

WEBSCALE-RL: AUTOMATED DATA PIPELINE FOR SCALING RL DATA TO PRETRAINING LEVELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have achieved remarkable success through imitation learning on vast text corpora, but this paradigm creates a training-generation gap and limits robust reasoning. Reinforcement learning (RL) offers a more data-efficient solution capable of bridging this gap, yet its application has been constrained by a critical data bottleneck: existing RL datasets are orders of magnitude smaller and less diverse than web-scale pre-training corpora. To address this, we introduce the **Webscale-RL pipeline**, a scalable data engine that systematically converts large-scale pre-training documents into millions of diverse, verifiable question-answer pairs for RL. Using this pipeline, we construct the **Webscale-RL dataset**, containing 1.2 million examples across more than 9 domains. Our experiments show that the model trained on this dataset significantly outperforms continual pretraining and strong data refinement baselines across a suite of benchmarks. Notably, RL training with our dataset proves substantially more efficient, achieving the performance of continual pre-training with up to $100\times$ fewer tokens. Our work presents a viable path toward scaling RL to pre-training levels, enabling more capable and efficient language models.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable success, primarily through learning on vast text corpora. However, this predominant paradigm, which includes pretraining with next-token prediction and supervised fine-tuning (SFT), is fundamentally in the form of imitation learning. By training models to mimic static offline datasets, imitation learning creates a “teacher-forcing” dependency that makes models vulnerable to distribution shifts (Ross et al., 2011; Levine et al., 2020; Foster et al., 2024) and leads to a significant gap between training and generation dynamics (Chen et al., 2024c; Bachmann & Nagarajan, 2024; Cen et al., 2024). Consequently, models trained in this way struggle with distribution shift and lack the robust reasoning abilities required for complex problem solving.

Reinforcement learning (RL) offers a powerful alternative to overcome these challenges (Shao et al., 2024; DeepSeek-AI et al., 2025). By learning from online reward feedback on its own generations, an RL-trained model can explore a wider solution space and is not confined to a static dataset, bridging the training-inference gap. This online learning process makes RL a significantly more data-efficient training paradigm. As our empirical results demonstrate, RL can achieve performance gains comparable to continual pretraining with up to two orders of magnitude fewer tokens, providing a compelling motivation for scaling RL to unlock new levels of model capability and efficiency.

Despite the clear advantages of RL, its adoption at scale is severely hampered by a critical data bottleneck and most existing practice in RL training is mainly limited to reasoning tasks such as math and coding in the post-training stage. Pretraining corpora are measured in trillions of tokens, whereas existing RL datasets are orders of magnitude smaller (e.g., <10B tokens for RL vs. >1T tokens for pretraining) and lack the diversity of web-scale data. This scarcity is driven by the high cost of generating high-quality, verifiable question-answering (QA) pairs, which are essential for effective RL-based reasoning tasks. This immense disparity in data scale and diversity prevents RL from realizing its full potential to enhance the general reasoning capabilities of LLMs.

To address these limitations, we introduce **Webscale-RL**, a scalable data pipeline that systematically converts large-scale pretraining corpora into massive, diverse, and verifiable RL-ready datasets.

Figure 1: The scaling on LLM RL is fundamentally bottlenecked by the scarcity of high-quality RL data. While pretraining leverages $>1T$ diverse web tokens, RL datasets remain limited to $<10B$ tokens with limited diversity. We propose Webscale-RL data pipeline to fundamentally improve the scalability of RL data: we convert the pretraining corpora to verifiable query and ground-truth answer pairs, scaling RL data to pretraining levels while preserving the diversity. The experiments show that RL with Webscale-RL data is significantly more effective and efficient than continual pretraining and data refinement baselines.

Our pipeline is designed to bridge the data gap between pretraining and reinforcement learning, unlocking the potential to train LLMs with RL at a scale previously unattainable while preserving the vast diversity of the original pretraining data.

Our main contributions are threefold:

- We propose **Webscale-RL pipeline**, an automated and scalable data engine that converts web-scale pretraining documents into verifiable question-answer pairs for RL. The pipeline incorporates stages for data filtering, domain and persona-driven generation, and quality verification to ensure high-quality output.
- We construct **Webscale-RL dataset**, a large-scale and diverse RL dataset containing 1.2 million verifiable QA pairs spanning over nine domains. Our analysis shows it is significantly more diverse than existing large-scale RL datasets.
- We provide empirical evidence demonstrating the effectiveness of our approach. The model trained with RL on the Webscale-RL dataset significantly outperforms continual pretraining on the source data and strong data refinement baselines across a wide range of benchmarks. Furthermore, our results show that RL with our dataset is substantially more data-efficient, achieving comparable performance to continual pretraining with $100\times$ fewer tokens.

Our work demonstrates that by converting massive pretraining corpora into a format suitable for RL, we can unlock significant performance and efficiency gains. This provides a path toward scaling reinforcement learning to match the scale of pretraining, leading to a new generation of more capable and robust language models.

2 RELATED WORKS

Training Data Development and Synthesis. The development of LLMs hinges on the availability of vast, high-quality training datasets. However, curating such corpora, especially labeled and across diverse domains, is often prohibitively expensive and time-consuming. This challenge has spurred significant research into efficient synthetic data generation pipelines (Chen et al., 2024a; Ma et al., 2025; Fan et al., 2025). Current pre-training corpora are typically compiled from a variety of public sources, such as Wikipedia (Foundation), large-scale web crawls (Computer, 2023; Paster et al., 2023; Penedo et al., 2024a; Li et al., 2024; Raffel et al., 2019), and code repositories (Lozhkov et al., 2024). This is often supplemented with content from digitized books (Stroube, 2003) and data generated by other LLMs (Ben Allal et al., 2024; Huang et al., 2024). To endow LLMs with comprehensive knowledge and robust downstream capabilities, these corpora are constructed on a massive scale, often containing tens of trillions of tokens, as exemplified by the 30-trillion-token RedPajama dataset (Computer, 2023) and the 67.5-trillion-token Stack-v2 (Lozhkov et al., 2024). More recently, the success of models like DeepSeek-R1-Zero (DeepSeek-AI et al., 2025) and DeepSeek-R1-Zero (DeepSeek-AI et al., 2025) and Grok-4 (xAI, 2025), which integrate reinforcement learning

(RL) at the pre-training stage, is built on and is built on and has intensified the demand for similarly large and high-quality synthetic synthetic RL datasets. There have been multiple lines of work in large-scale data synthesis for LLM training: DeepScaler (Luo et al., 2025) curated a small (40K) RL dataset for mathematical reasoning; OpenR1-Math (Hugging Face, 2025) further scales up the mathematical RL dataset for both SFT and RL via distillation, resulting in a 220K dataset; WebInstruct (Yue et al., 2024), OpenThoughts (Guha et al., 2025) and NatureReasoning (Yuan et al., 2025) expand the distillation path to multiple domains and synthesize over 1M data using teacher models for SFT, respectively; Nemotron (Bercovich et al., 2025) extends the dataset size to 3.9M for both SFT and RL.

Reinforcement Learning in LLMs. Recent advancements in large-scale RL have significantly enhanced the capabilities of LLMs, as demonstrated by models such as OpenAI’s o-series (OpenAI, 2024a; Jaech et al., 2024; OpenAI, 2024b) and DeepSeek-V3/R1 (DeepSeek-AI et al., 2024; 2025). Besides these models, many other works show that LLMs trained to reason with Chain-of-Thought (CoT) prompting have shown substantial performance gains in diverse areas, including mathematical and scientific reasoning (Xie et al., 2025; Cen et al., 2025; Shao et al., 2024; Luong et al., 2024; Chen et al., 2024b; Cui et al., 2025), code generation (Le et al., 2022; Wei et al., 2025), and tool use (Zhang et al., 2025a; Qian et al., 2025). The optimization of the RL objective in these models is primarily driven by foundational algorithms like Proximal Policy Optimization (PPO) (Schulman et al., 2017) and its variant, Group Relative Policy Optimization (GRPO) (Shao et al., 2024). Rooted from post-training RL, many works further extend RL to a significantly larger scale (Liu et al., 2025c;b; xAI, 2025) or an earlier stage like pre-training (Zelikman et al., 2024; Dong et al., 2025; Li et al., 2025), indicating the effectiveness of prolonged, large-scale RL training.

3 METHODOLOGY

In this section, we first provide a brief comparison of the pretraining and RL training paradigms and then present our **Webscale-RL** data pipeline that systematically converts large-scale pretraining data into RL data while preserving the scale and diversity of web data.

3.1 PRELIMINARIES

Pretraining. In the pretraining stage, a large-scale corpus $\mathcal{D}_{\text{pretraining}}$ (usually $>1\text{T}$ tokens) is constructed by filtering and deduplicating publicly available web data sources (Penedo et al., 2024b; Weber et al., 2024; Li et al., 2024). Given this static dataset, the LLM is trained in a teacher-forcing manner to imitate the next-token distribution of the data by minimizing the negative log-likelihood:

$$\min_{\theta} -\mathbb{E}_{\mathbf{x} \sim \mathcal{D}_{\text{pretraining}}} \left[\sum_{t=1}^T \log P_{\theta}(x_t \mid \mathbf{x}_{(<t)}) \right], \quad (1)$$

where $\mathbf{x} = [x_1, \dots, x_T]$ is a token sequence sampled from the pretraining dataset $\mathcal{D}_{\text{pretraining}}$. This imitation-based objective enforces the model to learn the given pattern from the demonstration data but does not expose the model to the distribution induced by its own generations, suffering from the distribution shift issue (Bachmann & Nagarajan, 2024; Ross et al., 2011) and leading to a training-inference gap (Bengio et al., 2015; Levine et al., 2020).

Reinforcement Learning (RL). RL instead optimizes the model as a policy that *generates answers online* and maximizes expected reward on a query \mathbf{q} :

$$\max_{\theta} \mathbb{E}_{\mathbf{q} \sim Q, \mathbf{a} \sim P_{\theta}(\cdot \mid \mathbf{q})} [R(\mathbf{q}, \mathbf{a})], \quad (2)$$

where Q is the query set and R is a task-specific reward function. The online generation and feedback loop enable the model to narrow the training-inference gap. In our setup, we adopt a binary reward that returns 1 only when the model’s final answer matches the ground-truth answer and 0 otherwise. Consequently, each RL training instance is a verifiable question-answer pair.

3.2 WEBSCALE-RL DATA PIPELINE

While RL has shown promise in enhancing LLM capabilities (Jaech et al., 2024; DeepSeek-AI et al., 2025), its effectiveness is constrained by the limited scale and diversity of existing RL datasets.

162 Therefore, the RL training is typically conducted on a much smaller scale on limited domains in the
 163 post-training stage. This discrepancy arises from the high costs associated with human annotation
 164 and the challenges in generating verifiable QA pairs at large scale. Furthermore, most existing RL
 165 datasets focus on specific tasks or domains and thus lack the breadth of topics and styles found
 166 in web-scale corpora, limiting their generalization to diverse real-world scenarios. To address the
 167 limited volume and diversity of existing RL datasets, we propose a **Webscale-RL** data pipeline
 168 that converts pretraining documents into RL data at scale while preserving the diversity of web data.

184 Figure 2: Overview of the **Webscale-RL** data pipeline that systematically converts large-scale
 185 pretraining data into RL data while preserving the scale and diversity of web data. The pipeline
 186 maintains a domain-specific demonstration library for few-shot examples for high quality generation
 187 and assigns multiple *personas* to each document to encourage reflecting different viewpoints. The
 188 generated QA pairs are verified for correctness and leakage prevention to ensure the reliability of
 189 the RL dataset. [The prompt templates of four stage are listed in Appendix B.1.1](#).

190 At a high level, Webscale-RL leverages a generative model to convert narrative pretraining
 191 documents into *verifiable* QA pairs for RL training. To cover a wider range of topics and question
 192 styles, we first maintain a domain-specific demonstration library for few-shot examples to guide the
 193 generation process. We further assign multiple *personas* to each document to encourage reflecting
 194 different viewpoints. Figure 2 illustrates the pipeline, which consists of four main stages:

195 **Data Filtering.** Our pipeline takes pretraining corpora spanning multiple domains as input instead
 196 of focusing on data in limited domains [Toshniwal et al. \(2024\); Liu et al. \(2025a\)](#). This stage aims
 197 to remove inputs that are unlikely to yield verifiable high-quality questions. We first use heuristics
 198 to filter out obviously low-quality documents (< 50 tokens) and then employ an LLM for further
 199 fine-grained filtering [\(Gunasekar et al., 2023; Wettig et al., 2024\)](#). **Different from previous pipelines**
 200 [that strictly filter data from multiple dimensions \(e.g., difficulty \(Fan et al., 2025; Ma et al., 2025\),](#)
 201 [format \(Zhou et al., 2025\), with sophisticated reasoning traces \(Yuan et al., 2025\), etc.\), our filter](#)
 202 [aims to select data for the following stages while maximally preserving the diversity of the original](#)
 203 [materials.](#) Therefore, the LLM-based filter only identifies and removes (i) non-informative pages
 204 where most contents are boilerplate (e.g. navigation, headers, or footers in website html), and (ii)
 205 non-self-contained fragments that lack sufficient context to verify answers. This two-stage filtering
 206 ensures that the retained documents are both *informative* and *convertible* into verifiable RL data.

207 **Domain Classification and Persona Assignment.** After filtering, we then classify each document
 208 into a specific domain (e.g., commerce, healthcare, social science, etc.) using a LLM-based clas-
 209 sifier. **Due to extreme high diversity of the pretraining data, our pipeline adopts different few-shot**
 210 **examples for each domain to ensure that the generated questions are contextually appropriate and**
 211 **verifiable, which is absent in existing pipelines (Fan et al., 2025; Yuan et al., 2025).** The domain
 212 tags are then used to collect relevant few-shot exemplars in the subsequent QA generation step. Ad-
 213 **ditionally, to further enhance the diversity of the generated QA pairs, we assign multiple *personas***
 214 **who will be interested in the content to each document (Ge et al., 2024), which defines the style and**
 215 **perspective from which questions will be generated. For example, a document classified under the**
 216 **“healthcare” domain might be assigned personas such as “medical expert,” “patient,” or “health jour-
 217 **nalist.” This persona assignment encourages reflecting different viewpoints and information needs****

216 in question generation given the same document, thereby capturing more information in the source
 217 data and enriching the RL dataset’s diversity.
 218

219 **Verifiable QA Generation.** Conditioned on the source document, domain tag, and chosen persona,
 220 the LLM-based QA generator produces verifiable question-answer pairs. Specifically, we first sam-
 221 ple few-shot examples from the domain-specific demonstration library, a curated pool covering a
 222 range of question types and complexities within each domain to ensure that the generated questions
 223 are of high quality. We then incorporate all contexts with a prompt template (in Appendix B.1.1)
 224 to guide the LLM-based generator to extract diverse question-answer pairs from the perspective of
 225 the assigned persona. For question generation, [beyond extracting the questions originally contained](#)
 226 [in the document \(Yue et al., 2024\), our generator can also raise new questions that are answerable](#)
 227 [according to the pretraining data](#). Since the trained model is not allowed to access the source doc-
 228 ument during RL, we further instruct the generator to provide necessary contexts to ensure that the
 229 question is self-contained. Meanwhile, we only require a relatively short and verifiable ground-truth
 230 answer (e.g., a number, a name, or a phrase) grounded by the pretraining materials instead of a long
 231 explanation or detailed reasoning steps composed by a strong LLM (Yue et al., 2024; Yuan et al.,
 232 2025), which significantly reduces the generation complexity and reliance on the backend LLMs.
 233 In other words, [our generation is to extract the answer from the document instead of distilling from](#)
 234 [a powerful LLM](#). This design choice allows us to leverage more cost-effective LLMs for genera-
 235 tion while still producing high-quality, verifiable QA pairs suitable for RL training. We provide a
 236 conversion example in Appendix B.2.1.
 237

238 **Quality Check and Leakage Control.** While the most generated question-answer pairs are of
 239 high quality, some may still contain errors or hallucinations. To ensure the reliability of the RL
 240 dataset, we leverage an LLM-based verifier to implement a multi-stage checking process (Liu et al.,
 241 2024; Prabhakar et al., 2025): 1) *Correctness verification*. Unlike accuracy-based post-processing
 242 in previous works (Zhou et al., 2025; Ma et al., 2025), our verification assesses the correctness of
 243 the answers by checking if the extracted QA data are grounded by the source document, which is
 244 much less biased by the backend LLMs and effectively reduces the wrong reward signals during RL
 245 training; 2) *Leakage prevention* ensures that the questions do not reveal answers explicitly (e.g., the
 246 ground truth is not trivially embedded in the prompt). The verifier filters out any QA pairs that fail
 247 to meet these criteria, ensuring that the final dataset truly tests the model’s knowledge or reasoning
 248 capabilities rather than its ability to summarize or retrieve information directly from the prompt.
 249

250 [The prompt templates of four stages are listed in Appendix B.1.1. The examples of pretraining to RL](#)
 251 [conversion are in B.2](#). We further apply data decontamination by lm-eval-harness (Gao et al., 2024)
 252 to remove overlaps with the evaluation. With this pipeline, we can systematically convert large-
 253 scale pretraining data into a massive, diverse, and verifiable RL-ready dataset that closely matches
 254 the scale and diversity of the original pretraining corpus. This approach effectively addresses the
 255 RL data scarcity issue and enables scaling up RL training of LLMs across a wide range of tasks and
 256 domains. More discussions are described in Appendix B.1.
 257

258 4 WEBSCALE-RL DATASET

259 4.1 DATASET CONSTRUCTION

260 We construct **Webscale-RL** dataset by running the data pipeline over a subset ($\sim 1M$ data in total)
 261 of the mixture of pretraining corpora including DCLM (Li et al., 2024), Wikipedia (Foundation),
 262 MegaMath (Zhou et al., 2025), Stack-v2 (Lozhkov et al., 2024), etc. The choice of pretraining data
 263 here aims to cover diverse domains and mimics previous practice on pretraining (Bakouch et al.,
 264 2025). The data selection is flexible and can be adjusted based on the target model and application.
 265

266 In RL data conversion, we use GPT-4.1-mini for domain classification and final quality check, and
 267 GPT-4.1 for data filtering and QA generation. As we mentioned in QA generation stage in Sec. 3.2,
 268 our pipeline aims to extract answer grounded by the pretraining document instead of distilling from
 269 a strong LLM, which reduces the bias and reliance on the backend LLMs. Therefore, the pipeline
 270 can be extended to other open-source LLMs such as GPT-OSS (Agarwal et al., 2025) and Deepseek
 271 series (DeepSeek-AI et al., 2025). For each qualified document, we assign up to 3 personas to
 272 generate diverse QA pairs. The final dataset contains $\sim 1.2M$ QA pairs covering 9+ domains. Note
 273

270 that the dataset can easily be further scaled up to the pretraining level with our **Webscale-RL**
 271 pipeline. More details of dataset construction are described in Appendix B.2.
 272

273 4.2 DATASET ANALYSIS

275 We compare our Webscale-RL dataset with other widely used pretraining datasets (RedPajama-
 276 v2 (Weber et al., 2024), FineWeb-Edu (Penedo et al., 2024b), DCLM-baseline (Li et al., 2024)), SFT
 277 datasets (NaturalReasoning (Yuan et al., 2025), Nemotron (Bercovich et al., 2025)) which include
 278 reasoning CoT in the answers, and RL datasets (DeepScaler (Luo et al., 2025), OpenR1-Math (Hug-
 279 ging Face, 2025), OpenThoughts3 (Guha et al., 2025)) which include a ground-truth answer for each
 280 question. The detailed comparison is listed in Table 1.

281 Table 1: The comparison of various datasets with our Webscale-RL dataset. The number of data
 282 indicates the number of documents (for pretraining datasets) or the number of QA pairs (for SFT
 283 and RL datasets). The **scalability** indicates the potential of scaling up the dataset size: DeepScaler
 284 has low scalability because it is collected from competitions and relies on human annotation. Other
 285 post-training datasets generate answers by distillation but they collect queries from limited sources,
 286 which limits the further scaling. In contrast, both the questions and answers in the Webscale-RL
 287 dataset are converted from and grounded by the pretraining datasets, which can be easily scaled up
 288 to pretraining level.

Dataset	Type	# of data	Domain	Data Source	Scalability
RedPajama-v2	Pretrain	>100B	Multi-domain	Web crawling	/
FineWeb-Edu	Pretrain	>3B	Multi-domain	Web crawling	/
DCLM-baseline	Pretrain	>3B	Multi-domain	Web crawling	/
DeepScaler	RL	40K	Math	Competition and other math datasets	Low
OpenR1-Math	SFT/RL	220K	Math	Distilled from DeepSeek-R1	Medium
OpenThoughts3	SFT	1.2M	Math, Code, Science	Distilled from QwQ-32B	Medium
NaturalReasoning	SFT	1.1M	Multi-domain	Converted from pretrain + distillation	High
Nemotron	SFT/RL	3.9M	Math, Code, Science	Distilled from multiple models	Medium
Webscale-RL	RL	1.2M	Multi-domain	Converted from pretrain	High

299 The comparison shows that the pretraining corpora are orders of magnitude larger and span broad
 300 domains, whereas existing SFT/RL datasets are significantly smaller and often focus on a few areas
 301 (notably math and code), which limits coverage of general knowledge and open-ended reasoning
 302 found in web-scale text. The Nemotron dataset includes data in other domains such as general QA
 303 and safety, which however only constitutes a small portion of the dataset. It is also worth noting that
 304 while some datasets have a relatively large data volume (e.g., OpenThoughts3, Nemotron), they still
 305 encounter the challenge of further scaling due to their limited sources of queries. In contrast, our
 306 Webscale-RL dataset is constructed by converting from the pretraining documents, allowing for
 307 easy expansion to pretraining scale.

308 We also observe that a large fraction of the SFT/RL data is distilled from other teacher models. This
 309 couples dataset quality and ceiling to teacher capability and availability. In contrast, Webscale-RL
 310 is *grounded in source documents*: the generator does not need to solve the problems during construc-
 311 tion; instead, we extract verifiable QA pairs from existing texts, reducing the dependence on strong
 312 teachers. Furthermore, because both questions and answers are derived from pretraining documents
 313 and verified against the source, Webscale-RL can scale naturally with the size of available cor-
 314 pora (i.e., the pretraining scale) while maintaining diversity, unlike human-labeled or fully distilled
 315 datasets whose growth is bottlenecked by annotation or query generation.

316 We list the domain distribution of our dataset in Fig. 3 left. Webscale-RL spans 9+ domains in-
 317 herited from pretraining sources, substantially more diverse than most public post-training datasets.
 318 While we observe that the STEM-related domains (Math, Science, Code) constitute a significant por-
 319 tion of the dataset, it is also worth noting that the underrepresented domains in existing RL datasets,
 320 such as Lifestyle (> 8.6%), Commerce (> 3.3%), etc., are well covered in Webscale-RL, which
 321 are essential for general-purpose assistants.

322 To further illustrate the diversity of Webscale-RL dataset, we compare it with Nemotron, a large-
 323 scale SFT/RL dataset mainly covering math, code, and science. Since we focus on question diver-
 324 sity, we first randomly sample 5K questions from each dataset and encode them using the Qwen3

Figure 3: Left: The domain distribution of Webscale-RL dataset. Right: The comparison on question embedding of Webscale-RL and Nemotron data. We randomly sample 5K questions from each dataset and visualize the embedding (by Qwen3-Embedding) reduced to 2D using UMAP.

Embedding model (Zhang et al., 2025b). We then reduce the embedding dimension to 2 using UMAP (McInnes et al., 2018) for visualization. The results are shown in Fig. 3 right. Although both datasets cover multiple domains, Nemotron data points are mainly clustered in several regions, indicating a focus on specific topics. In contrast, the Webscale-RL data points are converted from a larger variety of documents and are generated from diverse perspectives by different personas, resulting in a distribution that is more uniform and more scattered, indicating a broader coverage of topics and knowledge areas. The diversity along with the large scale of Webscale-RL can help models learn a wide range of knowledge and reasoning skills, enhancing their versatility and performance across various tasks.

5 EXPERIMENTS

In this section, we conduct experiments to evaluate the effectiveness of the Webscale-RL dataset generated by our proposed pipeline. Our experiments aim to address two main questions: (1) Can RL data generated by our pipeline enhance model performance across various benchmarks? (2) Does RL training scale more effectively and efficiently than standard teacher-forcing training?

5.1 EXPERIMENT SETUP

Baselines. To answer these questions, we finetune a Qwen2.5-3B model (Yang et al., 2024a) using GRPO (Shao et al., 2024) on the Webscale-RL dataset and compare it with continual pretraining on the corresponding base dataset, i.e., the original pretraining data prior to RL conversion. We further compare our method with several advanced data refinement techniques: (1) QuRating (Wettig et al., 2024), which selects high-quality data via LLM ranking and filtering; (2) ProX (Zhou et al., 2024), which uses programmatic cleaning to enhance data quality; and (3) Generative Data Refinement (GDR) (Jiang et al., 2025), which originally uses LLM to improve the safety of the corpus (e.g., remove personally identifiable information, toxic content). In our experiment, we use it to improve the quality of the pretraining dataset. For these baselines, we refine the pretraining data using each method and perform continual pretraining on the resulting datasets.

Notably, we observe that RL training substantially improves the model’s instruction-following abilities, while the continual pretrained models may fail to start answering in the evaluation, especially for questions with zero-shot examples, potentially introducing an evaluation bias. To mitigate this and enable a fair comparison, we construct an SFT dataset comprising 10K high-quality examples. Specifically, we first generate QA pairs via our Webscale-RL pipeline and then use GPT-4.1 to distill a relatively short reasoning CoT for each question given the ground-truth answer.

Training. For the continual pretraining and data refining baselines, we start from the base model and continue to pretrain on a 1M corpus, which represents a superset of the source data for the Webscale-RL dataset. We then follow with SFT training with a smaller learning rate using the 10K high-quality examples. For RL training, we first apply SFT with the same SFT dataset for

378 warm-up. We then sample 150K data points from the Webscale-RL dataset and run standard
 379 GRPO training. More details of the SFT dataset and training are described in Appendix B.3.
 380

381 **Benchmarks.** We evaluate the models on a diverse set of benchmarks to assess their general
 382 capabilities and domain-specific performance, including general tasks (MMLU-pro (Wang
 383 et al., 2024), Big-Bench (Srivastava et al., 2023)), math & STEM tasks (GSM8K (Cobbe et al.,
 384 2021), MATH500 (Hendrycks et al., 2021), GPQA-diamond (Rein et al., 2024)) and coding tasks
 385 (MBPP (Austin et al., 2021) and EvalPlus (Liu et al., 2023)). For EvalPlus, we report the average
 386 score of HumanEval (Chen et al., 2021), MBPP, HumanEval+ and MBPP+. In evaluation, we use
 387 the same pipeline and configurations for all models. Specifically, we use zero-shot evaluation for
 388 Big-Bench, GPQA-diamond and MATH500. We use 5-shot for MMLU-pro and 8-shot for GSM8K
 389 evaluation following the default setting in lm-eval-harness (Gao et al., 2024). More details in eval-
 390 uation are described in Appendix B.3.

391 5.2 MAIN RESULTS

392 Table 2 summarizes the comparisons of Webscale-RL with other baselines. Our method outperforms
 393 all baselines across most benchmarks, including continual pretraining and advanced data refinement
 394 pipelines. We observe an average improvement of 3.4 over the strongest baseline (GDR). Notably,
 395 Webscale-RL even narrows the performance gap to the much larger Qwen2.5-7B model from 10.6
 396 pts to 6.1 pts on average. This indicates that converting web-scale corpora into verifiable QA and
 397 optimizing with RL yields stronger downstream gains than further imitation on even refined text.
 398

399 Particularly, the improvements are most pronounced on general knowledge and reasoning tasks
 400 (MMLU-pro, Big-Bench, GPQA-diamond), which significantly benefit from the diversity and
 401 breadth of the Webscale-RL dataset inherited from pretraining sources. On math tasks, we ob-
 402 serve a large jump on MATH500 from 47.6 to 58.0 after RL training with Webscale-RL, which
 403 is close to the 7B model. This aligns with prior findings that RL can better incentivize math rea-
 404 soning (Shao et al., 2024; Yang et al., 2024b) compared to simply imitating refined documents or
 405 QA demonstrations. The gain on GSM8K is relatively smaller, likely due to the saturation effect
 406 as the base model already achieves strong performance. Meanwhile, the performance improvement
 407 on coding tasks is relatively smaller, likely reflecting the lower proportion of coding data in the
 408 pretraining corpus. Notably, the 3B model finetuned with Webscale-RL substantially narrows the
 409 performance gap to the 7B base model on the macro average, suggesting a practical path to stronger
 410 small models via RL scaling.

411 Table 2: Comparison results of our Webscale-RL with baselines on various benchmarks. To mitigate
 412 evaluation bias, continual pretraining and data refinement baselines are followed by SFT training to
 413 enhance instruction following. While all finetuning are based on the Qwen2.5-3B model, we also
 414 compare with the 7B base model. **Blue bold** indicates the best result among 3B baselines; **green bold**
 415 shows where we match or exceed the 7B model.

Method	MMLU-pro	BigBench	GPQA-D	MATH500	GSM8K	MBPP	EvalPlus	Avg
Qwen2.5-3B	37.8	41.2	20.8	47.6	74.2	54.6	57.3	47.6
Qwen2.5-7B	48.3	58.7	29.6	60.8	84.4	63.4	62.2	58.2
Cont. Pretrain	39.9	45.1	18.6	44.0	77.4	55.2	57.8	48.3
QuRating	39.7	44.9	19.4	44.6	76.8	54.8	57.6	48.3
ProX	40.0	46.0	19.5	44.4	77.3	54.2	57.5	48.4
GDR	39.9	46.0	20.8	44.4	77.4	55.0	57.6	48.7
Webscale-RL	43.7	48.3	23.2	58.0	78.5	55.0	57.8	52.1

427 Despite using a small SFT set to reduce evaluation bias toward instruction-following, RL still main-
 428 tains clear advantages over SFT-augmented continual pretraining baselines. This suggests that the
 429 gains from Webscale-RL are not solely due to improved instruction adherence but stem from the
 430 reward-driven online learning signal. Overall, these results demonstrate that our Webscale-RL
 431 data pipeline effectively scales up RL data by converting from pretraining corpus and enables sig-
 432 nificant capability improvements across diverse tasks and domains.

432 5.3 PERFORMANCE COMPARISON OF SCALING TRAINING
433

434 While RL shows remarkable advantages over teacher-forcing training in terms of final performance,
435 we further investigate the scaling efficiency of RL training compared to standard pretraining with
436 respect to the amount of training tokens. To this end, we compare the performance of RL training
437 and continual pretraining at different training scales by varying the amount of data sampled from
438 the Webscale-RL dataset and the original pretraining corpus, respectively. Notably, we observe
439 that the length of QA pairs in the Webscale-RL dataset differs from the length of document in the
440 original pretraining corpus while their source data are the same. Therefore, for a fair comparison
441 on *token efficiency of the original data*, we compute the token number of RL training by the origi-
442 nal pretraining corpus used to generate the Webscale-RL dataset instead of the Webscale-RL
443 dataset itself. For example, if we generate two 300-token QA pairs from a 4000-token pretrain-
444 ing text, then we count the RL training token number as 4000 instead of 600 when training on these two
445 QA pairs. Note that for continual pretraining with different training data volume, we also apply the
446 same SFT training as a follow-up using the 10K high-quality examples to mitigate the evaluation
447 bias.

463 Figure 4: Scaling comparison between Webscale-RL training and continual pretraining with the
464 original pretraining corpora. We report the performances on MMLU-pro (left), Big-Bench (middle)
465 and average on all benchmarks (right). The token number for RL training is calculated based on
466 the original pretraining corpus used to generate the Webscale-RL dataset. The each data point in
467 continual pretraining baselines are followed by a SFT training using the same 10K high-quality
468 examples. The RL training on Webscale-RL consistently outperforms continual pretraining at
469 different training scales and exhibits better scaling efficiency.

470
471 Since the pretraining corpus mainly consists of general web text, we focus on evaluating the models
472 on general tasks (MMLU-pro and Big-Bench) to better reflect the impact of training scale. We also
473 report the average performance across all benchmarks to provide a holistic view.

474 Figure 4 illustrates the performance comparison between RL training with Webscale-RL dataset
475 and continual pretraining with pretraining corpora at different training scales. We observe that RL
476 training consistently outperforms continual pretraining across all three metrics (MMLU-pro, Big-
477 Bench, and average performance) at various training scales. With the same amount of training
478 tokens (100 millions), RL training achieves 4.4% improvement over Qwen2.5-3B base model in
479 average while continual pretraining exhibits similar performance to the base model.

480 Notably, RL training achieves comparable or better performance with significantly fewer training
481 tokens. For instance, on MMLU-pro, RL training with approximately 10M tokens attains similar
482 performance to continual pretraining with 1B tokens, indicating over 100 \times improvement in data
483 efficiency. Furthermore, RL training exhibits a steeper upward trend as the training scale increases,
484 which is also true for other benchmarks, demonstrating that RL training not only leads to higher final
485 performance, but scales more effectively and efficiently than standard teacher-forcing approaches.

486 **6 CONCLUSION**
 487

488 In this paper, we introduced the Webscale-RL pipeline, an end-to-end data engine that converts
 489 web-scale pretraining corpora into verifiable, RL-ready data while preserving diversity. With this
 490 pipeline, we constructed the Webscale-RL dataset, which is orders of magnitude larger and more
 491 diverse than existing RL datasets. Empirically, training a LLM with RL on Webscale-RL improves
 492 performance across a diverse suite of benchmarks and delivers better data efficiency than continual
 493 pretraining at comparable token budgets, especially on general knowledge and open-ended reasoning
 494 (MMLU-pro, Big-Bench), with consistent improvements in math and STEM areas.

495 While our results demonstrate the promise of scaling RL data to pretraining levels, several limita-
 496 tions and future directions remain. The current Webscale-RL dataset lacks coverage of high-quality
 497 data in certain domains such as coding, which leads to smaller gains on coding benchmarks. There-
 498 fore, one future direction is to rebalance the domain distribution of the pretraining sources according
 499 to the target applications (e.g., to integrate repository-scale code data to enhance the coding capa-
 500 bility). Meanwhile, the current RL training employs a generative reward model that provides binary
 501 feedback based on match with the ground truth. While this reward exhibits high performance and
 502 stability for RL training, it introduces a substantial extra inference cost, becoming one bottleneck
 503 for scaling up. Future work can explore more efficient reward models to further scale up RL training
 504 to larger models and datasets.

505 **7 REPRODUCIBILITY STATEMENT**
 506

507 Our Webscale-RL data pipeline is built upon publicly available datasets and publicly available LLMs
 508 for generation and verification. The detailed data sources, prompts, and implementation details are
 509 described in Appendix B.1 and Appendix B.2. For the continual pretraining and RL finetuning, we
 510 use the standard pretraining and RL algorithms (GRPO), and the hyperparameters are detailed in
 511 Appendix B.3.

513 **REFERENCES**
 514

515 Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
 516 Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-oss-20b model card. *arXiv*
 517 *preprint arXiv:2508.10925*, 2025.

518 Wasi Uddin Ahmad, Sean Narendhiran, Somshubra Majumdar, Aleksander Ficek, Siddhartha Jain,
 519 Jocelyn Huang, Vahid Noroozi, and Boris Ginsburg. Opencodereasoning: Advancing data distil-
 520 lation for competitive coding. *arXiv preprint arXiv:2504.01943*, 2025.

521 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
 522 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
 523 models. *arXiv preprint arXiv:2108.07732*, 2021.

524 Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. *arXiv preprint*
 525 *arXiv:2403.06963*, 2024.

526 Elie Bakouch, Loubna Ben Allal, Anton Lozhkov, Nouamane Tazi, Lewis Tunstall, Carlos Miguel
 527 Patiño, Edward Beeching, Aymeric Roucher, Aksel Joonas Reedi, Quentin Gallouédec, Kashif
 528 Rasul, Nathan Habib, Clémentine Fourrier, Hynek Kydlicek, Guilherme Penedo, Hugo Larcher,
 529 Mathieu Morlon, Vaibhav Srivastav, Joshua Lochner, Xuan-Son Nguyen, Colin Raffel, Leandro
 530 von Werra, and Thomas Wolf. SmolLM3: smol, multilingual, long-context reasoner. <https://huggingface.co/blog/smollm3>, 2025.

531 Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro von Werra.
 532 Cosmopedia, 2024. URL <https://huggingface.co/datasets/HuggingFaceTB/cosmopedia>.

533 Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
 534 prediction with recurrent neural networks. *Advances in neural information processing systems*,
 535 28, 2015.

540 Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido Galil,
 541 Zach Moshe, Tomer Ronen, Najeeb Nabwani, et al. Llama-nemotron: Efficient reasoning models.
 542 *arXiv preprint arXiv:2505.00949*, 2025.

543

544 Zhepeng Cen, Yao Liu, Siliang Zeng, Pratik Chaudhari, Huzeфа Rangwala, George Karypis, and
 545 Rasool Fakoor. Bridging the training-inference gap in llms by leveraging self-generated tokens.
 546 *arXiv preprint arXiv:2410.14655*, 2024.

547 Zhepeng Cen, Yihang Yao, William Han, Zuxin Liu, and Ding Zhao. Behavior injection: Preparing
 548 language models for reinforcement learning. *arXiv preprint arXiv:2505.18917*, 2025.

549

550 Hao Chen, Abdul Waheed, Xiang Li, Yidong Wang, Jindong Wang, Bhiksha Raj, and Marah I
 551 Abdin. On the diversity of synthetic data and its impact on training large language models. *arXiv*
 552 *preprint arXiv:2410.15226*, 2024a.

553 Haolin Chen, Yihao Feng, Zuxin Liu, Weiran Yao, Akshara Prabhakar, Shelby Heinecke, Ricky
 554 Ho, Phil Mui, Silvio Savarese, Caiming Xiong, et al. Language models are hidden reasoners:
 555 Unlocking latent reasoning capabilities via self-rewarding. *arXiv preprint arXiv:2411.04282*,
 556 2024b.

557 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
 558 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
 559 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

560

561 Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
 562 converts weak language models to strong language models. *arXiv preprint arXiv:2401.01335*,
 563 2024c.

564 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 565 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
 566 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

567

568 Together Computer. Redpajama: an open dataset for training large language models, 2023. URL
 569 <https://github.com/togethercomputer/RedPajama-Data>.

570

571 Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
 572 Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. *arXiv preprint*
 573 *arXiv:2502.01456*, 2025.

574 DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
 575 gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
 576 Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
 577 Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
 578 Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni,
 579 Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao
 580 Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong
 581 Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang,
 582 Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang,
 583 Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen,
 584 R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi
 585 Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye,
 586 Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting
 587 Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, and Wangding Zeng. Deepseek-
 588 v3 technical report. *CoRR*, abs/2412.19437, 2024. doi: 10.48550/ARXIV.2412.19437. URL
 589 <https://doi.org/10.48550/arXiv.2412.19437>.

590 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
 591 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
 592 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
 593 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,

594 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
 595 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
 596 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
 597 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
 598 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
 599 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
 600 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shengfeng Ye,
 601 Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. Deepseek-r1: Incentivizing
 602 reasoning capability in llms via reinforcement learning. *CoRR*, abs/2501.12948, 2025. doi: 10.
 603 48550/ARXIV.2501.12948. URL <https://doi.org/10.48550/arXiv.2501.12948>.

604 Qingxiu Dong, Li Dong, Yao Tang, Tianzhu Ye, Yutao Sun, Zhifang Sui, and Furu Wei. Rein-
 605 forcement pre-training. *CoRR*, abs/2506.08007, 2025. doi: 10.48550/ARXIV.2506.08007. URL
 606 <https://doi.org/10.48550/arXiv.2506.08007>.

607 Run-Ze Fan, Zengzhi Wang, and Pengfei Liu. Megascience: Pushing the frontiers of post-training
 608 datasets for science reasoning. *arXiv preprint arXiv:2507.16812*, 2025.

609 Dylan J Foster, Adam Block, and Dipendra Misra. Is behavior cloning all you need? understanding
 610 horizon in imitation learning. *Advances in Neural Information Processing Systems*, 37:120602–
 611 120666, 2024.

612 Wikimedia Foundation. Wikimedia downloads. URL <https://dumps.wikimedia.org>.

613 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
 614 ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muen-
 615 nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
 616 Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
 617 evaluation harness, 07 2024. URL <https://zenodo.org/records/12608602>.

618 Tao Ge, Xin Chan, Xiaoyang Wang, Dian Yu, Haitao Mi, and Dong Yu. Scaling synthetic data
 619 creation with 1,000,000,000 personas. *arXiv preprint arXiv:2406.20094*, 2024.

620 Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
 621 Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, et al. Openthoughts: Data recipes for reason-
 622 ing models. *arXiv preprint arXiv:2506.04178*, 2025.

623 Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
 624 Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, et al. Textbooks are
 625 all you need. *arXiv preprint arXiv:2306.11644*, 2023.

626 Nathan Habib, Clémentine Fourrier, Hynek Kydlíček, Thomas Wolf, and Lewis Tunstall. Lighte-
 627 val: A lightweight framework for llm evaluation, 2023. URL <https://github.com/huggingface/lighteval>.

628 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 629 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv
 630 preprint arXiv:2103.03874*, 2021.

631 Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran Hao, Liuyihan Song, Yang Xu, J. Yang,
 632 J. H. Liu, Chenchen Zhang, Linzheng Chai, Ruifeng Yuan, Zhaoxiang Zhang, Jie Fu, Qian Liu,
 633 Ge Zhang, Zili Wang, Yuan Qi, Yinghui Xu, and Wei Chu. Opencoder: The open cookbook for
 634 top-tier code large language models. 2024. URL <https://arxiv.org/pdf/2411.04905.pdf>.

635 Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL <https://github.com/huggingface/open-r1>.

636 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 637 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko, Alex Tachard
 638 Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally Bennett,
 639 Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich, Andrei
 640 Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
 641 bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaev, Botao
 642

648 Hao, Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lu-
 649 garesi, Cary Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen,
 650 Chong Zhang, Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan
 651 Roberts, Daniel Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely,
 652 David Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Ed-
 653 mund Wong, Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan
 654 Mays, Fan Wang, Felipe Petroski Such, Filippo Ras, Florencia Leoni, Foivos Tsimpourlas,
 655 Francis Song, Fred von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo,
 656 Gildas Chabot, Grace Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao,
 657 Hao Sheng, Hart Andrin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won
 658 Chung, Ian Kivlichan, Ian O'Connell, Ian Osband, Ignasi Clavera Gilaberte, and Ilge Akkaya.
 659 Openai o1 system card. *CoRR*, abs/2412.16720, 2024. doi: 10.48550/ARXIV.2412.16720. URL
 660 <https://doi.org/10.48550/arXiv.2412.16720>.

661 Minqi Jiang, JoÃ±o GM AraÃ±jo, Will Ellsworth, Sian Gooding, and Edward Grefenstette. Gener-
 662 ative data refinement: Just ask for better data. *arXiv preprint arXiv:2509.08653*, 2025.

663 Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
 664 Mastering code generation through pretrained models and deep reinforcement learning. *Advances
 665 in Neural Information Processing Systems*, 35:21314–21328, 2022.

666 Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
 667 rial, review, and perspectives on open problems. *arXiv preprint arXiv:2005.01643*, 2020.

668 Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Yitzhak Gadre, Hritik
 669 Bansal, Etash Guha, Sedrick Scott Keh, Kushal Arora, et al. Datacomp-lm: In search of the
 670 next generation of training sets for language models. *Advances in Neural Information Processing
 671 Systems*, 37:14200–14282, 2024.

672 Siheng Li, Kejiao Li, Zenan Xu, Guanhua Huang, Evander Yang, Kun Li, Haoyuan Wu, Jiajia Wu,
 673 Zihao Zheng, Chenchen Zhang, Kun Shi, Kyrierl Deng, Qi Yi, Ruibin Xiong, Tingqiang Xu,
 674 Yuhao Jiang, Jianfeng Yan, Yuyuan Zeng, Guanghui Xu, Jinbao Xue, Zhijiang Xu, Zheng Fang,
 675 Shuai Li, Qibin Liu, Xiaoxue Li, Zhuoyu Li, Yangyu Tao, Fei Gao, Cheng Jiang, Bo Chao Wang,
 676 Kai Liu, Jianchen Zhu, Wai Lam, Wayyt Wang, Bo Zhou, and Di Wang. Reinforcement learning
 677 on pre-training data, 2025. URL <https://arxiv.org/abs/2509.19249>.

678 Haoxiong Liu, Yifan Zhang, Yifan Luo, and Andrew C Yao. Augmenting math word problems via
 679 iterative question composing. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 680 volume 39, pp. 24605–24613, 2025a.

681 Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
 682 chatGPT really correct? rigorous evaluation of large language models for code generation. In
 683 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=1qvx610Cu7>.

684 Mingjie Liu, Shizhe Diao, Jian Hu, Ximing Lu, Xin Dong, Hao Zhang, Alexander Bukharin,
 685 Shaokun Zhang, Jiaqi Zeng, Makesh Narsimhan Sreedhar, et al. Scaling up rl: Unlocking di-
 686 verse reasoning in llms via prolonged training. *arXiv preprint arXiv:2507.12507*, 2025b.

687 Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
 688 Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models.
 689 *arXiv preprint arXiv:2505.24864*, 2025c.

690 Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Juntao Tan, Weiran Yao, Zhiwei Liu,
 691 Yihao Feng, Rithesh RN, et al. Apigen: Automated pipeline for generating verifiable and diverse
 692 function-calling datasets. *Advances in Neural Information Processing Systems*, 37:54463–54482,
 693 2024.

694 Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Noua-
 695 mane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, De-
 696 nis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, In-
 697 draneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii

702 Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli
 703 He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham
 704 Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan
 705 Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han
 706 Hu, Torsten Scholak, Sébastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Cha-
 707 pados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming
 708 Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Star-
 709 coder 2 and the stack v2: The next generation, 2024.

710 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
 711 Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview
 712 with a 1.5b model by scaling rl, 2025. Notion Blog.

713 Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft: Rea-
 714 soning with reinforced fine-tuning. *arXiv preprint arXiv:2401.08967*, 3, 2024.

715 Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zeyun Ma, and Wenhui Chen. General-reasoner:
 716 Advancing llm reasoning across all domains. *arXiv preprint arXiv:2505.14652*, 2025.

717 Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
 718 projection for dimension reduction. *arXiv preprint arXiv:1802.03426*, 2018.

719 Ivan Moshkov, Darragh Hanley, Ivan Sorokin, Shubham Toshniwal, Christof Henkel, Benedikt
 720 Schifferer, Wei Du, and Igor Gitman. Aimo-2 winning solution: Building state-of-the-art math-
 721 ematical reasoning models with openmathreasoning dataset. *arXiv preprint arXiv:2504.16891*,
 722 2025.

723 OpenAI. Learning to reason with LLMs. <https://openai.com/index/learning-to-reason-with-l1ms/>, 2024a. [Online].

724 OpenAI. O3 and o4 mini system card. <https://openai.com/index/o3-o4-mini-system-card/>, 2024b. URL <https://openai.com/index/o3-o4-mini-system-card/>. [Online].

725 Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. Openwebmath: An open
 726 dataset of high-quality mathematical web text, 2023.

727 Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
 728 Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
 729 finest text data at scale. In *The Thirty-eight Conference on Neural Information Processing Systems*
 730 *Datasets and Benchmarks Track*, 2024a. URL <https://openreview.net/forum?id=n6SCkn2QaG>.

731 Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
 732 Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data
 733 at scale. *Advances in Neural Information Processing Systems*, 37:30811–30849, 2024b.

734 Akshara Prabhakar, Zuxin Liu, Ming Zhu, Jianguo Zhang, Tulika Awalgaonkar, Shiyu Wang, Zhiwei
 735 Liu, Haolin Chen, Thai Hoang, Juan Carlos Niebles, et al. Apigen-*mt*: Agentic pipeline for multi-
 736 turn data generation via simulated agent-human interplay. *arXiv preprint arXiv:2504.03601*,
 737 2025.

738 Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan
 739 Tur, and Heng Ji. Toolrl: Reward is all tool learning needs. *arXiv preprint arXiv:2504.13958*,
 740 2025.

741 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 742 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
 743 transformer. *arXiv e-prints*, 2019.

744 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
 745 rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
 746 mark. In *First Conference on Language Modeling*, 2024.

756 Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
 757 tured prediction to no-regret online learning. In *Proceedings of the fourteenth international con-
 758 ference on artificial intelligence and statistics*, pp. 627–635. JMLR Workshop and Conference
 759 Proceedings, 2011.

760 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 761 optimization algorithms. *CoRR*, abs/1707.06347, 2017. URL <http://arxiv.org/abs/1707.06347>.

762

763 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 764 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 765 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

766

767 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 768 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In *Proceedings
 769 of the Twentieth European Conference on Computer Systems*, pp. 1279–1297, 2025.

770

771 Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Shoeb, Abubakar Abid, Adam Fisch,
 772 Adam R Brown, Adam Santoro, Aditya Gupta, Adri Garriga-Alonso, et al. Beyond the imita-
 773 tion game: Quantifying and extrapolating the capabilities of language models. *Transactions on
 774 machine learning research*, 2023.

775

776 Bryan Stroube. Literary freedom: Project gutenberg. *XRDS: Crossroads, The ACM Magazine for
 777 Students*, 10(1):3–3, 2003.

778

779 Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav Kisacanin, Alexan Ayrapetyan, and Igor
 780 Gitman. Openmathinstruct-2: Accelerating ai for math with massive open-source instruction
 781 data. *arXiv preprint arXiv:2410.01560*, 2024.

782

783 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 784 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
 785 task language understanding benchmark. *Advances in Neural Information Processing Systems*,
 37:95266–95290, 2024.

786

787 Maurice Weber, Dan Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov, Xi-
 788 aozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, et al. Redpajama: an open dataset for
 789 training large language models. *Advances in neural information processing systems*, 37:116462–
 116492, 2024.

790

791 Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
 792 Gabriel Synnaeve, Rishabh Singh, and Sida I Wang. Swe-rl: Advancing llm reasoning via rein-
 793 forcement learning on open software evolution. *arXiv preprint arXiv:2502.18449*, 2025.

794

795 Alexander Wettig, Aatmik Gupta, Saumya Malik, and Danqi Chen. Qurating: Selecting high-quality
 796 data for training language models. *arXiv preprint arXiv:2402.09739*, 2024.

797

798 xAI. Grok 4. <https://x.ai/news/grok-4>, 2025. [Online].

799

800 Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
 801 Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
 802 learning. *arXiv preprint arXiv:2502.14768*, 2025.

803

804 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 805 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint
 806 arXiv:2412.15115*, 2024a.

807

808 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
 809 hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
 810 expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024b.

811

812 Weizhe Yuan, Jane Yu, Song Jiang, Karthik Padthe, Yang Li, Ilia Kulikov, Kyunghyun Cho, Dong
 813 Wang, Yuandong Tian, Jason E Weston, et al. Naturalreasoning: Reasoning in the wild with 2.8
 814 m challenging questions. *arXiv preprint arXiv:2502.13124*, 2025.

810 Xiang Yue, Tianyu Zheng, Ge Zhang, and Wenhui Chen. Mammoth2: Scaling instructions from the
811 web. *Advances in Neural Information Processing Systems*, 37:90629–90660, 2024.
812

813 Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D Goodman.
814 Quiet-star: Language models can teach themselves to think before speaking. *arXiv preprint*
815 *arXiv:2403.09629*, 2024.

816 Shaokun Zhang, Yi Dong, Jieyu Zhang, Jan Kautz, Bryan Catanzaro, Andrew Tao, Qingyun Wu,
817 Zhiding Yu, and Guilin Liu. Nemotron-research-tool-n1: Tool-using language models with rein-
818 forced reasoning. *arXiv preprint arXiv:2505.00024*, 2025a.

819

820 Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
821 An Yang, Dayiheng Liu, Junyang Lin, et al. Qwen3 embedding: Advancing text embedding and
822 reranking through foundation models. *arXiv preprint arXiv:2506.05176*, 2025b.

823

824 Fan Zhou, Zengzhi Wang, Qian Liu, Junlong Li, and Pengfei Liu. Programming every example:
825 Lifting pre-training data quality like experts at scale. *arXiv preprint arXiv:2409.17115*, 2024.

826

827 Fan Zhou, Zengzhi Wang, Nikhil Ranjan, Zhoujun Cheng, Liping Tang, Guowei He, Zhengzhong
828 Liu, and Eric P Xing. Megamath: Pushing the limits of open math corpora. *arXiv preprint*
829 *arXiv:2504.02807*, 2025.

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

A USAGE OF LLMs

865
 866 In paper writing, the LLMs are mainly used for proofreading and polishing the language, including
 867 grammar, spelling, and clarity. The main content, ideas, experiments and following presentations
 868 (e.g., results and visualizations) are done by the authors. The LLMs assist to draft the results analysis
 869 and conclusion sections based on the experimental results provided by the authors. The authors care-
 870 fully checked the content and made necessary modifications to ensure the accuracy and correctness
 871 of the statements.

872
 873

B DETAILS OF DATASET CONSTRUCTION AND TRAINING

874

B.1 WEBSCALE-RL DATA PIPELINE DETAILS

875 Our data pipeline employs GPT-4.1-mini for domain classification and quality checking, while uti-
 876 lizing GPT-4.1 for QA generation to ensure higher quality outputs. In the second stage, we assign
 877 up to 3 different personas to each document and generate tailored QA pairs for each persona respec-
 878 tively.

879

B.1.1 PROMPT TEMPLATES

880 Our pipeline consists of four main stages, each with carefully designed prompts to ensure high-
 881 quality data generation:

882

Stage 1: Data Filtering

883 **Role:** Data Analyst

884 **Objective:** Identify whether the material meets quality criteria for QA generation

885 **Prompt:**

886 *You are a helpful data analyst. You will be given a material which can come from
 887 very diverse sources and may not be well-structured. In this stage, your task is to
 888 identify whether the material is qualified for the following criteria:*

889

 890 - The material is informative and self-contained for the user
 891 - It's possible to extract question and corresponding answer from the material
 892 - The content has sufficient depth and clarity

893 *Based on the above instructions, identify whether the material is qualified or not.*

894 {Raw Document}

901

Stage 2: Domain Classification & Persona Assignment

902 **Role:** Data Analyst

903 **Objective:** Classify domain and identify target personas

904 **Prompt:**

905 *You are a helpful data analyst. You will be given a material which can come from
 906 very diverse sources and may not be well-structured. In this stage, your task is to
 907 identify the domain and persona of the material.*

908 *Here are the instructions for the domain and persona:*

909

 910 - The domain is the main topic of the material. You should choose from the
 911 following domains: {All Domains}
 912 - The persona is the intended audience of the material. If the material is in-
 913 tended for multiple personas, you should list several personas that will be
 914 interested in the material

915 *Based on the above instructions, identify the domain and persona of the material.*

916 {Raw Document}

918

Stage 3: QA Generation

919

920

Role: Domain Expert (Persona-specific)

921

Objective: Generate high-quality question-answer pairs from source material

922

Prompt:

923

You will be given a material which can come from very diverse sources and may not be well-structured. In this stage, your task is to generate a question and answer pair from the material.

924

Here are the instructions for the question and answer generation:

925

- *You will act as a given persona. You should generate a question and answer pair from your perspective*
- *Both the question and answer should be totally from the material. Do not generate any information that is not in the material*
- *You should generate such a question that its corresponding answer is relatively short and can be easily and clearly verified*
- *Ensure the question is natural and reflects genuine curiosity from the target persona*

926

{Few-shot Examples}

927

Based on the above instructions and examples, generate a question and answer pair from the material.

928

{Raw Document}

929

{Persona}

930

931

932

933

934

935

936

937

938

939

940

941

942

Stage 4: Quality Check

943

Role: Data Labeler

944

Objective: Verify QA pair correctness and detect information leakage

945

Prompt:

946

You are a data labeler. You will be given a material and a question and answer pair generated from the material. Your task is to check whether the question and answer pair is correct according to the material and whether there is info leakage from question to answer.

947

Here are the instructions for checking:

948

- *For the answer correctness, you should check whether the answer is correct according to the original material*
- *The information leakage indicates that the question explicitly provides information about the answer and then the answer can be directly obtained from the question*
- *Ensure the question requires genuine understanding of the source material*

949

{Few-shot Examples}

950

Based on the above instructions, check the QA pair extracted from the original material in terms of the answer correctness and info leakage.

951

{Raw Document}

952

{QA Pair}

953

954

955

956

957

958

959

960

961

962

963

964

965

966

B.2 WEBSCALE-RL DATASET COMPOSITION

967

968

969

970

971

We curate our dataset from diverse pretraining corpora to ensure comprehensive domain coverage while emphasizing reasoning capabilities. The selected sources include DCLM (Li et al., 2024), Wikipedia (Foundation), MegaMath (Zhou et al., 2025), Stack-v2 (Lozhkov et al., 2024), with additional data from OpenMathReasoning (Moshkov et al., 2025) and OpenCodeReasoning (Ahmad et al., 2025) following SmollM3 (Bakouch et al., 2025) protocols.

972 Table 3: Source distribution of the Webscale-RL dataset (~1.2M total QA pairs)
973
974
975
976
977
978
979
980
981
982
983
984

Source Dataset	# of Converted QA Pairs
DCLM	~550K
Wikipedia	~350K
MegaMath	~100K
OpenMathReasoning	~100K
Stack-v2	~50K
OpenCodeReasoning	~50K

985 **B.2.1 DATA CONVERSION EXAMPLE**
986987 The following example demonstrates our persona-driven conversion process:
988989 **Original Wikipedia Document: Alterna Bank**990 CS Alterna Bank (), operating as Alterna Bank (), is a Canadian direct bank and a wholly owned
991 subsidiary of the Ontario-based credit union Alterna Savings. The bank offers chequing and high-
992 interest savings accounts and mortgages.993 Operating primarily as a direct bank since 2017, most customers access accounts using the bank's
994 website, telephone service, and mobile apps. Unlike most other direct banks, some accounts can also
995 be accessed through branches. There are two Alterna Bank locations in Gatineau, QC, and Alterna
996 Savings branches also administer deposits and loans on its behalf...997 The bank originated as the Civil Service Loan Corporation, founded 29 October 1992 and operating as
998 CS Loan Corporation. It became CS Alterna Bank after receiving letters patent of continuation on 2
999 October 2000 as a federally regulated institution under the Bank Act...

1000 Alterna Bank is a member of Canada Deposit Insurance Corporation (CDIC)...

1001 **Converted QA Pair: Financial Analyst Persona**
10021003 **Question:** In examining the regulatory protection for depositors, is Alterna Bank a member of the
1004 Canada Deposit Insurance Corporation (CDIC)?1005 **Answer:** Yes, Alterna Bank is a member of Canada Deposit Insurance Corporation (CDIC).1006 **Converted QA Pair: Commerce Student Persona**1007 **Question:** In Canadian direct banking, what is notable about the way Alterna Bank allows its customers
1008 to access their accounts compared to most other direct banks?1009 **Answer:** Some Alterna Bank accounts can be accessed through branches, unlike most other direct
1010 banks.1011 **B.3 TRAINING IMPLEMENTATION DETAILS**
10121013 **B.3.1 BASELINE IMPLEMENTATION**1014 **Generative Refinement Baseline:** Following (Jiang et al., 2025), we adapt their safety-focused
1015 approach to quality improvement. GPT-4.1 processes each document by: (1) assessing content
1016 quality similar to our filtering stage, returning original text if adequate; (2) refining documents by
1017 removing non-informative sections or discarding low-quality content entirely.1018 **SFT Dataset Construction:** Our 10K SFT dataset enhances instruction-following capabilities post-
1019 continual pretraining and provides RL training warmup. We sample 10K queries from a held-out
1020 Webscale-RL subset with no training overlap. Since original answers are concise, GPT-4.1 generates
1021 detailed Chain-of-Thought explanations based on ground truth, reducing hallucination compared to
1022 full model distillation.

1026 B.3.2 TRAINING HYPERPARAMETERS
10271028 Table 4: Training configuration and hyperparameters
1029

1030 Training Stage	1031 Hyperparameter	1032 Value
1033 Continual Pretraining	1034 Batch Size	1035 256
	1036 Learning Rate	1037 1×10^{-5}
	1038 Max Input Length	1039 4096
1040 Supervised Fine-tuning	1041 Batch Size	1042 128
	1043 Learning Rate	1044 5×10^{-6}
	1045 Max Input Length	1046 4096
1047 Reinforcement Learning	1048 Batch Size	1049 256
	1050 Learning Rate	1051 5×10^{-6}
	1052 Samples per Query	1053 16
	1054 Max Rollout Length	1055 2560
1056 Algorithm		1057 GRPO (Shao et al., 2024)

1047 All experiments use AdamW optimizer with VeRL (Sheng et al., 2025) as the training backend. RL
1048 training employs binary rewards, where an LLM judges whether generated answers match ground
1049 truth responses.

1050 B.3.3 EVALUATION FRAMEWORK
10511052 Table 5: Evaluation benchmarks and configurations
1053

1054 Benchmark	1055 Framework	1056 Shots	1057 Domain Focus
1058 MMLU-Pro	1059 LM-Eval	1060 5	1061 Multi-domain Knowledge
1062 BigBench	1063 LM-Eval	1064 0	1065 Reasoning & Language
1066 GPQA-D	1067 LightEval	1068 0	1069 Scientific Reasoning
1069 MATH500	1070 LightEval	1071 0	1072 Mathematical Problem Solving
1072 GSM8K	1073 LM-Eval	1074 8	1075 Grade School Math
1075 MBPP	1076 EvalPlus	1077 0	1078 Python Programming
1077 EvalPlus	1078 EvalPlus	1079 0	1079 Code Generation & Testing

1066 We employ LM-eval-harness (Gao et al., 2024), LightEval (Habib et al., 2023), and EvalPlus (Liu
1067 et al., 2023) with default settings for prompt templates, metrics, and decoding parameters. MMLU-
1068 Pro and GSM8K use few-shot evaluation (5 and 8 shots respectively) following standard protocols,
1069 while other benchmarks use zero-shot evaluation.

1070
1071
1072
1073
1074
1075
1076
1077
1078
1079