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ABSTRACT

Large Language Models (LLMs) have achieved remarkable success through imi-
tation learning on vast text corpora, but this paradigm creates a training-generation
gap and limits robust reasoning. Reinforcement learning (RL) offers a more data-
efficient solution capable of bridging this gap, yet its application has been con-
strained by a critical data bottleneck: existing RL datasets are orders of mag-
nitude smaller and less diverse than web-scale pre-training corpora. To address
this, we introduce the Webscale-RL pipeline, a scalable data engine that sys-
tematically converts large-scale pre-training documents into millions of diverse,
verifiable question-answer pairs for RL. Using this pipeline, we construct the
Webscale-RL dataset, containing 1.2 million examples across more than 9 do-
mains. Our experiments show that the model trained on this dataset significantly
outperforms continual pretraining and strong data refinement baselines across a
suite of benchmarks. Notably, RL training with our dataset proves substantially
more efficient, achieving the performance of continual pre-training with up to
100× fewer tokens. Our work presents a viable path toward scaling RL to pre-
training levels, enabling more capable and efficient language models.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable success, primarily through learning on
vast text corpora. However, this predominant paradigm, which includes pretraining with next-token
prediction and supervised fine-tuning (SFT), is fundamentally in the form of imitation learning. By
training models to mimic static offline datasets, imitation learning creates a “teacher-forcing” de-
pendency that makes models vulnerable to distribution shifts (Ross et al., 2011; Levine et al., 2020;
Foster et al., 2024) and leads to a significant gap between training and generation dynamics (Chen
et al., 2024c; Bachmann & Nagarajan, 2024; Cen et al., 2024). Consequently, models trained in
this way struggle with distribution shift and lack the robust reasoning abilities required for complex
problem solving.

Reinforcement learning (RL) offers a powerful alternative to overcome these challenges (Shao et al.,
2024; DeepSeek-AI et al., 2025). By learning from online reward feedback on its own generations,
an RL-trained model can explore a wider solution space and is not confined to a static dataset,
bridging the training-inference gap. This online learning process makes RL a significantly more
data-efficient training paradigm. As our empirical results demonstrate, RL can achieve performance
gains comparable to continual pretraining with up to two orders of magnitude fewer tokens, provid-
ing a compelling motivation for scaling RL to unlock new levels of model capability and efficiency.

Despite the clear advantages of RL, its adoption at scale is severely hampered by a critical data
bottleneck and most existing practice in RL training is mainly limited to reasoning tasks such as
math and coding in the post-training stage. Pretraining corpora are measured in trillions of tokens,
whereas existing RL datasets are orders of magnitude smaller (e.g., <10B tokens for RL vs. >1T
tokens for pretraining) and lack the diversity of web-scale data. This scarcity is driven by the high
cost of generating high-quality, verifiable question-answering (QA) pairs, which are essential for
effective RL-based reasoning tasks. This immense disparity in data scale and diversity prevents RL
from realizing its full potential to enhance the general reasoning capabilities of LLMs.

To address these limitations, we introduce Webscale-RL, a scalable data pipeline that systemati-
cally converts large-scale pretraining corpora into massive, diverse, and verifiable RL-ready datasets.
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Figure 1: The scaling on LLM RL is fundamentally bottlenecked by the scarcity of high-quality RL
data. While pretraining leverages >1T diverse web tokens, RL datasets remain limited to <10B
tokens with limited diversity. We propose Webscale-RL data pipeline to fundamentally improve
the scalability of RL data: we convert the pretraining corpora to verifiable query and ground-truth
answer pairs, scaling RL data to pretraining levels while preserving the diversity. The experiments
show that RL with Webscale-RL data is significantly more effective and efficient than continual
pretraining and data refinement baselines.

Our pipeline is designed to bridge the data gap between pretraining and reinforcement learning, un-
locking the potential to train LLMs with RL at a scale previously unattainable while preserving the
vast diversity of the original pretraining data.

Our main contributions are threefold:

• We propose Webscale-RL pipeline, an automated and scalable data engine that converts web-
scale pretraining documents into verifiable question-answer pairs for RL. The pipeline incorpo-
rates stages for data filtering, domain and persona-driven generation, and quality verification to
ensure high-quality output.

• We construct Webscale-RL dataset, a large-scale and diverse RL dataset containing 1.2 million
verifiable QA pairs spanning over nine domains. Our analysis shows it is significantly more
diverse than existing large-scale RL datasets.

• We provide empirical evidence demonstrating the effectiveness of our approach. The model
trained with RL on the Webscale-RL dataset significantly outperforms continual pretraining
on the source data and strong data refinement baselines across a wide range of benchmarks. Fur-
thermore, our results show that RL with our dataset is substantially more data-efficient, achieving
comparable performance to continual pretraining with 100× fewer tokens.

Our work demonstrates that by converting massive pretraining corpora into a format suitable for
RL, we can unlock significant performance and efficiency gains. This provides a path toward scaling
reinforcement learning to match the scale of pretraining, leading to a new generation of more capable
and robust language models.

2 RELATED WORKS

Training Data Development and Synthesis. The development of LLMs hinges on the availabil-
ity of vast, high-quality training datasets. However, curating such corpora, especially labeled and
across diverse domains, is often prohibitively expensive and time-consuming. This challenge has
spurred significant research into efficient synthetic data generation pipelines (Chen et al., 2024a; Ma
et al., 2025; Fan et al., 2025). Current pre-training corpora are typically compiled from a variety
of public sources, such as Wikipedia (Foundation), large-scale web crawls (Computer, 2023; Paster
et al., 2023; Penedo et al., 2024a; Li et al., 2024; Raffel et al., 2019), and code repositories (Lozhkov
et al., 2024). This is often supplemented with content from digitized books (Stroube, 2003) and data
generated by other LLMs (Ben Allal et al., 2024; Huang et al., 2024). To endow LLMs with compre-
hensive knowledge and robust downstream capabilities, these corpora are constructed on a massive
scale, often containing tens of trillions of tokens, as exemplified by the 30-trillion-token RedPa-
jama dataset (Computer, 2023) and the 67.5-trillion-token Stack-v2 (Lozhkov et al., 2024). More
recently, the success of models like DeepSeek-R1-Zero (DeepSeek-AI et al., 2025) and DeepSeek-
R1-Zero (DeepSeek-AI et al., 2025) and Grok-4 (xAI, 2025), which integrate reinforcement learning

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(RL) at the pre-training stage, is built on and is built on and has intensified the demand for similarly
large and high-quality synthetic synthetic RL datasets. There have been multiple lines of work in
large-scale data synthesis for LLM training: DeepScaler (Luo et al., 2025) curated a small (40K)
RL dataset for mathematical reasoning; OpenR1-Math (Hugging Face, 2025) further scales up the
mathematical RL dataset for both SFT and RL via distillation, resulting in a 220K dataset; WebIn-
struct (Yue et al., 2024), OpenThoughts (Guha et al., 2025) and NatureReasoning (Yuan et al., 2025)
expand the distillation path to multiple domains and synthesize over 1M data using teacher models
for SFT, respectively; Nemotron (Bercovich et al., 2025) extends the dataset size to 3.9M for both
SFT and RL.

Reinforcement Learning in LLMs. Recent advancements in large-scale RL have significantly
enhanced the capabilities of LLMs, as demonstrated by models such as OpenAI’s o-series (OpenAI,
2024a; Jaech et al., 2024; OpenAI, 2024b) and DeepSeek-V3/R1 (DeepSeek-AI et al., 2024; 2025).
Besides these models, many other works show that LLMs trained to reason with Chain-of-Thought
(CoT) prompting have shown substantial performance gains in diverse areas, including mathematical
and scientific reasoning (Xie et al., 2025; Cen et al., 2025; Shao et al., 2024; Luong et al., 2024; Chen
et al., 2024b; Cui et al., 2025), code generation (Le et al., 2022; Wei et al., 2025), and tool use (Zhang
et al., 2025a; Qian et al., 2025). The optimization of the RL objective in these models is primarily
driven by foundational algorithms like Proximal Policy Optimization (PPO) (Schulman et al., 2017)
and its variant, Group Relative Policy Optimization (GRPO) (Shao et al., 2024). Rooted from post-
training RL, many works further extend RL to a significantly larger scale (Liu et al., 2025c;b; xAI,
2025) or an earlier stage like pre-training (Zelikman et al., 2024; Dong et al., 2025; Li et al., 2025),
indicating the effectiveness of prolonged, large-scale RL training.

3 METHODOLOGY

In this section, we first provide a brief comparison of the pretraining and RL training paradigms and
then present our Webscale-RL data pipeline that systematically converts large-scale pretraining
data into RL data while preserving the scale and diversity of web data.

3.1 PRELIMINARIES

Pretraining. In the pretraining stage, a large-scale corpus Dpretraining (usually >1T tokens) is con-
structed by filtering and deduplicating publicly available web data sources (Penedo et al., 2024b;
Weber et al., 2024; Li et al., 2024). Given this static dataset, the LLM is trained in a teacher-forcing
manner to imitate the next-token distribution of the data by minimizing the negative log-likelihood:

min
θ

−Ex∼Dpretraining

[
T∑

t=1

logPθ(xt | x(<t))

]
, (1)

where x = [x1, . . . , xT ] is a token sequence sampled from the pretraining dataset Dpretraining. This
imitation-based objective enforces the model to learn the given pattern from the demonstration data
but does not expose the model to the distribution induced by its own generations, suffering from the
distribution shift issue (Bachmann & Nagarajan, 2024; Ross et al., 2011) and leading to a training-
inference gap (Bengio et al., 2015; Levine et al., 2020).

Reinforcement Learning (RL). RL instead optimizes the model as a policy that generates answers
online and maximizes expected reward on a query q:

max
θ

Eq∼Q,a∼Pθ(·|q) [R(q,a)] , (2)

where Q is the query set and R is a task-specific reward function. The online generation and feed-
back loop enable the model to narrow the training-inference gap. In our setup, we adopt a binary
reward that returns 1 only when the model’s final answer matches the ground-truth answer and 0
otherwise. Consequently, each RL training instance is a verifiable question-answer pair.

3.2 WEBSCALE-RL DATA PIPELINE

While RL has shown promise in enhancing LLM capabilities (Jaech et al., 2024; DeepSeek-AI et al.,
2025), its effectiveness is constrained by the limited scale and diversity of existing RL datasets.
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Therefore, the RL training is typically conducted on a much smaller scale on limited domains in the
post-training stage. This discrepancy arises from the high costs associated with human annotation
and the challenges in generating verifiable QA pairs at large scale. Furthermore, most existing RL
datasets focus on specific tasks or domains and thus lack the breadth of topics and styles found
in web-scale corpora, limiting their generalization to diverse real-world scenarios. To address the
limited volume and diversity of existing RL datasets, we propose a Webscale-RL data pipeline
that converts pretraining documents into RL data at scale while preserving the diversity of web data.

Figure 2: Overview of the Webscale-RL data pipeline that systematically converts large-scale
pretraining data into RL data while preserving the scale and diversity of web data. The pipeline
maintains a domain-specific demonstration library for few-shot examples for high quality generation
and assigns multiple personas to each document to encourage reflecting different viewpoints. The
generated QA pairs are verified for correctness and leakage prevention to ensure the reliability of
the RL dataset. The prompt templates of four stage are listed in Appendix B.1.1.

At a high level, Webscale-RL leverages a generative model to convert narrative pretraining doc-
uments into verifiable QA pairs for RL training. To cover a wider range of topics and question
styles, we first maintain a domain-specific demonstration library for few-shot examples to guide the
generation process. We further assign multiple personas to each document to encourage reflecting
different viewpoints. Figure 2 illustrates the pipeline, which consists of four main stages:

Data Filtering. Our pipeline takes pretraining corpora spanning multiple domains as input instead
of focusing on data in limited domains Toshniwal et al. (2024); Liu et al. (2025a). This stage aims
to remove inputs that are unlikely to yield verifiable high-quality questions. We first use heuristics
to filter out obviously low-quality documents (< 50 tokens) and then employ an LLM for further
fine-grained filtering (Gunasekar et al., 2023; Wettig et al., 2024). Different from previous pipelines
that strictly filter data from multiple dimensions (e.g., difficulty (Fan et al., 2025; Ma et al., 2025),
format (Zhou et al., 2025), with sophisticated reasoning traces (Yuan et al., 2025), etc.), our filter
aims to select data for the following stages while maximally preserving the diversity of the original
materials. Therefore, the LLM-based filter only identifies and removes (i) non-informative pages
where most contents are boilerplate (e.g. navigation, headers, or footers in website html), and (ii)
non-self-contained fragments that lack sufficient context to verify answers. This two-stage filtering
ensures that the retained documents are both informative and convertible into verifiable RL data.

Domain Classification and Persona Assignment. After filtering, we then classify each document
into a specific domain (e.g., commerce, healthcare, social science, etc.) using a LLM-based clas-
sifier. Due to extreme high diversity of the pretraining data, our pipeline adopts different few-shot
examples for each domain to ensure that the generated questions are contextually appropriate and
verifiable, which is absent in existing pipelines (Fan et al., 2025; Yuan et al., 2025). The domain
tags are then used to collect relevant few-shot exemplars in the subsequent QA generation step. Ad-
ditionally, to further enhance the diversity of the generated QA pairs, we assign multiple personas
who will be interested in the content to each document (Ge et al., 2024), which defines the style and
perspective from which questions will be generated. For example, a document classified under the
“healthcare” domain might be assigned personas such as “medical expert,” “patient,” or “health jour-
nalist.” This persona assignment encourages reflecting different viewpoints and information needs
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in question generation given the same document, thereby capturing more information in the source
data and enriching the RL dataset’s diversity.

Verifiable QA Generation. Conditioned on the source document, domain tag, and chosen persona,
the LLM-based QA generator produces verifiable question-answer pairs. Specifically, we first sam-
ple few-shot examples from the domain-specific demonstration library, a curated pool covering a
range of question types and complexities within each domain to ensure that the generated questions
are of high quality. We then incorporate all contexts with a prompt template (in Appendix B.1.1)
to guide the LLM-based generator to extract diverse question-answer pairs from the perspective of
the assigned persona. For question generation, beyond extracting the questions originally contained
in the document (Yue et al., 2024), our generator can also raise new questions that are answerable
according to the pretraining data. Since the trained model is not allowed to access the source doc-
ument during RL, we further instruct the generator to provide necessary contexts to ensure that the
question is self-contained. Meanwhile, we only require a relatively short and verifiable ground-truth
answer (e.g., a number, a name, or a phrase) grounded by the pretraining materials instead of a long
explanation or detailed reasoning steps composed by a strong LLM (Yue et al., 2024; Yuan et al.,
2025), which significantly reduces the generation complexity and reliance on the backend LLMs.
In other words, our generation is to extract the answer from the document instead of distilling from
a powerful LLM. This design choice allows us to leverage more cost-effective LLMs for genera-
tion while still producing high-quality, verifiable QA pairs suitable for RL training. We provide a
conversion example in Appendix B.2.1.

Quality Check and Leakage Control. While the most generated question-answer pairs are of
high quality, some may still contain errors or hallucinations. To ensure the reliability of the RL
dataset, we leverage an LLM-based verifier to implement a multi-stage checking process (Liu et al.,
2024; Prabhakar et al., 2025): 1) Correctness verification. Unlike accuracy-based post-processing
in previous works (Zhou et al., 2025; Ma et al., 2025), our verification assesses the correctness of
the answers by checking if the extracted QA data are grounded by the source document, which is
much less biased by the backend LLMs and effectively reduces the wrong reward signals during RL
training; 2) Leakage prevention ensures that the questions do not reveal answers explicitly (e.g., the
ground truth is not trivially embedded in the prompt). The verifier filters out any QA pairs that fail
to meet these criteria, ensuring that the final dataset truly tests the model’s knowledge or reasoning
capabilities rather than its ability to summarize or retrieve information directly from the prompt.

The prompt templates of four stages are listed in Appendix B.1.1. The examples of pretraining to RL
conversion are in B.2. We further apply data decontamination by lm-eval-harness (Gao et al., 2024)
to remove overlaps with the evaluation. With this pipeline, we can systematically convert large-
scale pretraining data into a massive, diverse, and verifiable RL-ready dataset that closely matches
the scale and diversity of the original pretraining corpus. This approach effectively addresses the
RL data scarcity issue and enables scaling up RL training of LLMs across a wide range of tasks and
domains. More discussions are described in Appendix B.1.

4 WEBSCALE-RL DATASET

4.1 DATASET CONSTRUCTION

We construct Webscale-RL dataset by running the data pipeline over a subset (∼1M data in total)
of the mixture of pretraining corpora including DCLM (Li et al., 2024), Wikipedia (Foundation),
MegaMath (Zhou et al., 2025), Stack-v2 (Lozhkov et al., 2024), etc. The choice of pretraining data
here aims to cover diverse domains and mimics previous practice on pretraining (Bakouch et al.,
2025). The data selection is flexible and can be adjusted based on the target model and application.

In RL data conversion, we use GPT-4.1-mini for domain classification and final quality check, and
GPT-4.1 for data filtering and QA generation. As we mentioned in QA generation stage in Sec. 3.2,
our pipeline aims to extract answer grounded by the pretraining document instead of distilling from
a strong LLM, which reduces the bias and reliance on the backend LLMs. Therefore, the pipeline
can be extended to other open-source LLMs such as GPT-OSS (Agarwal et al., 2025) and Deepseek
series (DeepSeek-AI et al., 2025). For each qualified document, we assign up to 3 personas to
generate diverse QA pairs. The final dataset contains ∼1.2M QA pairs covering 9+ domains. Note
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that the dataset can easily be further scaled up to the pretraining level with our Webscale-RL
pipeline. More details of dataset construction are described in Appendix B.2.

4.2 DATASET ANALYSIS

We compare our Webscale-RL dataset with other widely used pretraining datasets (RedPajama-
v2 (Weber et al., 2024), FineWeb-Edu (Penedo et al., 2024b), DCLM-baseline (Li et al., 2024)), SFT
datasets (NaturalReasoning (Yuan et al., 2025), Nemotron (Bercovich et al., 2025)) which include
reasoning CoT in the answers, and RL datasets ( DeepScaler (Luo et al., 2025), OpenR1-Math (Hug-
ging Face, 2025), OpenThoughts3 (Guha et al., 2025)) which include a ground-truth answer for each
question. The detailed comparison is listed in Table 1.

Table 1: The comparison of various datasets with our Webscale-RL dataset. The number of data
indicates the number of documents (for pretraining datasets) or the number of QA pairs (for SFT
and RL datasets). The scalability indicates the potential of scaling up the dataset size: DeepScaler
has low scalability because it is collected from competitions and relies on human annotation. Other
post-training datasets generate answers by distillation but they collect queries from limited sources,
which limits the further scaling. In contrast, both the questions and answers in the Webscale-RL
dataset are converted from and grounded by the pretraining datasets, which can be easily scaled up
to pretraining level.

Dataset Type # of data Domain Data Source Scalability
RedPajama-v2 Pretrain >100B Multi-domain Web crawling /
FineWeb-Edu Pretrain >3B Multi-domain Web crawling /

DCLM-baseline Pretrain >3B Multi-domain Web crawling /

DeepScaler RL 40K Math Competition and other math datasets Low
OpenR1-Math SFT/RL 220K Math Distilled from DeepSeek-R1 Medium

OpenThoughts3 SFT 1.2M Math, Code, Science Distilled from QwQ-32B Medium
NaturalReasoning SFT 1.1M Multi-domain Converted from pretrain + distillation High

Nemotron SFT/RL 3.9M Math, Code, Science Distilled from multiple models Medium

Webscale-RL RL 1.2M Multi-domain Converted from pretrain High

The comparison shows that the pretraining corpora are orders of magnitude larger and span broad
domains, whereas existing SFT/RL datasets are significantly smaller and often focus on a few areas
(notably math and code), which limits coverage of general knowledge and open-ended reasoning
found in web-scale text. The Nemotron dataset includes data in other domains such as general QA
and safety, which however only constitutes a small portion of the dataset. It is also worth noting that
while some datasets have a relatively large data volume (e.g., OpenThoughts3, Nemotron), they still
encounter the challenge of further scaling due to their limited sources of queries. In contrast, our
Webscale-RL dataset is constructed by converting from the pretraining documents, allowing for
easy expansion to pretraining scale.

We also obverse that a large fraction of the SFT/RL data is distilled from other teacher models. This
couples dataset quality and ceiling to teacher capability and availability. In contrast, Webscale-RL
is grounded in source documents: the generator does not need to solve the problems during construc-
tion; instead, we extract verifiable QA pairs from existing texts, reducing the dependence on strong
teachers. Furthermore, because both questions and answers are derived from pretraining documents
and verified against the source, Webscale-RL can scale naturally with the size of available cor-
pora (i.e., the pretraining scale) while maintaining diversity, unlike human-labeled or fully distilled
datasets whose growth is bottlenecked by annotation or query generation.

We list the domain distribution of our dataset in Fig. 3 left. Webscale-RL spans 9+ domains in-
herited from pretraining sources, substantially more diverse than most public post-traininig datasets.
While we observe that the STEM-related domains (Math, Science, Code) constitute a significant por-
tion of the dataset, it is also worth noting that the underrepresented domains in existing RL datasets,
such as Lifestyle (> 8.6%), Commerce (> 3.3%), etc., are well covered in Webscale-RL, which
are essential for general-purpose assistants.

To further illustrate the diversity of Webscale-RL dataset, we compare it with Nemotron, a large-
scale SFT/RL dataset mainly covering math, code, and science. Since we focus on question diver-
sity, we first randomly sample 5K questions from each dataset and encode them using the Qwen3
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Figure 3: Left: The domain distribution of Webscale-RL dataset. Right: The comparison on
question embedding of Webscale-RL and Nemotron data. We randomly sample 5K questions
from each dataset and visualize the embedding (by Qwen3-Embedding) reduced to 2D using UMAP.

Embedding model (Zhang et al., 2025b). We then reduce the embedding dimension to 2 using
UMAP (McInnes et al., 2018) for visualization. The results are shown in Fig. 3 right. Although
both datasets cover multiple domains, Nemotron data points are mainly clustered in several regions,
indicating a focus on specific topics. In contrast, the Webscale-RL data points are converted from
a larger variety of documents and are generated from diverse perspectives by different personas,
resulting in a distribution that is more uniform and more scattered, indicating a broader coverage
of topics and knowledge areas. The diversity along with the large scale of Webscale-RL can help
models learn a wide range of knowledge and reasoning skills, enhancing their versatility and perfor-
mance across various tasks.

5 EXPERIMENTS

In this section, we conduct experiments to evaluate the effectiveness of the Webscale-RL dataset
generated by our proposed pipeline. Our experiments aim to address two main questions: (1) Can
RL data generated by our pipeline enhance model performance across various benchmarks? (2)
Does RL training scale more effectively and efficiently than standard teacher-forcing training?

5.1 EXPERIMENT SETUP

Baselines. To answer these questions, we finetune a Qwen2.5-3B model (Yang et al., 2024a) using
GRPO (Shao et al., 2024) on the Webscale-RL dataset and compare it with continual pretraining
on the corresponding base dataset, i.e., the original pretraining data prior to RL conversion. We fur-
ther compare our method with several advanced data refinement techniques: (1) QuRating(Wettig
et al., 2024), which selects high-quality data via LLM ranking and filtering; (2) ProX(Zhou et al.,
2024), which uses programmatic cleaning to enhance data quality; and (3) Generative Data Refine-
ment (GDR) (Jiang et al., 2025), which originally uses LLM to improve the safety of the corpus
(e.g., remove personally identifiable information, toxic content). In our experiment, we use it to
improve the quality of the pretraining dataset. For these baselines, we refine the pretraining data
using each method and perform continual pretraining on the resulting datasets.

Notably, we observe that RL training substantially improves the model’s instruction-following abil-
ities, while the continual pretrained models may fail to start answering in the evaluation, especially
for questions with zero-shot examples, potentially introducing an evaluation bias. To mitigate this
and enable a fair comparison, we construct an SFT dataset comprising 10K high-quality examples.
Specifically, we first generate QA pairs via our Webscale-RL pipeline and then use GPT-4.1 to
distill a relatively short reasoning CoT for each question given the ground-truth answer.

Training. For the continual pretraining and data refining baselines, we start from the base model
and continue to pretrain on a 1M corpus, which represents a superset of the source data for the
Webscale-RL dataset. We then follow with SFT training with a smaller learning rate using the
10K high-quality examples. For RL training, we first apply SFT with the same SFT dataset for
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warm-up. We then sample 150K data points from the Webscale-RL dataset and run standard
GRPO training. More details of the SFT dataset and training are described in Appendix B.3.

Benchmarks. We evaluate the models on a diverse set of benchmarks to assess their gen-
eral capabilities and domain-specific performance, including general tasks (MMLU-pro (Wang
et al., 2024), Big-Bench (Srivastava et al., 2023)), math & STEM tasks (GSM8K (Cobbe et al.,
2021), MATH500 (Hendrycks et al., 2021), GPQA-diamond (Rein et al., 2024)) and coding tasks
(MBPP (Austin et al., 2021) and EvalPlus (Liu et al., 2023)). For EvalPlus, we report the average
score of HumanEval (Chen et al., 2021), MBPP, HumanEval+ and MBPP+. In evaluation, we use
the same pipeline and configurations for all models. Specifically, we use zero-shot evaluation for
Big-Bench, GPQA-diamond and MATH500. We use 5-shot for MMLU-pro and 8-shot for GSM8K
evaluation following the default setting in lm-eval-harness (Gao et al., 2024). More details in evalu-
ation are described in Appendix B.3.

5.2 MAIN RESULTS

Table 2 summarizes the comparisons of Webscale-RL with other baselines. Our method outperforms
all baselines across most benchmarks, including continual pretraining and advanced data refinement
pipelines. We observe an average improvement of 3.4 over the strongest baseline (GDR). Notably,
Webscale-RL even narrows the performance gap to the much larger Qwen2.5-7B model from 10.6
pts to 6.1 pts on average. This indicates that converting web-scale corpora into verifiable QA and
optimizing with RL yields stronger downstream gains than further imitation on even refined text.

Particularly, the improvements are most pronounced on general knowledge and reasoning tasks
(MMLU-pro, Big-Bench, GPQA-diamond), which significantly benefit from the diversity and
breadth of the Webscale-RL dataset inherited from pretraining sources. On math tasks, we ob-
serve a large jump on MATH500 from 47.6 to 58.0 after RL training with Webscale-RL, which
is close to the 7B model. This aligns with prior findings that RL can better incentivize math rea-
soning (Shao et al., 2024; Yang et al., 2024b) compared to simply imitating refined documents or
QA demonstrations. The gain on GSM8K is relatively smaller, likely due to the saturation effect
as the base model already achieves strong performance. Meanwhile, the performance improvement
on coding tasks is relatively smaller, likely reflecting the lower proportion of coding data in the
pretraining corpus. Notably, the 3B model finetuned with Webscale-RL substantially narrows the
performance gap to the 7B base model on the macro average, suggesting a practical path to stronger
small models via RL scaling.

Table 2: Comparison results of our Webscale-RL with baselines on various benchmarks. To mitigate
evaluation bias, continual pretraining and data refinement baselines are followed by SFT training to
enhance instruction following. While all finetuning are based on the Qwen2.5-3B model, we also
compare with the 7B base model. Blue bold indicates the best result among 3B baselines; green
bold shows where we match or exceed the 7B model.

Method MMLU-pro BigBench GPQA-D MATH500 GSM8K MBPP EvalPlus Avg

Qwen2.5-3B 37.8 41.2 20.8 47.6 74.2 54.6 57.3 47.6

Qwen2.5-7B 48.3 58.7 29.6 60.8 84.4 63.4 62.2 58.2

Cont. Pretrain 39.9 45.1 18.6 44.0 77.4 55.2 57.8 48.3

QuRating 39.7 44.9 19.4 44.6 76.8 54.8 57.6 48.3

ProX 40.0 46.0 19.5 44.4 77.3 54.2 57.5 48.4

GDR 39.9 46.0 20.8 44.4 77.4 55.0 57.6 48.7

Webscale-RL 43.7 48.3 23.2 58.0 78.5 55.0 57.8 52.1

Despite using a small SFT set to reduce evaluation bias toward instruction-following, RL still main-
tains clear advantages over SFT-augmented continual pretraining baselines. This suggests that the
gains from Webscale-RL are not solely due to improved instruction adherence but stem from the
reward-driven online learning signal. Overall, these results demonstrate that our Webscale-RL
data pipeline effectively scales up RL data by converting from pretraining corpus and enables sig-
nificant capability improvements across diverse tasks and domains.
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5.3 PERFORMANCE COMPARISON OF SCALING TRAINING

While RL shows remarkable advantages over teacher-forcing training in terms of final performance,
we further investigate the scaling efficiency of RL training compared to standard pretraining with
respect to the amount of training tokens. To this end, we compare the performance of RL training
and continual pretraining at different training scales by varying the amount of data sampled from
the Webscale-RL dataset and the original pretraining corpus, respectively. Notably, we observe
that the length of QA pairs in the Webscale-RL dataset differs from the length of document in the
original pretraining corpus while their source data are the same. Therefore, for a fair comparison
on token efficiency of the original data, we compute the token number of RL training by the origi-
nal pretraining corpus used to generate the Webscale-RL dataset instead of the Webscale-RL
dataset itself. For example, if we generate two 300-token QA pairs from a 4000-token pretraining
text, then we count the RL training token number as 4000 instead of 600 when training on these two
QA pairs. Note that for continual pretraining with different training data volume, we also apply the
same SFT training as a follow-up using the 10K high-quality examples to mitigate the evaluation
bias.

Figure 4: Scaling comparison between Webscale-RL training and continual pretraining with the
original pretraining corpora. We report the performances on MMLU-pro (left), Big-Bench (middle)
and average on all benchmarks (right). The token number for RL training is calculated based on
the original pretraining corpus used to generate the Webscale-RL dataset. The each data point
in continual pretraining baselines are followed by a SFT training using the same 10K high-quality
examples. The RL training on Webscale-RL consistently outperforms continual pretraining at
different training scales and exhibits better scaling efficiency.

Since the pretraining corpus mainly consists of general web text, we focus on evaluating the models
on general tasks (MMLU-pro and Big-Bench) to better reflect the impact of training scale. We also
report the average performance across all benchmarks to provide a holistic view.

Figure 4 illustrates the performance comparison between RL training with Webscale-RL dataset
and continual pretraining with pretraining corpora at different training scales. We observe that RL
training consistently outperforms continual pretraining across all three metrics (MMLU-pro, Big-
Bench, and average performance) at various training scales. With the same amount of training
tokens (100 millions), RL training achieves 4.4% improvement over Qwen2.5-3B base model in
average while continual pretraining exhibits similar performance to the base model.

Notably, RL training achieves comparable or better performance with significantly fewer training
tokens. For instance, on MMLU-pro, RL training with approximately 10M tokens attains similar
performance to continual pretraining with 1B tokens, indicating over 100× improvement in data
efficiency. Furthermore, RL training exhibits a steeper upward trend as the training scale increases,
which is also true for other benchmarks, demonstrating that RL training not only leads to higher final
performance, but scales more effectively and efficiently than standard teacher-forcing approaches.
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6 CONCLUSION

In this paper, we introduced the Webscale-RL pipeline, an end-to-end data engine that converts
web-scale pretraining corpora into verifiable, RL-ready data while preserving diversity. With this
pipeline, we constructed the Webscale-RL dataset, which is orders of magnitude larger and more
diverse than existing RL datasets. Empirically, training a LLM with RL on Webscale-RL improves
performance across a diverse suite of benchmarks and delivers better data efficiency than continual
pretraining at comparable token budgets, especially on general knowledge and open-ended reasoning
(MMLU-pro, Big-Bench), with consistent improvements in math and STEM areas.

While our results demonstrate the promise of scaling RL data to pretraining levels, several limita-
tions and future directions remain. The current Webscale-RL dataset lacks coverage of high-quality
data in certain domains such as coding, which leads to smaller gains on coding benchmarks. There-
fore, one future direction is to rebalance the domain distribution of the pretraining sources according
to the target applications (e.g., to integrate repository-scale code data to enhance the coding capa-
bility). Meanwhile, the current RL training employs a generative reward model that provides binary
feedback based on match with the ground truth. While this reward exhibits high performance and
stability for RL training, it introduces a substantial extra inference cost, becoming one bottleneck
for scaling up. Future work can explore more efficient reward models to further scale up RL training
to larger models and datasets.

7 REPRODUCIBILITY STATEMENT

Our Webscale-RL data pipeline is built upon publicly available datasets and publicly available LLMs
for generation and verification. The detailed data sources, prompts, and implementation details are
described in Appendix B.1 and Appendix B.2. For the continual pretraining and RL finetuning, we
use the standard pretraining and RL algorithms (GRPO), and the hyperparameters are detailed in
Appendix B.3.
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A USAGE OF LLMS

In paper writing, the LLMs are mainly used for proofreading and polishing the language, including
grammar, spelling, and clarity. The main content, ideas, experiments and following presentations
(e.g., results and visualizations) are done by the authors. The LLMs assist to draft the results analysis
and conclusion sections based on the experimental results provided by the authors. The authors care-
fully checked the content and made necessary modifications to ensure the accuracy and correctness
of the statements.

B DETAILS OF DATASET CONSTRUCTION AND TRAINING

B.1 WEBSCALE-RL DATA PIPELINE DETAILS

Our data pipeline employs GPT-4.1-mini for domain classification and quality checking, while uti-
lizing GPT-4.1 for QA generation to ensure higher quality outputs. In the second stage, we assign
up to 3 different personas to each document and generate tailored QA pairs for each persona respec-
tively.

B.1.1 PROMPT TEMPLATES

Our pipeline consists of four main stages, each with carefully designed prompts to ensure high-
quality data generation:

Stage 1: Data Filtering

Role: Data Analyst
Objective: Identify whether the material meets quality criteria for QA generation
Prompt:

You are a helpful data analyst. You will be given a material which can come from
very diverse sources and may not be well-structured. In this stage, your task is to
identify whether the material is qualified for the following criteria:

• The material is informative and self-contained for the user
• It’s possible to extract question and corresponding answer from the material
• The content has sufficient depth and clarity

Based on the above instructions, identify whether the material is qualified or not.
{Raw Document}

Stage 2: Domain Classification & Persona Assignment

Role: Data Analyst
Objective: Classify domain and identify target personas
Prompt:

You are a helpful data analyst. You will be given a material which can come from
very diverse sources and may not be well-structured. In this stage, your task is to
identify the domain and persona of the material.
Here are the instructions for the domain and persona:

• The domain is the main topic of the material. You should choose from the
following domains: {All Domains}

• The persona is the intended audience of the material. If the material is in-
tended for multiple personas, you should list several personas that will be
interested in the material

Based on the above instructions, identify the domain and persona of the material.
{Raw Document}
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Stage 3: QA Generation

Role: Domain Expert (Persona-specific)
Objective: Generate high-quality question-answer pairs from source material
Prompt:

You will be given a material which can come from very diverse sources and may
not be well-structured. In this stage, your task is to generate a question and answer
pair from the material.
Here are the instructions for the question and answer generation:

• You will act as a given persona. You should generate a question and answer
pair from your perspective

• Both the question and answer should be totally from the material. Do not
generate any information that is not in the material

• You should generate such a question that its corresponding answer is rela-
tively short and can be easily and clearly verified

• Ensure the question is natural and reflects genuine curiosity from the target
persona

{Few-shot Examples}
Based on the above instructions and examples, generate a question and answer pair
from the material.
{Raw Document}
{Persona}

Stage 4: Quality Check

Role: Data Labeler
Objective: Verify QA pair correctness and detect information leakage
Prompt:

You are a data labeler. You will be given a material and a question and answer
pair generated from the material. Your task is to check whether the question and
answer pair is correct according to the material and whether there is info leakage
from question to answer.
Here are the instructions for checking:

• For the answer correctness, you should check whether the answer is correct
according to the original material

• The information leakage indicates that the question explicitly provides infor-
mation about the answer and then the answer can be directly obtained from
the question

• Ensure the question requires genuine understanding of the source material

{Few-shot Examples}
Based on the above instructions, check the QA pair extracted from the original
material in terms of the answer correctness and info leakage.
{Raw Document}
{QA Pair}

B.2 WEBSCALE-RL DATASET COMPOSITION

We curate our dataset from diverse pretraining corpora to ensure comprehensive domain coverage
while emphasizing reasoning capabilities. The selected sources include DCLM (Li et al., 2024),
Wikipedia (Foundation), MegaMath (Zhou et al., 2025), Stack-v2 (Lozhkov et al., 2024), with ad-
ditional data from OpenMathReasoning (Moshkov et al., 2025) and OpenCodeReasoning (Ahmad
et al., 2025) following SmolLM3 (Bakouch et al., 2025) protocols.
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Table 3: Source distribution of the Webscale-RL dataset (∼1.2M total QA pairs)

Source Dataset # of Converted QA Pairs

DCLM ∼550K
Wikipedia ∼350K
MegaMath ∼100K
OpenMathReasoning ∼100K
Stack-v2 ∼50K
OpenCodeReasoning ∼50K

B.2.1 DATA CONVERSION EXAMPLE

The following example demonstrates our persona-driven conversion process:

Original Wikipedia Document: Alterna Bank

CS Alterna Bank (), operating as Alterna Bank (), is a Canadian direct bank and a wholly owned
subsidiary of the Ontario-based credit union Alterna Savings. The bank offers chequing and high-
interest savings accounts and mortgages.
Operating primarily as a direct bank since 2017, most customers access accounts using the bank’s
website, telephone service, and mobile apps. Unlike most other direct banks, some accounts can also
be accessed through branches. There are two Alterna Bank locations in Gatineau, QC, and Alterna
Savings branches also administer deposits and loans on its behalf...
The bank originated as the Civil Service Loan Corporation, founded 29 October 1992 and operating as
CS Loan Corporation. It became CS Alterna Bank after receiving letters patent of continuation on 2
October 2000 as a federally regulated institution under the Bank Act...
Alterna Bank is a member of Canada Deposit Insurance Corporation (CDIC)...

Converted QA Pair: Financial Analyst Persona

Question: In examining the regulatory protection for depositors, is Alterna Bank a member of the
Canada Deposit Insurance Corporation (CDIC)?
Answer: Yes, Alterna Bank is a member of Canada Deposit Insurance Corporation (CDIC).

Converted QA Pair: Commerce Student Persona

Question: In Canadian direct banking, what is notable about the way Alterna Bank allows its customers
to access their accounts compared to most other direct banks?
Answer: Some Alterna Bank accounts can be accessed through branches, unlike most other direct
banks.

B.3 TRAINING IMPLEMENTATION DETAILS

B.3.1 BASELINE IMPLEMENTATION

Generative Refinement Baseline: Following (Jiang et al., 2025), we adapt their safety-focused
approach to quality improvement. GPT-4.1 processes each document by: (1) assessing content
quality similar to our filtering stage, returning original text if adequate; (2) refining documents by
removing non-informative sections or discarding low-quality content entirely.

SFT Dataset Construction: Our 10K SFT dataset enhances instruction-following capabilities post-
continual pretraining and provides RL training warmup. We sample 10K queries from a held-out
Webscale-RL subset with no training overlap. Since original answers are concise, GPT-4.1 generates
detailed Chain-of-Thought explanations based on ground truth, reducing hallucination compared to
full model distillation.
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B.3.2 TRAINING HYPERPARAMETERS

Table 4: Training configuration and hyperparameters

Training Stage Hyperparameter Value

Continual Pretraining
Batch Size 256

Learning Rate 1× 10−5

Max Input Length 4096

Supervised Fine-tuning
Batch Size 128

Learning Rate 5× 10−6

Max Input Length 4096

Reinforcement Learning

Batch Size 256
Learning Rate 5× 10−6

Samples per Query 16
Max Rollout Length 2560

Algorithm GRPO (Shao et al., 2024)

All experiments use AdamW optimizer with VeRL (Sheng et al., 2025) as the training backend. RL
training employs binary rewards, where an LLM judges whether generated answers match ground
truth responses.

B.3.3 EVALUATION FRAMEWORK

Table 5: Evaluation benchmarks and configurations

Benchmark Framework Shots Domain Focus

MMLU-Pro LM-Eval 5 Multi-domain Knowledge
BigBench LM-Eval 0 Reasoning & Language
GPQA-D LightEval 0 Scientific Reasoning
MATH500 LightEval 0 Mathematical Problem Solving
GSM8K LM-Eval 8 Grade School Math
MBPP EvalPlus 0 Python Programming
EvalPlus EvalPlus 0 Code Generation & Testing

We employ LM-eval-harness (Gao et al., 2024), LightEval (Habib et al., 2023), and EvalPlus (Liu
et al., 2023) with default settings for prompt templates, metrics, and decoding parameters. MMLU-
Pro and GSM8K use few-shot evaluation (5 and 8 shots respectively) following standard protocols,
while other benchmarks use zero-shot evaluation.
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