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ABSTRACT

Nowadays, with the rising number of sensors in sectors such as healthcare and
industry, the problem of multivariate time series classification (MTSC) is getting
increasingly relevant and is a prime target for machine and deep learning solu-
tions. Their expanding adoption in real-world environments is causing a shift in
focus from the pursuit of ever higher prediction accuracy with complex models to-
wards practical, deployable solutions that balance accuracy and parameters such
as prediction speed. An MTSC solution that has attracted attention recently is
ROCKET, based on random convolutional kernels, both because of its very fast
training process and its state-of-the-art accuracy. However, the large number of
features it utilizes may be detrimental to inference time. Examining its theoretical
background and limitations enables us to address potential drawbacks and present
LightWaveS: a distributed solution for accurate MTSC, which is fast both during
training and inference. Specifically, utilizing a wavelet scattering transformation
of the time series and distributed feature selection, we manage to create a solu-
tion which employs just 2,5% of the ROCKET features, while achieving accuracy
comparable to recent deep learning solutions. LightWaveS also scales well with
more nodes and large numbers of channels. In addition, it can significantly reduce
the input size and also provide insight to an MTSC problem by keeping only the
most useful channels. We present three versions of our algorithm and their results
on training time, accuracy, inference speedup and scalability. We show that we
achieve speedup ranging from 9x to 65x compared to ROCKET during inference
on an edge device, on datasets with comparable accuracy.

1 INTRODUCTION

Time series classification is the task of characterizing a series of values observed in sequential mo-
ments in time as belonging to one of two or more categories, or classes. There has been extensive
work on univariate time series classification with machine and deep learning methods, as observed
in surveys such as |Bagnall et al.| (2017). In practice, as noted in Ruiz et al.,| (2021), many prob-
lems are described by more than one channels of information, turning the task into multivariate
time series classification (MTSC). Some recent contributing factors have been the development of
smaller and cheaper sensors for the measurement of various quantities, the general advancement of
Internet of Things and the engagement with inherently more complex problems in sectors such as
healthcare and industry, which benefit from additional information channels. In addition, the rise of
edge computing and deployment of models in such environments makes it necessary to also con-
sider the conditions and resources of the computational nodes on which those models will execute.
This change in perspective makes it important to include, apart from accuracy, variables such as
prediction speed or throughput in the evaluation of a model’s suitability for a given task.

In the recent evaluation of advances in MTSC (Ruiz et al.| 2021)), one solution that shows good
performance is ROCKET (Dempster et al) [2019), both in terms of accuracy and training time.
ROCKET utilizes random convolutions to transform the time series channels and then extracts
two features per convolution that are used with a linear classifier. The evolution of ROCKET,
MINIROCKET (Dempster et al.l [2020), is proposed as the new default variant of ROCKET by
its authors and utilizes only one feature per kernel (percentage of positive values), thereby halving
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the features. It also utilizes other optimizations to speed up ROCKET in general, and uses a mini-
mally random approach with a given set of kernels. Another variant, MultiRocket (Tan et al.,|2021)),
uses more features per convolution to achieve better accuracy at the expense of transformation time.
Both ROCKET and MINIROCKET have been developed for univariate time series. Although the
authors of MINIROCKET characterize their provided repository code for multivariate time series as
naive, it is the same algorithmic logic in the form of a ROCKET extension in the sktime (Loning
et al.| 2019) repository that achieves the impressive performance mentioned above.

In (MINI)ROCKET, the authors encourage research into more sophisticated approaches for multi-
variate time series. We can start by identifying potential points that can be improved. One point with
(MINDROCKET that we try to address in our work is that the default number of features, although
beneficial to accuracy, can be highly redundant, and extreme for some datasets, leading to unnec-
essarily high transformation and inference times during deployment. In addition, due to the fixed
process and number of generated features, there is a large discrepancy in the representation (features
per channel) across datasets with different dimensions. Moreover, the indiscriminate inclusion of
all channels in the feature generation is susceptible to uninformative series. We present experiments
to illustrate the above points in section @ Finally, the stochastic element, especially the random
channel combination, although beneficial to accuracy, does not offer significant interpretability.

Based on this analysis, we propose LightWaveS, a framework for fast, distributed transformation
of multivariate time series based on convolutional kernels, wavelet scattering and feature selection,
for lightweight and accurate classification with linear classifiers. Our solution aims to keep the suc-
cessful aspects of the ROCKET model family, such as the short transformation time, the arbitrary
convolutional kernel approach and the few descriptive features per kernel. On top of that, Light-
WaveS adds well-studied signal theory, multi-nodeﬂ distribution and smart feature selection to ad-
dress the drawbacks identified above. The trade-off that we propose compared to (MIN)ROCKET
is clear: we take advantage of additional computational resources during training time to keep the
short duration and also save time during inference. Our contributions with LightWaveS are:

* We introduce the concept of wavelet scattering based on arbitrary kernels

* We achieve accuracy comparable to state-of-the-art in the majority of the UEA datasets
(Bagnall et al.| [2018), using only a fraction of the number of features used by
(MINI)ROCKET

* We distribute the framework to achieve training time comparable to (MINI)ROCKET on 1
node, and shorter on multiple nodes

* We achieve linear scaling of training time with the number of channels, tested in experi-
ments with up to 900 channels

* Depending on the dataset size, we achieve good speedup with additional nodes, tested in
experiments with up to 8 nodes

* We achieve inference speedups ranging from 9x to 65x compared to ROCKET on an edge
device in datasets with comparable accuracy

With this work, we take an efficiency-centric approach, focusing on the practicality and the inference
speed of a model that may be deployed on an edge device, without necessarily trying to surpass the
state-of-the-art in terms of accuracy.

2 RELATED WORK

2.1 MULTIVARIATE TIME SERIES CLASSIFICATION

Due to the recent rise in popularity of the deep learning field, there is a multitude of models that
can be easily adapted to incorporate the additional dimension of MTSC (Ismail Fawaz et al.,[2019).
A detailed evaluation of recent MTSC methods appears in Ruiz et al.[| (2021). Convolutions in
particular, either 1-D or with more dimensions, are a very popular module when dealing with time
series, as seen in models such as TapNet (Zhang et al., [2020), InceptionTime (Fawaz et al., 2020)
and OS-CNN (Tang et al., |2021) among others. In these works, convolutions are combined in

'With the term node we refer to a computing node in a distributed (networked) system.
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various architectures with other modules, such as fully connected networks, and achieve impressive
classification accuracy. The majority of those deep learning models takes a significant amount of
time and memory to train even on GPU nodes, ranging from hours to even days, depending on the
dataset size (Ruiz et al.l [2021). In contrast, our method takes less than 20 minutes to transform,
train and test all 30 UEA datasets on a single CPU node with a linear classifier. If we distribute the
solution on e.g. 8 CPU nodes, this time drops to under 4 minutes. An additional challenge is the
interpretability of deep learning models. The usage of wavelets by LightWaveS and their method
of application gives the potential to interpret the result based on signal theory and the input channel
filtering helps to extract useful conclusions about a given time series problem.

2.2 FEATURE EXTRACTION AND SELECTION

Deep learning models implicitly extract features from the input along their first layers. In contrast,
explicitly extracting features to use with classifiers has also been visited in multiple ways. We have
already described how the *ROCKET family extracts features from the convolutions of random ker-
nels with the input, an idea that has also been explored before, such as in |[Farahmand et al.| (2017).
Another example is tsfresh (Christ et al.,[2018]), which extracts a large number of predefined statisti-
cal features from the time series and then through feature selection reduces them to the most useful.
Similarly, catch22 (Lubba et al., 2019) is a solution that uses only 22 predefined characteristics to
transform time series, aiming for a very fast transformation. A different approach is presented in
WEASEL+MUSE (Schifer & Leser, [2018), which extracts features based on a bag-of-patterns ap-
proach and selects the most useful based on a x? test. LightWaveS, similarly to MINIROCKET,
depends on an arbitrary set of convolutions and only 4 statistical features, extracted however from
the coefficients of wavelet scattering. Due to the speed of the convolution operation and the sim-
plicity of the features, we can achieve extremely fast training and inference times, while giving the
model enough complexity to accommodate difficult datasets, where predefined statistical features
on the raw time series values may not be descriptive enough.

2.3 DISTRIBUTED TRAINING

As the size of the deep learning models and the amount of input data increase, it is increasingly dif-
ficult to perform training on a single node. For that reason, distribution of the training process across
multiple nodes is becoming increasingly necessary (Mayer & Jacobsen, [2020). This distribution can
be implemented with methods such as data parallelism, where each node applies the same opera-
tions on different parts of the input data, with frequent communication among the nodes to update
the model. Distribution can also be applied on solutions that do not depend on deep learning, such
as tsfresh mentioned above, which supports operation on a cluster through Dask (Dask Development
Teaml 2016). LightWaveS is distributed using MPI in a data-parallel way, but in contrast to the com-
munication heavy training of DL models, there is efficient and minimal communication between the
worker nodes and the central coordinator. Specifically, the nodes only send a limited number of fea-
ture scores and descriptions once during the execution, making communication a trivial percentage
of the whole process.

2.4 WAVELETS

Wavelets are localized waveforms (as seen in Figure[T|on the right) and are a well-studied method in
signal processing that has been used extensively in the analysis of time series (Mallat, [1999)). There
is vast literature with methods and applications of wavelets on all types of problems, ranging from
healthcare to audio analysis, and well-studied and developed families of wavelets suitable for spe-
cific applications (Addison, 2017 Merry & Steinbuch, [2005)). There are also numerous approaches
that combine wavelets with machine and deep learning methods, either as implicit or explicit feature
extractors (Li et al., |2021; [Wang et al., 2018)). A seminal work is Bruna & Mallat| (2013), where
the concept of a wavelet scattering network using a Morlet wavelet is introduced, in combination
with linear and support vector machine classifiers for hand-written digit classification and texture
recognition. This method was constructed to be invariant to translations of the input and stable to
small deformations. It has also been recently used in combination with deep learning networks for
specific applications (Soro & Lee, |[2019; Jin & Duanl 2020).
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LightWaveS aims to combine the strong points of these works under a single generalized framework,
with a focus on efficiency. We aim to bridge the gap between ROCKET and the wavelet theory, and
we progress to the next logical step of wavelet scattering. We keep this approach lightweight, both
in depth and paths of the scattering, so we can apply it to time series channels on a massive scale
in a very short time. The arbitrary base set of wavelets can potentially be extended based on expert
opinion, backed by the solid theory behind wavelets and their applications, making LightWaveS
a suitable platform for experimentation on solutions for MTSC problems. Finally, the hierarchical
feature filtering leads to the most relevant output features of the scattering coefficients being selected.

3 PROPOSED FRAMEWORK

3.1 PRELIMINARIES

3.1.1 MINIROCKET FUNDAMENTALS

(MINI)ROCKET is primarily based on the convolution operation, in which a kernel k with size [
(k € RY), bias 8 and dilation factor d is used to calculate a sliding dot product with a 1-D input
x € RY of size L and produce an output z’, where each element is calculated as (Dempster et al.,
2019):

-1
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j=0
MINIROCKET generates a large number (10000 by default) of those kernels. The weights are
selected from an empirically chosen subset of 84 kernels of length 9 with weights in {2, —1}. This
has been chosen to limit the possible weight combinations but is not unique for the purpose, and
other lengths, different values or weights drawn from ~ A/(0, 1) are equally effective (Dempster
et al} [2020). The only thing that is important is that the kernel weights have sum 0. The bias
is drawn from the convolution output, and the dilation is drawn from the set D = {|2¢]}, where
e~ U(0,m), with m such that the length of the dilated kernel does not exceed that of the input.
Finally, half of the kernels use padding, which appends zeros to either side of the input so that
a’ and x have the same dimension. The feature extracted from each of the 10000 outputs is the
percentage of positive values, and is used for the final classification.

3.1.2 WAVELET SCATTERING

Wavelet scattering is the process of applying wavelet transforms in a cascading manner (Bruna &
Mallat, [2013)), combined with non-linearities and pooling. The wavelet transform is a method used
to approximate a signal using a set of wavelets which originate from a “mother” wavelet ¥ (t), scaled
by s and shifted by b (Young, |2012). Each such wavelet can be described as:

1 t—>

Vs (1) \/g\ll( .

Intuitively, we can relate these wavelets to the convolution filters that we discussed above, with the

dilation being the scale of the wavelets (how “narrow” or "wide” they are), and the shift parameter b

corresponding to the starting point of the convolution on the input (¢4dx*7). This connection between

convolutional networks and the scattering architecture has also been thoroughly explored in|Mallat

(2016). We can see an example of a wavelet convolution in Figure[I] where the response is strong at

the points where the sliding wavelet “matches” the signal. In addition, the wavelet set created from

a mother wavelet is parallel to the way that MINIROCKET has a fixed set of kernel weights, for
which different paddings and dilations are randomly selected, generating the child kernels.

) 2

In the wavelet scattering transform, on each level A, the previous result is convoluted with each
wavelet 1, (kernel) and a complex modulus operator is applied before propagating the result to the
next level, such that:

UN = [U =1+ ¢y, | 3)
and the scattering coefficients that result from each level are
Sl =U[A] x ¢ “4)
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where ¢ is an averaging kernel. Since on every level of the scattering transform there can be multiple
candidate wavelets (kernels), there is a geometric progression of potential paths, as can be seen in
the graphic representation of the process in Figure[l]
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Figure 1: 2-level wavelet scattering (Bruna & Mallat, 2013) and wavelet convolution example

Throughout the above intuitive description, we connected the concepts of MINIROCKET with the
wavelet theory. In MINIROCKET the prototype kernels have zero mean, which corresponds to
a desirable constraint of mother wavelets (Young, 2012). Under this new context, we can re-
consider MINIROCKET as a classifier based on convolutions with random child wavelets of an
arbitrary set of mother wavelets. In addition, although not being wavelet scattering, MINIROCKET
can be intuitively mapped on the first level, with its kernel set equivalent to the first level set,
{\110,173, s \IJO,,W}, with s drawn from DD as we said above. Since each kernel is slid across the
input, we can think of b as taking all discrete values from 0 t0 l;nput — lkerner * s for each candi-
date wavelet, and the convolution output (response) as being the combined response of all shifted
wavelets, as portrayed in Figure (I} However, MINIROCKET extracts the features before the appli-
cation of any modulus operator, so it does not satisfy the rest of the wavelet scattering transform
requirements.

3.2 ALGORITHM

Based on the above observations, we improve the approach and reach the crux of LightWaveS:
Lightweight Wavelet Scattering based on random wavelets. The term lightweight refers both to the
system optimizations of the framework that make it fast, such as the distribution, as well as the fact
that only a reduced set of wavelet scattering paths are computed. Although it is established that not
all paths need to be considered in a scattering network (Bruna & Mallat, 2013)), since we are aiming
for fast training and inference, we take this notion to its limit. We compute all coefficients for the
given kernels and dilations for the first level, but we consider only one path per first level output for
the second level. In this way, we limit significantly the memory and computation time required for
the extracted features, while accepting the trade-off of losing some descriptive coefficients.

The choice of the kernels to be applied in the second layer is not immediately clear. We can consider
heuristics such as selecting kernels whose first level coefficients gave features with high correlation
to the classification task. However, after experimenting with such heuristics, and even with up to
four second layer paths, we found that the final classification results were not better than the simple
approach of applying the same kernel and dilation, a concept intuitively and loosely similar to the
process of a discrete wavelet transform (Sundararajan, [2016). Thus, we end up computing only the
paths shown in bold in Figure[I] which means that the same kernel is applied twice consecutively.
In addition, we limit the depth to two layers, as a good balance point between computational speed
and informative coefficients, as observed inBruna & Mallat (2013).

The main steps of LightWaveS are the following: Initially, the dataset is split among the nodes
across the channel dimension. For larger datasets, the nodes receive only a sample of the total
training examples, in order to speed up computation. This sample selection is the only source of
randomness in the algorithm. Then, on each node, the kernels are generated, which for our purpose
are based on the same subset of 84 kernels that MINIROCKET uses. We limit randomness even
more, so each kernel is dilated with all dilations in the set {20,2% ...,2°}. We also completely
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remove bias, and the padding is common to all kernels so that the output dimension is equal to the
input.

All those kernels are applied to each of the input channels according to the wavelet scattering process
described above. The generated kernels have no complex part, so the non-linearity modulus operator
is equal to the absolute value of the convolution output. We also downsample the U[\;] result by
a factor of 2 before propagating it, while keeping the same scale for the kernel, so it operates in
lower frequencies. This is according to the insight in Bruna & Mallat (2013)) that the most useful
paths are frequency decreasing. As far as the pooling is concerned, since we want to limit the
number of coefficients that will be used as features, we use max and min pooling, instead of the
averaging kernel. In this way, although we accept the loss of more information, we have fewer
features and we also avoid two additional convolutions per path. The features that are extracted
from each scattering path are 8: the first four are the max and min value of U[A;] and U[)2]. We
selected those as the most straightforward non-linearities that can be quickly calculated during the
convolution process. The other four are the percentage of positive values (ppv) and normalized
longer sequence of positive values (Is) in U[A1] and U[Az] before the application of the modulus
operator. We keep these features based on MINIROCKET and MultiROCKET respectively, since
they have proven to be useful during classification.

After the feature extraction, the first selection phase is performed on each node in a supervised way
using ANOVA. The main node then gathers the top scoring features and performs the final feature
selection, using the minimum-redundancy, maximum-relevance algorithm (Peng et al., 2005), in-
crementally selecting the feature with the highest score. This score is determined by its F-statistic
(relevance to the class), divided by its average correlation to the previously selected features (redun-
dancy). In our case, we use the Pearson correlation coefficient as the correlation indicator. In both
phases the feature selection methods are filter based, which are fast, classifier-independent and can
be implemented to scale well with the number of features (Li et al.,2017). The design choices that
are not guided or restricted by theory, such as the feature scoring function, are straightforward and
focused on computational efficiency. We also performed empirical experimentation on a develop-
ment subset, although without exhaustive parameter tuning of the method.

4 EXPERIMENTS

4.1 DATASETS

We select as benchmark the UEA collection of multivariate datasets (Bagnall et al.|2018)), excluding
InsectWingbeat, since due to its large size it presented issues when training ROCKET. The datasets
are described in detail in Ruiz et al.| (2021). Following the example of Dempster et al.| (2019),
we selected 15 of the 30 UEA datasets to work on when developing the method, in order to draw
generic conclusions and avoid overfitting the whole collection. In addition, we prepare and use five
machinery related datasets:

 MAFAULDA, from Machinery Fault Database (MAF) is a dataset with 8 sensor measure-
ments on a machine fault simulator, taken under normal conditions and five different fault
types. We downsample the measurements so that the input length is 1000 steps and we split
the dataset in train and test with ratio 85-15 %.

 TURBOFAN (Saxena & Goebel, [2008), is an engine degradation simulation dataset col-
lection, containing 4 datasets with operation simulations of engines that run until failure
under different conditions, with measurements from 26 sensors. The goal is to predict
the remaining useful life (RUL) of the engines. In order to turn the problem into binary
classification, we prepare the dataset and the labels in a suitable way with the goal being
classifying RUL as more or less than 20 operational cycles.

4.2 EXPERIMENTAL SETUP

All training experiments were run on nodes which have dual 8-core 2.4 GHz (Intel Haswell ES5-
2630-v3) CPUs and 64GB of RAM. The inference experiments are executed on a Jetson Xavier
board which has an 8-core ARM CPU. We ran (MINI)ROCKET on the 29 UEA datasets and the 5
additional datasets using the default number of features (20 and 10 thousand respectively). As for
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LightWaveS, we present three variants of the model, termed L.1,L.2 and L1L2. These versions refer
to keeping the features only from the scattering level 1, level 2 or both, although we consider the
L1L2 version as the default. We select 500 features as the default variant, which has shown good
balance between training time, inference speed and accuracy in the development set. We use a Ridge
regression classifier from the Scikit-learn package (Pedregosa et al.,[2011)) for all methods. We use
a critical difference diagram to present the results, a popular method of comparing classifier perfor-
mance across multiple datasets (Ruiz et al.}2021;|{Ismail Fawaz et al.,[2019). This shows the ranking
of the classifiers and groups the ones that do not show statistical difference, based on pairwise com-
parisons using a Wilcoxon signed-rank test (Wilcoxon, [1992)) with Holm’s alpha correction (Holm,
1979;|Garcia & Herrera, [2008). The grouped classifiers appear on the diagram connected by a thick
horizontal line.

4.3 ACCURACY RESULTS

We present the performance of LightWaveS in terms of accuracy in comparison with
(MINI)ROCKET, as well as other recent solutions, namely (M)OSS-CNN (Tang et al., |2021)),
WEASEL+MUSE (Schifer & Leser}, 2018)), TapNet (Zhang et al.,[2020) and Catch22 (Lubba et al.|
2019). Apart from LightWaveS and (MINDROCKET, the rest of the accuracy metrics are taken
from the repositories of [Tang et al. (ZOZIEI and Dhariyal et al. (ZOZOH Due to missing values in
those metrics, we manage to compare the methods on 28 of the 30 UEA datasets.

Accuracy
10 9 8 7 6 5 4 3 2 1
L. 1 [ I 5 L1,
Catch22 222 1 2672 ROCKET
LightWaves-12 L2t | 4000 \NROCKET
TapNet 5.8966 4.5000 MOS_CNN
LightWaveS-L1 22 2804 OS-CNN
WEASEL+MUSE 225 2545 | ightWaveS-L1L2

Figure 2: Mean rank of LightWaveS methods vs recent classifiers in terms of accuracy

In Figure 2] we can see the results. Although lower in rank, LightWaveS belongs in the same sta-
tistical group with (MIN)ROCKET, which have the best accuracy. In addition, it is among the
ranks of more complex DL methods, such as TapNet and MOS-CNN. Out of the three variants,
LightWaveS-L2 performs the worst, without the benefit of faster execution that L.1 has. We can fo-
cus on (MINI)ROCKET for a more detailed comparison, and also include the 5 additional datasets.
Since the aim of LightWaveS is to approach their state-of-the-art accuracy with fewer features, not
necessarily surpass it, we place the LightWaveS results for all datasets in four accuracy bins com-
pared to (MINI)ROCKET : one for higher or equal accuracy, and three bins for lower accuracy, with
difference less than 0.05, between 0.05 and 0.1 and more than 0.1 respectively. In Figure [3| we see
the amount of datasets in each bin. For the majority of the datasets the accuracy stays in the first 3
categories for all variants apart from L2, and the datasets with large accuracy deviation are few. In
addition, we can see that just increasing the number of features to 1500 leads to improvement of the
comparison results, especially in the case of MINIROCKET, showing the potential of the method to
successfully tackle the harder datasets as well.

4.4 CHANNEL AND NODE SCALING OF TRAINING TIME

As a point of reference, ROCKET processes the whole UEA set (apart from InsectWingbeat) on
a single node in approximately 9 minutes, MINIROCKET in 5 and LightWaveS (L1L2) in 14.
(MINDROCKET has complexity O(kernels - samples - tslength). Since LightWaveS uses one
more convolution per kernel it adds a fixed factor of two to the complexity, essentially keeping lin-
ear scalability with these variables. Thus, we can focus on the scalability of the LightWaveS training
time with the additional channel dimension and with the number of distribution nodes.

Zhttps://github.com/Wensi-Tang/0S—CNN
*https://github.com/mlgig/mtsc_benchmark/
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Figure 3: Distribution of datasets based on average accuracy difference between LightWaveS vari-
ants and (MINI)ROCKET

We select PEMS-SF from UEA which has 963 channels, and we use subsets of the total dataset
to train LightWaveS on 2 nodes, starting from 100 channels and incrementing by 100. We see in
Figure [a that all variants show (sub)linear scaling with the number of channels, which is expected
since each additional channel results in a fixed amount of additional convolutions, and there are no
combinations or permutations of channels. For the node scaling, we also select FaceDetection, with
144 channels and we measure the training time across 1,2,4 and 8 nodes. As we see in Figure @
with PEMS-SF the gained training speedup is more close to ideal, since there are many channels
for each node to work on and the distributed computation constitutes the majority of the execution
time. In contrast to that, with FaceDetection that has fewer channels, the computational cost starts
being dominated by the operations on the main node (application of kernels, feature selection, final
transformation), so the gained speedup falls more quickly.
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Figure 4: Scalability of LightWaveS traing time with the number of (a) channels and (b) nodes

4.5 INFERENCE RESULTS

We manage to achieve significant speedup during inference due to the small amount of features,
which heavily reduces the amount of convolutions required to transform a test sample. We perform
a qualitative analysis, focusing on measuring the inference on the machinery datasets, since they
could correspond to a scenario of edge deployment of a model for e.g. fault detection of a machine.
However, our conclusions hold for all datasets. We can see in Figure [3] the relation between the
accuracy difference of the LightWaveS variants with (MINI)ROCKET and the speedup achieved.
This figure frames clearly the trade-off that we propose: it is up to the end user to select their
preferred balance of speedup and accuracy, in the cases where no ideal case is available. The MF
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dataset in the MINIROCKET comparison acts as an outlier in the graph due to its large length in
combination with the optimizations of MINIROCKET. Our method of applying the kernels matches
ROCKET’s, but could also benefit from these optimizations, restoring the discrepancy.
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Figure 5: Average inference speedup-accuracy difference scatterplot for the 5 machinery datasets,
for each of the LightWaveS variants (note the different y axis scale)

5 DISCUSSIONS AND CONCLUSION

Summarizing, LightWaveS offers comparable to state-of-the-art accuracy on the datasets tested, with
training time similar to (MINI)ROCKET and inference time 9x-65x faster on an edge device in the
case of ROCKET and 1.3x - 14x for MINIROCKET. Apart from the advantages we have mentioned,
a significant advantage of LightWaveS is that it is based on wavelet theory, which has a strong theo-
retical base. A promising future direction is to explore expert tuning of the framework, by preparing
and including in the base set well tested wavelets, with different properties such as padding or di-
lations depending on the use case. Another benefit is that due to the feature selection, LightWaveS
can filter the channels to a subset of the originals. As seen in Table[3] this reduction ranged from
0 to 92%, with an average of 15% across all datasets and the larger datasets benefiting more. This
has multiple advantages: it can give insights into which channels contain useful information for the
problem, leading to knowledge extraction. On edge devices, where resources are valuable, it can free
up incoming signal channels. Finally, LightWaveS can act as an initial fast channel filtering method
that precedes another deep learning solution, reducing the training data required. LightWaveS can
also benefit from, and is indeed orthogonal to, recent works on feature selection, since additional
descriptive features can be used on the scattering coefficients, improving accuracy. Future work can
include an initial, more informed selection of the wavelets, so that the wavelet scattering network
can extend to more paths with wavelet combinations, as well as explicit, informed combinations of
different channels.

REPRODUCIBILITY STATEMENT

The code of LightWaveS, as well as the code used to train (MINI)ROCKET, run the inference exper-
iments and preprocess the machinery datasets is provided as supplementary material. All accuracy
and time experiments were repeated multiple times (30-100), with different seeds and the average
of metrics was taken for a fairer representation of the results. The detailed metrics are provided in
the Appendix. All datasets used are publicly available. There has been an effort to explicitly set the
random seed for all methods that accept such a parameter, in order to enable reproducibility of the
results as closely as possible.
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A APPENDIX

A.1 (MINI)ROCKET ANALYSIS

Using the sktime repository version of the code, we can see in Figure [6a) that even keeping the
top half features of MINIROCKET using an unsophisticated chi-squared test does not result in a
statistically significant difference in the classifier performance (rather, it slightly increases the rank).
As for the channel inclusion, as an extreme case, we can add noise channels to the UEA datasets
(10% of the original channel number) and we see that both solutions are affected negatively when
trained on them, belonging in a statistically different group.

F1 Score F1 Score
4 3 2 1
O I R W
MINIROCKET_2000 22 | | 21951\ NIROCKET_5000 ROCKET_Noise 27222 | 2219 ROCKET
MINIROCKET_3000 222 22155 \INIROCKET 10000 MINIROCKET _Noise 2822 23615 MINIROCKET

(a) Selection of fractions of the default number of fea- (b) Training on normal and noisy versions of the UEA
tures dataset

Figure 6: Mean ranks of (MINI)ROCKET under different experiments, in terms of F1 score

A.2 DETAILED EXPERIMENT METRICS

Below are the detailed metrics on accuracy, inference speedup and channel reduction.

12



Under review as a conference paper at ICLR 2022

Table 1: Detailed accuracy metrics of LightWaveS-L1L2 and (MINI)ROCKET

Dataset L1L2 ROCKET MINIROCKET

Mean  Std Mean Std Mean Std
ArticularyWordRecognition  0.997 0.000 0.993 0.000 0.993 0.002

AtrialFibrillation 0.267 0.000 0.067 0.000 0.124 0.023
BasicMotions 1.000  0.000 1.000 0.000 1.000 0.000
CharacterTrajectories 0.983 0.000 0.992 0.001 0.992 0.001
Cricket 0.931 0.000 1.000 0.000 0.986 0.000
DuckDuckGeese 0.440 0.000 0.505 0.033 0.696 0.027
ERing 0.959 0.000 0.986 0.003 0981 0.003
EigenWorms 0.962 0.000 0.901 0.008 0.954 0.007
Epilepsy 0.978 0.000 0.988 0.004 1.000 0.000
EthanolConcentration 0.635 0.000 0412 0.023 0475 0.013
FaceDetection 0.614 0.009 0.638 0.008 0.616 0.008
FingerMovements 0.520 0.000 0.535 0.013 0497 0.032
HandMovementDirection 0.270 0.000 0.493 0.031 0.380 0.027
Handwriting 0.371 0.000 0.585 0.004 0.510 0.006
Heartbeat 0.756 0.000 0.740 0.011 0.762 0.011
Japanese Vowels 0.922 0.000 0.966 0.002 0.987 0.004
LSST 0.382 0.039 0.639 0.003 0.652 0.004
Libras 0.900 0.000 0.906 0.004 0.922 0.009
MotorImagery 0.580 0.000 0.572 0.012 0.545 0.047
NATOPS 0.644 0.000 0.884 0.008 0.926 0.013
PEMS-SF 0.873 0.000 0.826 0.012 0.829 0.018
PenDigits 0.937 0.003 0.983 0.001 0.965 0.002
Phoneme 0.178 0.010 0.276 0.002 0.294 0.003
RacketSports 0.888 0.000 0.910 0.008 0.879 0.016
SelfRegulationSCP1 0.761 0.000 0.849 0.005 0917 0.006
SelfRegulationSCP2 0.511 0.000 0.546 0.017 0.509 0.008
SpokenArabicDigits 0.964 0.003 0.997 0.001 0.994 0.002
StandWalkJump 0.600 0.000 0.524 0.023 0.358 0.041
UWaveGestureLibrary 0.909 0.000 0.937 0.004 0.936 0.006
FDO001 0.938 0.007 0.936 0.016 0.950 0.012
FD002 0.888 0.006 0.931 0.004 0913 0.012
FDO003 0.936 0.008 0.946 0.019 0.932 0.015
FD004 0.824 0.008 0.879 0.008 0.877 0.012
Mafaulda 0.762 0.012 0.922 0.008 0.900 0.009

A.3 NUMBER OF FEATURES SELECTION

In Figure [/| we can see the evolution of the accuracy with the increasing number of features for
the L1L2 method, as measured in our randomly selected development subset of datasets. We see
that a common pattern is that the accuracy initially increases, and reaches a plateau after a number
of features (different for each dataset). Another pattern is the oscillation of accuracy around an
initial value. The selection of 500 as the default number of features is based on this graph, and
is a reasonable number which balances accuracy and method speed, as well as ensures that most
development datasets are close to or in the plateau region.
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Table 2: Detailed accuracy metrics of LightWaveS-L1, L2 and L1L2-1500 variants

Dataset L1 L2 L1L.2-1500

Mean  Std Mean Std Mean Std
ArticularyWordRecognition  0.997 0.000 0.980 0.000 0.993 0.000

AtrialFibrillation 0.267 0.000 0.067 0.000 0.200 0.000
BasicMotions 1.000 0.000 1.000 0.000 1.000 0.000
CharacterTrajectories 0.980 0.000 0.983 0.000 0.987 0.000
Cricket 0972 0.000 0.944 0.000 0.986 0.000
DuckDuckGeese 0.400 0.000 0.360 0.000 0.420 0.000
ERing 0.967 0.000 0.922 0.000 0.974 0.000
EigenWorms 0.809 0.000 0.962 0.000 0.969 0.000
Epilepsy 0.986 0.000 0.978 0.000 0.993 0.000
EthanolConcentration 0.551 0.000 0.559 0.000 0.631 0.000
FaceDetection 0.622 0.008 0.504 0.008 0.618 0.007
FingerMovements 0.580 0.000 0.490 0.000 0.530 0.000
HandMovementDirection 0.270 0.000 0.243 0.000 0.297 0.000
Handwriting 0.329 0.000 0.279 0.000 0.388 0.000
Heartbeat 0.766  0.000 0.761 0.000 0.737 0.000
Japanese Vowels 0.932 0.000 0.935 0.000 0.965 0.000
LSST 0.402 0.035 0.343 0.004 0425 0.014
Libras 0.872 0.000 0.794 0.000 0.928 0.000
MotorImagery 0.490 0.000 0.520 0.000 0.520 0.000
NATOPS 0.644 0.000 0.633 0.000 0.622 0.000
PEMS-SF 0.896 0.000 0.861 0.000 0.879 0.000
PenDigits 0943 0.003 0.922 0.002 0.958 0.001
Phoneme 0.179 0.008 0.143 0.018 0.222 0.004
RacketSports 0.862 0.000 0.763 0.000 0.888 0.000
SelfRegulationSCP1 0.744 0.000 0.696 0.000 0.761 0.000
SelfRegulationSCP2 0.539 0.000 0.522 0.000 0.533 0.000
SpokenArabicDigits 0.967 0.003 0.966 0.002 0.980 0.002
StandWalkJump 0.400 0.000 0.600 0.000 0.533 0.000
UWaveGestureLibrary 0.900 0.000 0.738 0.000 0.931 0.000
FDO001 0.958 0.010 0.941 0.005 0.944 0.006
FD002 0.877 0.007 0.907 0.004 0.927 0.003
FDO003 0965 0.009 0935 0.010 0.956 0.008
FDO004 0.796 0.008 0.867 0.006 0.876 0.006
Mafaulda 0.745 0.010 0.680 0.014 0.833 0.010
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Table 3: Inference speedup of LightWaveS with fixed seed (0) compared to ROCKET

Dataset Inference Speedup

LIL2
L1 L2 L1L2 1500

Mean Std Mean Std Mean Std Mean Std
ArticularyWordRecognition 333 44 238 25 245 30 14.4 1.4

AtrialFibrillation 363 39 191 1.7 190 1.5 11.7 0.8
BasicMotions 285 54 193 24 214 37 120 08
CharacterTrajectories 28.1 4.6 19.9 14 206 27 13.0 0.6
Cricket 59.1 56 340 10 419 21 200 06
DuckDuckGeese 2571 176 180.0 52 1791 96 841 2.7
ERing 233 3.1 16.3 2.1 174 30 112 1.1
EigenWorms 689 3.1 41.1 1.0 413 1.1 174 0.6
Epilepsy 29.1 28 196 1.1 260 30 127 07
EthanolConcentration 448 29 283 1.2 373 1.6 16.1 0.7
FaceDetection 920 11.0 659 87 647 11.1 350 27
FingerMovements 392 54 272 44 281 39 16.3 1.6
HandMovementDirection 61.1 38 380 20 378 1.8 172 0.5
Handwriting 28.1 40 192 21 209 20 120 0.6
Heartbeat 673 52 423 25 446 18 176 07
Japanese Vowels 25.1 2.7 19.5 2.5 19.5 2.6 13.0 1.6
LSST 212 25 163 20 172 28 105 1.8
Libras 14.8 1.5 107 14 121 1.7 83 1.3
MotorImagery 790 20 46.6 1.0 477 1.0 180 04
NATOPS 371 44 253 36 292 42 169 1.7
PEMS-SF 283.1 362 2073 19.8 2059 21.8 939 34
PenDigits 9.4 2.1 8.3 1.1 8.9 14 638 0.9
Phoneme 474 53 301 21 317 1.7 147 04
RacketSports 198 24 141 1.8 150 19 88 1.0
SelfRegulationSCP1 556 3.0 325 1.5 354 1.0 153 03
SelfRegulationSCP2 597 27 356 10 376 10 151 04
SpokenArabicDigits 374 54 259 3.0 284 33 149 09
StandWalkJump 54.7 1.5 329 07 339 08 153 04
UWaveGestureLibrary 36.6 33 218 0.9  26.6 1.4 12.8 0.4
FDO001 234 21 202 29 201 28 138 1.8
FD002 213 29 189 23 193 33 144 28
FDO003 302 40 237 40 256 34 160 19
FDO004 284 41 249 32 244 28 147 24
Mafaulda 552 81 364 46 376 6.1 162 14

15



Under review as a conference paper at ICLR 2022

Table 4: Inference speedup of LightWaveS with fixed seed (0) compared to MINIROCKET

Dataset Inference Speedup

L1 L2 L1L2

Mean Std Mean Std Mean Std Mean Std
ArticularyWordRecognition 5.9 0.8 42 05 44 0.6 2.6 0.3

AtrialFibrillation 2.8 0.3 14 0.1 1.4 0.1 09 0.0
BasicMotions 6.5 1.3 44 0.6 49 09 27 0.2
CharacterTrajectories 4.5 0.8 32 0.3 33 0.5 2.1 0.1
Cricket 2.3 02 13 0.1 1.6 0.1 038 0.0
DuckDuckGeese 2329 156 163.1 52 1622 81 762 23
ERing 6.7 1.0 47 0.6 5.0 0.8 32 0.3
EigenWorms 1.6 0.1 09 0.0 09 0.0 04 0.0
Epilepsy 4.1 04 27 02 3.6 04 1.8 0.1
EthanolConcentration 1.5 0.1 0.9 0.0 1.3 0.0 05 0.0
FaceDetection 71.1 85 510 6.6 500 85 270 2.1
FingerMovements 19.9 2.7 13.8 2.3 14.3 20 83 0.8
HandMovementDirection 4.9 03 3.1 02 3.0 0.2 14 0.1
Handwriting 4.7 0.7 32 04 35 04 20 0.1
Heartbeat 13.5 1.1 85 05 89 04 35 0.1
Japanese Vowels 12.6 1.3 9.8 1.2 98 1.3 6.5 0.8
LSST 8.9 1.2 69 09 73 1.3 44 0.8
Libras 6.3 0.7 45 0.6 5.1 0.7 35 0.6
MotorImagery 4.7 0.1 2.8 0.1 2.8 0.1 1.1 0.0
NATOPS 176 2.1 12.1 1.7 139 21 8.0 0.8
PEMS-SF 2582 333 189.0 17.6 187.7 19.8 857 3.0
PenDigits 7.9 19 170 1.1 7.5 14 57 0.9
Phoneme 7.4 0.8 47 04 5.0 03 23 0.1
RacketSports 9.6 1.2 638 09 72 09 43 0.5
SelfRegulationSCP1 2.8 02 1.6 0.1 1.8 0.1 0.8 0.0
SelfRegulationSCP2 2.5 0.1 1.5 0.1 1.6 00 0.6 0.0
SpokenArabicDigits 10.7 1.6 74 0.8 8.1 1.0 43 0.3
StandWalkJump 1.6 0.1 1.0 0.1 1.0 0.1 0.5 0.0
UWaveGestureLibrary 3.8 04 23 02 28 0.2 1.3 0.1
FDO001 14.5 1.5 12.5 1.9 125 1.7 85 1.1
FD002 152 21 13.5 1.6 138 23 10.3 1.9
FDO003 174 24 136 23 14.7 1.9 92 1.1
FD004 20.8 3.1 182 23 179 2.1 10.8 1.7
mafaulda 2.6 0.3 1.7 0.1 1.8 02 038 0.0
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Table 5: Number of original dataset channels used by LightWaveS

Channels
Dataset Channels retained by method
L1L2
L1 L2 LIL2 1500
Mean Std Mean Std Mean Std Mean  Std
AWR 9 7 0 8 0 7 0 7 0
AtrialFib 2 2 0 2 0 2 0 2 0
BasicMotions 6 5 0 5 0 5 0 5 0
ChTrajectories 3 3 0 3 0 3 0 3 0
Cricket 6 6 0 4 0 6 0 6 0
DuckGeese 1345 102 0 124 0 98 0 174 0
ERing 4 4 0 4 0 4 0 4 0
EigenWorms 6 6 0 6 0 6 0 6 0
Epilepsy 3 3 0 3 0 2 0 3 0
EthanolC 3 3 0 3 0 3 0 3 0
FaceDetection 144 106.05 692 13438 248 117.78 6.89 142.87 142
FingerMov 28 28 0 28 0 28 0 28 0
HMD 10 10 0 10 0 10 0 10 0
Handwriting 3 3 0 3 0 3 0 3 0
Heartbeat 61 46 0 51 0 42 0 58 0
JapVowels 12 6 0 10 0 4 0 10 0
LSST 6 49 0.84 4.83 0.69 4.5 097 5.7 0.46
Libras 2 2 0 2 0 2 0 2 0
Motorlmagery 64 64 0 64 0 64 0 64 0
NATOPS 24 6 0 6 0 6 0 6 0
PEMS-SF 963 113 0 209 0 132 0 300 0
PenDigits 2 2 0 2 0 2 0 2 0
Phoneme 11 11 0 11 0 11 0 11 0
RacketSports 6 6 0 6 0 6 0 6 0
SelfRegSCP1 6 6 0 6 0 6 0 6 0
SelfRegSCP2 7 7 0 7 0 7 0 7 0
SpArabicDigits 13 8.47 0.57 8.83 0.38 8 0.52 9.27 0.45
SWJump 4 4 0 4 0 4 0 4 0
UWaveGL 3 3 0 3 0 3 0 3 0
FDO001 26 11.38  2.11 19.23 1.87 13.53 1.79 20.23 1.74
FDO002 26 21.63 049 20.2 0.76 2123 0.5 2293 0.83
FDO003 26 22.72 1.65 23.1 1.52  23.57 1.5 2593 025
FD004 26 19.73 052 25.07 094 2033 096 2597 0.18
Mafaulda 8 8 0 8 0 8 0 8 0
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Figure 7: Evolution of accuracy with increasing number of features for L1L.2 method
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