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Abstract

Regulation is increasingly cited as the most im-001
portant and pressing concern in machine learn-002
ing. However, it is currently unknown how to003
implement this, and perhaps more importantly,004
how it would effect model performance along-005
side human collaboration if actually realized.006
In this paper, we attempt to answer these ques-007
tions by building a regulatable large-language008
model (LLM), and then quantifying how the009
additional constraints involved affect (1) model010
performance, alongside (2) human collabora-011
tion. Our empirical results reveal that it is pos-012
sible to force an LLM to use human-defined013
features in an transparent way, but a “regula-014
tion performance trade-off” previously not con-015
sidered reveals itself in the form of a 7.34%016
classification performance drop. Surprisingly017
however, we show that despite this, such sys-018
tems actually improve human task performance019
speed and appropriate confidence in a realistic020
deployment setting compared to no AI assis-021
tance, thus paving a way for fair, regulatable022
AI, which benefits users.023

1 Introduction024

Ineffective regulation of AI and the neglection025

of safety is often cited as the biggest existential026

threat to humanity (Bengio et al., 2024). Ex-board027

members of OpenAI have recently been quoted028

as saying governments must begin building effec-029

tive regulatory frameworks now, as AI firms can-030

not self-govern and reliably withstand the pressure031

of profit incentives (Toner and McCauley, 2024).032

The biggest factor pushing this regulatory interest033

is large-language models (LLMs) (Vaswani et al.,034

2017; Tucker et al., 2021), which have already had035

far reaching consequences in society, ranging from036

medicine to self-driving cars (Chen et al., 2023),037

but little relative concern for their safety. The core038

issue is that these systems cannot escape the same039

limitation that underlines most neural network ar-040

chitectures, in that they are black boxes with no ob-041

vious interpretable decision-making process, mak- 042

ing it completely impossible to use or audit them 043

for any sensitive application (Rudin, 2019; Keane 044

et al., 2021). Governments at large are aware of 045

this and the European AI Act is a sign of things 046

to come in how they will continue to heavily regu- 047

late AI both in Europe and North America (Smuha 048

et al., 2021). However, it is presently unclear how 049

LLMs might be regulated in practice. 050

In this paper, we are interested in the potential 051

of interpretable ML to make models more regulat- 052

able. Techniques form this field have been shown 053

to help make models auditable (Zhang et al., 2022), 054

debug self-driving cars (Dong et al., 2023), and 055

calibrate appropriate trust (Sanneman and Shah, 056

2022). However, to date there is no exploration of 057

how to make interpretable LLMs for the purposes 058

of regulation. 059

In reality, regulation will likely take many dif- 060

ferent forms in different domains, but here we are 061

specifically interested in the domain of insurance li- 062

ability and how to regulate models in such a setting 063

using interpretable ML. In this domain, such insti- 064

tutions require their employees (and by extension 065

their models) to use specific concepts in sensitive 066

decisions in order to be legally compliant, but due 067

to the black-box nature of AI, there is absolutely 068

no way to verify this is happening (Nguyen et al., 069

2021). Hence, in these specific circumstances, a 070

basic requirement for regulation is to force these 071

models to use specific human-defined concepts in 072

their inference process, which interpretable ML 073

can help us do. Interestingly, we find that in doing 074

so, a dilemma presents itself in the form of a trade- 075

off between regulation and performance previously 076

unconsidered in the literature. 077

As an aside, we remind the reader that LLMs 078

are broadly classified into two categories, genera- 079

tive (e.g., ChatGPT) and classification (e.g., BERT) 080

models. Although generative models have been at 081

the forefront of recent attention, they are not the 082
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most practical for classification (Zhong et al., 2023;083

Zhang et al., 2024). In this paper, we focus on the084

classification type and use LLM to refer to them.085

Next in Section 2 we contextualize this work086

in the literature. In Section 3 we discuss context087

and the theoretical underpinning behind what we088

coin “The Regulation Performance Trade-Off.” In089

Section 4 we describe the proprietary datasets used.090

Section 5 describes our method for incorporating091

human-centred concepts into a mechanistically in-092

terpretable LLM. Sections 6 and 7 describe experi-093

mental results, before our conclusion in Section 8.094

2 Related Work095

Regulation in machine leaning has come into the096

spotlight recently, with major conferences dedi-097

cating workshops to the topic (Ma, 2024), gov-098

ernments trying to implement it (Wischmeyer and099

Rademacher, 2020), and academia actively re-100

searching it (Onitiu et al., 2023), but there is little101

work on how it should be concretely realized. Due102

to this sparsity, in our literature review, we focus103

on tangential work which has built inherently in-104

terpretable LLMs, as it is widely agreed to be a105

prerequisite for regulated AI (Casper et al., 2024).106

Case-based reasoning (CBR) for interpretable107

LLMs is a recent idea, it uses real examples from108

the training data directly in inference for inter-109

pretability purposes. Notable work in this area can110

be traced back to Ming et al. (Ming et al., 2019)111

who focused on RNNs. Das et al. (Das et al., 2022)112

proposed ProtoTEx, which classifies test instances113

with reference to learned prototypes (i.e., exam-114

ples or “cases”). Van Aken et al. (Van Aken et al.,115

2022) proposed ProtoPPatient, which works for116

multi-label classification. Xie et al. (Xie et al.,117

2023) is the most up to date work, which adds118

saliency maps to the explanation. Similar work119

exists in the concept explanation literature (Chan120

et al., 2022; Bouchacourt and Denoyer, 2019; An-121

tognini and Faltings, 2021). In contrast to all these,122

our work allows the direct integration of human-123

regulatable concepts into the inference process,124

which is needed for the type of regulation we are125

striving for. As an aside, all this work also bears126

resemblance to concept-bottleneck models (Koh127

et al., 2020), but in contrast our approach allows128

the visualization of the concepts (and the usage of129

prototypes), which is better for transparency.130

Perhaps the most closely related work is that of131

Kenny et al. (2023). The authors proposed to ex-132

plain a deep reinforcement learning agent by wrap- 133

ping its encoder with an interpretable prototype 134

layer, where each prototype represents a human- 135

friendly concept, but the authors note the networks 136

are prone to over-fitting, likely because they only 137

use a single example to represent each concept. We 138

build upon this work by collecting a large human- 139

annotated dataset for each concept to avoid over- 140

fitting, and adapting the framework for LLMs. 141

Lastly, we contextualize our work within the 142

mechanistic interpretability literature (Nanda et al., 143

2023). In this area, one of the core challenges is 144

superposition, where single neurons in LLMs rep- 145

resent many features simultaneously (Bereska and 146

Gavves, 2024). Recent work by Zimmermann et 147

al. (2024) showed that as LLMs get bigger, this 148

problem gets worse, and the authors concluded 149

the need for monosemanticity (i.e., making single 150

neurons represent single features/concepts) to be 151

integrated into the LLM with intent pre-hoc. Re- 152

cent posts by Anthropic and OpenAI have reported 153

achieving some separation in an unsupervised man- 154

ner by training sparse auto-encoders to isolate fea- 155

tures of interest which can manipulate the LLM out- 156

puts (Bricken et al., 2023; Templeton et al., 2024). 157

In contrast to all this, we disentangle features using 158

human labels to allow single neurons to represent 159

dedicated human-defined concepts. 160

3 Context and Trade-Off 161

As this paper focuses on the domain of insurance 162

liability, this section gives some brief context in 163

the area, before formalizing the regulation perfor- 164

mance trade-off. 165

3.1 Insurance Liability 166

Explainable AI benefits from focusing on specific 167

applications due to how it simplifies evaluation (Ya- 168

dav, 2024). Here we are focused on the specific 169

task of determining liability in automotive acci- 170

dents. We want our system to (1) use human vetted 171

concepts in a mechanistically interpretable way for 172

regulation, and (2) benefit humans in a collabora- 173

tive setting, both of which we show results for in 174

our evaluation. In insurance liability settings, there 175

is an insured, and a claimant. The insured is the 176

person or entity that purchases an insurance policy 177

from an insurance company, whilst the claimant is 178

the person or entity that makes a claim for bene- 179

fits under an insurance policy. In our setting, the 180

two parties are automotive drivers involved in a 181
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Figure 1: The Regulation Performance Trade-Off: A black-box LLM will learn to use the optimal feature set which
minimizes its loss on the training data. In contrast, an interpretable LLM will often compromise performance
by adding the constraint to only use a human-interpretable feature subset. Lastly, a regulatable LLM will further
constrain this to be a feature set that is legally permissible. Naturally, these constraints will possibly lead to a
degradation in performance. Note what there are exceptions, as e.g. what is considered interpretable can sometimes
not degrade performance much (Chen et al., 2019).

collision, and the accident is recorded in natural182

text, which motivates our usage of LLMs. Legally183

required concepts to use in this domain consist of184

e.g. “running a red light,” and not other spurious185

(or even illegal) features such as a person’s gen-186

der (Benhamou and Ferland, 2020).187

3.2 The Regulation Performance Trade-Off188

Consider an LLM that encodes features into a latent189

space. Within this, there exists a set of features190

which the LLM has learned to encode to perform191

optimally on some classification task, the "black192

box feature set". There exists another set of features193

in the same space called the "interpretable feature194

set", which is the set of features which humans can195

understand (e.g., a person’s gender). In our case196

there also exists a final set, the "regulatable feature197

set" (e.g., running a red light). This is a subset of198

the "interpretable feature set", as to be regulatable,199

a feature must be interpretable. Formally, let L ∈200

IR(n) be the n-dimensional latent space of the LLM.201

It follows that the sets are:202

• B ⊆ L: the "black box feature set" that the203

LLM encodes to optimize a classification task.204

• I ⊆ L: the "interpretable feature set" that205

humans can understand.206

• R ⊆ I: the "regulatable feature set", a subset207

of the interpretable feature set which allows208

legal usage of the LLM.209

Thus, we have:210

R ⊆ I ⊆ L211
212

B ⊆ L213

The objective is to force the LLM to only use the 214

set R. Note that R is not guaranteed to occupy the 215

same space as B, and is necessarily a subset of I, 216

given such constraints, a model relying only on R 217

is guaranteed to have a performance equal to, or 218

less than B or I (assuming B was trained well and 219

we use R with the original LLM frozen). Most 220

important to note however, is that this illustrates 221

how the interpretability performance trade-off [i.e., 222

see (Rudin, 2019)] is different. 223

4 Insurance Datasets 224

The main datasets used in this paper originate from 225

a global insurance company and are not publicly 226

available. However, in the spirit of scientific repro- 227

ducibility we also run our experiments on a publicly 228

available and widely used dataset. We briefly de- 229

scribe this latter dataset later in Section 6, since it 230

is already widely known as not our focus. 231

4.1 The Liability Dataset 232

This dataset contains 150,000 entries. The columns 233

are (1) natural language text statements describing 234

a car accident between an insured and a claimant, 235

and (2) a label from 0-100% assigning liability to 236

the insured, where 0% is no liability and 100% is 237

complete liability. To pre-process the dataset we 238

categorized liability into three classes: 239

1. Not Liable: The insured is 0% at fault in the 240

accident. 241

2. Split Liability: The Insured and Claimant are 242

both at fault (anywhere between 1-99% at 243

fault). 244

3. Liable: The insured is 100% at fault 245
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After this, we balanced the dataset, which re-246

sulted in 14,000 entries for each class. Furthermore,247

the data was divided into training (90%), validation248

(5%), and testing (5%).249

4.2 The Human-Labelled Concept Dataset250

The second dataset is a collection of 2,000 state-251

ments, all of which are separate from the prior252

dataset. For these data, we employed two separate253

vendors to label parts of their sentences with im-254

portant concepts for assessing liability that were255

defined by a domain expert. Having two separate256

vendors is important because if our model were to257

have 45% accuracy on classifying these concept258

labels, but the two vendors only agreed 60% of the259

time, then it is actually a very good model having260

reached 75% of this theoretical ceiling. In total,261

there were eight labels (i.e., concepts) we asked262

them to assign shown in Table 1. Both vendors263

precisely agreed on a given concept being present264

and its exact text within the statement 2.65% of the265

time. However, if we relax the second constraint266

and allow agreement when one text segment en-267

velops the other, this agreement raises to 61.2%,268

which we consider the ceiling of performance any269

model could achieve. For the final data, we joined270

all labels together from both vendors in order to271

maximize the amount of labelled concept data, so,272

if Vendor 1 labelled the first ten statements with273

concept x, and Vendor 2 the last ten, we would274

collect 20 labels for that concept.275

Concept Number of Labels

IV Liable 609
IV Not Liable 501
IV Defensive Action 503
IV No Defensive Action 461
CV Liable 712
CV Not Liable 388
CV Defensive Action 456
CV No Defensive Action 501

Table 1: Human-Concept Dataset: The human centred
concept dataset. There are eight concepts in total shown,
with their corresponding number of labels in 2000 state-
ments. IV = Insured Vehicle, CV = Claimant Vehicle.

The data can is summarized in Table 1. Notably,276

high-level concepts were chosen such as e.g. “IV277

Liable” rather than “IV ran a red light” to maximize278

the generalizability of the concepts during training.279

We took 80% of this data for training, and 10% for280

validation and testing. 281

5 Proposed Method 282

In this section we outline the assumptions for our 283

proposed method of integrating human-centred con- 284

cepts into LLMs, detail our architecture for doing 285

so, and outline implementation specifics. 286

5.1 Assumptions 287

We assume access to an encoder-only LLM trained 288

for a specific classification task on a large quan- 289

tity of data. Furthermore, we assume access to (1) 290

the original dataset used to train this LLM, and (2) 291

another dataset of human-annotated concept data 292

you wish to force the LLM to use during it clas- 293

sifications. Lastly, we assume competent domain 294

knowledge which can be used to define how each 295

concept should contribute to each class. For exam- 296

ple, in our insurance liability domain, the concept 297

“IV Liable” should positively contribute to the class 298

“Liable”, hence we manually define the classifica- 299

tion weight matrix W ′ to have a positive weight 300

connection between this concept and class predic- 301

tion, while it has a negative weight to the class “Not 302

Liable” (see Figure 2). 303

5.2 Architecture 304

In the model shown in Figure 2, a test instance, 305

x, is mapped to a set of sentence embeddings 306

Z ∈ {zi}mi=1 via the original encoder network fenc 307

and a sentence encoder ω(·). Alongside this, a set 308

of human-labelled sentence-level concept data D, 309

which can be divided up into each concept class 310

D ∈ {Di}ci=1 is also passed into fenc to produce 311

a set of embeddings Dc ∈ {di}ki=1 for each class. 312

These c sets are then averaged into c concept proto- 313

types P ∈ {pi}ci=1, one for each concept c. Then, 314

for example, all of the sentence embeddings for 315

x (i.e., Z ∈ {zi}mi=1) and prototype pi are passed 316

into hi to measure each sentence’s similarity to pi 317

via a similarity function, before its element-wise 318

product with W ′ is taken to produce the network’s 319

logits with: 320

sim(zi, pi) = log

(
(zi − pi)

2 + 1

(zi − pi)2 + ϵ

)
(1) 321

322
si = argmax

zi∈Z
sim(zi, pi) (2) 323

324
ŷ = s⃗⊙W ′ (3) 325

where s⃗ is the vector of similarity scores for each 326

concept such that s⃗ = {s1, s2, ...sn}, and ϵ is to 327
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Figure 2: Our proposed framework for regulatable LLMs: A test instance has its sentences encoded and compared to
prototypes representing regulatable concepts defined a-priori by humans. The maximum activation for each concept
is used as similarity scores for the model’s forward pass. Note, the test instance x in this example is fabricated, it is
not a real example of real data.

avoid division by zero. Equation 1 is monotonically328

decreasing such that if the prototype is close to a329

sentence embedding, it will output a high similarity330

score. The maximum similarity score across all331

sentences is then used in the forward pass for that332

concept, and this is repeated to give a score for333

all concepts with Equation 2. Finally, this vector334

of similarity scores takes an element-wise product335

with W ′ in Equation 3 to give the logits ŷ.336

The loss of our network is calculated with two337

terms, the first Lc is a standard loss for the class338

label, and the second loss Lh is the human-concept339

loss. For Lh, a subset of each concept label340

D′ ∈ {D′
i}ci=1 is passed each iteration into their341

corresponding h, and their similarity scores against342

the pre-computed prototypes that same iteration are343

calculated with Equation 2 for a cross entropy loss.344

Together, this has the effect of encouraging the net-345

work to classify the overall label correctly, but also346

to learn to classify the human-concept data cor-347

rectly with the prototypes, which together enforces348

the necessary constraints for our system. The loss349

can be written as:350

min
ϕ,ω,W ′

Lc(y, ŷ) +
1

C

C∑
i=1

Lh(y
′, ϕ(pi, D

′
i)) (4)351

where y is the overall label, and ŷ is the prediction352

of the overall label. Moreover, ϕ(·) is a function353

that outputs a vector of similarity scores s⃗, y′ is the354

label for the human concept, pi is the computed355

prototype for concept i that iteration, and D′
i is356

randomly sampled concept data for concept i. Put357

simply, the first term teaches our network to predict 358

the right class, and the second encourages it to learn 359

to classify concepts correctly with the prototypes. 360

5.3 Implementation Details 361

To encode a set of sentence embeddings with ω(·) 362

there are two main ways we explore, context un- 363

aware and context aware. For context unaware, 364

we break the input text x into sentences prior to 365

encoding with fenc, and use the BERT [CLS] token 366

(or equivalent) as the sentence embeddings. For 367

context aware, we pass all of x into fenc, divide up 368

the contextualized word embeddings (i.e., the token 369

embeddings after the forward pass) into sentences, 370

and then collate them into a single embedding. In 371

our experiments, to collate these we used either (1) 372

a simple average, (2) a recurrent neural network 373

(RNN) encoder, or (3) an attention layer. 374

The transformations hi are all MLP networks 375

with one hidden layer. To regularize, we com- 376

pressed the dimensionality here to as low as pos- 377

sible without compromising performance. For our 378

experiments, this involved going from an encoding 379

space of size 768 to 16 in these MLP networks. 380

Lastly, for W ′, expert knowledge is needed to 381

define it appropriately. In our case, we used domain 382

knowledge from an industry expert and assigned 383

either +1 or -1 to the weight connections prior to 384

training. We allowed the model to fine-tune these 385

weights during training, but only the magnitude 386

was allowed to change, not the sign/polarity (e.g., 387

a +1 weight will change to 0.9 or 1.1 during train- 388

ing, but not -0.5). This ensured (for example) that 389
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the concept “IV Liable” would always positively390

contribute to the class “Liable”.391

At testing time, the entirety of the human-392

concept dataset for each concept is averaged into a393

single prototype for each concept and cached.394

6 Computational Experiments395

Here, we describe our baselines, before detailing396

the datasets, metrics, and finally the results.397

6.1 Baselines398

We conduct comparisons between our regulatable399

model in Figure 2 and a generic baseline which400

does not use human-centred data (i.e., Human La-401

bels=No in Table 2). These unsupervised baselines402

set the prototypes as learnable parameters instead,403

which is representative of the literature (Chen et al.,404

2019; Antognini and Faltings, 2021; Ming et al.,405

2019; Das et al., 2022). Alongside this we also ran-406

domize W ′ and don’t constrain its polarity in base-407

lines to avoid any human bias making its way into408

the training process. While comparing these two409

baselines, we also do so in (1) a context aware fash-410

ion, and (2) a context unaware one (see Section 5.3).411

For our text encoder we use BERT (Devlin et al.,412

2018), note we tried a grid search of several other413

architectures such as DeBERTa, RoBERTa, Distil-414

BERT etc., but none showed a significant improve-415

ment, so we used BERT because it is the most416

widely researched.417

6.2 Datasets418

Our primary tests are on the insurance liability419

datasets detailed already in Section 3, as we are420

particularly interested in evaluating our technique421

on real-world applications. However, to foster re-422

producibility, we also extend the same tests to the423

Beer Advocate dataset (McAuley et al., 2012). This424

second dataset is 200k rows of text data detailing425

reviews of beers, it contains the concepts of Ap-426

pearance, Aroma, Palate, Taste, and Overall. To427

mimic related work (Bao et al., 2018), we divide428

the dataset into a binary classification problem of429

those reviews with a score higher than 4, and lower.430

The Beer Advocate dataset is also quite unique in431

that it contains 994 sentence-level annotations for432

the five concepts present, making it suitable for our433

needs. We further divided these concepts into posi-434

tive/negative ones (depending on which class they435

belonged to) to make in total 10 concepts which436

could be used for classifying the positive/negative437

reviews. Going forward, we will talk about class 438

labels (i.e., the regular classification task), and con- 439

cept labels (i.e., the sentence-level annotations), as 440

they are two different evaluations. 441

6.3 Metrics 442

We consider three primary measurements. First, we 443

measure how well the models are performing on 444

their respective class labels. Following best prac- 445

tice, a model is chosen based on its performance 446

on validation data during training, and then perfor- 447

mance on the testing data is reported. Next, we 448

also consider how well the model is classifying 449

the concept labels. For this we consider a “Top 1” 450

and “Top 3” metric, the model is seen as correct 451

if the prototype for e.g. “IV Liable” activates the 452

strongest for a sentence in a datum with that label 453

(i.e., Top 1 metric), and likewise for Top 3 it is seen 454

as correct if it is in the 3 most strongly activated. 455

6.4 Results 456

Table 2 shows the results of running our tests three 457

times and calculating the mean alongside standard 458

error. Overall, there are three strong trends to 459

note. Firstly, the context aware setting achieves bet- 460

ter classification performance on the class labels, 461

whilst the context unaware models do better at clas- 462

sifying the concept labels. This is likely because 463

the latter forces the LLM to have stronger sentence 464

representations that are not entangled with the rest 465

of the text, this works better for concept classifica- 466

tion. Secondly, there is another strong trend that 467

learning the concept representations from scratch 468

instead of using the labels (i.e., Human Label=no) 469

results again in stronger classification performance 470

of the class, but again this comes alongside a trade- 471

off with concept accuracy. Thirdly, the attention 472

mechanism in context aware settings does best at 473

encoding sentence representations when compared 474

to taking an average or using an RNN. 475

The strongest results come from the context un- 476

aware model using the human annotated data. This 477

model achieved 45.90±0.11 / 75.9±0.27 Top 1/Top 478

3 classification performance on the concept labels 479

for the Insurance Liability dataset, respectively, and 480

44.32±0.23 / 74.43±0.16 Top 1/Top 3 classification 481

performance on Beer Advocate, respectively. Im- 482

portantly however, this did come with a trade-off 483

on performance for the actual overall class labels. 484

Specifically, on the Insurance Liability data the 485

performance dropped from the initial black-box 486

model accuracy of 68.68% to 60.75%, and on Beer 487
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Context Unaware

Insurance Liability Data Beer Advocate Dataset

Human Labels Sentence Encoding Acc. Top 1 Top 3 Acc. Top 1 Top 3

Yes - 60.75±0.14 45.90±0.11 75.9±0.27 77.41±0.24 44.32±0.23 74.43±0.16
No - 63.29±0.05 7.27±0.24 28.63±0.23 80.07±0.05 8.75±0.17 26.32±0.10

Context Aware

Insurance Liability Data Beer Advocate Dataset

Human Labels Sentence Encoding Acc. Top 1 Top 3 Acc. Top 1 Top 3

Yes Mean 66.28±0.94 19.77±0.12 50.9±0.76 81.40±0.63 18.81±0.81 54.08±0.35
Yes RNN 63.87±0.27 14.09±0.67 35.9±0.44 83.06±0.99 13.04±0.23 33.62±0.91
Yes Attention 64.52±1.12 17.27±0.55 46.13±0.32 85.05±0.12 20.42±0.78 51.13±0.71
No Mean 69.01±0.83 12.27±0.41 33.86±0.22 83.72±0.37 15.11±0.99 35.18±0.57
No RNN 68.10±0.68 10.22±0.29 40.45±0.89 80.40±0.18 6.61±0.45 24.81±0.04
No Attention 67.84±0.35 15.01±0.81 37.95±0.76 83.72±0.51 13.51±0.63 33.33±0.92

Table 2: Computational Results: The best results were achieved by supervising with human-labelled concept data
(i.e., Human Labels=Yes), and using context unaware sentence embeddings. This resulted in lower accuracy on the
class label compared to unsupervised baselines (i.e., Human Labels=No) as predicted in Section 3. Best results
are in bold. Note the original black-box accuracy was 68.68% and 84.16% for the Insurance Liability and Beer
Advocate datasets, respectively. Standard error across three iterations is shown alongside the results.

Advocate from 84.16% to 77.41%, resulting in an488

average drop of 7.34% in performance. In contrast,489

the models which are not confined to regulatable490

features and instead learned the interpretable con-491

cepts actually outperformed the original black-box,492

reaching 69.01% on the Insurance Liability data,493

and 85.05% on Beer Advocate. This improved494

performance could be attributed to a regulariza-495

tion effect induced by our model, which forces the496

LLM to reason using only a handful of prototypes,497

as similar results were seen before with similar498

techniques (Kenny et al., 2023). Recall that the499

inter-rater reliability, as measured by the percent-500

age agreement between human raters, was 61.2%501

for the insurance data concept labeling task (see502

Section 4). Consequently, the reported results ac-503

tually reach 75% of this theoretical ceiling. Most504

importantly however, this lends a noteworthy data-505

point which helps to quantify the trade-off between506

regulatory constraints and performance in LLMs507

whenever transparency of concept usage in classifi-508

cations is required.509

7 User Study510

Here we facilitate an “Application Grounded Evalu-511

ation,” which is typically seen as the gold-standard512

in explainable AI (Doshi-Velez and Kim, 2017).513

Specifically, we recruited eight adjusters from a514

private global insurance company (whose full-time515

job it is to process insurance claims) to participate516

in a pilot study using our model to help classify real 517

statements in practice. While this meant our sam- 518

ple size would be necessarily reduced, it allowed 519

the enormous advantage of using real-world data 520

in a real-world setting. Studies have consistently 521

shown that how users react to AI technology is 522

quite divided (Brecheisen, 2024). Given this, our 523

hypothesis was that certain users would react favor- 524

ably to the AI and cluster into one group with re- 525

duced time taken overall to classify the statements, 526

whilst the others would do the opposite. 527

Materials. We designed a within-subjects study 528

which showed adjusters eight separate statements, 529

four with AI assistance and four without. The ques- 530

tions with AI assistance showed adjusters one con- 531

cept activation per statement, which was most rele- 532

vant. Adjusters were told all statements could be 533

either liable, split liability, or not liable. However, 534

in reality, four were liable, and four not liable, with 535

the AI assistant helping on half of each. The eight 536

adjusters were split into two groups, in which the 537

questions with AI assistance were counterbalanced. 538

The AI assisted questions gave (1) its prediction 539

for the statement, and (2) the highlighted text for 540

the most important sentence in the prediction. The 541

final analysis pooled all data from both versions of 542

the survey together to control for the effect of each 543

individual question. Each participant was given 544

the survey online and asked to complete it in their 545

own time (but during working hours), in one sitting. 546
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The study passed IRB review.547

Metrics. We measured (1) how accurately each548

adjuster classified each statement, (2) how quickly549

they classified each statement, and (3) how con-550

fidently they classified each statement. The con-551

fidence metric was measured on a 7-point Likert552

scale with the question “I am confident in this clas-553

sification”. Each user’s scores for statements with554

and without the AI assistant were averaged into a555

single result, giving two measurements for each556

metric for each user.557

7.1 Results558

First, the data was cleaned (details in Appendix A).559

Overall, our hypothesis was confirmed when we560

found user scores on time taken became widely561

divergent based on how they responded to the AI562

(note Figure 3). Those users whose time got longer563

with the AI (n=3) vs. those users whose time564

got less (n=5) saw a statistically significant dif-565

ference (tested for normality; t(6)= 3.59, p < 0.02).566

Overall, even if we pool both groups together, this567

still averaged as 110.40 ± 14.61 seconds with the568

AI assistant compared to 123.46 ± 29.61 without,569

hinting towards a benefit of the AI assistant on a570

population level. On confidence scores, a similar571

trend was seen in users whose confidence improved572

with the AI (n=3) and those whose got worse (n=3;573

t(4)=3.59, p=0.094). Overall, this averaged at 6.5574

± 0.27 with the AI assistant compared to 6.4 ±575

0.42 without it. Given the average confidence was576

so high overall, this represents a notable increase.577

As an interesting aside, only User 3 made a mis-578

take when classifying the statements (see dashed579

line in Figure 3). Specifically, they classified the580

second question as “Split Liability” when it was581

“Liable”. This question for the user had an AI as-582

sistant, indicating a possible lack of trust towards583

the AI, as all other participants agreed with the AI584

on this question. Note this user spent the longest585

time deciding on classifications with the AI, lend-586

ing evidence that a lack of trust in AI contributes587

to slower task performance.588

In summary, this study indicates two intriguing589

findings. Firstly, despite the regulatory model hav-590

ing worse performance compared to a black-box591

on class labels, humans still benefit overall from592

interacting with it, as indicated by their improved593

speed. Moreover, because adjusters were almost al-594

ways correct in their classification, their improved595

confidence score with the AI was also appropri-596

p < .02
(A)

(B)

Figure 3: Time Results: Each user’s average time to
complete statements with and without the AI assistant
is shown. Statistically significant results were seen in
those users who benefited form the AI against those
who did not, with both forming two distinct clusters
regardless of their baseline without the AI. Standard
error shown. The dashed line represents User 3 who
seemed averse to the AI overall.

ate confidence, similar to the idea of appropriate 597

trust in AI (Sanneman and Shah, 2022). Secondly, 598

as prior work has hinted (Brecheisen, 2024), how 599

people respond to the AI assistant is quite individ- 600

ual, but if those users who benefit can be identified 601

pre-hoc, the system’s potential utility increases. 602

8 Discussion & Conclusion 603

In this paper, we proposed a framework for help- 604

ing to regulate LLMs. Our primary goal was to 605

instantiate a regulatable LLM in insurance liability 606

settings and quantify the trade-off (if any) which 607

occurs related to performance and user interaction. 608

Results showed that one can constrain an LLM to 609

use regulatable concepts post training, but that this 610

does degrade performance by around 7.34% on av- 611

erage, an interaction we coin as “The Regulation 612

Performance Trade-Off”. However, given that it 613

is currently impossible to deploy these models in 614

many sensitive applications due to their black-box 615

nature (Rudin, 2019), this will often be a small 616

price to pay. More importantly though, our user 617

study with industry professionals highlighted the 618

positive utility of the method in practice for human- 619

AI collaboration despite this trade-off, which is a 620

sobering reminder that the model’s performance on 621

class labels is only part of the overall picture to be 622

considered in evaluation. We hope this data will 623

take the world a step closer to regulatable LLMs 624

that benefit end users. 625
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Limitations626

Here we detail the limitations of our work which627

give way to opportunities for future research628

LLM Constraints. Our model is limited to the629

learned representations of the original LLM. It630

could be that by training end-to-end, the results631

would be superior, but our preliminary experiments632

failed to accomplish this. It would however be in-633

teresting to explore this in future work as a way634

to achieve superior representations for the human-635

centered concepts.636

Small Sample. Our user study design opted for a637

smaller sample size in order to test it with real638

industry professionals in a realistic deployment639

setting. This has the huge advantage of truly testing640

the system “in the wild”, but comes with the trade-641

off of a small sample of users. Hence, even though642

our test reached statistical significance, it should643

be taken with a grain of salt until it is verified on a644

larger sample of end users.645

Separation of Explanation and Prediction. It is646

not clear from our user study design if the explana-647

tion or model prediction made the core difference648

in the study. As the AI assisted questions showed649

both the AI prediction and the concept explanation,650

it is not clear which made a difference. This is651

a common issue however (Lundberg et al., 2018;652

Barnett et al., 2024), as such studies are so expen-653

sive to run, and naturally have so few users, it is654

often an unfortunate necessity to avoid splitting the655

user base into so many conditions that the results656

become impossible to interpret.657

Labelling Requirements. Our method requires a658

large dataset of human annotated concepts. This is659

a large bottleneck for the method, but it is conceiv-660

able that generative language models could actually661

be made to synthesize this data, which would be662

interesting to investigate in future research.663

Generalizing. Our method is developed for664

encoder-only language models. It would require665

several alterations to make similar methods work666

for decoder-only language models or image classi-667

fiers.668
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A Appendix866

A.1 User Study Data Cleaning867

First, we found two outlier entries which were ex-868

cluded from analysis. Specifically, one user spent869

over 10x times longer to complete one question870

compared to all other entries in the dataset (includ-871

ing their own other questions), so this was excluded872

assuming the user was momentarily distracted. Ad-873

ditionally, one user logged a confidence score of 1874

for their final question, when the lowest score in875

the data overall otherwise was 4, the average > 6,876

and indeed the user in question logged 6 as their877

lowest score otherwise. Note we only excluded the878

specific metric on the specific question for the spe-879

cific user, all the user’s data otherwise was included880

as normal.881

A.2 Computational Budget882

We train our models on 4 GPUs using AWS, to883

reproduce the results would take 1 day on average.884

A.3 User Study Design885

Here we post the entire user study, as much as886

possible, for transparency.887
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Figure 9: Page 6 of user study... (study is repetitive after
this and omitted).
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