B 16e Instruct (Meta AI, 2025) 53% 91 96+5 101+10 88−3 87−4

Gemma 3 1B Instruct (Gemma Team et al., 2025) 26% 116 129+13 129+13 117+1 111−5

Gemma 3 4B Instruct (Gemma Team et al., 2025) 52% 108 124+16 128+20 101−7 100−8

Gemma 3 12B Instruct (Gemma Team et al., 2025) 59% 105 116+11 121+16 102−3 101−4

Gemma 3 27B Instruct (Gemma Team et al., 2025) 71% 100 113+13 120+20 97−3 96−4

Generation time (seconds) 1.56 1.59 2.48 3.65 4.50
Length (characters) 104.79 195.12 303.09 174.70 219.22

Table 5: SelfReflect score ↓ (×10−3) of RLVR models averaged over TriviaQA, NQ & SimpleQA.
Greedy is generated w/o reasoning. Basic and Sample & Summarize reason and output a summary.

Model Single-decoding methods Sample & Summarize

Greedy Reasoning N=10 N=20

QwQ 32B (Qwen Team, 2025b) 96 105+9 91−5 90−6

DeepSeek R1 Distill Qwen 2.5 32B (DeepSeek-AI et al., 2025) 96 108+12 91−5 90−6

Qwen3 32B (Reasoning enabled) (Qwen Team, 2025a) 93 96+3 86−7 85−8

Qwen3 8B (Reasoning enabled) (Qwen Team, 2025a) 103 104+1 90−13 89−14

Generation time (seconds) 1.96 3.60 6.99 8.57
Length (characters) 107.56 224.98 287.31 350.98

fact, strong: On questions where a model has a unimodal distribution on a specific answer, Greedy is
in fact the best possible summary of this distribution and achieves a competitive SelfReflect score. To
account for this, we report the percentage of answers where we observe such "pθ (A | q) unimodal"
distributions per LLM. We evaluate all summarization methods via the SelfReflect score on 3×1000
randomly chosen questions from Natural Questions, SimpleQA, and TriviaQA. We use the same
LLM to sample the answers to the question and generate the summaries in order to assess whether
LLMs can access and describe their own internal distributions. We publish all benchmarking code
upon publication. More details are in Appendix K.

5.2 RESULT: LLMS CAN ONLY ACCESS THEIR INTERNAL DISTRIBUTIONS WITH SOME HELP

As we see in Table 4, Sample & summarize is able to create summaries that faithfully reflect the
model’s internal uncertainty, consistently outperforming the Greedy baseline. In fact, its score matches
that of humans asked to summarize samples from an LLM distribution, with humans achieving
90 · 10−3 when summarizing Qwen 2.5 72B Instruct answer distributions and Sample & summarize
achieving 88 · 10−3 on the data-split of Appendix G. However, Sample & summarize helps the LLM
in so far that it explicitly samples it i.i.d. and provides the samples back as context to summarize.

It is of particular interest if we can generate such self-reflective outputs without needing to sample in-
between, for runtime and elegancy. Table 4 unveils a resounding negative result: No single-decoding
methods is able to out-perform the Greedy baseline, corroborating that LLMs are not able to fully
verbalize their own uncertainty by themselves, despite our best efforts to optimize the prompts.

Maybe this task is too complex for an instruction-tuned LLM. We thus turn to reasoning models,
asking them to reason about all possibilities and then output a summary. But Table 5 reinforces our

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

negative result. Reasoning models do not perform any better. Qualitatively, summaries produced by
reasoning models are similar to the instruction-tuned LLMs with CoT prompts: they list possibilities,
as prompted, but these possibilities are not faithful to the LLM’s actual internal distribution.

Last, we attempt to explicitly train LLMs to output self-summaries. We take a dataset of 10,000
Sample & summarize summaries from TriviaQA or Natural Questions (SimpleQA is too small)
as good examples and perform supervised finetuning (SFT) and/or direct preference optimization
(DPO, against 10,000 greedy answers as negative examples) on a Qwen 3 8B non-reasoning model.
Appendix M shows that SFT reduces the SelfReflect score on the train data but neither on held-out
validation questions from the same dataset nor on out-of-domain questions from the other dataset. This
suggests that the model memorizes individual summaries rather than learning a general mechanism
for accessing and summarizing its internal distribution. These experiments show that generating self-
reflective summaries that are faithful to the model’s internal uncertainty is a non-trivial new challenge.

5.3 IF IT IS NOT FAITHFUL, THEN WHICH ANSWERS DOES CHAIN-OF-THOUGHTS LIST?

To understand our resounding negative result further, we compare summaries and the true internal
distributions. As example case, we use CoT summaries from Qwen2.5 72B Instruct, our largest model.

Certain Uncertain
CoT Summary

Ce
rta

in
Un

ce
rta

in
An

sw
er

 D
is

tr
ib

ut
io

n

18% 36%

7% 39%

Figure 4: How often Qwen2.5 72B In-
struct answer distributions span mul-
tiple possibilities vs how often their
CoT summaries do.

We first test whether CoT correctly captures the spread of
the answer distribution, i.e., whether it focuses on a sin-
gle answer when the true distribution is unimodal and in-
cludes multiple options when the true distribution is multi-
modal. We let Gemini 2.0 Flash classify whether the CoT
summaries and a(1:N) are certain (only mentioning one an-
swer option) or uncertain (mentioning semantically different
options, see also Appendix L). Figure 4 shows that for 36%
of the questions, its summary is uncertain even when the an-
swer distribution samples are not, meaning it suggests multi-
ple answers options that do not have high probability under
the true distribution. The same holds in reverse; in fact, the
cross-table reveals that CoT generates certain or uncertain
summaries nearly independently of whether the model’s in-
ternal distribution is actually certain or uncertain.

Second, we investigate the possibilities mentioned in a summary. The most important possibility
to cover is the ground-truth answer, so we use it as an anchor for this analysis. Following the best
practices of Santilli et al. (2025), we measure the RougeL-Recall on Natural Questions’ short answers,
i.e., the longest substring of the true answer that appears in a summary, as percentage of the true
answer’s length. We find that Greedy answers have an average overlap of 59.5% with the true answers.
Basic summaries have 62.0%, CoT summaries 64.0%, and Sample & Summarize summaries 65.6%.
Evaluating with an LM Judge instead of RougeL-Recall shows the same trend, rating that 71.3%,
72.2%, 74.1%, and 76.0% of the summaries include the true answer. In other words, summaries of
the LLM’s internal distributions are going in a promising direction in that they cover the true answer
more often, they are just not faithful to the model’s internal uncertainties (yet).

6 OUTLOOK

We present SelfReflect, a metric that judges how faithfully a single string represents a distribution over
output strings. SelfReflect is intended to guide the field on a new avenue of expressing uncertainties:
Developing methods to make LLMs honestly describe all possible answers to a prompt in one string.
We have seen in our benchmark that this is a hard task, but a solution to this problem would be a
fundamental building block in many applications: It provides a human-interpretable account of LLM
uncertainty, which can be useful in building appropriate trust in the LLM’s outputs. The string can
also be fed back to the LLM, for example to reason about follow-up questions when a user query
is ambiguous. Extracting all output possibilities is also a core necessity for conformal approaches,
which are popular for classification but less explored for LLMs where the span of possible outputs is
not immediately available. Finally, an accurate description of a distribution can also be recast into a
numeric uncertainty value, thus generalizing traditional numeric and verbalized uncertainties.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We intend to lay a foundation for a new avenue of communicating uncertainties with our work, and
enable future researchers to contribute to it. Thus, we publish code to compute SelfReflect scores
for arbitrary LLMs and summary-generating methods to enable standardized benchmarking. We
publish this code after the reviewing period so that the license file does not break anonymity. For
reviewing, we have added all prompts used throughout our experiments in the appendix, as well as all
hyperparameters, and exemplary SelfReflect computations broken down to the word-level.

REFERENCES

M. Abdin, J. Aneja, H. Behl, S. Bubeck, R. Eldan, S. Gunasekar, M. Harrison, R. J. Hewett,
M. Javaheripi, P. Kauffmann, et al. Phi-4 technical report. arXiv preprint arXiv:2412.08905, 2024.

L. Aichberger, K. Schweighofer, and S. Hochreiter. Rethinking uncertainty estimation in natural
language generation. arXiv preprint arXiv:2412.15176, 2024.

J. M. Bernardo and A. F. Smith. Bayesian theory, volume 405. John Wiley & Sons, 2009.

T. M. Cover. Elements of information theory. John Wiley & Sons, 1999.

DeepSeek-AI, D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi,
X. Zhang, X. Yu, Y. Wu, Z. F. Wu, Z. Gou, Z. Shao, Z. Li, Z. Gao, A. Liu, B. Xue, B. Wang, B. Wu,
B. Feng, C. Lu, C. Zhao, C. Deng, C. Zhang, C. Ruan, D. Dai, D. Chen, D. Ji, E. Li, F. Lin, F. Dai,
F. Luo, G. Hao, G. Chen, G. Li, H. Zhang, H. Bao, H. Xu, H. Wang, H. Ding, H. Xin, H. Gao,
H. Qu, H. Li, J. Guo, J. Li, J. Wang, J. Chen, J. Yuan, J. Qiu, J. Li, J. L. Cai, J. Ni, J. Liang, J. Chen,
K. Dong, K. Hu, K. Gao, K. Guan, K. Huang, K. Yu, L. Wang, L. Zhang, L. Zhao, L. Wang,
L. Zhang, L. Xu, L. Xia, M. Zhang, M. Zhang, M. Tang, M. Li, M. Wang, M. Li, N. Tian, P. Huang,
P. Zhang, Q. Wang, Q. Chen, Q. Du, R. Ge, R. Zhang, R. Pan, R. Wang, R. J. Chen, R. L. Jin,
R. Chen, S. Lu, S. Zhou, S. Chen, S. Ye, S. Wang, S. Yu, S. Zhou, S. Pan, S. S. Li, S. Zhou, S. Wu,
S. Ye, T. Yun, T. Pei, T. Sun, T. Wang, W. Zeng, W. Zhao, W. Liu, W. Liang, W. Gao, W. Yu,
W. Zhang, W. L. Xiao, W. An, X. Liu, X. Wang, X. Chen, X. Nie, X. Cheng, X. Liu, X. Xie, X. Liu,
X. Yang, X. Li, X. Su, X. Lin, X. Q. Li, X. Jin, X. Shen, X. Chen, X. Sun, X. Wang, X. Song,
X. Zhou, X. Wang, X. Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. Zhang, Y. Xu, Y. Li, Y. Zhao, Y. Sun,
Y. Wang, Y. Yu, Y. Zhang, Y. Shi, Y. Xiong, Y. He, Y. Piao, Y. Wang, Y. Tan, Y. Ma, Y. Liu, Y. Guo,
Y. Ou, Y. Wang, Y. Gong, Y. Zou, Y. He, Y. Xiong, Y. Luo, Y. You, Y. Liu, Y. Zhou, Y. X. Zhu, Y. Xu,
Y. Huang, Y. Li, Y. Zheng, Y. Zhu, Y. Ma, Y. Tang, Y. Zha, Y. Yan, Z. Z. Ren, Z. Ren, Z. Sha, Z. Fu,
Z. Xu, Z. Xie, Z. Zhang, Z. Hao, Z. Ma, Z. Yan, Z. Wu, Z. Gu, Z. Zhu, Z. Liu, Z. Li, Z. Xie, Z. Song,
Z. Pan, Z. Huang, Z. Xu, Z. Zhang, and Z. Zhang. Deepseek-r1: Incentivizing reasoning capability
in llms via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.

K. Enevoldsen, I. Chung, I. Kerboua, M. Kardos, A. Mathur, D. Stap, J. Gala, W. Siblini,
D. Krzemiński, G. I. Winata, S. Sturua, S. Utpala, M. Ciancone, M. Schaeffer, G. Sequeira,
D. Misra, S. Dhakal, J. Rystrøm, R. Solomatin, Ömer Çağatan, A. Kundu, M. Bernstorff, S. Xiao,
A. Sukhlecha, B. Pahwa, R. Poświata, K. K. GV, S. Ashraf, D. Auras, B. Plüster, J. P. Harries,
L. Magne, I. Mohr, M. Hendriksen, D. Zhu, H. Gisserot-Boukhlef, T. Aarsen, J. Kostkan, K. Woj-
tasik, T. Lee, M. Šuppa, C. Zhang, R. Rocca, M. Hamdy, A. Michail, J. Yang, M. Faysse, A. Va-
tolin, N. Thakur, M. Dey, D. Vasani, P. Chitale, S. Tedeschi, N. Tai, A. Snegirev, M. Günther,
M. Xia, W. Shi, X. H. Lù, J. Clive, G. Krishnakumar, A. Maksimova, S. Wehrli, M. Tikhonova,
H. Panchal, A. Abramov, M. Ostendorff, Z. Liu, S. Clematide, L. J. Miranda, A. Fenogenova,
G. Song, R. B. Safi, W.-D. Li, A. Borghini, F. Cassano, H. Su, J. Lin, H. Yen, L. Hansen, S. Hooker,
C. Xiao, V. Adlakha, O. Weller, S. Reddy, and N. Muennighoff. MMTEB: Massive multilingual
text embedding benchmark. arXiv preprint arXiv:2502.13595, 2025.

A. R. Fabbri, W. Kryściński, B. McCann, C. Xiong, R. Socher, and D. Radev. Summeval: Re-
evaluating summarization evaluation. Transactions of the Association for Computational Linguis-
tics, 9:391–409, 2021.

E. Fadeeva, R. Vashurin, A. Tsvigun, A. Vazhentsev, S. Petrakov, K. Fedyanin, D. Vasilev, E. Gon-
charova, A. Panchenko, M. Panov, T. Baldwin, and A. Shelmanov. LM-polygraph: Uncertainty es-
timation for language models. In Y. Feng and E. Lefever, editors, Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Processing: System Demonstrations, Dec. 2023.

10

https://arxiv.org/abs/2501.12948

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

E. Fadeeva, A. Rubashevskii, A. Shelmanov, S. Petrakov, H. Li, H. Mubarak, E. Tsymbalov,
G. Kuzmin, A. Panchenko, T. Baldwin, P. Nakov, and M. Panov. Fact-checking the output of large
language models via token-level uncertainty quantification. In L.-W. Ku, A. Martins, and V. Sriku-
mar, editors, Findings of the Association for Computational Linguistics: ACL 2024, Aug. 2024.

S. Farquhar, J. Kossen, L. Kuhn, and Y. Gal. Detecting hallucinations in large language models using
semantic entropy. Nature, 630(8017):625–630, 2024.

R. Flamary, N. Courty, A. Gramfort, M. Z. Alaya, A. Boisbunon, S. Chambon, L. Chapel, A. Corenflos,
K. Fatras, N. Fournier, L. Gautheron, N. T. Gayraud, H. Janati, A. Rakotomamonjy, I. Redko,
A. Rolet, A. Schutz, V. Seguy, D. J. Sutherland, R. Tavenard, A. Tong, and T. Vayer. Pot:
Python optimal transport. Journal of Machine Learning Research, 22(78):1–8, 2021. URL
http://jmlr.org/papers/v22/20-451.html.

M. Fomicheva, S. Sun, L. Yankovskaya, F. Blain, F. Guzmán, M. Fishel, N. Aletras, V. Chaudhary,
and L. Specia. Unsupervised quality estimation for neural machine translation. Transactions of the
Association for Computational Linguistics, 8:539–555, 2020.

Gemma Team, A. Kamath, J. Ferret, S. Pathak, N. Vieillard, R. Merhej, S. Perrin, T. Matejovicova,
A. Ramé, M. Rivière, et al. Gemma 3 technical report. arXiv preprint arXiv:2503.19786, 2025.

D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt. Measuring
massive multitask language understanding. Proceedings of the International Conference on
Learning Representations (ICLR), 2021.

S. Jain, V. Keshava, S. M. Sathyendra, P. Fernandes, P. Liu, G. Neubig, and C. Zhou. Multi-
dimensional evaluation of text summarization with in-context learning. arXiv preprint
arXiv:2306.01200, 2023.

A. Jiang, A. A. Chahine, A. Sablayrolles, A. Tacnet, A. Boissonnet, A. Kothari, A. Héliou, A. Lo,
A. Peronnin, A. Meunier, A. Roux, A. Faure, A. Paul, A. Darcet, A. Mensch, A. Herblin-Stoop,
A. Garreau, A. Birky, A. Sooriyarachchi, B. Rozière, B. Conklin, B. Bouillon, B. S. de Beauregard,
C. Rambaud, C. Feldman, C. de Freminville, C. Mauro, C.-K. Yeh, C. Bamford, C. Auguy,
C. Heintz, C. Dubois, D. S. Chaplot, D. L. Casas, D. Costa, E. Arcelin, E. B. Hanna, E. Metzger,
F. O. Autran, F. Lesage, G. Gourdel, G. Blanchet, G. D. Vidal, G. M. Lengyel, G. Bour, G. Lample,
G. Denis, H. Rajaona, H. Jaju, I. Mack, I. Mathew, J.-M. Delignon, J. Facchetti, J. Chudnovsky,
J. Studnia, J. Murke, K. Khandelwal, K. Chiu, K. Riera, L. Blier, L. Suslian, L. Deschaseaux,
L. Martin, L. Ternon, L. Saulnier, L. R. Lavaud, S. Yang, M. Jennings, M. Pellat, M. Torelli,
M. Janiewicz, M. Felardos, M. Darrin, M. Hoff, M. Seznec, M. J. Kenyon, N. Derwiche, N. C.
Zaragoza, N. Faurie, N. Moreau, N. Schuhl, N. Raghuraman, N. Muhs, O. de Garrigues, P. Rozé,
P. Wang, P. von Platen, P. Jacob, P. Buche, P. R. Muddireddy, P. Savas, P. Stock, P. Agrawal,
R. de Peretti, R. Sauvestre, R. Sinthe, R. Soletskyi, S. Vaze, S. Subramanian, S. Garg, S. Ghosh,
S. Regnier, S. Antoniak, T. L. Scao, T. Gervet, T. Schueller, T. Lavril, T. Wang, T. Lacroix,
V. Nemychnikova, W. Shang, W. E. Sayed, and W. Marshall. Un ministral, des ministraux. 2024.
URL https://mistral.ai/news/ministraux?utm_source=tldrai.

M. Joshi, E. Choi, D. S. Weld, and L. Zettlemoyer. Triviaqa: A large scale distantly supervised
challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, Vancouver, Canada, July 2017. Association for
Computational Linguistics.

S. Kadavath, T. Conerly, A. Askell, T. Henighan, D. Drain, E. Perez, N. Schiefer, Z. Hatfield-
Dodds, N. DasSarma, E. Tran-Johnson, S. Johnston, S. El-Showk, A. Jones, N. Elhage, T. Hume,
A. Chen, Y. Bai, S. Bowman, S. Fort, D. Ganguli, D. Hernandez, J. Jacobson, J. Kernion, S. Kravec,
L. Lovitt, K. Ndousse, C. Olsson, S. Ringer, D. Amodei, T. Brown, J. Clark, N. Joseph, B. Mann,
S. McCandlish, C. Olah, and J. Kaplan. Language models (mostly) know what they know. arXiv,
2022.

C. Kauf and A. Ivanova. A better way to do masked language model scoring. In A. Rogers, J. Boyd-
Graber, and N. Okazaki, editors, Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), July 2023.

11

http://jmlr.org/papers/v22/20-451.html
https://mistral.ai/news/ministraux?utm_source=tldrai

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D. Epstein, I. Polosukhin,
J. Devlin, K. Lee, K. Toutanova, L. Jones, M. Kelcey, M.-W. Chang, A. M. Dai, J. Uszkoreit, Q. Le,
and S. Petrov. Natural questions: A benchmark for question answering research. Transactions of
the Association for Computational Linguistics, 7, 2019.

S. L. Lauritzen. Sufficiency, prediction and extreme models. Scandinavian Journal of Statistics,
pages 128–134, 1974.

Z. Li, X. Zhang, Y. Zhang, D. Long, P. Xie, and M. Zhang. Towards general text embeddings with
multi-stage contrastive learning. arXiv preprint arXiv:2308.03281, 2023.

S. Lin, J. Hilton, and O. Evans. Teaching models to express their uncertainty in words. arXiv preprint
arXiv:2205.14334, 2022.

A. Malinin and M. Gales. Uncertainty estimation in autoregressive structured prediction. arXiv
preprint arXiv:2002.07650, 2020.

Meta AI. Llama 3.1 model card. 2024a. URL https://www.llama.com/docs/
model-cards-and-prompt-formats/llama3_1/.

Meta AI. Llama 3.3 model card. 2024b. URL https://www.llama.com/docs/
model-cards-and-prompt-formats/llama3_3/.

Meta AI. Llama 4 model card. 2025. URL https://www.llama.com/docs/
model-cards-and-prompt-formats/llama4/.

G. Peyré, M. Cuturi, et al. Computational optimal transport: With applications to data science.
Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

Qwen Team. Qwen3, April 2025a. URL https://qwenlm.github.io/blog/qwen3/.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025b. URL
https://qwenlm.github.io/blog/qwq-32b/.

P. Sahoo, A. K. Singh, S. Saha, V. Jain, S. Mondal, and A. Chadha. A systematic survey of
prompt engineering in large language models: Techniques and applications. arXiv preprint
arXiv:2402.07927, 2024.

J. Salazar, D. Liang, T. Q. Nguyen, and K. Kirchhoff. Masked language model scoring. In D. Jurafsky,
J. Chai, N. Schluter, and J. Tetreault, editors, Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, July 2020.

A. Santilli, A. Golinski, M. Kirchhof, F. Danieli, A. Blaas, M. Xiong, L. Zappella, and S. Williamson.
Revisiting uncertainty quantification evaluation in language models: Spurious interactions with
response length bias results. arXiv preprint arXiv:2504.13677, 2025.

J. Shin, Y. Lee, and K. Jung. Effective sentence scoring method using bert for speech recognition.
In W. S. Lee and T. Suzuki, editors, Proceedings of The Eleventh Asian Conference on Machine
Learning, volume 101 of Proceedings of Machine Learning Research, pages 1081–1093. PMLR,
17–19 Nov 2019. URL https://proceedings.mlr.press/v101/shin19a.html.

W. L. Taylor. Cloze procedure: A new tool for measuring readability. Journalism quarterly, 30(4):
415–433, 1953.

O. Vasilyev, V. Dharnidharka, and J. Bohannon. Fill in the BLANC: Human-free quality estimation of
document summaries. In S. Eger, Y. Gao, M. Peyrard, W. Zhao, and E. Hovy, editors, Proceedings
of the First Workshop on Evaluation and Comparison of NLP Systems, pages 11–20, Online, Nov.
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.eval4nlp-1.2. URL
https://aclanthology.org/2020.eval4nlp-1.2/.

A. Wang and K. Cho. BERT has a mouth, and it must speak: BERT as a Markov random field
language model. In A. Bosselut, A. Celikyilmaz, M. Ghazvininejad, S. Iyer, U. Khandelwal,
H. Rashkin, and T. Wolf, editors, Proceedings of the Workshop on Methods for Optimizing and
Evaluating Neural Language Generation, June 2019.

12

https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_1/
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_1/
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
https://www.llama.com/docs/model-cards-and-prompt-formats/llama4/
https://www.llama.com/docs/model-cards-and-prompt-formats/llama4/
https://qwenlm.github.io/blog/qwen3/
https://qwenlm.github.io/blog/qwq-32b/
https://proceedings.mlr.press/v101/shin19a.html
https://aclanthology.org/2020.eval4nlp-1.2/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Z. Wang and C. Holmes. On subjective uncertainty quantification and calibration in natural language
generation. arXiv preprint arXiv:2406.05213, 2024.

J. Wei, N. Karina, H. W. Chung, Y. J. Jiao, S. Papay, A. Glaese, J. Schulman, and W. Fedus. Measuring
short-form factuality in large language models. arXiv preprint arXiv:2411.04368, 2024.

T. Xu, S. Wu, S. Diao, X. Liu, X. Wang, Y. Chen, and J. Gao. Sayself: Teaching llms to express
confidence with self-reflective rationales. In Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pages 5985–5998, 2024.

A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, H. Wei, H. Lin,
J. Yang, J. Tu, J. Zhang, J. Yang, J. Yang, J. Zhou, J. Lin, K. Dang, K. Lu, K. Bao, K. Yang, L. Yu,
M. Li, M. Xue, P. Zhang, Q. Zhu, R. Men, R. Lin, T. Li, T. Xia, X. Ren, X. Ren, Y. Fan, Y. Su,
Y. Zhang, Y. Wan, Y. Liu, Z. Cui, Z. Zhang, and Z. Qiu. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024a.

R. Yang, C. Zhang, Z. Zhang, X. Huang, S. Yang, N. Collier, D. Yu, and D. Yang. Logu: Long-form
generation with uncertainty expressions. arXiv preprint arXiv:2410.14309, 2024b.

G. Yona, R. Aharoni, and M. Geva. Can large language models faithfully express their intrinsic
uncertainty in words? arXiv preprint arXiv:2405.16908, 2024.

Y. Zhang, H. Jin, D. Meng, J. Wang, and J. Tan. A comprehensive survey on process-oriented auto-
matic text summarization with exploration of llm-based methods. arXiv preprint arXiv:2403.02901,
2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX CONTENTS

A SelfReflect and predictive sufficiency: propositions and proofs 15

A.1 Setup, notations, and assumptions . 15

A.2 Predictive sufficiency and equivalent characterizations 16

A.3 SelfReflect metric and equivalence to predictive sufficiency 17

A.4 Modeling with LLM: From derivation to implementation 20

B Convergence of the SelfReflect metric 22

C Design choices and limitations of the SelfReflect score 22

D Which LLMJ judge to use to generate SelfReflect logits 25

E Example of SelfReflect scores per masked-out word 26

F Implementation details 28

F.1 SelfReflect score . 28

F.2 SR sampling-free score . 28

F.3 SR-PMI score . 28

F.4 SR-P(True) score . 28

F.5 Embedding score . 28

F.6 Summarization score . 29

F.7 LM Judge score . 30

F.8 Optimal Transport score . 31

F.9 Licensing information . 32

G Rating good and bad summaries written by humans 33

H How well does SelfReflect distinguish good from bad summaries 37

I MMLU tests of the SelfReflect metric per dataset 37

J User study details 38

K Automatic summary generation 39

K.1 Experimental details . 39

K.2 Prompts used . 39

K.3 Results per dataset . 40

L Experiment details of CoT deep dive 43

L.1 Results per dataset . 43

L.2 Prompts used to classify certainty vs. uncertainty 43

M Finetuning to generate self-reflective summaries 44

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A SELFREFLECT AND PREDICTIVE SUFFICIENCY: PROPOSITIONS AND PROOFS

In this appendix, we provide details of the propositions from the main text and their proofs. We begin
with the definition of predictive sufficiency and provide a proof of its two equivalent characterizations
in the context of the SelfReflect metric. We then prove an equivalence between solving the masked-
token prediction task of the SelfReflect metric and the desired predictive sufficiency of the summary,
providing a theoretical foundation for the design of the SelfReflect metric.

B

ΘQ A(1:N) S

Figure 5: The graphical model for the setting of SelfReflect metric. The figure is reproduced from
Figure 2 of the main text for the sake of better readability of the formalization that follows.

A.1 SETUP, NOTATIONS, AND ASSUMPTIONS

Recall that prompting a given LLM with question Q puts it in state ΘQ, from which we sample N
answers A(1:N). A summarization mechanism function ψ generates the summary of these answers as
S = ψ(A(1:N)). For developing the SelfReflect metric, we generate another sample B from the same
state ΘQ and require an ideal summary S to capture all the information about B that is captured by
the samples A(1:N). Now, we formalize this setup of the SelfReflect metric by setting the notation,
listing the assumptions of the setup, and providing their justifications.

SETUP AND NOTATION

1. Firstly, Figure 2 shows the graphical model of this setup, which we also reproduce here in
Figure 5 for better readability. In this graphical model, observed variables are shaded gray,
which includes the sampled answers A(1:N), their summary S, and a subsequent answer B,
whereas unobserved/latent variables are unshaded, which includes the LLM state ΘQ.

2. We will use upper-case non-boldface letters (like B or S) to represent random vari-
ables/vectors and the corresponding lower-case non-boldface letters (like b or s) to represent
particular samples from their underlying distributions.

3. For a random variable Y , the sampling of a particular value y will be denoted as y ∼ Y or
y ∈ supp (Y), where supp (Y) represents the support of the random variable Y .

4. Let V denote a finite vocabulary of words (or tokens), which is used to generate questions,
the corresponding answers, and their summaries.

5. Let Q denote the random variable for a question.
6. Prompting the given LLM with this question Q is assumed to put it in state, which is

represented with the random variable ΘQ. From this state, we can sample multiple answers,
which are then used to define the SelfReflect metric.

7. The random variables A(1:N) := (A(1), · · · , A(N)) are used to denote the N answers
sampled from the LLM in state ΘQ. These samples may be sampled in an i.i.d. manner
but we do not necessitate this. In fact, one can sample each answer A(n) conditioned on all
previous samples A(1:n−1) as well. We allow for this generality because throughout our
derivation, we will always consider these answers jointly as A(1:N).

8. A summarization mechanism inputs the sampled answers and generates their summary S.
9. Suppose B denote a subsequent sample from the LLM in the same state ΘQ. For the

SelfReflect metric, we require an idea summary S of sampled answers A(1:N) to capture all
information about this subsequent answer B.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

ASSUMPTIONS

1. The support of question Q is assumed to be the set of all finite-length sentences generated
from V, which we denote by X .

2. The support of each A(i) is also assumed to be X , the set of all finite-length sentences
generated from vocabulary V.

3. The summarization mechanism that inputs the sampled answers A(1:N) and generates their
summary S is assumed to be a function ψ. Formally, ψ : XN −→ X inputs any N sampled
answers A(1:N) from the LLM and generates their summary S as S := ψ(A(1:N)). Note
that the support of the summary S, will be a subset of the set of all finite-length sentences,
i.e., supp (S) ⊆ X . This condition models our setup sufficiently well, where we have a
candidate summary S per set of answers A(1:N). However, we acknowledge that it is a
restrictive condition in that it doesn’t allow for modeling a conditional distribution over all
summaries given the answers. Generalizing our SelfReflect metric for this case or proving
its generality in this case is an interesting direction for future work.

4. We define the support of the subsequent new answer B to be the set XL := VL of all
possible sentences from the vocabulary V that are of length L. Despite being slightly
restrictive, this assumption is not unreasonable; all LLMs have a maximum context length,
which can be viewed as an upper limit on the length of the answer B. Also, sentences with
smaller lengths are usually padded to achieve the maximum context length.

5. Throughout our derivations, we will assume all required marginal and conditional distribu-
tions to be strictly positive. This assumption is reasonable for our setting because in prac-
tice, we would be implementing corresponding distributions using the given LLM. For in-
stance, p (W) would represent the probability of sentence W under the given LLM. Further,
p (Y | Z) would represent the probability of sentence Y when the LLM is prompted with the
context Z. Since the LLMs generate distribution over the entire vocabulary V, all the condi-
tional distributions will have strictly positive values, albeit extremely small in certain cases.

A.2 PREDICTIVE SUFFICIENCY AND EQUIVALENT CHARACTERIZATIONS

Now, having set the notations and assumptions, we define the notion of sufficiency and connect it
with the definition of an ideal summary.

Definition A.1 (Bayesian and Predictive Sufficiency (Bernardo and Smith, 2009)). Consider a
distribution parameterized in terms of a parameter ϕ. Let X(1:M) denote M (i.i.d.) samples from
this distribution. A statistic (function) T (X1:M) is called a Bayesian sufficient statistic of samples
X(1:M) for ϕ if and only if we have: p

(
ϕ | X(1:M) = x(1:M)

)
= p

(
ϕ | T (X(1:M)) = t(x(1:M))

)
.

On the other hand, it is called a predictive sufficient statistic of samples X(1:M) if and only if we
have: p

(
X = x | X(1:M) = x(1:M)

)
= p

(
X = x | T (X(1:M)) = t(x(1:M))

)
for any subsequent

sample X (with concrete value x ∈ supp (X)) from the same distribution.

Note that our Definition 3.1 of an ideal summary is closely related to predictive sufficiency as defined
in Definition A.1. However, it turns out that Bayesian and predictive sufficiency notions are not
exactly equivalent. In light of this, our reason for defining an ideal summary to be predictive sufficient,
rather than Bayesian sufficient, is as follows. An LLM trained on a huge corpus of data contains
information about a wide array of aspects. However, through the summary, we are interested in
capturing only those aspects of the state ΘQ of the LLM that are related to answering the given
question Q. For this, requiring the summary to be predictive sufficient serves the purpose precisely.

Now, in the context of the Definition A.1 of predictive sufficiency, Definition 3.1 of ideal summary,
and the graphical model of Figure 5, we prove Proposition 3.1, which asserts the equivalence in the
information theoretic and conditional distribution based formulations of the ideal summary. We begin
by proving a lemma about the graphical model of Figure 5.

Lemma A.1 (Conditioning on A(1:N) and S). Under the graphical model given in Figure 5, we have:

p
(
B | A(1:N), S

)
= p

(
B | A(1:N)

)
16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof. Consider the following manipulations:

p
(
B | A(1:N), S

)
=(1)

∫
θ

dθ p
(
B,ΘQ = θ | A(1:N), S

)
=(2)

∫
θ

dθ
p
(
ΘQ = θ,B,A(1:N), S

)
p
(
A(1:N), S

)
=(3)

∫
θ

dθ
p (ΘQ = θ) · p (B | ΘQ = θ) · p

(
A(1:N) | ΘQ = θ

)
· p

(
S | A(1:N)

)
p
(
A(1:N)

)
· p

(
S | A(1:N)

)
=(4)

∫
θ

dθ
p (ΘQ = θ) · p (B | ΘQ = θ) · p

(
A(1:N) | ΘQ = θ

)
p
(
A(1:N)

)
=(5)

∫
θ

dθ
p
(
ΘQ = θ,B,A(1:N)

)
p
(
A(1:N)

)
=(6)

∫
θ

dθ p
(
B,ΘQ = θ | A(1:N)

)
=(7) p

(
B | A(1:N)

)
(5)

Here, steps (2), (5), (6) follow from chain rule. Step (4) follows by cancellation of the common
terms. Steps (1), (7) follows from integrating out variable ΘQ. Step (3) follows from the graphical
model of Figure 5. Finally, an analogous derivation would follow by replacing integration with
summation in the case of ΘQ being a discrete variable.

Now, we prove Proposition 3.1 establishing the equivalence of the information theoretic and condi-
tional distribution based formulations of the desired predictive sufficiency.
Theorem A.1 (Connection of SelfReflect to Predictive Sufficiency). Consider the graphical model
given in Figure 5. Under this graphical model, for ideal summary S of answers A(1:N),

I
{
A(1:N) ;B

}
= I {S ;B} ⇐⇒ p

(
B | A(1:N)

)
= p (B | S)

Proof. Consider following steps:

I
{
A(1:N) ;B

}
= I {S ;B} ⇐⇒(1) EA(1:N),B

[
log

p
(
A(1:N), B

)
p
(
A(1:N)

)
· p (B)

]
= ES,B

[
log

p (S,B)

p (S) · p (B)

]

⇐⇒ EB,A(1:N),S

[
log

p
(
A(1:N), B

)
· p (S)

p (S,B) · p
(
A(1:N)

)] = 0 ⇐⇒(2) EB,A(1:N),S

[
log

p
(
B | A(1:N)

)
p (B | S)

]
= 0

⇐⇒(3) EB,A(1:N),S

[
log

p
(
B | A(1:N), S

)
p (B | S)

]
= 0 ⇐⇒(4) I

{
A ;A(1:N) | S

}
= 0

⇐⇒(5) p
(
B,A(1:N) | S

)
= p (B | S) · p

(
A(1:N) | S

)
⇐⇒(6) p

(
B | A(1:N), S

)
= p (B | S) ⇐⇒(7) p

(
B | A(1:N)

)
= p (B | S) (6)

Here, step (1) follows from the definition of mutual information, steps (2) and (6) from chain rule,
steps (3) and (7) from Lemma A.1, step (4) from the definition of conditional mutual information,
and step (5) from the equality condition of conditional mutual information. For details on mutual
information and conditional mutual information, we refer the reader to Cover (1999).

A.3 SELFREFLECT METRIC AND EQUIVALENCE TO PREDICTIVE SUFFICIENCY

Now, we demonstrate that the masked-token prediction task of SelfReflect is equivalent to the above
notion of predictive sufficiency. For the SelfReflect metric, we consider the random variable B
for a new subsequent sample from the LLM in state ΘQ and dissect it in terms of its words. In
particular, we have: B ≡ (B1, · · · , BL), where L is length of the sentence B (which, as we saw,
could be chosen to be the maximum context length for the LLM). Here, Bi represents the random
variable for the i−th word of the sentence B for each value of i ∈ {1, · · · , L}. For each i, we use

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

the shorthand notation B−i to represent the variable for all the words in the sentence B except for Bi,
i.e., B−i := (B1, · · · , Bi−1, Bi+1, · · · , BL) = (Bj)j ̸=i. Note that Bℓ, which represents the ℓ−th
word of sentence B, is not to be confused with A(k), which represents the k−th sampled answer from
the LLM. For each Bi, its support is going to be the vocabulary V and the supports of B−i and B
are VL−1 and VL ≡ XL respectively. With this setup, we can prove Proposition 3.2, which asserts
that under assumptions from subsection A.1, SelfReflect metric provides an equivalent formulation
of the desired predictive sufficiency of ideal summary S. This is done as follows.

Theorem A.2 (SelfReflect Metric and Predictive Sufficiency). Suppose all involved conditionals are
modeled via the given LLM and hence, are strictly positive. Then, we have:

p
(
B | A(1:N)

)
= p (B | S) ⇐⇒ for all masking indices i, p

(
Bi | A(1:N), B−i

)
= p (Bi | S,B−i) (7)

Proof. (=⇒) Suppose we are given that p
(
B | A(1:N)

)
= p (B | S). Consider the following steps:

p
(
B | A(1:N)

)
= p (B | S) =⇒ p

(
B1, · · · , BL | A(1:N)

)
= p (B1, · · · , BL | S)

=⇒
∑

bi∈V
p
(
B1, · · · , Bi = bi, · · · , BL | A(1:N)

)
=

∑
bi∈V

p (B1, · · · , Bi = bi, · · · , BL | S)

=⇒(1) p
(
B−i | A(1:N)

)
= p (B−i | S) (8)

Here, step (1) follows from integrating out variable Bi. Combining this result with the premise gives:

p
(
B | A(1:N)

)
= p (B | S) , p

(
B−i | A(1:N)

)
= p (B−i | S)

=⇒
p
(
B | A(1:N)

)
p
(
B−i | A(1:N)

) =
p (B | S)
p (B−i | S)

=⇒(1) p
(
Bi | A(1:N), B−i

)
= p (Bi | S,B−i) (9)

Here, step (1) follows because B is formed of the i−th word Bi and the rest of the words B−i. Since
we can carry out these steps for any index i, we prove the forward direction of the theorem.

(⇐=) Now, to prove the converse, suppose we are given that for all masking indices i, we have:
p
(
Bi | A(1:N), B−i

)
= p (Bi | S,B−i) and we have to prove that p

(
B | A(1:N)

)
= p (B | S).

Since this is an equality of the random variables, we prove the equality of random variables by
proving it for any and all choices of the samples of those random variables. Note that this works
because of the assumption of summary mechanism S being a function of A(1:N), which allows us to
use the given condition as well as prove the desired result by assuming particular instantiations of
A(1:N) = ā(1:N) and using the corresponding summary S = s̄ := ψ(ā(1:N)). Pick any instantiations
of sampled answers from their support as a(1:N) ∼ A(1:N). Since the summary mechanism is a
function, it gives us a concrete sample s = ψ(a(1:N)) ∈ X . Now, suppose we want to prove the
desired result for any particular given sample b ∼ B with b := (b1, · · · , bL) ∈ VL. Consider a fixed
sentence b∗ ∈ VL with b∗ := (b∗1, · · · , b∗L). Now, we define a sequence of sentences as follows:

x(0) := (b1, b2, · · · , bL) = b ∈ VL

x(1) := (b∗1, b2, · · · , bL) ∈ VL

x(2) := (b∗1, b
∗
2, · · · , bL) ∈ VL

...

x(L) := (b∗1, b
∗
2, · · · , b∗L) = b∗ ∈ VL (10)

Intuitively, we create a sequence of sentences where each subsequent sentence x(i) differs from
the previous sentence and the next sentence in exactly one word and as we go from sentence x(0)

to x(L), we change the given sentence b to the fixed sentence b∗. Now, we consider the following

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

manipulations for p
(
B = b | A(1:N) = a(1:N)

)
:

p
(
B = b | A(1:N) = a(1:N)

)
= p

(
B = x(0) | A(1:N) = a(1:N)

)
=(1) p

(
B = x(0) | A(1:N) = a(1:N)

)
·
∏L

ℓ=1

p
(
B = x(ℓ) | A(1:N) = a(1:N)

)
p
(
B = x(ℓ) | A(1:N) = a(1:N)

)
=(2) (

∏L

ℓ=1

p
(
B = x(ℓ−1) | A(1:N) = a(1:N)

)
p
(
B = x(ℓ) | A(1:N) = a(1:N)

)) · p
(
B = b∗ | A(1:N) = a(1:N)

)
(11)

In an exactly analogous way, we get following manipulations for p (B = b | S = s):

p (B = b | S = s) = p
(
B = x(0) | S = s

)
=(1) p

(
B = x(0) | S = s

)
·
∏L

ℓ=1

p
(
B = x(ℓ) | S = s

)
p
(
B = x(ℓ) | S = s

)
=(2) (

∏L

ℓ=1

p
(
B = x(ℓ−1) | S = s

)
p
(
B = x(ℓ) | S = s

)) · p (B = b∗ | S = s) (12)

Note that in both Equation 11 and Equation 12 above, step (1) follows from multiplying and dividing
by the same terms and step (2) follows from rearranging the terms and recognizing x(L) = b∗ by
definition. Now, we consider the ℓ−th term from the Equation 11 and simplify it as follows:

p
(
B = x(ℓ−1) | A(1:N) = a(1:N)

)
p
(
B = x(ℓ) | A(1:N) = a(1:N)

)
=(1) p

(
B1 = b∗1, · · · , Bℓ−1 = b∗ℓ−1, Bℓ = bℓ, Bℓ+1 = bℓ+1, · · · , BL = bL | A(1:N) = a(1:N)

)
p
(
B1 = b∗1, · · · , Bℓ−1 = b∗ℓ−1, Bℓ = b∗ℓ , Bℓ+1 = bℓ+1, · · · , BL = bL | A(1:N) = a(1:N)

)
=(2) p

(
B−ℓ = (b∗1, · · · , b∗ℓ−1, bℓ+1, · · · , bL) | A(1:N) = a(1:N)

)
p
(
B−ℓ = (b∗1, · · · , b∗ℓ−1, bℓ+1, · · · , bL) | A(1:N) = a(1:N)

)
×
p
(
Bℓ = bℓ | A(1:N) = a(1:N), B−ℓ = (b∗1, · · · , b∗ℓ−1, bℓ+1, · · · , bL)

)
p
(
Bℓ = b∗ℓ | A(1:N) = a(1:N), B−ℓ = (b∗1, · · · , b∗ℓ−1, bℓ+1, · · · , bL)

)
=(3) p

(
Bℓ = bℓ | A(1:N) = a(1:N), B−ℓ = (b∗1, · · · , b∗ℓ−1, bℓ+1, · · · , bL)

)
p
(
Bℓ = b∗ℓ | A(1:N) = a(1:N), B−ℓ = (b∗1, · · · , b∗ℓ−1, bℓ+1, · · · , bL)

) (13)

Again, in an exactly analogous way, we simplify the ℓ−th terms of Equation 12 as follows:

p
(
B = x(ℓ−1) | S = s

)
p
(
B = x(ℓ) | S = s

)
=(1) p

(
B1 = b∗1, · · · , Bℓ−1 = b∗ℓ−1, Bℓ = bℓ, Bℓ+1 = bℓ+1, · · · , BL = bL | S = s

)
p
(
B1 = b∗1, · · · , Bℓ−1 = b∗ℓ−1, Bℓ = b∗ℓ , Bℓ+1 = bℓ+1, · · · , BL = bL | S = s

)
=(2) p

(
B−ℓ = (b∗1, · · · , b∗ℓ−1, bℓ+1, · · · , bL) | S = s

)
p
(
B−ℓ = (b∗1, · · · , b∗ℓ−1, bℓ+1, · · · , bL) | S = s

)
×
p
(
Bℓ = bℓ | S = s,B−ℓ = (b∗1, · · · , b∗ℓ−1, bℓ+1, · · · , bL)

)
p
(
Bℓ = b∗ℓ | S = s,B−ℓ = (b∗1, · · · , b∗ℓ−1, bℓ+1, · · · , bL)

)
=(3) p

(
Bℓ = bℓ | S = s,A−ℓ = (b∗1, · · · , b∗ℓ−1, bℓ+1, · · · , bL)

)
p
(
Bℓ = b∗ℓ | S = s,B−ℓ = (b∗1, · · · , b∗ℓ−1, bℓ+1, · · · , bL)

) (14)

In both these simplifications, step (1) follows from the definition of the sentences x(ℓ−1), x(ℓ), step
(2) follows from chain rule, and step (3) follows from canceling the common terms. However, given

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

equality p
(
Bi | A(1:N), B−i

)
= p (Bi | S,B−i) for all masking locations i implies that for all ℓ:

p
(
Bℓ = bℓ | A(1:N) = a(1:N), B−ℓ = (b∗1, · · · , b∗ℓ−1, bℓ+1, · · · , bL)

)
= p

(
Bℓ = bℓ | S = s,B−ℓ = (b∗1, · · · , b∗ℓ−1, bℓ+1, · · · , bL)

)
and (15)

p
(
Bℓ = b∗ℓ | A(1:N) = a(1:N), B−ℓ = (b∗1, · · · , b∗ℓ−1, bℓ+1, · · · , bL)

)
= p

(
Bℓ = b∗ℓ | S = s,B−ℓ = (b∗1, · · · , b∗ℓ−1, bℓ+1, · · · , bL)

)
(16)

=⇒
p
(
Bℓ = bℓ | A(1:N) = a(1:N), B−ℓ = (b∗1, · · · , b∗ℓ−1, bℓ+1, · · · , bL)

)
p
(
Bℓ = b∗ℓ | A(1:N) = a(1:N), B−ℓ = (b∗1, · · · , b∗ℓ−1, bℓ+1, · · · , bL)

)
=
p
(
Bℓ = bℓ | S = s,B−ℓ = (b∗1, · · · , b∗ℓ−1, bℓ+1, · · · , bL)

)
p
(
Bℓ = b∗ℓ | S = s,B−ℓ = (b∗1, · · · , b∗ℓ−1, bℓ+1, · · · , bL)

)
=⇒

p
(
B = x(ℓ−1) | A(1:N) = a(1:N)

)
p
(
B = x(ℓ) | A(1:N) = a(1:N)

) =
p
(
B = x(ℓ−1) | S = s

)
p
(
B = x(ℓ) | S = s

) for all ℓ ∈ {1, · · · , L}. (17)

Combining this with Equation 11 and Equation 12, we get an interesting result:

p
(
B = b | A(1:N) = a(1:N)

)
p (B = b | S = s)

=
(
∏L

ℓ=1

p(B=x(ℓ−1)|A(1:N)=a(1:N))
p(B=x(ℓ)|A(1:N)=a(1:N))

) · p
(
B = b∗ | A(1:N) = a(1:N)

)
(
∏L

ℓ=1

p(B=x(ℓ−1)|S=s)
p(B=x(ℓ)|S=s)

) · p (B = b∗ | S = s)

=(1) p
(
B = b∗ | A(1:N) = a(1:N)

)
p (B = b∗ | S = s)

(18)

Here, step (1) follows from canceling equal terms in both the numerator and the denominator. What
Equation 18 implies is that given A(1:N) = a(1:N), thereby giving S = s := ψ(a(1:N)), the ratio
p(B=b|A(1:N)=a(1:N))

p(B=b|S=s) equals the ratio
p(B=b∗|A(1:N)=a(1:N))

p(B=b∗|S=s) for any and all values of b ∈ VL, thereby

making it a constant c := c(a(1:N)) (a constant that dependents on a(1:N)). Now, we can integrate
out B and obtain the value of this constant as follows:

For all b ∈ VL,
p
(
B = b | A(1:N) = a(1:N)

)
p (B = b | S = s)

= c(a(1:N))

=⇒1 =
∑

b∈VL
p
(
B = b | A(1:N) = a(1:N)

)
=

∑
b∈VL

c(a(1:N)) · p (B = b | S = s)

= c(a(1:N)) ·
∑

b∈VL
p (B = b | S = s) = c(a(1:N)) · 1 = c(a(1:N)) (19)

This proves that in fact c(a(1:N)) = 1, which gives that for all b ∼ B, we have:
p
(
B = b | A(1:N) = a(1:N)

)
= p (B = b | S = s). Since this result holds for all b ∼ B, we can

write the corresponding result with the underlying random variable as: p
(
B | A(1:N) = a(1:N)

)
=

p (B | S = s). However, since this result holds for any sample choice of A(1:N) = a(1:N) (and corre-
sponding S = s := ψ(a(1:N))), we get the desired results involving all underlying random variables:
p
(
B | A(1:N)

)
= p (B | S). This proves the reverse direction of the equivalence.

A.4 MODELING WITH LLM: FROM DERIVATION TO IMPLEMENTATION

Now, having proved the equivalence of the basis of the SelfReflect metric and the desired predictive
sufficiency of summary, we show the connection with the exact definition of the SelfReflect metric.
Suppose we are given with a question Q = q ∈ X , which is shown to an LLM labeled LLMθ. This
puts LLMθ in a state ΘQ = θq, from which we sample answers A(1:N) = a(1:N), and a subsequent
sample B = b ∈ VL. Now, to calculate the SelfReflect metric, the core idea is that conditional
distributions of the form p (Y | Z) involved in the theoretical considerations above are modeled by

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

prompting the judge LLMJ with context Z and checking the probability of Y . In our implementation,
this LLMJ will be temperature-scaled with temperature τ = 5 as mentioned in the main text in
order to flatten its distribution and make it consider more synonyms. Then, we build the prompt of
LLMJ by including the question Q = q and either the samples A(1:N) = a(1:N) or their summary
S = s := ψ(a(1:N)), along with a description t of the masked-token prediction task to tell the LLMJ

judge what it needs to do. We then mask each word of B = b one by one to obtain the masked word
Bm = bm ∈ V and the rest of the sentence B−m = b−m ∈ VL−1. Then, we model the required
conditional distributions that appear in the derivation using the LLMJ judge as follows:

p
(
Bm = bm | A(1:N) = a(1:N), B−m = b−m

)
:= pLLMJ

(
Bm = bm | Q = q, A(1:N) = a(1:N), t, B−m = b−m

)
, and

p (Bm = bm | S = s,B−m = b−m)

:= pLLMJ
(Bm = bm | Q = q, S = s, t, B−m = b−m)

(20)

This modeling along with Theorem A.2 demonstrates the efficacy of SelfReflect metric:
Corollary A.1 (Efficacy of SelfReflect Metric). For any question Q, for all masking indices m,

W1(pLLMJ

(
Bm | Q,A(1:N), t, B−m

)
, pLLMJ

(Bm | Q,S, t, B−m)) = 0

⇐⇒(1) pLLMJ

(
Bm | Q,A(1:N), t, B−m

)
= pLLMJ

(Bm | Q,S, t, B−m)

⇐⇒(2) p
(
Bm | A(1:N), B−m

)
= p (Bm | S,B−m)

⇐⇒(3) p
(
B | A(1:N)

)
= p (B | S)

⇐⇒(4) I
{
A(1:N) ;B

}
= I {S ;B}

(21)

Proof. Step (4) follows from Theorem A.1, step (3) follows from Theorem A.2, step (2) follows
from modeling in Equation 20, and step (1) follows from the fact that the W1 (1−Wasserstein)
distance between two distributions is 0 if and only if the distributions are identical.

DISCUSSION

We conclude this section by discussing two important points about our derivation.

1. Firstly, LLMs are known to behave significantly better with careful design of prompts (Sa-
hoo et al., 2024). Thus, in our modeling of Equation 20, one may try to optimize the prompt-
ing template and the task description t in order to further obtain sharper versions of the
SelfReflect metric. In this aspect, note that our derivation does not provide a mechanism for
optimizing for the prompt template or task description t. In fact, irrespective of this detail,
the derivation holds true.

2. Secondly, we state the assumptions required for the derivation, as stated in Appendix A.1,
are needed for establishing the connection of SelfReflect metric with the notion of predic-
tive sufficiency. However, these are not needed for defining, implementing, or using the
SelfReflect metric. Users may find our SelfReflect metric useful even in cases where one or
more of the assumptions are loosened. Also, further generalizing the SelfReflect metric in
cases where the assumptions are loosened or proving that the current formulation holds in
those scenarios remains an interesting direction for future theoretical work.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

B CONVERGENCE OF THE SELFREFLECT METRIC

In the main paper, we evaluate SelfReflect on 1000 questions per dataset with N = M = 50
conditioning and masked-out answers. This is based on a convergence analysis that we present in this
section. We use Qwen 2.5 72B Instruct and Natural Questions as an example and calculate the average
SelfReflect score across an increasing number of questions and conditioning and masked-out answers
in Figs. 6 to 10. The question is how many questions are needed to arrive at a stable average score.

It can be seen in Fig. 6 that at N = M = 50, the SelfReflect score converges at 1000 questions,
our setup for the paper. One can of course reduce N and M , which will roughly linearly reduce
the runtime required to compute the score. However, when for example reducing to N =M = 20
questions in Fig. 7, convergence to the final value sets in only at about 2500 questions, which linearly
increases the runtime, so that the runtime advantage vanishes. If one allows the score to be a bit
less converged, for example in development rather than in reporting test results, we suggest to use
N =M = 10 and 500 questions. This reduces the runtime to calculate SelfReflect to 9 minutes on a
node with 8 A100 GPUs, compared to the 67 minutes of N =M = 50 and 1000 questions.

The only real outlier to these trends is N =M = 1. Here, it is especially important that N = 1, i.e.,
in the context of the answer distribution prompt, there is only a single response. In this case, the ideal
summary is actually to return exactly this response rather than a summary of the distribution. Hence,
in Fig. 10, Greedy obtains a better SelfReflect score than Sample & Summarize. This underlines the
importance of why SelfReflect uses multiple samples from the answer distribution.

0 1000 2000 3000 4000 5000
Number of Questions/Answer Distributions Averaged Over

0.085

0.090

0.095

0.100

0.105

0.110

0.115

Av
er

ag
e

Se
lfR

ef
le

ct
 S

co
re

CoT

Basic

Greedy

Sample & Summarize (n = 50)

Figure 6: Convergence of the SelfReflect score with N = M = 50 and an increasing number of
queries we evaluate on. Answer Distributions of Qwen 2.5 72B Instruct on Natural Questions.

C DESIGN CHOICES AND LIMITATIONS OF THE SELFREFLECT SCORE

To outline the limitations of our work, we first note that 1-Wasserstein-based SelfReflect scores are
not directly interpretable without baselines. A simplified version, like the percentage of equal top-
predicted words using either summary or answer samples, would give more standardized values
in [0,1]. However, we found that such an approach is less sensitive to differences in good vs
almost-good summaries, rendering it less useful as a benchmark metric. Second, seen from a
summarization literature perspective, our SelfReflect metric intends to capture whether a summary
faithfully represents the information of the model distribution. It does not intend to capture how

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000
Number of Questions/Answer Distributions Averaged Over

0.080

0.085

0.090

0.095

0.100
Av

er
ag

e
Se

lfR
ef

le
ct

 S
co

re
CoT

Basic

Greedy

Sample & Summarize (n = 50)

Figure 7: Convergence of the SelfReflect score with N = M = 20 and an increasing number of
queries we evaluate on. Answer Distributions of Qwen 2.5 72B Instruct on Natural Questions.

0 1000 2000 3000 4000 5000
Number of Questions/Answer Distributions Averaged Over

0.0775

0.0800

0.0825

0.0850

0.0875

0.0900

0.0925

0.0950

0.0975

Av
er

ag
e

Se
lfR

ef
le

ct
 S

co
re

CoT

Basic

Greedy

Sample & Summarize (n = 50)

Figure 8: Convergence of the SelfReflect score with N = M = 10 and an increasing number of
queries we evaluate on. Answer Distributions of Qwen 2.5 72B Instruct on Natural Questions.

short a summary is, so that concatenating 50 i.i.d. sampled answers as an adversarial summary
would probably optimize the SelfReflect score without being a useful summary. From summarization
literature we know that this is an orthogonal aspect that is better captured in a second metric like the
summary length, so we appeal to always report summary lengths and qualitative samples along with
the SelfReflect metric. Third, we repeat that the faithfulness we measure is with respect to an LLM’s
subjective uncertainty. We intentionally did not develop SelfReflect to quantify objective truthfulness,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000
Number of Questions/Answer Distributions Averaged Over

0.075

0.080

0.085

0.090

0.095

0.100

Av
er

ag
e

Se
lfR

ef
le

ct
 S

co
re

CoT

Basic

Greedy

Sample & Summarize (n = 50)

Figure 9: Convergence of the SelfReflect score with N = M = 5 and an increasing number of
queries we evaluate on. Answer Distributions of Qwen 2.5 72B Instruct on Natural Questions.

0 1000 2000 3000 4000 5000
Number of Questions/Answer Distributions Averaged Over

0.070

0.075

0.080

0.085

0.090

0.095

Av
er

ag
e

Se
lfR

ef
le

ct
 S

co
re

CoT

Basic

Greedy

Sample & Summarize (n = 50)

Figure 10: Convergence of the SelfReflect score with N = M = 1 and an increasing number of
queries we evaluate on. Answer Distributions of Qwen 2.5 72B Instruct on Natural Questions.

with the outlook that larger LLMs approximate their training datasets better and better, such that more
faithful summaries of subjective uncertainties will ultimately lead to better objective uncertainties.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

D WHICH LLMJ JUDGE TO USE TO GENERATE SELFREFLECT LOGITS

Table 6: To find out which LLM judge produces the best logits, we test how often SelfReflect correctly
distinguishes a good (top) from a bad (bottom) summarywith different possible judges LLMJ that
calculate the SelfReflect metric, across different LLM’s LLMθ whose answer distributions are being
summarized. Automatically generated summaries on Natural Questions, following Table 1. Results
for Phi 4 14B as a judge for Llama 3.1 8B Instruct are pending and will be added.

LLMθ LLMJ

Good summaries vs
bad summaries

Good vs
almost-good

Detailed vs
truncated

Verbalized uncertainty vs
only majority answer

Verbalized vs
or-concatenated

Percentage vs
or-concatenated

Llama 3.1 8B Instruct Llama 3.1 8B Instruct 99.73%±0.37% 96.13%±1.38% 94.92%±3.96% 97.39%±2.91% 80.00%±7.31% 87.83%±5.98%

Phi 4 14B Llama 3.1 8B Instruct 99.75%±0.49% 97.50%±1.53% 100.00%±0.00% 96.30%±5.03% 51.85%±13.33% 66.67%±12.57%

Qwen2.5 7B Instruct Llama 3.1 8B Instruct 99.70%±0.34% 94.10%±1.46% 100.00%±0.00% 97.52%±2.77% 47.93%±8.90% 80.99%±6.99%

Llama 3.1 8B Instruct Phi 4 14B 99.87%±0.26% 94.93%±1.57% 94.92%±3.96% 99.13%±1.70% 87.83%±5.98% 86.09%±6.32%

Phi 4 14B Phi 4 14B 100.00%±0.00% 94.25%±2.28% 94.44%±5.33% 48.15%±13.33% 59.26%±13.11% 59.26%±13.11%

Qwen2.5 7B Instruct Phi 4 14B 99.70%±0.34% 93.10%±1.57% 98.71%±1.78% 95.04%±3.87% 59.50%±8.75% 75.21%±7.69%

Llama 3.1 8B Instruct Qwen2.5 7B Instruct 100.00%±0.00% 95.73%±1.45% 95.76%±3.64% 95.65%±3.73% 80.87%±7.19% 85.22%±6.49%

Phi 4 14B Qwen2.5 7B Instruct 99.25%±0.85% 96.75%±1.74% 98.59%±2.74% 94.44%±6.11% 70.37%±12.18% 77.78%±11.09%

Qwen2.5 7B Instruct Qwen2.5 7B Instruct 99.80%±0.28% 94.20%±1.45% 98.06%±2.17% 95.04%±3.87% 74.38%±7.78% 83.47%±6.62%

Llama 3.1 8B Instruct Qwen2.5 72B Instruct 99.87%±0.26% 96.13%±1.38% 97.46%±2.84% 99.13%±1.70% 86.96%±6.15% 78.26%±7.54%

Phi 4 14B Qwen2.5 72B Instruct 98.75%±1.09% 97.50%±1.53% 98.59%±2.74% 96.30%±5.03% 72.22%±11.95% 55.56%±13.25%

Qwen2.5 7B Instruct Qwen2.5 72B Instruct 99.80%±0.28% 94.40%±1.43% 99.35%±1.27% 99.17%±1.62% 75.21%±7.69% 66.94%±8.38%

A mandatory component to calculate the SelfReflect metric is a judge LLMJ that predicts which
masked-out words are possible, given either a summary or a concatenation of samples. This judge
needs to be able to "understand" both the details of the answer and the probabilistic aspect of this task,
all the while not overwriting its context information with its own world knowledge when making the
prediction. The choice of the judge can thus be seen as a hyperparameter to be optimized to produce
SelfReflect scores that are as discriminative as possible between good and bad and almost-good
summaries. We test four different judges in this section, Llama 3.1 8B Instruct, Phi 4 14B, Qwen 2.5
7B Instruct (which we ultimately use in the paper), and Qwen 2.5 72B Instruct. We generate answer
distributions on Natural Questions for different LLMθ (Llama 3.1 8B Instruct, Phi 4 14B, and Qwen
2.5 7B Instruct), then use Gemini 2.0 to generate summaries like in Section 4.1, and calculate how
often SelfReflect correctly tells apart good from bad (or almost-good) summaries.

Table 6 shows that SelfReflect is very robust to the choice of the judge LLM: All judges can tell apart
good from bad summaries in almost all cases. In particular, there is also no indication of a “home-
bias”, i.e., that a judge would perform better in judging answer distributions that it sampled itself.
This, along with the fact that especially bad summaries, which explicitly introduce statements that
are wrong and go against the judge’s world knowledge, are almost always judged as worse than good
summaries, shows that there is no world-knowledge leakage. We attribute this to LLMs’ abilities to
predict from their context, and to the fact that SelfReflect runs its prediction both conditional on the
summary and conditional on the answer distribution, so that should there be any world knowledge
leakage, it would likely be equal and removed.

To make the choice of which LLM judge to use, we pay particular attention to the last three columns
of Table 6: Comparing a verbalized or percentage uncertainty answer to an or-concatenated answer is
among the most subtle challenges and tests whether the judge correctly infers the relative probabilities
in both the answer distributions and the summaries, even when they are not explicit. Here we see that
the Qwen family sets itself slightly off Phi 4 and Llama 3.1. Within the Qwen family, the 7B model
is within the confidence interval of the 72B model (with a mean result better for percentage vs or-
concatenated, and worse for the other two), so we use it in the main paper due to its lower inference
cost. We note that we also tried using a Qwen 2.5 0.5B Instruct judge, however, this small model
was not able to tell apart good from bad summaries. Finally, we note that there exists a research
opportunity in developing an LLM judge specialized to perform the SelfReflect judging, either to
compress the 7B model into a smaller and faster one, or to improve the last bits of performance on
challenging cases. However, we decide against this in this paper, since a specialized model would
increase the complexity of our method and add a dependency on a particular model (-checkpoint),
which is likely to be outdated soon in the fast-moving field of LLMs.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

E EXAMPLE OF SELFREFLECT SCORES PER MASKED-OUT WORD

To deepen the understanding of how the SelfReflect score judges summaries, we provide a worked
example. We break down the SelfReflect score to the penalty it gives to each masked-out word. To
simplify this educational example, we use only N =M = 7 samples and make the answers in the
conditioning of the prompt equal to the masked-out test answers.

The question posed to the LLM is “Who received the first Nobel Prize in physics?”. As can be seen
below, the LLM’s answer distribution includes Wilhelm Conrad Röntgen as most likely answer, as
well as Hendrik Antoon Lorentz and Pieter Zeeman or Henri Becquerel as additional possibilities,
and details on their work. Let us now first look at how SelfReflect judges a relatively bad summary
of this distribution which just returns the greedy answer “Wilhelm Conrad Röntgen received the first
Nobel Prize in Physics.”. Overall, SelfReflect assigns this bad summary a distance of 0.102 (or taken
×1000 like in Table 4: 102). This score is due to SelfReflect detecting that Hendrik Antoon Lorentz
and Pieter Zeeman or Henri Becquerel are not predictable from the summary, and neither the details
of the works, as we can see in the per-word penalties below (darker red = higher penalty).

Wilhelm Conrad Röntgen received the first Nobel Prize in Physics.

The first Nobel Prize in Physics was awarded to Wilhelm Conrad Röntgen.

Wilhelm Conrad Röntgen received the first Nobel Prize in Physics for his discovery of X-rays.

Wilhelm Conrad Röntgen received the first Nobel Prize in Physics in recognition of his discovery of X-rays which

are now named after him.

It was Henri Becquerel who received the first Nobel Prize in Physics.

Hendrik Antoon Lorentz and Pieter Zeeman received the first Nobel Prize in Physics.

Hendrik Antoon Lorentz and Pieter Zeeman received the first Nobel Prize in Physics for their work on the

effect of magnetic fields on the spectrum of light emitted by atoms, known as the Zeeman effect.

bad summary: Wilhelm Conrad Röntgen received the first Nobel Prize in Physics.

Figure 11: SelfReflect per-word penalties on how far the prediction of each masked-out word based
on the summary “Wilhelm Conrad Röntgen received the first Nobel Prize in Physics.” differs from
the prediction based on the samples from the internal distribution. Total penalty: 0.102.

We can now improve this summary by adding the two other possibilities, namely “It’s most likely that
Wilhelm Conrad Röntgen received the first Nobel Prize in Physics. But the laureates could also have
been Hendrik Antoon Lorentz and Pieter Zeeman or Henri Becquerel.”. With this better summary,
SelfReflect correctly removes the penalty on Hendrik Antoon Lorentz, Pieter Zeeman, and Henri
Becquerel. But it correctly still penalizes the summary for not mentioning the details of any of the
works. This results in an overall score of 0.084 (or 84).

Wilhelm Conrad Röntgen received the first Nobel Prize in Physics.

The first Nobel Prize in Physics was awarded to Wilhelm Conrad Röntgen.

Wilhelm Conrad Röntgen received the first Nobel Prize in Physics for his discovery of X-rays.

Wilhelm Conrad Röntgen received the first Nobel Prize in Physics in recognition of his discovery of X-rays which

are now named after him.

It was Henri Becquerel who received the first Nobel Prize in Physics.

Hendrik Antoon Lorentz and Pieter Zeeman received the first Nobel Prize in Physics.

Hendrik Antoon Lorentz and Pieter Zeeman received the first Nobel Prize in Physics for their work on the

effect of magnetic fields on the spectrum of light emitted by atoms, known as the Zeeman effect.

mid summary: It's most likely that Wilhelm Conrad Röntgen received the first Nobel Prize in Physics.
But the laureates could also have been Hendrik Antoon Lorentz and Pieter Zeeman or Henri Becquerel.

Figure 12: SelfReflect per-word penalties on how far the prediction of each masked-out word based on
the summary “It’s most likely that Wilhelm Conrad Röntgen received the first Nobel Prize in Physics.
But the laureates could also have been Hendrik Antoon Lorentz and Pieter Zeeman or Henri Becquerel.”
differs from the prediction based on the samples from the internal distribution. Total penalty: 0.084.

Having added all answer possibilities, we can now add details mentioned in the individual answers.
As a good summary, we give “It’s most likely that Wilhelm Conrad Röntgen received the first Nobel
Prize in Physics in recognition of his discovery of X-rays which are now named after him. But the
laureates could also have been Hendrik Antoon Lorentz and Pieter Zeeman or Henri Becquerel.”.
SelfReflect removes the penalty on X-rays, which the summary mentions. The remaining penalty of

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0.078 (or 78) is due to the summary still not mentioning the details on the Zeeman effect, plus some
remaining noise mostly on the names.

Wilhelm Conrad Röntgen received the first Nobel Prize in Physics.

The first Nobel Prize in Physics was awarded to Wilhelm Conrad Röntgen.

Wilhelm Conrad Röntgen received the first Nobel Prize in Physics for his discovery of X-rays.

Wilhelm Conrad Röntgen received the first Nobel Prize in Physics in recognition of his discovery of X-rays which

are now named after him.

It was Henri Becquerel who received the first Nobel Prize in Physics.

Hendrik Antoon Lorentz and Pieter Zeeman received the first Nobel Prize in Physics.

Hendrik Antoon Lorentz and Pieter Zeeman received the first Nobel Prize in Physics for their work on the

effect of magnetic fields on the spectrum of light emitted by atoms, known as the Zeeman effect.

good summary: It's most likely that Wilhelm Conrad Röntgen received the first Nobel Prize in Physics
in recognition of his discovery of X-rays which are now named after him. But the laureates could

also have been Hendrik Antoon Lorentz and Pieter Zeeman or Henri Becquerel.

Figure 13: SelfReflect per-word penalties on how far the prediction of each masked-out word based
on the summary “It’s most likely that Wilhelm Conrad Röntgen received the first Nobel Prize in
Physics in recognition of his discovery of X-rays which are now named after him. But the laureates
could also have been Hendrik Antoon Lorentz and Pieter Zeeman or Henri Becquerel.” differs from
the prediction based on the samples from the internal distribution. Total penalty: 0.078.

These examples demonstrate that SelfReflect punishes summaries for the correct reasons: Either
when they don’t mention all possibilities or all details of the actual internal answer distribution. We
have seen in Sections 4.1 and 4.2 that SelfReflect also correctly punishes deviations from the relative
frequencies. To this end, let us modify the second summary which previously had a score of 0.084 (or
84) and state that Henri Becquerel was the most likely first Nobel laureate, which is in conflict with
the LLM’s internal answer distribution: “It’s most likely that Henri Becquerel received the first Nobel
Prize in Physics. But the laureates could also have been Hendrik Antoon Lorentz and Pieter Zeeman
or Wilhelm Conrad Röntgen.”. This correctly leads to higher penalties on Wilhelm Conrad Röntgen
and Henri Becquerel because both of their implied probabilities are off (while keeping the same
penalties on Hendrik Antoon Lorentz and Pieter Zeeman, as well as the in both cases unmentioned
details on their works) and worsens the SelfReflect score to 0.092 (or 92).

Wilhelm Conrad Röntgen received the first Nobel Prize in Physics.

The first Nobel Prize in Physics was awarded to Wilhelm Conrad Röntgen.

Wilhelm Conrad Röntgen received the first Nobel Prize in Physics for his discovery of X-rays.

Wilhelm Conrad Röntgen received the first Nobel Prize in Physics in recognition of his discovery of X-rays which

are now named after him.

It was Henri Becquerel who received the first Nobel Prize in Physics.

Hendrik Antoon Lorentz and Pieter Zeeman received the first Nobel Prize in Physics.

Hendrik Antoon Lorentz and Pieter Zeeman received the first Nobel Prize in Physics for their work on the

effect of magnetic fields on the spectrum of light emitted by atoms, known as the Zeeman effect.

flipped summary: It's most likely that Henri Becquerel received the first Nobel Prize in Physics.
But the laureates could also have been Hendrik Antoon Lorentz and Pieter Zeeman or Wilhelm Conrad

Röntgen.

Figure 14: SelfReflect per-word penalties on how far the prediction of each masked-out word based
on the summary “It’s most likely that Henri Becquerel received the first Nobel Prize in Physics. But
the laureates could also have been Hendrik Antoon Lorentz and Pieter Zeeman or Wilhelm Conrad
Röntgen.” (note that Henri Becquerel is in fact not the most likely; it is Wilhelm Conrad Röntgen)
differs from the prediction based on the samples from the internal distribution. Total penalty: 0.092.

This demonstrates that SelfReflect’s score works as intended, not only on the dataset or question level
as studied in the main paper, but also on a word-level granularity. This example is a regular case, one
of the 95%+ (see Table 1) where SelfReflect correctly scores the summaries. We note, however, that
there are around 5% of questions where it does not score correctly. In most of these cases, the scores
of a good and a slightly worse summary are very close to one another and the mis-decision is mostly
due to noise. We thus recommend to run SelfReflect over 1000 questions per dataset, as noted in
Appendix B and the main paper, in order to smoothen out some of the remaining noise.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

F IMPLEMENTATION DETAILS

F.1 SELFREFLECT SCORE

To calculate the SelfReflect score, in every masked-out task we run the two prompts in Fig. 3 through
a judge LLM, which is by default Qwen 2.5 7B-Instruct. This makes the judge predict the logits
over the vocabulary size for the current token of the fill-in word. If a fill-in word consists of multiple
tokens, where we add the tokens of the true fill-in word one after another into the autoregressive
context of the assistant answer. Given the two fill-in token vectors conditioned either on the summary
or on the concatenated answers, we apply a temperature of 5 to flatten it. This is in order to give some
weight to synonyms, since instruct-tuned LM judges otherwise would give nearly probability 1 to
only one possible token (in which case SelfReflect would still be valid, but simplify into comparing
whether the two contexts lead to predicting the exactly same word). We found that a temperature of
τ = 5 improves the SelfReflect score, making it able to discern good from almost-good summaries
more often on a validation dataset. We then softmax the flattened logit vectors and calculate the 1-
Wasserstein distance between the log probability vectors. Since these are categorical vectors, the
1-Wasserstein distance simplifies into the L1 distance, times 0.5. We repeat this over all tokens of
a masked-out word, then over all masked-out words of each of the M = 50 answers (that are not
stopwords), then across all 1000 questions of a dataset. The global average gives the SelfReflect score.

F.2 SR SAMPLING-FREE SCORE

The sampling-free ablation of the SelfReflect metric also gives two prompts to a judge LLM to
calculate the masked-in task. The difference is that the prompt which in SelfReflect contains the
sampled answers does not contain sampled answers. Instead it just gives the question and then the
masked-out task.

F.3 SR-PMI SCORE

The PMI ablation of the SelfReflect metric uses no masked out task. Instead it poses the question,
gives either the summary or the sampled answers as background information in context, and then
measures the logit vectors assigned to each token of each of the M = 50 answers. In other words,
the answers are not given word-by-word with masked-out tasks, but measured as one full answer. As
for SelfReflect, we then calculate the 1-Wasserstein distance between the flattened logit vectors and
average.

F.4 SR-P(TRUE) SCORE

In the P(True) ablation of SelfReflect, we turn the generative masked-out task into a discriminative
one. We first generate three candidate words to fill in the masked word: One is the true masked word,
one is a word sampled from the masked-out task prompt given the summary and the last is a word
sampled from the masked-out task prompt given the distribution samples. With these candidate fill-
in words, we then run two prompts, one conditional on the summary and one on the answers, to let
the judge LLM predict how likely they fit in, see Fig. 15. As in the normal SelfReflect, this gives a
distribution over the vocabulary size, concentrated on "True" and "False" tokens. We then compare the
two flattened logit vectors via the 1-Wasserstein distance and average as in the original SelfReflect.

F.5 EMBEDDING SCORE

We compare the gte-Qwen2-7B-instruct (Li et al., 2023) embedding of the summary to the embedding
of the samples of the distribution, normalize them and take the inner product to form cosine distances.
We average over all samples. The reason why we select this particular embedding model is that
at the time of submission it was the best-performing open-source model on the MTEB benchmark
(Enevoldsen et al., 2025).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

<|im_start|>user
Who was the first Australian prime minister?
<|im_end|>

<|im_start|>assistant
I'm 70% that the first Australian prime minister

was Sir Edmund Barton, elected in 1901, but it
could also be Andrew Fisher or Edmund Deakin.

<|im_end|>

<|im_start|>user
Here is a text with a missing word, denoted as "_":
The first Australian Prime Minister Edmund _ was elected in 1901.
Here is a candidate word to fill in the missing word "_": Deakin
Respond whether the candidate word would fit in as the missing
word (True) or not (False), based on the answer you gave above.
Respond only with True or False.
<|im_end|>

<|im_start|>assistant

<|im_start|>user
Who was the first Australian prime minister?
Sample 50 answers to this question.
<|im_end|>

<|im_start|>assistant
a_1 = "The first Australian prime minister, Sir

Edmund Barton, was elected in 1901."
[...]

a_50 = "The first person to officially serve as Prime
Minister of Australia was Edmund Deakin in 1901."

<|im_end|>
<|im_start|>user
Here is a text with a missing word, denoted as "_":
The first Australian Prime Minister Edmund _ was elected in 1901.
Here is a candidate word to fill in the missing word "_": Deakin
Respond whether the candidate word would fit in as the missing
word (True) or not (False), based on the answer you gave above.
Respond only with True or False.
<|im_end|>

<|im_start|>assistant

candidate
summary s

i.i.d. samples
from

pasted into context
pθ (A |q)

Predicted token vector: pJ(X |q, s, a−i, cj) = (0.69, 0.30, . . .) Predicted token vector: pJ(X |q, a(1:N), a−i, cj) = (0.82, 0.16, . . .)

mSelfReflect (s) = 𝒲1 (pJ(Ai |q, s, a−i) , pJ(Ai |q, a(1:N), a−i))pJ(Ai |q, s, a−i) pJ(Ai |q, a(1:N), a−i)

question q

discriminative
task with

masked-out
answer

and candidate
word

b−i

cj

"True" "False" "True" "False"

mSR-P(True)(s) = W1

(
pJ (X | q, s, a−i, cj)

1/τ , pJ

(
X | q, a(1:N), a−i, cj

)1/τ
)

Figure 15: The P(True) ablation of SelfReflect adds a candidate word cj into the context and asks the
judge LLM to classify whether this word fits as masked-out word or not. It compares the probability
vectors predicted given either the summary or the concatenated samples.

F.6 SUMMARIZATION SCORE

We follow the prompts of Jain et al. (2023) that prompt an LLM to judge a summary in terms of
consistency, fluency, relevance, and coherence with a few-shot example. We then normalize all scores
to [0, 1] and average them to get the summarization score.

Prompt for the ’Summarization’ metric in Table 1 to judge fluency.

Fluency measures the quality of individual sentences, and whether
they are well-written and grammatically correct. Rate the summary
of a given text on a scale of 0 to 1 on fluency.

Here are some examples: <4 few-shot examples>

Now here is the summary whose fluency you are supposed to rate:
Summary: {summary}

Fluency:

Prompt for the ’Summarization’ metric in Table 1 to judge coherence.

Rate the following summaries on a scale from 0 to 1 on coherence,
with a higher value corresponding to higher coherence. Coherence
is a collective quality of all sentences. To score highly on
it, the summary should be well-structured and well-organized. It
should not just be a heap of related information, but should build
from sentence to sentence to form a coherent body of information
about the topic.

Here are some examples: <4 few-shot examples>

Now here is the summary whose coherence you are supposed to rate:
Summary: {summary}

Coherence:

Prompt for the ’Summarization’ metric in Table 1 to judge consistency.

Consistency measures whether the details in the summary reproduce
the facts present in the text accurately. Rate the summary of

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

given text on a scale from 0 to 1 on consistency.

Here are some examples: <4 few-shot examples>

Now here is the text and summary whose consistency you are supposed
to rate:
Text: We received many answers to our question ’{question}’. Here
they are:
x_1 = ’{answer}’
...
x_{n_answers} = ’{answer}’

Summary: {summary}

Consistency:

Prompt for the ’Summarization’ metric in Table 1 to judge relevance.

Relevance is the quality of a summary to capture important
information from a reference text. Rate the summary on a scale
from 0 to 1 on relevance.

Here are some examples: <4 few-shot examples>

Now here is the text and summary whose relevance you are supposed
to rate:
Text: We received many answers to our question ’{question}’. Here
they are:
x_1 = ’{answer}’
...
x_{n_answers} = ’{answer}’

Summary: {summary}

Relevance:

F.7 LM JUDGE SCORE

We follow Xu et al. (2024) to build a metric that asks an LM judge to chain-of-thoughts think and rate
how well a summary matches a distribution of answers, including a few-shot example. The prompt is
shown below.

Prompt for the ’LM Judge’ metric in Table 1.

Your task is to analyze whether a summarized answer correctly
contains all the possibilities that len(answers) individual answers
to a question mention.
Note that some individual answers occur more often than other
individual answers. You should output a score from 0 to 10,
indicating whether the summarized answer mentions all possibilities
and whether it correctly outlines which are the most often
appearing individual answers and which appear less often. A higher
score is means the summarized answer matches the distribution of
individual answers better.
Also note that some individual answers may be factually wrong.
Do not correct those, just report how good the summarized answer
matches the individual answers.
You should first provide your reasoning for how well the summarized
answer matches the distribution over individual answers, and then
assign a score based on this reasoning. The output should be in

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

the following format:

Reason: [REASON]
Score: [SCORE]

Here is an example:
Question: <Example question>
Individual answers:
<Example answer samples>
Summarized answer: <Example summary>

Then your output can be:
Reason: The summarized answer mentions the most likely possibility,
and it also correctly mentions that this is the most likely one.
For other possibilities, it mentions Wilhelm Conrad Röntgen, but
does not mention that he got the award for his discovery of x-rays,
which the individual answers do mention. It also does not mention
the possibility of Hendrik Antoon Lorentz and Pieter Zeeman, which
the individual answers mention.
Score: 8

Now consider the following case:
{question}
Individual answers:
x_1 = ’{answer}’
...
x_{n_answers} = ’{answer}’

Summarized answer: ’{summary}’

Please provide the reason and the score of how good the summarized
answer matches the distribution of individual answers.

F.8 OPTIMAL TRANSPORT SCORE

The optimal transport metric consists of two steps. First, we break down a summary into a distribution
of statements and their probabilities. This is done with the following prompt.

Prompt for the ’Optimal transport’ metric in Table 1 to split a summary into core statements
and their probabilities.

Question: {question}

Here is some background information. This background information
defines a distribution of possible answers you can later sample
from:
{summary}

Now, split this distribution up into its mutually fundamental
statements and the explicitly or implicitly connected
probabilities.
Split it up such that each statement is mutually exclusive and the
probabilities sum to 1.
Include an ’I don’t know’ statement with the remaining percentage
if the background information explicitly mentions not being
certain.
Return a json file with a list of dictionaries, where in every
dictionary the first key is called ’prob’ and includes the
numerical probability and the second key is ’statement’ and
includes a string of the fundamental statement.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

In the second step, we use an NLI model to calculate an entailment probability in [0, 1] be-
tween how much each sample answer entails each statement and vice versa. We multiply (1 −
entailment probability) of both directions to get an distance score for each sample answer and state-
ment. This defines a distance matrix with the statements as rows and the sample answers as columns.
Besides a distance matrix, optimal transport also requires marginals for both rows and columns. For
the rows, we use the probabilities assigned to the statements in the above prompt. For the columns,
we assign each individual sample answer a uniform probability. We then compute the earth movers
distance using Flamary et al. (2021). This matches sample answers to summary statements in such a
manner that the marginals are preserved and that overall all pairs in sum have the smallest possible
distance. The resulting overall distance then tells how far the answer samples are from the summary.

F.9 LICENSING INFORMATION

Table 7 contains licensing information for models used in this paper.

Table 7: Licencing information for models used in this work

LLM License Reference

DeepSeek R1 Distill Qwen
2.5 32B

MIT DeepSeek-AI et al. (2025)

Gemma 3 family https://ai.google.dev/
gemma/terms

Gemma Team et al. (2025)

Gemini 2.0 Flash Apache 2.0
Ministral 8B Instruct 2410 https://mistral.ai/

static/licenses/MRL-0.1.
md

Jiang et al. (2024)

Llama 3.1 70B Instruct https://www.llama.com/
llama3_1/license/

Meta AI (2024a)

Llama 3.3 70B Instruct https://www.llama.com/
llama3_3/license/

Meta AI (2024b)

Llama 4 Scout 17b 16e In-
struct

https://www.llama.com/
llama4/license/

Meta AI (2025)

Phi-4 MIT Abdin et al. (2024)
gte Qwen 2 7B Instruct Apache-2.0 Li et al. (2023)
Qwen 2.5 family Apache-2.0 Yang et al. (2024a)
Qwen 3 family Apache-2.0 Qwen Team (2025a)
QwQ 32B Apache-2.0 Qwen Team (2025b)

32

https://ai.google.dev/gemma/terms
https://ai.google.dev/gemma/terms
https://mistral.ai/static/licenses/MRL-0.1.md
https://mistral.ai/static/licenses/MRL-0.1.md
https://mistral.ai/static/licenses/MRL-0.1.md
https://www.llama.com/llama3_1/license/
https://www.llama.com/llama3_1/license/
https://www.llama.com/llama3_3/license/
https://www.llama.com/llama3_3/license/
https://www.llama.com/llama4/license/
https://www.llama.com/llama4/license/

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

G RATING GOOD AND BAD SUMMARIES WRITTEN BY HUMANS

Table 8: Mirroring Table 1, we compare how often our SelfReflect metric, and other possible metrics,
discriminates good from bad summaries of answer distributions. In this version, the summaries
are written by humans rather than by Gemini, on a disjoint set of questions. Mean ± 95% interval.
Confidence intervals are larger than in Table 1 because we have less manually written summaries of
answer distributions than the automated ones in Table 1.

Metric
Good summaries vs

bad summaries
Good vs

almost-good
Detailed vs
truncated

Verbalized uncertainty vs
only majority answer

Verbalized vs
or-concatenated

Percentage vs
or-concatenated

Summarization 98.20%±1.43% 60.18%±5.25% 70.00%±20.08% 24.14%±7.93% 55.17%±18.10% 51.72%±18.19%

LM Judge 98.50%±1.30% 54.19%±5.34% 55.00%±21.80% 34.48%±17.30% 37.93%±17.66% 24.14%±15.58%

Opt. Transport 78.14%±4.43% 57.19%±5.31% 10.00%±13.15% 58.62%±17.93% 79.31%±14.74% 72.41%±16.27%

Embedding 74.85%±4.65% 44.01%±5.32% 60.00%±21.47% 20.69%±14.74% 41.38%±17.93% 13.79%±12.55%

SR-PMI 85.33%±3.79% 60.18%±5.25% 75.00%±18.98% 3.45%±6.64% 24.14%±15.58% 31.03%±16.84%

SR-sampling-free 92.22%±2.87% 80.24%±4.27% 75.00%±18.98% 62.07%±17.66% 62.07%±17.66% 58.62%±17.93%

SR-P(True) 47.90%±5.36% 58.38%±5.29% 35.00%±20.90% 96.55%±6.64% 82.76%±13.75% 79.31%±14.74%

SelfReflect 99.70%±0.59% 94.61%±2.42% 95.00%±9.55% 86.21%±12.55% 93.10%±9.22% 82.76%±13.75%

In Table 1 in the main paper, we use Gemini 2.0 Flash to generate various types of good and bad
summaries from sampled answers. We choose an automated LLM approach because it is more
scalable (with accordingly preciser 95% intervals) and reproducible than manual annotation. For
reproducibility, we also report the prompts below. To ensure the quality of the results, we have,
however, also replicated the experiments where we wrote the summaries manually for 334 questions
of the Natural Questions dataset, on a disjoint split from those in Table 1. Table 8 reports the
results on how often SelfReflect, and other metrics, rated good summaries as better than their worse
counterparts. The results are analogous to those in the main paper in that SelfReflect scores the
highest on all metrics except on one where the P(True) ablation achieves a slightly better result.

Gemini 2.0 Flash prompt to generate ’good’ summaries in Table 1.

Below, you are given {n_answers} individual answers to the question
’{question}’.

Your goal is to summarize the {n_answers} answers into one answer.

• The summarized answer should mention the main possibilities
mentioned by the {n_answers} answers. If a possibility is
mentioned only once, it can be skipped so that the summary
remains concise.

• If some possibilities are mentioned much more often than
others, delineate which possibilities are more often found in
the others by using words like "most likely" and "could also
be".

• The format of the summarized answer should be the same as
each individual answer. Provide only the answer, as if it
were part of the {n_answers} answers, without statements like
"The answers include...".

• Similarly, the summarized answer should use the same wording
as the original answers. If the original answer always uses
"is situated", then use "is situated" and not "is located".

• The summarized answer should reflect what the {n_answers}
answers deem possible. They can contain factually wrong
options. Do not correct those, just report the possibilities
as they are given in the answers.

Here are the {n_answers} answers:
x_1 = ’{answer}’
...
x_{n_answers} = ’{answer}’

Please provide the summarized answer.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Gemini 2.0 Flash prompt to generate an ’almost-good’ summary from a ’good’ summary in
Table 1. Also used to generate ’truncated’ from ’detailed’ summaries.

Below, you are given an answer to the question ’{question}’.

Your goal is to shorten the answer.

• If the answer mentions multiple possibilities, only return
the main possibility.

• If the answer includes a main answer and details, remove the
details.

• The shortened answer should have the same format as the
original answer. If the original answer uses full sentences,
the shortened answer should also use a full sentence.

• The shortened answer should use the same wording as the
original answers. If the original answer always uses "is
situated", then use "is situated" and not "is located".

• The answer can contain factually wrong options. Do not
correct those, just shorten what the answer says, even if it
is factually wrong.

Original answer: {good_summary}

Please provide the shortened answer.

Gemini 2.0 Flash prompt to generate a ’bad’ summary from a ’good’ summary in Table 1.

Below, you are given a response to the question ’{question}’.

Your goal is to change the answer.

• The answer should generally stay close to the original
answer, with only some key factual terms changed.

• The answer might already be factually wrong. But the goal is
still to change the key facts, so that the changed answer is
different from the original one.

• The changed answer should have the same format as the
original answer. The structure should remain the same, only
keywords should be exchanged.

• The changed answer should also use the same wording as the
original answers for any non-factual words. If the original
answer always uses "is situated", then use "is situated" and
not "is located".

Original answer: {good_summary}

Please provide the changed answer.

For verbalized, percentage, or-concatenated and majority answers, we first use a prompt to cluster the
answer distribution into clusters of statements and which answers belong to which cluster statement:

Gemini 2.0 Flash prompt to cluster samples from an answer distribution into a list of cluster
representatives and cluster memberships.

Below, you are given {n_answers} individual answers to the question
’{question}’. These {n_answers} answers can be seen as samples from
an answer distribution. Your goal is to cluster the distribution
in two steps:

First step: Find the clusters and their representatives.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

• Each cluster contains a set of answers that are essentially
the same. This means they may vary in the level of detail,
but their primary answer should be the same.

• Different clusters should be mutually exclusive answers.

• There are at least two clusters.

• The answer can contain factually wrong options. Do not
correct them, just cluster the answers as they are.

• Output a json file with each entry giving the "cluster_id"
(cluster_1, cluster_2, ...), and a "representative_answer",
copy-pasted from the answers below.

Second step: Match the answers to their clusters.

• Match each of the {n_answers} individual answers to one
cluster representative.

• Output a json file with each entry giving the "cluster_id"
(cluster_1, cluster_2, ...) and the "cluster_members", a
list of [x_1, x_26, ...].

Here are the {n_answers} answers:
x_1 = ’{answer}’
...
x_{n_answers} = ’{answer}’

Please output the two json files, one after another. Each json
file should start with “‘json

We then count how many member each cluster has (manually in code as opposed to asking the LLM
since this increases accuracy), and provide lists of the representative answers of each cluster and their
relative frequencies to build the percentage and or-concatenated summaries. We sort the resulting list
frequency. For the majority answer, we directly return the representative answer of the highest-likely
cluster. The verbalized uncertainty summary is built by removing the percentages in their brackets
from the percentage summary.

Gemini 2.0 Flash prompt to generate ’percentage-uncertainty’ summaries in Table 1.

Below, you are given list of answers with their probabilities to
the question ’{question}’.

Your goal is to stitch these answers together into one sentence.

• The sentence should have the structure ’It is most likely
that <Answer A> (<probability of Answer A>% sure), but it
could also be <Answer B> (<probability of Answer B>% sure) or
<Answer C> (<probability of Answer C>% sure) or ...’

• Stick to the original wording of the answers as much as
possible, but you can add small words so that the sentence
becomes a grammatically coherent sentence.

• The answer can contain factually wrong options. Do not
correct those, just stitch together the answer options, even
if it is factually wrong.

List of answers:
[
{
’prob’: 0.72,
’statement’: ...
},
{
’prob’: 0.22,
’statement’: ...
}

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

]

Please provide the coherent sentence.

Gemini 2.0 Flash prompt to generate ’or-concatenated’ summaries in Table 1.

Below, you are given list of answers with their probabilities to
the question ’{question}’.

Your goal is to stitch these answers together into one sentence.

• The sentence should have the structure ’Either <Answer A> or
<Answer B> or <Answer C> or ...’

• The sentence should be grammatically coherent.

• Stick to the original wording of the answers as much as
possible.

• The answer can contain factually wrong options. Do not
correct those, just stitch together the answer options, even
if it is factually wrong.

List of answers:
[
{
’prob’: 0.72,
’statement’: ...
},
{
’prob’: 0.22,
’statement’: ...
}

]

Please provide the coherent sentence.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

H HOW WELL DOES SELFREFLECT DISTINGUISH GOOD FROM BAD
SUMMARIES

Table 9: How well does SelfReflect, and other metrics, discriminate between good and bad summaries
of answer distributions. For each column, the second summary lacks textual details or misrepresents
relative probabilities. Mean ± 95% confidence interval. Results per dataset, where Table 1 shows
results averaged across datasets.

Metric
Good summaries vs

bad summaries
Good vs

almost-good
Detailed vs
truncated

Verbalized uncertainty vs
only majority answer

Verbalized vs
or-concatenated

Percentage vs
or-concatenated

Natural Questions
Summarization 98.70%±0.70% 40.67%±3.12% 53.55%±7.85% 11.57%±5.70% 57.02%±8.82% 65.29%±8.48%

LM Judge 99.10%±0.59% 50.21%±3.17% 65.16%±7.50% 24.79%±7.69% 33.88%±8.43% 38.02%±8.65%

Opt. Transport 91.89%±1.69% 56.50%±3.15% 45.16%±7.83% 48.76%±8.91% 47.11%±8.89% 70.25%±8.15%

Embedding 94.49%±1.41% 31.34%±2.94% 47.10%±7.86% 5.79%±4.61% 46.28%±8.88% 38.02%±8.65%

SR-logl 99.10%±0.59% 90.04%±1.90% 90.97%±4.51% 66.94%±8.38% 39.67%±8.72% 49.59%±8.91%

SR-PMI 90.89%±1.78% 47.90%±3.17% 69.68%±7.24% 23.97%±7.61% 9.09%±5.12% 16.53%±6.62%

SR-sampling-free 96.30%±1.17% 74.42%±2.77% 82.58%±5.97% 39.67%±8.72% 29.75%±8.15% 30.58%±8.21%

SR-P(True) 55.86%±3.08% 74.95%±2.75% 62.58%±7.62% 92.56%±4.68% 69.42%±8.21% 85.95%±6.19%

SelfReflect 99.90%±0.20% 98.74%±0.71% 98.06%±2.17% 95.04%±3.87% 74.38%±7.78% 83.47%±6.62%

SimpleQA
Summarization 85.40%± 2.19% 36.36%± 3.03% 50.00%± 17.89% 26.32%± 19.80% 63.16%± 21.69% 68.42%± 20.90%

LM Judge 96.30%± 1.17% 50.31%± 3.15% 46.67%± 17.85% 10.53%± 13.80% 31.58%± 20.90% 31.58%± 20.90%

Opt. Transport 73.50%± 2.74% 68.70%± 2.92% 16.67%± 13.34% 42.11%± 22.20% 63.16%± 21.69% 68.42%± 20.90%

Embedding 97.80%± 0.91% 81.61%± 2.44% 83.33%± 13.34% 10.53%± 13.80% 42.11%± 22.20% 36.84%± 21.69%

SR-logl 91.50%± 1.73% 84.09%± 2.30% 100.00%± 0.00% 36.84%± 21.69% 31.58%± 20.90% 31.58%± 20.90%

SR-PMI 84.00%± 2.27% 25.21%± 2.74% 33.33%± 16.87% 26.32%± 19.80% 21.05%± 18.33% 26.32%± 19.80%

SR-sampling-free 79.20%± 2.52% 36.47%± 3.03% 60.00%± 17.53% 15.79%± 16.40% 31.58%± 20.90% 52.63%± 22.45%

SR-P(True) 72.10%± 2.78% 87.50%± 2.08% 83.33%± 13.34% 84.21%± 16.40% 63.16%± 21.69% 78.95%± 18.33%

SelfReflect 96.60%± 1.12% 91.63%± 1.74% 100.00%± 0.00% 68.42%± 20.90% 68.42%± 20.90% 73.68%± 19.80%

TriviaQA
Summarization 95.90%± 1.23% 43.02%± 3.64% 53.25%± 11.14% 37.25%± 13.27% 58.82%± 13.51% 62.75%± 13.27%

LM Judge 99.60%± 0.39% 39.35%± 3.60% 54.55%± 11.12% 9.80%± 8.16% 37.25%± 13.27% 29.41%± 12.51%

Opt. Transport 75.10%± 2.68% 55.71%± 3.66% 37.66%± 10.82% 50.98%± 13.72% 62.75%± 13.27% 66.67%± 12.94%

Embedding 97.20%± 1.02% 89.42%± 2.26% 96.10%± 4.32% 23.53%± 11.64% 39.22%± 13.40% 33.33%± 12.94%

SR-logl 98.50%± 0.75% 82.79%± 2.78% 72.73%± 9.95% 45.10%± 13.66% 47.06%± 13.70% 54.90%± 13.66%

SR-PMI 90.30%± 1.83% 25.95%± 3.23% 28.57%± 10.09% 29.41%± 12.51% 23.53%± 11.64% 27.45%± 12.25%

SR-sampling-free 89.30%± 1.92% 53.60%± 3.67% 59.74%± 10.95% 45.10%± 13.66% 49.02%± 13.72% 50.98%± 13.72%

SR-P(True) 67.90%± 2.89% 83.64%± 2.72% 77.92%± 9.26% 78.43%± 11.29% 80.39%± 10.90% 90.28%± 8.16%

SelfReflect 99.80%± 0.28% 87.87%± 2.40% 80.52%± 8.85% 68.63%± 12.73% 70.59%± 12.51% 74.51%± 11.96%

I MMLU TESTS OF THE SELFREFLECT METRIC PER DATASET
Table 10: Rank Correlations between how SelfReflect, and others, rank good/overconfident/random
summaries of MMLU multiple-choice summaries versus how a metric specialized for this task does.
Mean ± 95% CI. Per Q means we check the rank correlation on each individual question and then
average the rank correlations globally, Avg means we let the approaches calculate the average score
across all good/confident/random summaries of the 1000 questions and then rank them based on the
average (like in a benchmark).

Metric Gemma 3 12B Qwen 2.5 7B Instruct
Per Q Avg Per Q Avg

Summarization 0.44± 0.03 0.80± 0.00 0.54± 0.06 0.80± 0.00

LM Judge 0.80± 0.02 1.00± 0.00 0.56± 0.06 0.72± 0.01

Opt. Transport 0.69± 0.02 0.88± 0.01 0.60± 0.06 0.81± 0.00

Embedding 0.29± 0.03 0.18± 0.02 0.02± 0.08 0.40± 0.00

SR-logl 0.58± 0.03 1.00± 0.00 0.64± 0.06 1.00± 0.00

SR-PMI -0.03± 0.03 -0.20± 0.00 0.29± 0.08 0.47± 0.01

SR-sampling-free 0.57± 0.03 0.83± 0.00 -0.16± 0.09 -0.42± 0.01

SR-P(True) 0.66± 0.03 1.00± 0.00 0.08± 0.07 0.20± 0.00

SelfReflect 0.66± 0.03 1.00± 0.00 0.56± 0.07 0.93± 0.01

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

J USER STUDY DETAILS

User studies were carried out using TryRating, with five raters per task. Raters were allowed to rate
as many tasks as they wanted. All raters were US-based English speakers, and were paid $18/hr.

The users were presented with the instructions shown in Fig. 16, which included two examples with
hand-crafted summaries (for space reasons, we include only one summary here).

Figure 16: Instructions for user study (truncated; actual instructions contained a second example,
which we have cut here for space).

To ensure quality responses, we constructed twenty “golden answer” tasks, where the summaries were
manually constructed to either fit the definition of “good”, “nearly good”, or “bad” summaries, as
described in Section 4.1. Ten of these questions were given as an entrance exam, with raters required to
answer the golden answer in 80% of tasks to proceed. The remaining ten questions were periodically
included as verification checks. A total of 215 raters passed the entrance exam and contributed ratings.

Confidence intervals were calculated using 100 bootstrapped samples.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

K AUTOMATIC SUMMARY GENERATION

K.1 EXPERIMENTAL DETAILS

In this section, we denote sampling parameters as {T=1, topp=1, topk=None, minp=0}.

Non-reasoning/RLHF models For the models in Table 4, the same model is used for both gen-
erating the answers, and generating the summaries. We sample answers with {T=1, topp=1,
topk=None, minp=0}. For summaries generation, we use greedy decoding, i.e., {T=0,
topp=1, topk=None, minp=0}.

Reasoning/RLVR models For the models in Table 5, we also want to sample the answers with-
out reasoning and make use of the reasoning only for the summaries generation. For Qwen3,
it is possible to suppress the reasoning with tokenizer.apply_chat_template(...,
enable_thinking=False). For QwQ-32B and DeepSeek-R1-Distill-Qwen2.5-32B, we did
not find a way to suppress reasoning and hence we sample the answers from Qwen2.5-32B-Instruct,
which is the RLHF model which served as a base model for the RLVR training. We sample answers
with {T=1, topp=1, topk=None, minp=0}.

For the Greedy summary generation, we use non-reasoning greedy decoding with the same model as
for the answers generation, i.e., for rows QwQ-32B and DeepSeek-R1-Distill-Qwen2.5-32B, we use
Qwen2.5-32B-Instruct.

For the Basic and Sample & Summarize summaries generation, we use the reasoning mode of each
respective model. Unlike for RLHF models, we stray away from using greedy decoding for summary
generation, because the creators of the reasoning models we use warn that the use of greedy decoding
with reasoning “as it can lead to performance degradation and endless repetitions”. Hence, for
each model we use the respective recommended sampling parameters available on their respective
HuggingFace model card.

K.2 PROMPTS USED

Prompt for the basic summary generation method in Section 5.

Please respond to the following question ’{question}’.

Your goal is to summarize all possible answers to this question:

• If there are multiple possible answers, the summarized answer
should mention the main possible answers. However, you do
not have to list possibilities that are too unlikely.

• If some possibilities are more likely than others, delineate
which possibilities are more more likely by using words like
"most likely" and "could also be".

• The format of the summarized answer should be the same as a
normal answer.

• If there is only clear answer to the question, just provide
that answer, without hedging across possibilities.

Please provide the summarized answer.

Prompt for the CoT summary generation method in Section 5.

Please respond to the following question ’{question}’.

Your goal is to first reason about all possible answers to this
question and then summarize them into a final answer:

• Reflect on whether there are multiple possible answers to
this question.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

• If there are multiple possible answers, the summarized answer
should mention the main possible answers. However, you do
not have to list possibilities that are too unlikely.

• If some possibilities are more likely than others, delineate
which possibilities are more more likely by using words like
"most likely" and "could also be".

• The format of the summarized answer should be the same as a
typical answer and be stand-alone.

• If there is only clear answer to the question, just provide
that answer, without hedging across possibilities.

The output should be in the following format:
Reasoning: [REASONING ABOUT WHICH POSSIBLITIES THERE ARE AND HOW
LIKELY THEY ARE]
Summary: [SUMMARIZED ANSWER]

Please provide the reasoning and then the summarized answer.

K.3 RESULTS PER DATASET

Table 11: SelfReflect score ↓ (×10−3, rounded for readability) for the SimpleQA dataset, averaged
across 1000 questions. The results in small font are relative to Greedy.

Model pθ (A | q) Single-decoding methods Sample & summarize

unimodal Greedy Basic CoT N = 10 N = 20

Qwen2.5 0.5B Instruct (Yang et al., 2024a) 1% 98 97−1 95−3 99+1 99+1

Qwen2.5 1.5B Instruct (Yang et al., 2024a) 2% 98 97 0 93−5 90−8 89−8

Qwen2.5 3B Instruct (Yang et al., 2024a) 5% 101 101 0 99−1 93−8 91−9

Qwen2.5 7B Instruct (Yang et al., 2024a) 15% 98 102+4 102+3 93−5 92−6

Qwen2.5 14B Instruct (Yang et al., 2024a) 23% 96 101+5 102+7 88−8 87−9

Qwen2.5 32B Instruct (Yang et al., 2024a) 17% 103 108+5 110+8 95−8 94−8

Qwen2.5 72B Instruct (Yang et al., 2024a) 18% 95 99+3 100+5 88−8 87−9

Phi 4 (Abdin et al., 2024) 3% 99 99 0 97−2 89−10 87−12

Ministral 8B Instruct 2410 (Jiang et al., 2024) 1% 117 116 0 114−2 109−7 107−9

Llama 3.1 70B Instruct (Meta AI, 2024a) 16% 97 97 0 97+1 90−6 90−7

Llama 3.3 70B Instruct (Meta AI, 2024b) 29% 100 103+3 113+13 92−8 91−9

Llama 4 Scout 17B 16e Instruct (Meta AI, 2025) 20% 95 100+5 103+8 89−6 87−7

Gemma 3 1B Instruct (Gemma Team et al., 2025) 17% 123 134+11 135+11 124 0 118−6

Gemma 3 4B Instruct (Gemma Team et al., 2025) 25% 118 135+16 138+20 108−10 106−12

Gemma 3 12B Instruct (Gemma Team et al., 2025) 35% 117 129+12 135+18 112−5 112−5

Gemma 3 27B Instruct (Gemma Team et al., 2025) 49% 109 124+16 134+25 103−5 101−7

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Table 12: SelfReflect score ↓ (×10−3, rounded for readability) for the Natural Questions dataset,
averaged across 1000 questions. The results in small font are relative to Greedy.

Model pθ (A | q) Single-decoding methods Sample & summarize

unimodal Greedy Basic CoT N = 10 N = 20

Qwen2.5 0.5B Instruct (Yang et al., 2024a) 5% 92 90−1 90−2 92 0 92 0

Qwen2.5 1.5B Instruct (Yang et al., 2024a) 13% 90 91+1 89−1 85−5 84−6

Qwen2.5 3B Instruct (Yang et al., 2024a) 30% 95 96+1 97+2 88−7 87−8

Qwen2.5 7B Instruct (Yang et al., 2024a) 32% 94 98+4 101+7 90−5 89−5

Qwen2.5 14B Instruct (Yang et al., 2024a) 56% 91 97+6 100+9 86−5 85−6

Qwen2.5 32B Instruct (Yang et al., 2024a) 50% 94 100+6 104+10 89−5 89−5

Qwen2.5 72B Instruct (Yang et al., 2024a) 48% 89 94+5 98+9 84−5 83−6

Phi 4 (Abdin et al., 2024) 36% 89 88−1 92+3 83−6 82−7

Ministral 8B Instruct 2410 (Jiang et al., 2024) 17% 101 99−1 99−2 95−6 94−7

Llama 3.3 70B Instruct (Meta AI, 2024b) 68% 91 96+5 104+13 86−5 85−6

Llama 4 Scout 17B 16e Instruct (Meta AI, 2025) 59% 90 96+6 104+14 88−2 87−4

Gemma 3 1B Instruct (Gemma Team et al., 2025) 22% 113 126+13 127+14 113+1 108−5

Gemma 3 4B Instruct (Gemma Team et al., 2025) 56% 106 123+17 128+22 100−6 99−7

Gemma 3 12B Instruct (Gemma Team et al., 2025) 57% 103 118+14 121+17 99−5 99−5

Gemma 3 27B Instruct (Gemma Team et al., 2025) 72% 100 116+15 121+21 98−3 97−3

Table 13: SelfReflect score ↓ (×10−3, rounded for readability) for the TriviaQA dataset, averaged
across 1000 questions. The results in small font are relative to Greedy.

Model pθ (A | q) Single-decoding methods Sample & summarize

unimodal Greedy Basic CoT N = 10 N = 20

Qwen2.5 0.5B Instruct (Yang et al., 2024a) 15% 97 96−1 96−1 98+1 98 0

Qwen2.5 1.5B Instruct (Yang et al., 2024a) 36% 93 94+1 93 0 87−6 87−7

Qwen2.5 3B Instruct (Yang et al., 2024a) 45% 97 99+2 100+2 91−6 90−7

Qwen2.5 7B Instruct (Yang et al., 2024a) 60% 95 98+3 100+5 91−3 91−4

Qwen2.5 14B Instruct (Yang et al., 2024a) 76% 88 93+5 94+6 85−3 84−4

Qwen2.5 32B Instruct (Yang et al., 2024a) 79% 92 98+6 101+8 89−3 89−3

Qwen2.5 72B Instruct (Yang et al., 2024a) 85% 87 89+3 90+4 84−3 83−4

Phi 4 (Abdin et al., 2024) 69% 89 88−1 89 0 84−5 83−6

Ministral 8B Instruct 2410 (Jiang et al., 2024) 56% 104 103 0 103−1 99−4 98−5

Llama 3.1 70B Instruct (Meta AI, 2024a) 82% 89 88−1 89 0 85−4 85−5

Llama 3.3 70B Instruct (Meta AI, 2024b) 92% 91 93+2 95+4 89−2 88−3

Llama 4 Scout 17B 16e Instruct (Meta AI, 2025) 81% 89 92+2 96+6 87−2 86−3

Gemma 3 1B Instruct (Gemma Team et al., 2025) 40% 112 127+14 125+12 113 0 108−4

Gemma 3 4B Instruct (Gemma Team et al., 2025) 76% 101 114+13 118+17 96−5 94−6

Gemma 3 12B Instruct (Gemma Team et al., 2025) 84% 95 103+8 107+13 94−1 93−1

Gemma 3 27B Instruct (Gemma Team et al., 2025) 93% 91 99+8 104+13 91 0 91 0

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Table 14: Runtime of generating different summaries in seconds per prompt per GPU, averaged across
all three datasets with 1000 questions each. Note that some models are sharded across multiple GPUs
– in this case, to represent their total computational requirements, we report the summed runtime of
all GPUs, i.e., although a prompt may run through in one second using four GPUs, we will count it
as four seconds total. In small font, relative comparisons w.r.t. Greedy.

Model Single-decoding methods Sample & summarize

Greedy Basic CoT N=10

Qwen2.5 0.5B Instruct (Yang et al., 2024a) 0.93 1.26×1.35 1.26×1.36 1.79×1.93

Qwen2.5 1.5B Instruct (Yang et al., 2024a) 0.94 0.91×0.96 1.29×1.37 1.89×2.01

Qwen2.5 3B Instruct (Yang et al., 2024a) 0.84 0.85×1.02 1.00×1.20 1.82×2.18

Qwen2.5 7B Instruct (Yang et al., 2024a) 0.80 0.84×1.05 1.09×1.36 1.91×2.38

Qwen2.5 14B Instruct (Yang et al., 2024a) 0.96 1.01×1.05 1.33×1.38 2.44×2.53

Qwen2.5 32B Instruct (Yang et al., 2024a) 1.11 1.22×1.09 1.72×1.54 3.42×3.07

Qwen2.5 72B Instruct (Yang et al., 2024a) 1.68 1.63×0.97 3.48×2.07 4.41×2.62

Phi 4 14B (Abdin et al., 2024) 1.09 1.02×0.94 1.43×1.31 2.96×2.71

Ministral 8B Instruct 2410 (Jiang et al., 2024) 0.91 0.91×1.00 1.04×1.15 1.82×2.00

Llama 3.1 70B Instruct (Meta AI, 2024a) 4.16 4.45×1.07 10.58×2.54 10.59×2.55

Llama 3.3 70B Instruct (Meta AI, 2024b) 3.54 3.17×0.89 4.25×1.20 7.23×2.04

Llama 4 Scout 17B 16e Instruct (Meta AI, 2025) 3.45 3.92×1.13 5.67×1.64 9.05×2.62

Gemma 3 1B Instruct (Gemma Team et al., 2025) 0.89 0.86×0.97 0.93×1.04 1.74×1.96

Gemma 3 4B Instruct (Gemma Team et al., 2025) 0.95 0.93×0.98 1.09×1.15 1.96×2.06

Gemma 3 12B Instruct (Gemma Team et al., 2025) 1.12 1.14×1.02 1.54×1.38 2.43×2.17

Gemma 3 27B Instruct (Gemma Team et al., 2025) 1.32 1.36×1.03 2.26×1.71 3.09×2.34

Table 15: Character length of different summaries in seconds per prompt per GPU, averaged across
all three datasets with 1000 questions each. In small font, relative comparisons w.r.t. Greedy.

Model Single-decoding methods Sample & summarize

Greedy Basic CoT N=10

Qwen2.5 0.5B Instruct (Yang et al., 2024a) 130.10 699.93×5.38 896.85×6.89 155.39×1.19

Qwen2.5 1.5B Instruct (Yang et al., 2024a) 152.44 151.44×0.99 528.68×3.47 310.16×2.03

Qwen2.5 3B Instruct (Yang et al., 2024a) 81.55 168.60×2.07 254.03×3.11 274.03×3.36

Qwen2.5 7B Instruct (Yang et al., 2024a) 93.16 149.61×1.61 198.33×2.13 178.72×1.92

Qwen2.5 14B Instruct (Yang et al., 2024a) 92.93 170.49×1.83 245.97×2.65 203.53×2.19

Qwen2.5 32B Instruct (Yang et al., 2024a) 64.53 145.30×2.25 186.80×2.89 138.33×2.14

Qwen2.5 72B Instruct (Yang et al., 2024a) 97.30 157.04×1.61 247.99×2.55 177.61×1.83

Phi 4 14B (Abdin et al., 2024) 124.85 203.35×1.63 281.96×2.26 273.05×2.19

Ministral 8B Instruct 2410 (Jiang et al., 2024) 49.15 100.54×2.05 179.57×3.65 130.08×2.65

Llama 3.1 70B Instruct (Meta AI, 2024a) 168.64 267.63×1.59 499.54×2.96 225.05×1.33

Llama 3.3 70B Instruct (Meta AI, 2024b) 113.47 229.45×2.02 277.31×2.44 152.70×1.35

Llama 4 Scout 17B 16e Instruct (Meta AI, 2025) 132.81 275.57×2.07 220.68×1.66 214.80×1.62

Gemma 3 1B Instruct (Gemma Team et al., 2025) 22.66 38.91×1.72 183.15×8.08 61.71×2.72

Gemma 3 4B Instruct (Gemma Team et al., 2025) 26.45 80.66×3.05 113.46×4.29 101.16×3.83

Gemma 3 12B Instruct (Gemma Team et al., 2025) 28.51 102.76×3.60 174.70×6.13 70.67×2.48

Gemma 3 27B Instruct (Gemma Team et al., 2025) 37.77 137.62×3.64 192.39×5.09 70.97×1.88

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

L EXPERIMENT DETAILS OF COT DEEP DIVE

L.1 RESULTS PER DATASET

Certain Uncertain
CoT Summary

Ce
rta

in
Un

ce
rta

in
An

sw
er

 D
is

tr
ib

ut
io

n

36% 49%

3% 13%

TriviaQA

Certain Uncertain
CoT Summary

Ce
rta

in
Un

ce
rta

in
An

sw
er

 D
is

tr
ib

ut
io

n

16% 40%

9% 35%

Natural Questions

Certain Uncertain
CoT Summary

Ce
rta

in
Un

ce
rta

in
An

sw
er

 D
is

tr
ib

ut
io

n

2% 20%

9% 69%

SimpleQA

Figure 17: Confusion matrices between certainty of CoT summaries vs. actual answer distributions
for Qwen2.5 72B Instruct. Judged by Gemini 2.0 Flash for 500 random questions per dataset.

We show the results per dataset in Fig. 17. By just looking at the marginals of the answer distribution,
we can infer that the question difficulty increases from TriviaQA to Natural Questions to SimpleQA,
as the number of questions with uncertain answer distributions increases from 16% to 44% to 78%
of questions. However, the majority of the CoT summaries are uncertain for all three datasets (for
62%, 75%, and 89% of questions respectively), meaning that CoT is underconfident on TriviaQA
and Natural Quesions—i.e., it suggests answers that do not have high probability under the true
distribution. A balance is clearly needed. The Greedy method, by contrast, is overconfident. While it
outperforms CoT on average, it underperforms Sample & Summarize since it will only present a single
option. In a similar way, simply making CoT more confident would likely lead to detrimental effects
on harder questions. Already as-is, there are relevant shares of questions in SimpleQA and Natural
Questions where CoT is certain while the actual answer distribution is not (9% each). Generating self-
reflective summaries that are truthful to the model’s internal uncertainty thus remains a challenging
task.

L.2 PROMPTS USED TO CLASSIFY CERTAINTY VS. UNCERTAINTY

We used Gemini 2.0 Flash to judge if a summary mentions multiple semantically different answers
or not, and likewise if samples from the distributions do so. In particular, we provide it with the
corresponding context, and ask it to classify into three classes: A) Fully certain, B) not fully certain,
C) Completely uncertain. We then aggregate B and C to form the general “uncertain” category (we
found this to give better results than to directly give a binary task to Gemini, because it allows us
to explicitly tell how to handle the “not fully certain” edge case). We manually verified that the
classification is qualitatively correct. We show the prompts below.

Gemini 2.0 Flash prompt to classify CoT summary in Fig. 4. We call A. ’Certain’ and group
B. and C. into ’Uncertain’.

Below, you are given an answer to the question ’{question}’.

Your goal is to classify which type of answer this is:
A. The answer is certain, it only mentions one answer option.
B. The answer is not fully certain. It might mention one or two
further answer options but judges them as less likely.
C. The answer is very uncertain. It mentions many mutually
exclusive answer options, without a clear single most likely
answer.

Ignore differences in form and style. You are only supposed to
judge the answer semantically.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Here is the answer: {CoT summary}

Please respond with the category of what type of this answer this
is. Respond only with A, B, or C.

Gemini 2.0 Flash prompt to classify answer distribution samples in Fig. 4. We call A. ’Certain’
and group B. and C. into ’Uncertain’

Below, you are given {n_answers} individual answers to the question
’{question}’. These {n_answers} answers can be seen as samples from
an answer distribution.

Your goal is to classify which type of distribution this is:
A. The answers all do not contradict each other, up to one or two
that differ from the majority answer.
B. The answers give multiple mutually exclusive answer options, but
there is one answer option that is given in the majority of cases.
C. The answers give multiple mutually exclusive answer options, and
they are almost all different, without a clear majority answer.

The answers will have some natural variability. Ignore differences
in form and style. You are only supposed to judge if answer
options are semantically different.

Here are the {n_answers} answers:
x_1 = ’{answer}’
...
x_{n_answers} = ’{answer}’

Please respond with the category of what type of this distribution
this is. Respond only with A, B, or C.

M FINETUNING TO GENERATE SELF-REFLECTIVE SUMMARIES

Table 16: SelfReflect scores of models that have been supervised finetuned (SFT) and/or direct
preference optimized (DPO) on sample-and-summarize summaries with LoRA adapters. Each
epoch includes 10,000 example summaries. No approach consistently improves both in- and out-of-
distribution over sampling greedily from Qwen 3 8B Instruct.

Finetuning Train Eval OOD Train Eval OOD
Natural Q Natural Q TriviaQA TriviaQA TriviaQA Natural Q

Qwen 3 8B Instruct 93 94 95 98 95 94

+ SFT (5 epochs), lr 1e-4 90−3 92−2 96+1 96−2 96+1 92−2
+ SFT (10 epochs), lr 1e-4 89−4 94−0 98+3 94−4 97−2 94−0
+ SFT (15 epochs), lr 1e-4 88−5 94−0 97+2 92−6 97−2 94−0
+ SFT (20 epochs), lr 1e-4 87−6 93−1 98+3 92−6 98−3 94−0

+ DPO (5 epochs), lr 1e-5 95+2 95+1 97+2 99+1 97+2 94+0
+ DPO (10 epochs), lr 1e-5 95+2 95+1 97+2 100+2 97+2 95+1
+ DPO (15 epochs), lr 1e-5 96+3 96+2 97+2 100+2 97+2 95+1
+ DPO (20 epochs), lr 1e-5 96+3 96+2 97+2 99+1 97+2 95+1

+ SFT (5 ep.), lr 1e-4 + DPO (20 ep.), lr 1e-5 97+4 97+3 99+4 99+1 99+4 97+3

+ DPO, lr 1e-4 (20 epochs) 99+6 98+4 102+7 102+4 100+5 98+4
+ DPO, lr 1e-4, β = 0 (20 epochs) 93−0 93−1 95−0 98−0 95−0 93−1
+ DPO, lr 1e-5, β = 0.5 (20 epochs) 94+1 94−0 96+1 98−0 96+1 93−1
+ SFT (5 epochs), lr 1e-4 + DPO, lr 1e-4 (20 epochs) 97+4 97+3 99+4 99+1 99+4 97+3
+ SFT (5 epochs), lr 1e-4 + DPO, lr 1e-4, β = 0 (20 epochs) 90−3 92−2 96+1 96−2 96+1 92−2
+ SFT (5 epochs), lr 1e-4 + DPO, lr 1e-5 (20 epochs) 90−3 92−2 96+1 96−2 96+1 92−2
+ SFT (5 epochs), lr 1e-4 + DPO, lr 1e-5, β = 0.5 (20 epochs) 92−1 94−0 96+1 96−2 96+1 93−1

44

	Introduction
	Related Work
	Uncertainty in LLMs
	Summarization

	Distances between summary strings and distributions of strings
	Summaries as predictive sufficient statistics
	The SelfReflect metric

	Can SelfReflect scores quantify how good summaries are?
	Study 1: Distinguishing good from bad and almost-good summaries
	Study 2: Distances of multiple-choice distributions
	Study 3: Do the ratings align with human ratings?

	Can LLMs generate self-reflective responses?
	Experimental setup
	Result: LLMs can only access their internal distributions with some help
	If it is not faithful, then which answers does Chain-of-Thoughts list?

	Outlook
	SelfReflect and predictive sufficiency: propositions and proofs
	Setup, notations, and assumptions
	Predictive sufficiency and equivalent characterizations
	SelfReflect metric and equivalence to predictive sufficiency
	Modeling with LLM: From derivation to implementation

	Convergence of the SelfReflect metric
	Design choices and limitations of the SelfReflect score
	Which LLMJ judge to use to generate SelfReflect logits
	Example of SelfReflect scores per masked-out word
	Implementation details
	SelfReflect score
	SR sampling-free score
	SR-PMI score
	SR-P(True) score
	Embedding score
	Summarization score
	LM Judge score
	Optimal Transport score
	Licensing information

	Rating good and bad summaries written by humans
	How well does SelfReflect distinguish good from bad summaries
	MMLU tests of the SelfReflect metric per dataset
	User study details
	Automatic summary generation
	Experimental details
	Prompts used
	Results per dataset

	Experiment details of CoT deep dive
	Results per dataset
	Prompts used to classify certainty vs. uncertainty

	Finetuning to generate self-reflective summaries

