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Abstract
In this work, we propose to study the global ge-
ometrical properties of generative models. We
introduce a new Riemannian metric to assess the
similarity between any two data points. Impor-
tantly, our metric is agnostic to the parametriza-
tion of the generative model and requires only the
evaluation of its data likelihood. Moreover, the
metric leads to the conceptual definition of gener-
ative distances and generative geodesics, whose
computation can be done efficiently in the data
space. Their approximations are proven to con-
verge to their true values under mild conditions.
We showcase three proof-of-concept applications
of this global metric, including clustering, data vi-
sualization, and data interpolation, thus providing
new tools to support the geometrical understand-
ing of generative models.

1. Introduction
What does it mean for two data points to be similar, what
is the correct notion of similarity, and how can we measure
similarity with generative models? Deep generative mod-
els work by effectively learning a generative map from a
‘simple’ latent distribution, typically a Gaussian distribu-
tion in low-dimensional Euclidean space, to an empirical
distribution in data space, called the data distribution.

Several works have locally studied the geometry of the
data distribution by using the notion of the pullback met-
ric, which requires access to the latent representation of
a deep generative model and the Jacobian of the genera-
tive map. This enables (i) the control and manipulation
of the generation process in the latent space (Arvanitidis
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et al., 2018; Chen et al., 2018; Shao et al., 2018; Arvan-
itidis et al., 2021; 2022; Lee et al., 2022b;a; Lee & Park,
2023; Issenhuth et al., 2023; Ramesh et al., 2019; Zhu et al.,
2021; Choi et al., 2022; Park et al., 2023; Song et al., 2023),
and (ii) the investigation of the behavior of deep generative
models, for instance through latent interpolation (Berthelot
et al., 2019; Zhu et al., 2020; Shao et al., 2018; Michelis
& Becker, 2021; Arvanitidis et al., 2018; Chen et al., 2018;
Laine, 2018; Struski et al., 2023).

In this work, we go beyond the study of the local geom-
etry of the data distribution and instead propose a global
metric, which is agnostic to the internal parametrization
of the deep generative model and only requires the evalu-
ation of its data likelihood. This allows the introduction
of two new concepts: generative distances and generative
geodesics. Generative distances enable to assess the similar-
ity between any two points in the data space according to
the generative model, whereas generative geodesics identify
the corresponding connecting path. Notably, we show that
generative distances and geodesics can be efficiently approx-
imated by first discretizing the ambient space using a graph
constructed from training and/or synthetic data, by second
attaching weights to this graph based on the proposed metric
and then using shortest-path algorithms over the constructed
weighted graph to overcome the curse of dimensionality.
Moreover, we prove that this approximation converges to
the true value under mild conditions on the data distribution.

In summary, our key contributions are: (1) We conceptualize
a new Riemannian metric that we call generative distances
and generative geodesics along with approximation and
convergence results, §2.1. (2) We combine recent advance-
ments in geodesic computation and classical graph theory
to efficiently compute our metric, §2.2. (3) We highlight
the global nature of the new proposed metric by showcasing
three proof-of-concept applications of our theory, including
clustering, data visualization and data interpolation, §3.

1.1. Background on Geodesics and Metrics

Geodesics generalize the notion of shortest-path distance
to spaces without straight-line distances or non-Euclidean
distance. Suppose that you have to walk from one side of a
town to the other, as in Fig. 1, and are considering the path
that you’d like to take. The shortest path depends on your
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Figure 1. A visualization of how different paths can be optimal
under different preferences. The blue path has the least walking,
the yellow path is the most scenic, and the red path has the least
sun exposure. Image generated with Stable Diffusion model.

preferences, costs, budget, namely on the underlying model
you consider (in our case a generative one).

We now formalize this notion, and recall notations from
differential geometry. For a detailed definition of the terms
used, see e.g. Chap. 13 (Lee, 2013) and Chaps. 5, 6 (Lee,
2006). Let M be a smooth manifold with tangent space
TpM for point p ∈M. A metric is a function gp : TpM×
TpM→ R that is symmetric and positive definite. Given
this, we define the g norm and length of a smooth curve
γ : [0, 1]→M by

∥u∥g :=
√
gp(u, u), Lg(γ) :=

∫ 1

0

∥γ′(t)∥g dt. (1)

A non-obvious but important fact, is that the notion of length
given in Eqn. 1 is parameterization independent. Put differ-
ently, Lg(γ) measures the length of the path traced out by
γ, not a property of how γ is parameterized. For any two
p, q ∈M on the same connected component of a manifold,
we may define the Riemannian distance from p to q induced
by g by

dg(p, q) := inf
γ∈Ω(p,q)

Lg(γ) (2)

where Ω(p, q) is the set of all paths that connect p to q. A
length minimizing path, that is an argmin of the r.h.s. of
Eqn. 2, is a geodesic.

2. Our Contribution
2.1. Generative Geodesics

Let Ω ⊂ Rn, pΨ : Ω → R+ be pointwise non-negative
density function on Ω, and λ ≥ 0 and p0 > 0 be given. We
may define the generative metric gx,Ψ,λ on Ω at point x by

gx,Ψ,λ(u, v) =

(
p0 + λ

pΨ(x) + λ

)2

u · v (3)

where · denotes the Euclidean dot product. Define the Rie-
mannian metric on Ω, denoted gΨ,λ, as the flat metric de-
fined point-wise on gx,Ψ,λ. From this define the generative
geodesic dΨ,λ on Ω using Eqn.s 1 and 2.

Figure 2. A showcase of how decreasing λ changes the shortest
path between the two red points. The black curve has λ = 5, the
white curve λ = 0.05, and the other curves interpolate between the
two. The background pΨ(x) probability distribution is shown with
a yellow to blue gradient with yellow indicating high probability
and blue low probability.

Lemma 2.1 (dΨ,λ Metric). Let λ, p0 > 0, and pΨ be a
smooth probability density on Rn. Then dΨ,λ is a Rieman-
nian metric on Rn. Further, for x, y ∈ Rn,

1. as λ → ∞, dΨ,λ(x, y) converges to d2(x, y). That is
dΨ,λ converges to the Euclidean distance.

2. Let pΨ(x) > 0 for all x, and define d̃ to be the distance
induced by the metric p0

pΨ(x)u ·v. As λ→ 0, dΨ,λ → d̃.

Moreover, if Ω is bounded, then this convergence is uniform
(i.e. doesn’t depend on x, y).

The lemma allows us to understand the role and effects
of changing λ. If λ is large relative to p0 and pΨ, then

p0+λ
pΨ(x)+λ ≈ 1, and dΨ,λ reduces to the Euclidean distance.
As λ decreases, dΨ,λ tends to consider points to be close
if they are connected via a path of high likelihood, and far
apart otherwise. This idea is illustrated through an exam-
ple in Figure 2. If pΨ is the likelihood associated with a
generative model, then being connected via a path of high
likelihood implies that the two points lie in the same con-
nected components of the data manifold. It is for this reason
that we refer to it as the generative geodesic.

Definition 2.2 (Generative Geodesic). For any λ > 0 and
x, y ∈ Ω we call dΨ,λ(x, y) the generative distance from x
to y, and we call a dΨ,λ length-minimizing γ∗ ∈ Ω(x, y) a
generative geodesic.

2.2. Approximation and Convergence Guarantee

Our metric can be readily approximated using the graph-
theory approach given by (Davis & Sethuraman, 2019). The
idea is to first form an epsilon graph from the points, then
give the graph edge weights by using a quadrature for Eqn.
1, then use a shortest path finding algorithm. We denote by
X the set of data, either training or synthetic. Define the ϵ
graph, notated Gϵ(X ), as the graph formed by drawing edges
between all pairs in X less than ϵ apart. For a visualization
of G on two-dimensional domain, see Figure 3.
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(a) Plot of G0.56(X ) (b) Plot of G0.4(X )

Figure 3. A figure demonstrating the formation of the graph Gϵ(X ),
for different choices of ϵ. In both figures, the black dots denote
points in X , and black lines denote the edges in Eϵ. Notice how
when ϵ = 0.56, as in 3a, the G has one connected component,
whereas when ϵ = 0.4, as in 3b, G has several disconnected
components.

Definition 2.3 (ϵ Graph). Let ϵ > 0 and X :=
{
x(i)

}
i∈I

be given. The ϵ graph, denoted by Gϵ(X ), is defined as the
graph with vertices V := X and edges

Eϵ := {(x, x′) : where x, x′ ∈ X are s.t. ∥x− x′∥ < ϵ} .

Definition 2.4 (Weighted ϵ graph). Let Gϵ(X ), Ψ, p0 and λ
be given. We call the weighted ϵ graph, denoted by Ĝϵ(X ),
the graph Gϵ(X ) with edge weights given by LgΨ,λ

(ℓx,y)
where (x, y) ∈ Eϵ ℓx,y is a straight line from x to y.

Similarly, we define the K-approximate weighted ϵ graph,
denoted by Ĝϵ,K(X ), as the graph Gϵ(X ) with edge weights
given by applying an integral quadrature1 to LgΨ,λ

(ℓx,y).

Let Ĝ be an edge weighted graph with vertices X . Given
two vertices x, y ∈ Ĝ define the linear interpolating cost,
denoted L̂(x, y; Ĝ), as the cost of the minimal path con-
necting x to y in Ĝ. If x and y are not connected in Ĝ,
then define L̂n,K(x, y; Ĝ) = ∞. The idea is that we may
approximate dΨ,λ(x, y) by computing L̂n,K(x, y; Ĝ). The
following theorem is the main theoretical contribution of
this paper and says that this approximation converges as the
number of points in X increases and ϵ decreases2. This is
true not only in value, but also in minimizing path, as the
following theorem shows. Its proof is in Appendix A.1.
Theorem 2.5 (Convergence of Linear Interpolation Costs
to Riemannian Distance). Let Xn be n realizations of a
uniform random variable X over Ω. Then for any x, y ∈ Ω
sequence (Kn)n=1,... so that limn→∞ Kn =∞, and ϵn →
0 sufficiently quickly. Then the following results hold with
probability 1 (over X).

1. Graph Becomes Connected There is an N so that for

1We use equispaced trapezoidal rule for our numerical experi-
ments.

2This point of ϵ decreasing is somewhat technical, and not
elaborated upon in this manuscript. It is summarized in Eqn. 2.6
(Davis & Sethuraman, 2019) and the surrounding discussion.

Figure 4. Error analysis of the true geodesic length vs the length
of the approximated geodesic as described in Theorem 2.5, in a
log plot. The x axis indicates the number of points and the y axis
indicates the absolute error in the geodesic approximation. The
blue line uses points sampled uniformly from the ambient space,
and the orange line uses points sampled from pΨ.

all n ≥ N , there is a path from x to y in Ĝϵn,Kn
(Xn ∪

{x, y}).

2. Convergence in Length
limn→∞ L̂n,Kn

(x, y; Ĝϵn,Kn
(Xn∪{x,y}))=dΨ,λ(x,y).

3. Convergence in Geodesic For any sequence of optimal
paths lv(n) ∈ argmin L̂n,Kn

(x, y), any subsequence
of (lv(n))n=1,... has a further subsequence of linear
paths that converges uniformly to a limit path γ ∈
argminL and of the discrete paths in the Hausdorff
sense to the true generative geodesic, Sγ . Further, if
the path is unique (up to reparameterization), then
(lv(n))n=1,... converges in Hausdorff distance to Sγ .

A visualization of the convergence described by Theorem
2.5 is shown in Figure 4. The statement in Theorem 2.5
requires the data to be sampled from a uniform distribution,
but we still numerically observe convergence even if the
samples are not uniform. In fact, we observe faster conver-
gence when the data is sampled from pΨ. In Appendix B, we
provide details about the algorithm to compute generative
distances and corresponding geodesics.

3. Applications/Experiments
Detailed experiment settings can be found in Appendix C.

3.1. Clustering with Geodesics

In this section, we verify the effectiveness of the geodesic on
three datasets: two parallel and axis-aligned MoG (Narror
MoG), two concentric circles, and two spirals. Specifically,
given a set of points {xi} from a dataset, we use the geodesic
to construct an affinity matrix A whose entries are defined
as Aij := exp(−dΨ,λ(xi, xj)/τ where τ is a temperature
hyper-parameter to control the level of smoothness of A.
Then the (i, j)-th entry of A measures similarity between xi

and xj , with higher value indicating larger similarity under
the Riemannian metric. We then use A to run clustering

3



(Deep) Generative Geodesics

Figure 5. Euclidean and geodesic affinity visualization on various
toy datasets. First column shows data samples, where color de-
notes the cluster each sample was generated from. Second column
shows data density, where brighter color means higher density.
Third and fourth columns show Euclidean and geodesic affinity,
respectively, between the red cross and rest of the points. Brighter
color means higher affinity.

Figure 6. Clustering normalized mutual information (NMI) w.r.t.
the temperature hyper-parameter τ using Euclidean and geodesic
affinity matrices. Higher NMI is better. NMI = 0 means random
cluster assignment and NMI = 1 means perfect clustering.

algorithms. We consider two clustering methods: Ising
kernel (Kumagai et al., 2023) and spectral clustering. Figure
5 illustrates how geodesic affinity is able to provide robust
clustering results. Indeed, compared to Euclidean affinity,
we observe that geodesic affinity takes into account the
geometric structure of the dataset.

In Figure 6, we see that clustering with geodesic affinity ma-
trices out-perform clustering with Euclidean affinity on most
of the datasets. Moreover, clustering with geodesic affinity
is more robust to the choice of τ . Specifically, Euclidean
affinity achieves its peak performance only for a narrow
subset τ ∈ (10−3, 1) whereas geodesic affinity performs
consistently well for all sufficiently large τ .

3.2. Embedding with Geodesics

We also visualize t-SNE embeddings computed w.r.t. the
Euclidean metric and our Riemannian metric. Again, in
Figure 7, we can observe that points on the same connected
component, i.e., cluster, are nearby in the embedding space
for the geodesic. In fact, t-SNE with the Riemannian metric
always produces linearly separable embeddings, so we can
achieve near-perfect classification with a linear classifier

Figure 7. t-SNE with Euclidean and Riemannian metrics. Color
denotes cluster label of each point.

Figure 8. Interpolation on two moons. Each interpolation is illus-
trated by a red path.

trained on the embeddings.

3.3. Interpolating with Geodesics

Finally, we visualize geodesics approximated by our Riem-
manian metric. In Figure 8, we train a RealNVP (Dinh et al.,
2017) on the two moons dataset, use the density estimated
by RealNVP to calculate the geodesics. For baseline, we per-
form linear interpolation in the latent space of RealNVP. We
observe that latent interpolation often produces convoluted
paths whereas geodesics traverse the shortest path along the
manifold. We also visualize geodesics between MNIST
images in Figure 9, where the data density is approximated
by a mixture of Gaussians with 2k components and variance
0.0052. For comparison, we also visualize interpolation in
the latent space of a Consistency Trajectory Model (Kim
et al., 2024) which estimates diffusion probability flow ODE
trajectories. We observe that the diffusion model often has
sudden skips or artifacts when transitioning between dig-
its of different identities. On the other hand, the geodesic
always provides smooth transition between digits.

Figure 9. Interpolation on MNIST.
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A. Proofs
A.1. Proof of Theorem 2.5

The proof of Theorem 2.5 has two parts. In the first part we prove that the linear interpolating cost (defined below) converges
to dΨ,λ. Next, we show that the linear interpolating cost may be approximated again with L̂Ψ,λ using a quadrature.

Definition A.1 (Linear Interpolating Cost). Let x, y ∈ X and Vn(x, y) notate the set of all paths in Gn from x to y of the
form Vn(x, y) := {(v0, v1, . . . , vm−1, vm)|m > 0, v0 = x, vm = y, v1, . . . , vm−1 ∈ X} . If Vn(x, y) is nonempty, we say
that Linear Interpolating Cost from x, y is

Ln(x, y) := min
(v0,...,vm)∈Vn(x,y)

m−1∑
i=0

L((vi, vi+1); Ψ, λ). (4)

If Vn(x, y) is empty, we say that Ln(x, y) = +∞.

Before proceeding to the Proof of Theorem 2.5, we first prove the following proposition about Ln.

Proposition A.2 (Convergence of Linear Interpolation Costs to Geodesic Cost). Let (ϵn)i=1,... satisfy the decay rate
assumption. Let Xn be n realizations of a uniform random variable X over Ω. Then the following results hold with
probability 1.

1. For any x, y ∈ Xn, Vn(x, y) is non-empty.

2. limn→∞ Ln(x, y) = dΨ,λ(x, y).

3. For any sequence of optimal paths lv(n) ∈ argminLn(x, y) and subsequence of (lv(n))n=1,... has a further subsequence
of linear paths that converges uniformly to a limit path γ ∈ argminL and of the discrete paths in the Hausdorff
sense to Sγ an optimal path. Further, if the path is unique (up to reparameterization), then (lv(n))n=1,... converges in
Hausdorff distance to Sγ .

Proof. The first point follows from the paragraph at the end of Pg. 5 (Davis & Sethuraman, 2019).

For all x and λ > 0, p0+λ
pΨ(x)+λ is positive, hence Lemma 2.6 (Davis & Sethuraman, 2019) applies by taking M(x) := p0+λ

pΨ(x)+λ .
Hence, (Lip), (Hilb), (TrIneq) and (Pythag) all apply for α > 1. Therefore the full consequence of Theorem 2.8 (Davis &
Sethuraman, 2019) apply.

The second point follows from equation limn→∞ minγ∈Ωl
n(x,t)

Ln(x, y) = minγ∈Ω(x,y) L(γ; Ψ, λ). But, we have that
minγ∈Ω(x,y) L(γ; Ψ, λ) = dΨ,λ(x, y) from the work above.

Finally, the third point follows from the final three sentences in the conclusion of Theorem 2.8 (Davis & Sethuraman,
2019).

Next we prove two lemmas that show that Ln and L̂n,K are close, and become closer as n,K →∞.

Lemma A.3 (Approximating Edge Weights). Let Gn be a λ weighted ϵ graph with edge (x, y). Then for any δ > 0, there is
a K ∈ N so that ∣∣∣∣∣L((x, y); Ψ, λ)−

∥y − x∥2
K

K−1∑
i=0

p0 + λ

pΨ
((
1− i

K

)
x+ i

K y
)
+ λ

∣∣∣∣∣ < δ (5)

Proof. For x, y ∈ Ω, the unit-speed parameterization of the straight-line path connecting x to y is given by

γ(t) :=

(
1− t

∥y − x∥2

)
x+

t

∥y − x∥2
y, γ̇(t) =

y − x

∥y − x∥2
.
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Hence, we may write

L((x, y); Ψ, λ) =

∫ ∥y−x∥2

0

f

((
1− t

∥y − x∥2

)
x+

t

∥y − x∥2
y,

y − x

∥y − x∥2
;λ

)
dt

=

∫ ∥y−x∥2

0

p0 + λ

pΨ

((
1− t

∥y−x∥2

)
x+ t

∥y−x∥2
y
)
+ λ

dt. (6)

For ∆t :=
∥y−x∥2

K , the K-piece left Riemann sum of the r.h.s. of 6 is

K−1∑
i=0

f(γ(∆ti), γ̇(∆ti); Ψ, λ)∆t =
∥y − x∥2

K

K−1∑
i=0

p0 + λ

pΨ
((
1− i

K

)
x+ i

K y
)
+ λ

(7)

The quantity in the integrand of Eqn. 6 is continuous as a function of t, and so from standard calculus results there is some
K so that ∣∣∣∣∣L((x, y); Ψ, λ)−

∥y − x∥2
K

K−1∑
i=0

p0 + λ

pΨ
((
1− i

K

)
x+ i

K y
)
+ λ

∣∣∣∣∣ < δ. (8)

Lemma A.4 (Approximating Linear Interpolating Cost). Let X and λ be given, then for any δ there is a K ∈ N such that
for all x, y ∈ X , ∣∣∣Ln(x, y)− L̂n,K(x, y)

∣∣∣ < δ. (9)

Proof. Let M be the length (in number of edges) between all Ln minimal paths connecting x, y for any two x, y. Then, we
may apply Lemma Approximating Edge Weights to get a K such that the edge weight error is no more than δ/M . Then, we
have for that choice of K and any path (v0, . . . , vm) that∣∣∣∣∣∣

m−1∑
i=0

L((vi, vi+1); Ψ, λ)−
∥y − x∥2

K

m−1∑
i=0

K−1∑
j=0

p0 + λ

pΨ
((
1− j

K

)
vi +

j
K vi+1

)
+ λ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
m−1∑
i=0

L((vi, vi+1); Ψ, λ)−
∥y − x∥2

K

K−1∑
j=0

p0 + λ

pΨ
((
1− j

K

)
vi +

j
K vi+1

)
+ λ

∣∣∣∣∣∣
≤

m−1∑
i=0

∣∣∣∣∣∣L((vi, vi+1); Ψ, λ)−
∥y − x∥2

K

K−1∑
j=0

p0 + λ

pΨ
((
1− j

K

)
vi +

j
K vi+1

)
+ λ

∣∣∣∣∣∣
≤

m−1∑
i=0

δ

M
=

m

M
δ ≤ δ

This bound holds for all paths, hence it holds for the minimal paths too. Let v∗ := (v∗0 , . . . , v
∗
m) be an Ln minimizing path

from x, y, then ∣∣∣Ln(x, y)− L̂n,K(x, y)
∣∣∣

≤

∣∣∣∣∣∣
m−1∑
i=0

L((v∗i , v
∗
i+1); Ψ, λ)−

∥y − x∥2
K

m−1∑
i=0

K−1∑
j=0

p0 + λ

pΨ
((
1− j

K

)
v∗i + j

K v∗i+1

)
+ λ

∣∣∣∣∣∣
≤ δ.
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Finally, we present the final proof of Theorem 2.5.

Proof. The vertices and edges of Gn and Ĝn,Kn are the same, so the existence of a path connecting x and y in X follow
from the same arguments as in Prop. A.2.

Point 2 follows from combining point 2 of Prop. A.2 with Lemma A.4.

For λ > 0, p0+λ
pΨ(x)+λ is smooth on compact set, and so has uniformly bounded gradients. Hence, for any δ, there is a uniform

K that can be so that for all (x, y) such that x, y ∈ Ω. Hence, as n→∞,∣∣∣∣∣L(e; Ψ, λ)−
∥y − x∥2

K

K−1∑
i=0

p0 + λ

pΨ
((
1− i

K

)
x+ i

K y
)
+ λ

∣∣∣∣∣→ 0 (10)

uniformly in e. Hence, for any sequence (lv(n))n=1,... of paths uniformly bounded in length,

lim
n→∞

∣∣∣∣∣∣
mn−1∑
i=0

L((vi, vi+1); Ψ, λ)−
∥y − x∥2

K

Kn−1∑
j=0

p0 + λ

pΨ
((
1− j

K

)
vi +

j
K vi+1

)
+ λ

∣∣∣∣∣∣ = 0, (11)

where lv(n) = (v0, . . . , vmn
). Put simply, for a sequence of finite-length paths in G, the costs of Ln and L̂n,Kn

converge to
each other as n→∞.

Now, let lv(n) ∈ argmin L̂n,Kn
(x, y). We have that p0+λ

pΨ(x)+λ is bounded from below, hence lv(n) are all uniformly bounded

in length. Hence, Eqn. 11 applies, and so lim infn→∞ Ln(lv(n)) ≤ limn→∞ L̂n,Kn
(lv(n)). The same argument holds

reversing the roles of Ln and L̂n,Kn
, hence any minimizing sequence of Ln is one of L̂n,Kn

and vice-versa.

Now suppose that (lv(n))n=1,... ∈ argmin L̂n,Kn
(x, y) is a sequence of optimal paths. It is also a sequence of optimal

paths of Ln. Thus, any subsequence of (lv(n)) has a further subsequence so that Theorem A.2 point 3 applies, and so has a
further subsequence that converges in Hausdorff distance to Sγ .

B. Algorithm
Algorithm 1 describes the strategy to compute Ĝn,K . From Ĝn,K , we can compute the minimal path between two end points
x and y and its length. This requires us to solve a standard graph theorem problem, which can be solved with Dijkstra’s
algorithm, see e.g. (Crauser et al., 1998; Ortega-Arranz et al., 2013). A GPU accelerated python implementation of the
single source shortest path (SSSP) algorithm can be found in the RAPIDs library (Team, 2023).

Algorithm 1 Compute Ĝn,K
Require: edge ϵ,X ⊂ X , λ, p

# Compute Gn with vertices V , edges E
1: V,E ← X, ∅
2: for (x, y) ∈ X ×X , x ̸= y do
3: if d2(x, y) ≤ ϵ then
4: E.add(x, y)
5: end if
6: end for

# Compute edge weights, W : E → R
7: W reset
8: for edge (x, y) ∈ E do
9: W ((x, y))← Integral Quadrature for Lg(ℓx,y)

10: end for
11: return Ĝn,K = (Gn,W ).
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C. Experiment Settings
C.1. Section 2.2

In Figure 4, we used a pΨ given by

pΨ(x) :=
e−10| 34−∥x∥2|

Z
. (12)

defined over [0, 1]2, where Z is a normalization constant. We used K = 10, λ = 0.01 ϵ = 0.158. The values of n chosen
ranged from n = 100 to n = 10, 000. The geodesic error was measured between the points (−1, 0) and (1, 0). For each
value of n, we computed the associated geodesic error 20 times. Figure 4 reports the average error across the 20 trials.

C.2. Section 3.1

We use n = 200, K = 10, λ = 10−8, and ϵ = 10 to compute Ĝn,K . We use spectral clustering in the scikit-learn
Python library, and Ising clustering from https://github.com/kumagaimasahito/Ising-based_Kernel_
Clustering. We use the default clustering hyper-parameters. For evaluation, we use normalized mutual information also
in scikit-learn.

C.3. Section 3.2

We use n = 200, K = 10, λ = 10−8, and ϵ = 10 to compute Ĝn,K . We use t-SNE in the scikit-learn Python library.

C.4. Section 3.3

Two Moons. We train a RealNVP model using the code in https://github.com/xqding/RealNVP. We use
n = 1024, K = 10, λ = 10−8, and ϵ = 10 to compute Ĝn,K . For latent interpolation, given two points, we map them to
latent vectors using the RealNVP model, linearly interpolate the latent vectors, and then push the latent vectors to data space
by again using the RealNVP model.

MNIST. We use n = 2000, K = 10, λ = 0.005, and adaptively choose ϵ for each vertex in Ĝn,K such that it always
has at least 5 neighbors. For the baseline, we train a Consistency Trajectory Model on MNIST using the code from
https://github.com/sony/ctm, and interpolate images by linearly interpolating latent vectors and pushing the
vectors through the model.
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