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ABSTRACT

Continual learning methods enable models to learn from non-stationary data with-
out forgetting. We study Online Continual Self-Supervised Learning (OCSSL), in
which models learn from a continuous stream of unlabeled data. We find that
OCSSL exhibits surprising learning dynamics, favoring plasticity over stability,
with a simple FIFO buffer outperforming Reservoir sampling. We explain this
result with the Latent Rehearsal Decay hypothesis, which attributes it to latent
space degradation under excessive stability of replay. To quantify this effect, we
introduce two metrics (Overlap and Deviation) and show their correlation with
declines in probing accuracy. Building on these insights, we propose SOLAR,
which leverages efficient online proxies of Deviation to guide buffer management
and incorporates an explicit Overlap loss. Experiments demonstrate that SOLAR
achieves state-of-the-art performance on OCSSL vision benchmarks, highlighting
its effectiveness in balancing convergence speed and final performance.

1 INTRODUCTION

Continual learning (CL) addresses the fundamental challenge of enabling machine learning mod-
els to acquire new knowledge from sequential tasks while preserving previously learned knowl-
edge (Parisi et al., 2019; De Lange et al., 2022). In online CL (Soutif-Cormerais et al., 2023; Mai
et al., 2022), data is seen as a continuous one-pass stream of small minibatches, precluding multi-
epoch training. This constraint favors rapid adaptation (Caccia et al., 2022; Hammoud et al., 2023).
Online CL methods use Replay, paired with buffers that provide an unbiased sample of the stream,
most notably the Reservoir buffer (Vitter, 1985). Concurrently, Self-Supervised Learning (SSL) has
emerged as a powerful paradigm for representation learning that does not rely on labeled data (Chen
et al., 2020; He et al., 2020; Zbontar et al., 2021). In this paper, we focus on Online Continual
Self-Supervised Learning (OCSSL) (Yu et al., 2023; Cignoni et al., 2025a;b), a challenging learning
scenario that combines the temporal constraints of online learning with the label-free nature of SSL.
This scenario reflects many real-world applications in which unlabeled data streams continuously
arrive and storage constraints prevent retention of historical data.

Traditionally, CL has mitigated forgetting with regularization losses (Urettini & Carta, 2025; Zenke
et al., 2017) that explicitly constrain model updates relative to past states, thereby preserving stability
(retention of past knowledge) at the cost of reduced plasticity (adaptation to new data). These
approaches are often coupled with replay buffers; the buffer policy itself further modulates this
stability-plasticity trade-off: Reservoir (Vitter, 1985) emphasizes stability by maintaining long-term
memory, whereas FIFO (Isele & Cosgun, 2018) favors plasticity by discarding older samples.

In this paper, we show that OCSSL methods struggle with plasticity and long-term learning, shift-
ing the primary challenge from stability to optimal plasticity. Intuitively, a CL method would be
expected to forget more with longer training, favoring stability-focused solutions. Surprisingly, we
find that stability-focused solutions (Reservoir) fail on long training schedules compared to a naive
FIFO-based solution. We demonstrate that this unexpected result is caused by a novel collapse phe-
nomenon: Latent Rehearsal Decay, which arises with prolonged training on a static subset of data,
as occurs at the limit with Reservoir buffers (Figure 1(a)). This leads to a degraded, overspecialized
latent space that hinders adaptation to new tasks. This latent space degradation manifests as perfor-
mance drops in longer training schedules and can be detected by two novel latent metrics Deviation
and Overlap (Figure 1(b)).
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Figure 1: Motivation and overview. (a) Reservoir buffer, traditionally considered stability-focused,
converges faster than FIFO but leads to degraded latent structure, manifesting as a phenomenon we
call Latent Rehearsal Decay. (b) SSL methods can be viewed as solving an instance-discrimination
problem: each sample and its augmentations form a hyperball in the embedding space. The spread
of each hyperball (Deviation) and their pairwise Overlap are metrics that reveal the deterioration in
feature space quality during training caused by Latent Rehearsal Decay. (c) Our proposed SOLAR
method improves both Deviation and Overlap latent metrics, yielding better overall performance.

We introduce SOLAR (Self-supervised Online Latent-Aware Replay), a novel strategy that ap-
plies implicit and dynamic regularization by enforcing the quality of the latent space without ex-
plicitly constraining network updates. SOLAR combines a Deviation-Aware Buffer and an Overlap
Loss that prevent latent rehearsal decay by implicitly optimizing Deviation and Overlap via efficient
online proxies (Figure 1(c)). Through extensive experiments we demonstrate that our approach
successfully adapts to unknown training lengths while avoiding Latent Rehearsal Decay.

2 ONLINE CONTINUAL SELF-SUPERVISED LEARNING (OCSSL)

In SSL, an encoder network f : X → F is trained to map an input x ∈ X to a feature representation
z ∈ F by solving pretext tasks requiring no labels (Ericsson et al., 2022). We employ the popular
class of SSL methods using instance discrimination pretext tasks (Gui et al., 2024). Two different
augmented views, x1 and x2, are generated from the same sample, then the views are passed through
f and usually through a projector network (Chen & He, 2021) that maps encoded views into a
projection space P . The pretext task consists in enforcing the two projected views in P to be close
in the feature space. Following other works in continual SSL (Purushwalkam et al., 2022; Cignoni
et al., 2025b; Li et al., 2022), we employ SimSiam (Chen & He, 2021) as the SSL method of choice.

OCSSL is a stream learning paradigm in which unlabeled data arrive sequentially, sharing traits with
online (supervised) CL (Soutif-Cormerais et al., 2023; Mai et al., 2022), but with challenges unique
to SSL. The data stream D induces a dual-level structure in the learning process. At a broader scale,
D is divided into class-incremental distributions (i.e. tasks) DT which are unknown to the model,
resulting in a task-agnostic scenario. Instead, at the granular level these tasks present themselves as
streamed minibatches. The model receives a minibatch xT

t ∈ DT at each timestep t. Each xT
t , char-

acterized by a fixed, small batch size bs (usually ranging from 1 to 10), and becomes permanently
inaccessible once processing advances to the next minibatch. Although multiple training passes for
each streamed minibatch are feasible, this online scenario naturally precludes multi-epoch training.
Performance is commonly evaluated by training a linear classifier on frozen representations (linear
probing) (Alain & Bengio, 2016), as adopted in others OCSSL methods (Yu et al., 2023; Cignoni
et al., 2025b; Purushwalkam et al., 2022); we follow the same protocol.

Related Work. Replay methods are the dominant paradigm in Online CL (Soutif-Cormerais et al.,
2023), since small streaming minibatches are insufficient for effective learning – especially in SSL,
for which large batches are crucial (Chen et al., 2020; Zbontar et al., 2021). Replay buffers alleviate
this by providing additional samples. Reservoir buffer is the de facto standard (Mai et al., 2022;
Buzzega et al., 2020; Wang et al., 2024; Rolnick et al., 2019), as it maintains an unbiased subset of
the stream. FIFO buffers are also used, although less commonly (Cignoni et al., 2025b; Cai et al.,
2021).
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Figure 2: Impact of training length. (a) Reports the Final Accuracy for Reservoir and FIFO, on
ImageNet-100 and CIFAR-100, trained on an OCSSL stream with different lengths. Reservoir con-
verges faster for shorter schedules, but suffers unusual performance drops for longer schedules (ex-
pressed as number of minibatch passes). (b) Gives the average per-task probing accuracy on past
and future tasks relative to the current task. Past task accuracy does not decrease and both FIFO
and Reservoir achieve similar results, excluding final Reservoir drop (explained later), implying that
forgetting has little impact in OCSSL.

Most continual self-supervised learning methods are designed for the offline setting in which multi-
epoch training on each experience is possible and task boundaries are known. They typically rely
on distillation to mitigate forgetting and contrastive losses on multiple views, such as CaSSLe (Fini
et al., 2022) and PFR (Gomez-Villa et al., 2022), and extensions like SyCON (Cha & Moon, 2023),
Osiris (Zhang et al., 2025) and POCON (Gomez-Villa et al., 2024).

Only a few works explicitly address the OCSSL scenario, which is task-agnostic and restricted to
single-epoch training on the stream. SCALE extends SimCLR using an InfoNCE-like loss (Oord
et al., 2018). It uses distillation between old and current feature representations and updates its
buffer using the Part and Select Algorithm (PSA) (Yu et al., 2023). CMP proposes a replay-free
approach, augmenting mini-batches with multiple patches (Cignoni et al., 2025a), while MinRed
performs exemplar replay with maximally correlated samples (Purushwalkam et al., 2022). CLA
employs distillation through a temporal projector, using either an EMA teacher (CLA-E) or stored
past latent features (CLA-R), and introduces plasticity with a FIFO buffer (Cignoni et al., 2025b).

State-of-the-art OCSSL relies on replay buffers. In the next section, we analyze the behavior of the
widely used Reservoir and the less common FIFO buffer over long OCSSL training sessions.

3 RESERVOIR AND FIFO: STABILITY–PLASTICITY IN LONG TRAINING

In this section we compare Reservoir and FIFO buffers. Reservoir encourages stability by providing
an unbiased set of samples, while FIFO encourages plasticity (Kobayashi, 2025; Isele & Cosgun,
2018). We show that FIFO outperforms Reservoir in long training schedules, which suggests a
currently unexplored failure mode of replay methods.

Reservoir versus FIFO Buffers. Reservoir sampling ensures that each incoming sample has equal
probability of being included in the buffer M. Once the buffer is full, the t-th incoming sample
xt is inserted with probability |M|

t : a random index i = rand(0, t) is drawn, and if i ≤ |M| the
entry M[i] is replaced by xt; otherwise xt is discarded. Reservoir buffers encourage stability by
providing an unbiased view of the stream. Notice that the insertion probability |M|

t decays over
time. As a result, it will converge to a static subset of the stream and revisit old samples more often.
In contrast, FIFO retains only the |M|most recent samples, discarding the oldest as new ones arrive.
This encourages plasticity, since each training step uses only the latest samples. Consequently, each
sample is stored for the same duration and revisited equally often.

Failure of Reservoir under Long Training Schedules. Given this view, one might expect Reser-
voir to perform better under longer training, where stability helps avoid forgetting. However, Fig-
ure 2(a) shows the opposite trend. As training length increases, Reservoir accuracy drops, while
FIFO steadily improves and surpasses it. A closer look at past and future performance (Figure 2(b))
reveals why. In the final phases of the training, Reservoir not only forgets previous tasks, but also
generalizes poorly to new ones. In contrast, FIFO maintains both stability and plasticity, gener-
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Figure 3: Latent Rehearsal Decay. Accuracy and metrics on ImageNet100. Both FIFO and Reser-
voir have an initial Convergence phase, where Accuracy increases and both metrics improve. After
a certain point, Reservoir transitions into the Latent Rehearsal Decay phase, where the sudden drop
in accuracy is preceded by a sharp decrease of Deviation and increase of Overlap. Further analysis
on CIFAR-100 in Appendix B.2.

alizing well to both past and future tasks. More details and per-task accuracies are provided in
Appendix A. The failure of Reservoir under long training schedules suggests some latent causes
unrelated to forgetting. In the next section, we show that this unexpected behavior arises from a
phenomenon we call Latent Rehearsal Decay.

4 LATENT REHEARSAL DECAY

Can we explain the underperformance of Reservoir buffers over long training schedules?

Hypothesis (Latent Rehearsal Decay). We hypothesize that long training schedules on a limited
subset of data lead to overfitting, which degrades the feature space by producing overspecialized
representations. These representations hinder adaptability to new tasks, resulting in degradation of
probing accuracy.

This hypothesis suggests that reservoir sampling convergence leads to suboptimal learning dynam-
ics. Introducing greater diversity in later training stages can prevent convergence to suboptimal
minima. FIFO achieves this via higher plasticity (Figure 2b), though at the cost of slower conver-
gence. Notice that prior work links collapse in SSL to feature collapse (Li et al., 2022) or lack of
uniformity in the latent space (Wang & Isola, 2020). We show in Appendix B.3 that these phenom-
ena are unrelated to Latent Rehearsal Decay in OCSSL.

To verify the hypothesis, we introduce two novel metrics inspired by intra- and inter-class metrics in
the supervised setting (Sui et al., 2025). Our metrics assess feature quality via inter-sample relation-
ships across different samples and intra-sample relationships across views of the same sample. Let
A be the set of augmentations; then, for each sample xa in the training stream, we define its set of
all possible augmented feature views in the latent space as Ta = {zia|zia = f(xi

a)}i∈A, where each
xi
a is a different augmented view of the original xa and f is the encoder network. Then, each Ta

identifies a hyperball in the feature space centered on the mean feature view z̄a = 1
|Ta|

∑
zi
a∈Ta

zia
and encompassing feature views (Figure 1(b)). We now propose two new metrics, the Deviation and
the Overlap which characterize Latent Rehearsal Decay.

Deviation. This intra-sample metric measures the distance in feature space between multiple views
of a single sample xa by calculating the average pairwise cosine distance of feature views zia in P .
Let SC be the cosine similarity function. We define the deviation as:

Dev(Ta) =
1

|Ta|2
∑

zi
a,z

j
a∈Ta

(
1− SC(z

i
a, z

j
a)
)
. (1)

Overlap. This inter-sample metric measures the overlap in the latent space between feature views
of different samples. More precisely, for each hyperball Ta we consider its average feature z̄a and
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the average angle of the pairwise cosine similarity (SC) of all feature views:

θ̄a =
1

|Ta|2
∑

zi
a,z

j
a∈Ta

arccos
(
SC(z

i
a, z

j
a)
)
, (2)

calculated in the encoder space F . We define the Overlap between two samples xa and xb as:

Ov(Ta,Tb) =
(
θ̄a + θ̄b

)
− θ (z̄a, z̄b) , (3)

where θ (z̄a, z̄b) denotes the angle between average features z̄a and z̄b. The Overlap effectively
measures the distance between the two hyperballs. When Ov(Ta,Tb) > 0 we effectively have an
intersection between the two samples. Since we want to count only intersecting hyperballs, given a
dataset D = {T1, . . . ,T|D|}, the Average Overlap Count for the set is calculated by:

Ovcount(D) =
1

|D|2
∑

Ti,Tj∈D

1 [Ov(Ti,Tj) > 0] . (4)

Metric Analysis and Comparisons. Figure 3 shows the probing accuracy, Deviation, and Overlap
metrics during training for Reservoir and FIFO. Specifically, given the entire training stream D,
we extracted Ovcount(D) (Eq. (4)), and 1

|D|
∑

Ti∈D Dev(Ti). Metrics are calculated by sampling
20 augmentations from each Ta. During the initial Convergence phase, both methods continuously
improve as evidenced by the growing accuracy, decreasing Overlap, and slight decrease in Deviation.
Subsequently, the behavior of the two methods diverges. Reservoir suffers from Latent Rehearsal
Decay, which we observe as a sudden drop of Deviation and increase in Overlap. The degradation of
the latent space is followed by a drop in the probing accuracy. Instead, FIFO continuously improve
(Plasticity Learning phase) in probing accuracy and does not exhibit degradation of the latent space.
This suggests that the reason behind the decay lies in the Reservoir strategy, where in the later
training stages the buffer consists of a slowly changing set of low-deviation samples. Further training
on this set leads to a degraded latent space and lower generalization. Relation between training loss
and metrics in Appendix B.1.

5 SELF-SUPERVISED ONLINE LATENT-AWARE REPLAY (SOLAR)

Our analysis reveals that an optimal OCSSL solution should be both plastic and stable, adapting the
tradeoff dynamically depending on training length. Our goal, therefore, is to develop an adaptive
mechanism that performs well at any point during the training process, regardless of the training
length, converging fast for short training, while rivaling FIFO plasticity in longer schedules.

Our method Self-supervised Online Latent-Aware Replay (SOLAR) achieves this goal by preventing
Latent Rehearsal Decay. This is done via efficient online proxies for the Deviation and Overlap.
Specifically, SOLAR has 2 components: (1) the Deviation-Aware Buffer, that controls Deviation
by prioritizing high-Deviation samples in the buffer; (2) the Overlap Loss, that penalizes overlap
between new and buffer samples. The full algorithm is given in Appendix C.1.

5.1 DEVIATION-AWARE BUFFER

A central objective of SOLAR is to prevent the Deviation collapse, which characterizes Latent Re-
hearsal Decay (see Figure 3, left). SOLAR addresses this by employing a memory buffer that replays
high-Deviation samples, thereby increasing the diversity of feature representations during training
and avoiding the sudden drop in Deviation. At first glance, this requires online monitoring of sample
Deviation. However, as shown in Appendix C.2 the self-supervised loss itself is a good proxy since
it is positively related to Deviation:

dDev

dLSSL
=

1

n2
> 0 , (5)

where n is the number of augmented views. Hence, samples with higher SSL loss (i.e. less con-
verged) correspond to higher-Deviation examples, whereas low-loss samples (i.e., already learned)
correspond to lower Deviation ones.
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Figure 4: Overview of SOLAR. (a) The deviation-aware buffer tracks average representation, loss,
and extraction count for each sample; (b) Low-deviation representations are discarded; (c) Sampling
is inversely proportional to extraction counts; (d) Sampled images are augmented and used for SSL
training with the loss LSSL; (e) The top-K samples with highest loss are extracted to compute the
Overlap loss Loverlap (f).

The memory buffer M is a list in which each entry stores a sample as a tuple
⟨xM

i , ℓMi , z̄Mi , θ̄Mi , eMi ⟩ (Figure 4(a)), where xM
i is the input, ℓMi an estimate of the loss com-

puted in previous iterations, z̄Mi its average representation, θ̄Mi its average angle, and eMi a counter
for the number of times a buffer sample is extracted for training.

At time t, SOLAR trains on a batch of samples coming from the buffer {xt
i}i=1...Btot and computes

their self-supervised loss ℓti, average feature representation zti across augmentations, and the cor-
responding average angle of the pairwise cosine similarities among augmented features views θ̄ti
(as defined in Eq. (2)). If unseen stream samples are available, they are used for training and then
inserted into the buffer. Once the maximum capacity is reached, the samples discarded are the ones
with minimal loss ℓti (Figure 4(b)), a criterion that encourages replay of high-Deviation samples (see
Appendix C.2). When a memory sample i is extracted from the buffer, its statistics are updated
using an Exponential Moving Average (EMA) with decay factor η = 0.5:

ℓMi ← η · ℓMi + (1− η) · ℓti, zMi ← η · zMi + (1− η)zti, θ
M
i ← η · θMi + (1− η)θ

t

i. (6)

At each iteration, samples inM are replayed according to a deviation-aware extraction policy (Fig-
ure 4(c)). Let ēMi ∈ [0, 1] denote the normalized extraction counts across all buffer samples; the
sampling probabilities are:

p[1,...,|M|] = 1− Softmax(ē[1,...,|M|]).

Thus, samples with lower counters (i.e., replayed fewer times) are more likely to be selected. Intu-
itively, such samples are still under-trained, which keeps their loss, and consequently their Deviation
(Eq. (5)), higher and makes them more informative. Once a sample is selected, it is augmented into
multiple views and passed through the backbone (Figure 4(d)) to compute the SSL loss (LSSL) and
the SGD step, and then its counter is incremented by one. This strategy ensures that higher-Deviation
samples are prioritized, thereby mitigating Latent Rehearsal Decay.

5.2 OVERLAP LOSS

Solely prioritizing higher-deviation samples during training is not sufficient to mitigate Latent Re-
hearsal Decay, as another contributing factor is Overlap, which increases as the phenomenon occurs
(see Figure 3, left). In order to approximate overlap online, we leverage the average features z̄t and
cosine angles θ̄t between two augmentations of the same sample, which are readily available during
SSL training on the stream at timestep t and stored in the buffer as discussed above (further analysis
on online overlap approximation in Appendix C.3).

During training, we minimize the overlap between the current minibatch and the top-K highest-
deviation buffer samples not used for the current minibatch. The rationale is that the highest devi-
ation samples are those occupying more space in the latent space, and thus more probable to have
overlap with other, especially newer, samples. Once again, we employ the per-sample loss to esti-
mate Deviation and select the top-K highest-loss samples from the buffer (Figure 4(e)). The Overlap
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Table 1: Results on streaming online CIFAR-100 (20 experiences), ImageNet-100 (20 experiences),
and CLEAR100 (11 experiences). Best in bold, second best underlined. We report mean and std
over 3 runs.

CIFAR-100 (20 exps) ImageNet100 (20 exps) CLEAR100 (11 exps)
METHOD BUFFER DISTILL. FINAL ACC. AVG. ACC. FINAL ACC. AVG. ACC. FINAL ACC. AVG. ACC.

ER Reservoir % 44.4± 1.0 39.6± 0.3 40.5± 1.5 39.3± 0.4 47.1± 0.2 35.3± 0.4

ER FIFO % 49.0± 0.3 39.3± 0.2 48.7± 1.0 38.9± 0.3 45.3± 1.8 34.9± 0.5

ER MinRed % 46.5± 0.3 40.9± 0.3 48.0± 0.3 42.5± 0.2 51.3± 0.1 39.7± 0.1

SCALE PSA ! 31.9± 0.3 27.1± 0.3 36.7± 0.2 29.8± 0.1 44.2± 0.3 41.0± 0.3

CLA-E FIFO ! 45.6± 0.4 34.2± 0.2 49.0± 0.5 36.6± 0.2 37.7± 1.8 29.3± 1.4

CLA-R FIFO ! 46.7± 0.5 42.3± 0.3 43.1± 4.6 42.0± 0.2 46.7± 0.4 35.3± 0.2

SOLAR Deviation-Aware % 49.5± 0.5 42.3± 0.3 49.4± 1.5 42.8± 0.2 51.5± 0.8 41.3± 0.4

loss is:

Loverlap =
1

b

b∑
i=1

1

K

K∑
k=1

max
(
0,Ov(Ti,TM

k )
)
, (7)

where b is the mini-batch size and Ov(Ti,T∗
k) is defined as in Eq. (3) (Figure 4(f)). Each TM

k is
composed by frozen z̄Mk and θ̄Mk extracted fromM, while Ti features z̄i and θ̄i are computed online
from the two views for each sample in the minibatch and thus contribute to training the backbone.
The max operator ensures that only positive overlaps are penalized. In our experiments we set K =
500. In a sense, Loverlap is like a targeted contrastive loss that pushes away samples only as much
as is needed and contrasting only with the most problematic samples. This overlap loss encourages
the model to differentiate features that are overly aligned, thus preserving representational diversity
across the buffer and training stream. The overall training objective of SOLAR is LSSL + ωLoverlap,
where ω is a hyperparameter. Analysis on ω is provided in Appendix C.4).

6 EXPERIMENTS

In this section we compare SOLAR with the state-of-the-art and ablate and analyze its components.

Experimental Setup. We conducted experiments on the Split CIFAR-100 (Krizhevsky et al., 2009)
and Split ImageNet100 (Deng et al., 2009) class-incremental benchmarks with 20 experiences each,
and also on CLEAR100 (Lin et al., 2021), a domain incremental learning benchmark. All bench-
marks were presented to the models as an OCSSL stream with a stream minibatch of 10. All methods
were allowed to extend the minibatch to size 138 from the buffer to maintain a fair comparison. The
maximum buffer size |M| was set to 2000. Following other continual SSL works (Purushwalkam
et al., 2022; Cignoni et al., 2025b;a), we use SimSiam (Chen & He, 2021) as the base SSL method
on ResNet-18 (He et al., 2016). In the main experiments (Table 1), we simulated a training schedule
with 6 minibatch passes for each incoming stream minibatch. More training protocol details are in
Appendix D.1. Code to reproduce the results will be released upon acceptance.

Metrics. Evaluation was conducted by linear probing on the entire dataset. Probing is performed
offline, as the goal of OCSSL is representation learning, and linear probing on a classification task
is the standard measurement of this latent space quality in SSL (Ericsson et al., 2022). We report
two probing metrics: FINAL ACCURACY, which is the probing accuracy at the end of the stream;
and AVERAGE ACCURACY, which is the average of probing accuracies calculated at the end of
each experience. Average Accuracy is a coarse measure of how good the model is throughout the
training process (a proxy for Average Anytime Accuracy (Soutif-Cormerais et al., 2023)) and, for
this reason, a good indication of fast convergence. Naturally, a model that is able to converge faster
and retain learned knowledge will have higher Average Accuracy than a model which is slower to
converge, even if they have comparable Final Accuracy. On the other hand, Final Accuracy is a good
metric for the model performance on long training schedules, as it is sensitive to the sudden drops
of accuracy typical of Latent Rehearsal Decay.

6.1 COMPARISON WITH THE STATE-OF-THE-ART

We see in Table 1 that SOLAR achieves state-of-the-art performance on all three benchmarks. Meth-
ods that perform explicit distillation (CLA and SCALE) fail to achieve consistently good results.
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Figure 6: Performance at different training lengths. SOLAR outperforms competitors in both metrics
independently of training length.

SCALE, which employs both distillation and a stability-biased buffer, severely underperforms on
both ImageNet100 and CIFAR-100, underscoring the need for plasticity in OCSSL. CLA-E and
CLA-R highlight the downsides of fixed explicit distillation, despite both relying on a FIFO buffer.

CLA-E achieves good Final Accuracy on CIFAR and ImageNet, but converges very slowly with
lower Average Accuracy and a flatter accuracy training curve (see Figure 15), similar to FIFO. This
suggests that CLA-E regularization is too biased towards plasticity at the expense of fast conver-
gence. In contrast, CLA-R converges faster and achieves Average Accuracy closer to SOLAR, but
suffers from Latent Rehearsal Decay in later phases (see Appendix D.2). This is significant because
CLA-R uses a plasticity-focused FIFO buffer, demonstrating that Latent Rehearsal Decay can also
be induced by excessive distillation. It seems that fixed distillation, like FIFO and Reservoir buffers,
is not ideal for OCSSL as it is not capable of adapting to changing requirements during training.

MinRed is the only other method that maintain relatively high Final and Average Accuracy across
all benchmarks. MinRed shows decently fast convergence. Like SOLAR, it leverages latent space
information to manage its buffer, again demonstrating the suitability of this approach for OCSSL.
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Figure 5: Impact of buffer size.

CLEAR100 exhibits dynamics quite dif-
ferent from CIFAR-100 and ImageNet100,
favoring stability-biased methods because
it is not a class-incremental stream. For
example, FIFO unexpectedly performs
worse than Reservoir in both Average and
Final Accuracy, while CLA-E performs
poorly, likely due to underfitting. On the
other hand, SCALE is more competitive
on CLEAR100 – especially in Average
Accuracy – as it is stability-focused.

Overall, the advantage of SOLAR over the other methods is simultaneously maintaining high Aver-
age and Final Accuracy. While other methods can achieve comparable results in one of the metrics,
they either fail to converge fast or suffer from Latent Rehearsal Decay.

6.2 ABLATIONS AND ANALYSIS

Changing Training Length. Figure 6 reports plots for Final and Average Accuracy when training
with shorter schedules (i.e. reducing the number of minibatch passes). Again, SOLAR outperforms
the state-of-the-art for most training lengths, except for the shortest on CIFAR; here SOLAR is
almost on par with methods like Reservoir and MindRed that focus on stability (and thus converge
faster). Nonetheless, we note both those methods decrease in Final Accuracy when training is longer,
likely due to Latent Rehearsal Decay. SOLAR shows clear advantages on ImageNet100, particularly
in Final Accuracy where performance remains stable across training lengths and thus demonstrating
its effectiveness as a length-agnostic strategy.

Changing Buffer Size. Figure 5 gives plots for Final and Average Accuracy when training with
different buffer sizes on CIFAR-100. We see that Reservoir is penalized by reduced buffer dimen-
sions, obtaining particularly low Final Accuracy for the two smallest sizes. This low performance is
evidence of Latent Rehearsal Decay, with the buffer size directly exacerbating this phenomenon for
Reservoir, as shown by the training curves in Figure 7. In fact, the drop in accuracy is inversely pro-
portional to the buffer size, which is coherent with our hypothesis of Latent Rehearsal Decay being

8
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Figure 7: Training curves across buffer sizes |M| on CIFAR-100. Smaller buffer corresponds to
stronger Latent Rehearsal Decay. SOLAR beats FIFO and Reservoir across the training stream.

directly linked to subset overfitting for Reservoir. As expected, FIFO is less affected by decreased
buffer size, as it has a strong bias towards recent samples. MinRed maintains good performance
in Final Accuracy, but falls short in Average Accuracy when the buffer size is small (|M| = 500),
indicating that it is not able to maintain fast convergence under such constraints. SOLAR achieves
rapid convergence across buffer sizes, surpassing other methods by far in Average Accuracy, while
keeping Final Accuracy close to FIFO. The advantage of SOLAR in being able to maintain fast con-
vergence independently from the buffer size makes it ideal even for OCSSL scenarios with generous
buffer dimension. We observe similar results on ImageNet (see Appendix D.3).

Ablations. In Table 2 we ablate the SOLAR components. The Deviation buffer improves conver-
gence compared to FIFO and Reservoir buffers, as reflected in the higher Average Accuracy. The
Overlap loss, however, does not significantly improve convergence – Average Accuracy is compara-
ble with or without it – but it substantially enhances Final Accuracy. This indicates that the Overlap
loss plays a crucial role in preventing Latent Rehearsal Decay, as it avoids sudden drops in perfor-
mance and yields higher Final Accuracy. When the Overlap loss is combined with FIFO or Reser-
voir, it does not consistently improve performance. Specifically, it does not help FIFO converge
faster, but on CIFAR it helps Reservoir avoid more severe Latent Rehearsal Decay. Unfortunately
the same cannot be said for ImageNet, proving that the overlap loss is dependent on maintaining a
Deviation-Aware buffer, as it also exploits high-deviation samples in the top-K selection.

7 CONCLUSIONS
Table 2: Ablation study on buffer type and the ef-
fect of the Overlap Loss.

CIFAR-100 ImageNet100
BUFFER Loverlap FINAL/AVG. FINAL/AVG.

Reservoir ✗ 44.4/39.6 40.5/39.3
Reservoir ✓ 46.3/40.3 35.8/37.6

FIFO ✗ 49.0/39.3 48.7/38.9
FIFO ✓ 46.9/38.4 45.4/37.9

Deviation-Aware ✗ 47.7/41.4 46.9/42.8
Deviation-Aware ✓ 49.5/42.3 49.4/42.8

In this paper we studied continual learning in
online, self-supervised settings (OCSSL).We
showed that OCSSL induces qualitatively dif-
ferent learning dynamics favoring plasticity
over stability. This leads to counterintuitive
outcomes, such as FIFO outperforming Reser-
voir sampling. We explained this through the
Latent Rehearsal Decay hypothesis, which at-
tributes performance drops to latent space degradation when replay buffers are small and static. To
quantify this effect, we introduced Deviation and Overlap, two metrics that measure latent degra-
dation and serve as early indicators of probing accuracy decay. Building on these insights, we
developed SOLAR, which leverages efficient proxies for these metrics to manage replay buffers and
preserve latent structure. Experiments demonstrate that SOLAR achieves state-of-the-art results on
OCSSL computer vision benchmarks, balancing fast convergence (high Average Accuracy) with
strong performance (high Final Accuracy), whereas other methods typically trade off one for the
other. We hope this work encourages a shift of focus from preventing forgetting to continuously
improving the quality of latent representations in OCSSL.

Limitations and Future works. In this work we only examined the latent space from an unsuper-
vised perspective, without considering metrics of representation space quality that consider task or
class labels. Our experiments were limited to a network trained from scratch from the initial stream
phase. As future work, we aim to study buffer behavior under large domain shifts when using pre-
trained models for downstream tasks. We also hypothesize that Latent Rehearsal Decay may arise
at the feature level in supervised Online CL, opening another avenue for future exploration.
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8 REPRODUCIBILITY STATEMENT

We have taken steps to ensure the reproducibility of our work. The full source code, along with
scripts to reproduce all results in the paper, will be published after the review period. All experiments
were performed on publicly available datasets, and details of model architectures, and main training
hyper-parameters are given in the main paper with additional details included in the supplementary
material (Appendix C.4 and D.1). To ensure the reproducibility of stochastic processes, such as
weight initialization and dataset shuffling, we fix random seeds across all experiments reporting the
standard deviations. The random seed values will be clearly documented in our published code.
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Farinella, and Tal Hassner (eds.), Computer Vision – ECCV 2022, pp. 702–721, Cham, 2022.
Springer Nature Switzerland. ISBN 978-3-031-19809-0.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. Advances in neural information processing systems, 32, 2019.

Albin Soutif-Cormerais, Antonio Carta, Andrea Cossu, Julio Hurtado, Vincenzo Lomonaco, Joost
Van de Weijer, and Hamed Hemati. A comprehensive empirical evaluation on online continual
learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
3518–3528, 2023.

Qingya Sui, Lin Zhong, Lianbo Ma, Ziqian Wang, Zhenyu Lei, and Shangce Gao. Inter-class and
intra-class relationships incorporated knowledge distillation for continual learning. IEEE Trans-
actions on Artificial Intelligence, 1(01):1–10, 2025.

Edoardo Urettini and Antonio Carta. Online curvature-aware replay: Leveraging 2nd order in-
formation for online continual learning. In Forty-second International Conference on Machine
Learning, 2025. URL https://openreview.net/forum?id=ek5a5WC4TW.

Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical Software
(TOMS), 11(1):37–57, 1985.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: Theory, method and application. IEEE transactions on pattern analysis and machine
intelligence, 46(8):5362–5383, 2024.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In International conference on machine learning, pp.
9929–9939. PMLR, 2020.

Xiaofan Yu, Yunhui Guo, Sicun Gao, and Tajana Rosing. Scale: Online self-supervised lifelong
learning without prior knowledge. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2484–2495, 2023.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
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Figure 8: Probing accuracy of each task at the end of each experience in the OCSSL stream (CIFAR-
100) for Reservoir (top) and FIFO (bottom). The vertical dashed line indicates the point when the
corresponding task just ended in the training stream.

APPENDIX A PER-TASK ACCURACY FOR FIFO AND RESERVOIR BUFFERS

Figure 8 reports the probing accuracy curves for every task calculated at the end of each encountered
task across CIFAR-100 training stream, for both FIFO and Reservoir. We observe for all tasks
an ascending behavior in terms of accuracy, meaning that there is high cross-task transfer in this
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scenario, even when the model employs a FIFO buffer and thus rehearsal of earlier tasks is very
limited. Nonetheless, and contrary to other papers (Hess et al., 2024), we do not consistently observe
instances of feature forgetting: the highest accuracy for each task is often not reached after just
finishing training said task.

APPENDIX B ADDITIONAL ANALYSIS OF LATENT METRICS

Here we show the relationship between the training loss and Latent Rehearsal Decay. We then
complement the figure in the main paper (Figure 3) with an analysis of Latent Rehearsal Decay
on CIFAR-100. Finally, we discuss other metrics proposed in the literature for measuring feature
collapse or degradation and show that these phenomena are unrelated to Latent Rehearsal Decay in
OCSSL.

B.1 RELATIONSHIP BETWEEN TRAINING LOSS AND LATENT REHEARSAL DECAY
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Figure 9: The Figure shows Deviation, Overlap probing accuracy, and smoothed training SSL loss
during OCSSL training on ImageNet100. We observe loss instabilities in correspondence with
degradation of our metrics, especially for Reservoir.

Figure 9 relates the Self-Supervised training loss to probing accuracy and the Deviation and Overlap
metrics on ImageNet100. We see that Reservoir has a flat loss curve, as the buffer composition
changes slowly with time and is focused on stability. In later training phases, in correspondence
with increasing Overlap and drop in Deviation, we suddenly switch to an instability phase for the
loss. This is an indicator that, upon latent degradation, the training process is also disrupted and
falls into an instable state. FIFO instead maintains a curve that is not smooth compared to Reservoir,
caused by the continually shifting distribution inside the buffer. At the same time it does not suffer
from loss instability.

SOLAR maintains a higher training loss across the training process; this is evidence of the effect of
the Deviation-Aware buffer that prioritizes high-loss samples during training. The loss curve is not
as smooth as Reservoir, indicating that the internal buffer distribution changes more frequently and
can thus incorporate plasticity. Nonetheless, SOLAR suffers from slight loss instability at the end
of training, in correspondence with minor degradation of latent metrics in later training stages.

B.2 LATENT REHEARSAL DECAY METRICS ON CIFAR-100

Figure 10 reports the accuracy, Deviation, and Overlap metrics calculated across OCSSL training
on CIFAR-100, for both Reservoir and FIFO. We see behavior similar to ImageNet (see Fig. 3),
with both methods improving continuously during the initial Convergence phase, with decreasing
Overlap, and slight decrease in Deviation. Again, the behavior of the two methods diverges in later
training. Reservoir suffers from Latent Rehearsal Decay, which we observe as a sudden drop of
Deviation and increase in Overlap. The degradation of the latent space is followed by a drop in
the probing accuracy. Instead, FIFO continuously improves (Plasticity Learning phase) in probing
accuracy and does not exhibit degradation of the latent space. However, differently from ImageNet,
FIFO suffers an increase in Overlap in later phases, but still inferior to Reservoir’s increase in Over-
lap, and it is not accompanied by drops in accuracy or Deviation. This demonstrates that both metrics
are required to degrade in order for performance to fall off and fall into Latent Rehearsal Decay.
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Figure 10: Accuracy and Latent Rehearsal Decay metrics on CIFAR-100. Both FIFO and Reservoir
have an initial Convergence phase, in which Accuracy increases and both metrics improve. After
a certain point, Reservoir transitions into the Latent Rehearsal Decay phase, in which the sudden
drop in accuracy is preceded by a sharp decrease in Deviation and increase in Overlap.

B.3 EXISTING METRICS FOR FEATURE DEGRADATION
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Figure 11: Plot showing no evidence of feature collapse for Reservoir on the CIFAR-100 test set
expressed using the metrics based on analyzing SVD decompositions of feature representations (Li
et al., 2022).

Prior work links collapse in SSL to feature collapse (Li et al., 2022) or lack of uniformity in the
latent space (Wang & Isola, 2020). In this section, we show that these phenomena are unrelated to
Latent Rehearsal Decay in OCSSL.

Feature Collapse. Feature collapse in non-contrastive SSL methods (such as SimSiam) has been
characterized by Li et al. (2022) through the analysis of the singular value decomposition of feature
representations. Following their methodology, we report three metrics. Given a feature matrix
A ∈ RN×d, we first normalize each row to unit norm and compute its singular values {σi}di=1.
(1) Singular value spectrum: the decay of {σi} as a function of their sorted index, which reflects
the effective dimensionality of the learned representation. (2) Normalized singular value spectrum:
the relative distribution of singular values, defined as σ̃i = σi/σ1, where σ1 is the largest singular
value. This metric shows how balanced or uneven the spread of information is across different
feature directions. (3) Cumulative explained variance: the fraction of variance captured by the
top-k singular values, defined as CEV(k) =

∑k
i=1 σi/

∑d
j=1 σj , which measures how quickly the

singular values concentrate, with steeper curves indicating stronger collapse into a low-dimensional
subspace.

Figure 11 reports these three metrics on the test set features at the end of CIFAR-100 training for both
Reservoir and FIFO. The two methods produce almost identical results, despite Reservoir having
already exhibited Latent Rehearsal Decay. This indicates that Latent Rehearsal Decay is not related
to feature collapse.
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Figure 12: Uniformity loss, a measure of SSL collapse (Wang & Isola, 2020), calculated on past,
future and current experiences for Reservoir, FIFO and SOLAR on ImageNet100.

Uniformity Loss. The uniformity loss, introduced by Wang & Isola (2020) as a measure of rep-
resentation space quality, penalizes feature vectors that are not uniformly distributed on the latent
hypersphere. Figure 12 correlates the uniformity loss to probing accuracy across OCSSL training on
ImageNet100. After an initial drop in the loss all three methods (Reservoir, FIFO and SOLAR) show
a gradual and constant increase of uniformity loss, with a similar behavior. The only difference that
can be observed is slightly higher final uniformity loss for Reservoir, which may be weakly related
to concurrent Latent Rehearsal Decay.

APPENDIX C ADDITIONAL SOLAR DETAILS

In this appendix we provide the full pseudocode of SOLAR. We show the relationship between
the self-supervised loss and the Deviation metric, motivating the use of the SSL loss in SOLAR
as an approximation of Deviation. Finally, we compare the true Overlap – which requires multiple
backward passes and is infeasible in OCSSL – with the Online Overlap estimation employed by
SOLAR, and we ablate the hyperparameter associated with the Overlap loss.

C.1 SOLAR ALGORITHM PSEUDO-CODE

We provide the full pseudo-code of SOLAR in Algorithm 1 below. The algorithm consists of an
EXTRACT function, which retrieves samples x from the Deviation-Aware buffer (accumulated in a
previous time step via the UPDATE function), and forwards them through the backbone. The overlap
loss Loverlap and the SSL loss ℓ are then computed, followed by backpropagation. Note that the
overlap loss is computed using as targets, the average features ẑ and average angles θ̂ associated to
the top-k SSL losses stored in the buffer (always via the UPDATE function).

The UPDATE function is called after each backpropagation step to store current samples x, the cur-
rent SSL loss ℓ, the average angle θ̂, and the average feature representation ẑ in the Deviation Aware
buffer. These are updated online for each sample j via an exponential moving average (EMA), re-
sulting in lMj , zMj , θ

M
j . Note that higher loss samples are discarded when the maximum buffer size

is reached.

C.2 LOSS AS A PROXY FOR DEVIATION

In this section we demonstrate that the per-sample self-supervised loss is a good proxy for estimating
Deviation, as the two are positively related by:

dDev

dLSSL
=

1

n2
> 0 . .

Setup and Assumptions. Let us assume a generic (positive-only) SSL instance discrimination loss
that tries to minimize the generic similarity S among feature views zi:

LSSL = −
∑
i̸=j

S(zi, zj). (8)
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Algorithm 1 Pseudo-code for the SOLAR training loop

Given: SSL model f , total batch size Btot, buffer M composed by entries
⟨xM

i , ℓMi , z̄Mi , θ̄Mi , eMi ⟩, buffer maximum size M .

1: for bs in D do ▷ streaming minibatches
2: for p in np do
3: if p == 0 then ▷ if first minibatch pass train also on stream batch bs
4: x← EXTRACT(M, Btot − |bs|) ∪ bs
5: else ▷ otherwise train only usingM samples
6: x← EXTRACT(M, Btot)
7: end if
8: x1, x2← Augmentations(x)
9: z1, z2 ← f(x1), f(x2)

10: ℓ← LSSL(z
1, z2) ▷ ℓ = [ℓi]

Btot
i=1 is the per sample SSL loss

11: Select K samples fromM\ x, with highest ℓM → [TM
K = ⟨z̄Mk , θ̄Mk ⟩]Kk=1

12: Loverlap = 1
Btot

∑Btot
i=1

1
K

∑K
k=1 max(0,Ov(Ti,TM

k ))

13: L = ℓ.mean() + ωLoverlap
14: BACKPROP(L)
15: UPDATE(M, x, ℓ, ẑ, θ̂)
16: end for
17: end for

18: function UPDATE(M, x, ℓ, ẑ, θ̂)
19: for xi ∈ x do
20: if xi ∈M in position j then
21: ℓMj ← 0.5 · ℓMj + 0.5 · ℓi
22: zMj ← 0.5 · zMj + 0.5 · zi
23: θ

M
j ← 0.5 · θMj + 0.5 · θi ▷ EMA update for samples already in buffer

24: else
25: M.append(⟨xi, ℓi, ẑi, θ̂i, 0⟩) ▷ append for new samples
26: end if
27: end for
28: if |M| > M then
29: r ← |M| −M ▷ r is the number of samples to remove
30: SortM in ascending order by ℓM ▷ remove lowest loss samples
31: Remove the first r samples fromM
32: end if
33: end function

34: function EXTRACT(M, b) ▷ b is the number of samples to extract
35: ē←MinMaxNormalization(eM)
36: p← 1− Softmax(ē)
37: I ← ∅ ▷ initialize extraction set
38: for j = 1 to b do ▷ sampling without replacement
39: Sample index i from {1, . . . , N} \ I with probability pi
40: I ← I ∪ i
41: eMi ← eMi + 1 ▷ increase extraction count for sample i
42: end for
43: return [xM

i ]i∈I
44: end function
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It is a reasonable assumption to consider S to be positively related to cosine similarity SC , thus, for
simplicity, we set S = SC .

Recall the definition of Deviation from equation 1:

Dev(Ta) =
1

|Ta|2
∑

zi
a,z

j
a∈Ta

(
1− SC(z

i
a, z

j
a)
)
.

Now we rewrite this formulation by sampling a fixed number of views, n, from Ta:

Dev =
1

n2

n∑
i=1

n∑
j=1

(
1− SC(z

i, zj)
)

= 1− 1

n2

n∑
i=1

n∑
j=1

SC(z
i, zj)︸ ︷︷ ︸

=:S̄

, (9)

where S̄ is the average (including self-pairs) cosine similarity.

Relating LSSL and Dev. We can rewrite equation 8 in terms of the double sum in equation 9:

LSSL = −
n∑

i=1

n∑
j=1

SC(z
i, zj) +

n∑
i=1

SC(z
i, zi) = −n2S̄ + n ,

because SC(z
i, zi) = 1 for every i. Thus we obtain:

n2S̄ = n− LSSL.

Plug this into equation 9 (recall Dev = 1− S̄) to obtain

Dev = 1− n− LSSL

n2
=
LSSL

n2
+

n2 − n

n2
=
LSSL

n2
+

n− 1

n
.

Conclusion. The preceding identity shows that Dev is an affine (linear + constant) function of the
loss LSSL:

Dev =
1

n2
LSSL +

n− 1

n
.

Hence we obtain our initial statement:

dDev

dLSSL
=

1

n2
> 0,

thus proving that Dev is positively related to LSSL: increasing LSSL increases Dev, and decreasing
LSSL decreases Dev. In particular, minimizing the loss LSSL during training reduces the Deviation
metric.

C.3 ONLINE ESTIMATION OF OVERLAP

We compare the true Overlap – which requires multiple backward passes and is infeasible in OCSSL
– with the Online Overlap estimation employed by SOLAR. Figure 13 shows the true Overlap, the
true overlap calculated on the buffer only – both calculated offline with a forward pass on the data
– and the online Overlap, which is again calculated during training only on the buffer, employing zti
and θ

t

i extracted during training.

Online Overlap estimation serves as a reliable proxy for the true Overlap. In practice, we observe
that Online Overlap closely matches the ground-truth Overlap computed over the buffer only. We
do observe some deviation between the true Overlap and its online estimation, though both exhibit
the same first-order trends. These discrepancies can be largely attributed to the buffer’s limited
representativeness of the entire data stream, rather than to any intrinsic weakness of the estimation
procedure itself. This distinction is important: it suggests that the quality of the buffer, rather than
the quality of the estimator, ultimately governs the accuracy of the measurement.
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Figure 13: Online versus true Overlap calculated for SOLAR on ImageNet100, with |M| = 2000.
Online Overlap estimation is a good proxy for the true Overlap. Online Overlap closely matches the
true Overlap calculated on the buffer only, demonstrating that the slight mismatch is only due to the
buffer not being representative enough of the entire stream.
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Figure 14: Ablation on ω, the hyperparameter controlling overlap lossMoverlap strength. The mean
and standard deviation of Final and Average Accuracy for ImageNet100 are reported.

C.4 ABLATION ON THE ω HYPERPARAMETER FOR LOVERLAP

Figure 14 presents an ablation study on the hyperparameter ω, which controls the strength of the
overlap loss Loverlap in SOLAR. Both Average and Final Accuracy on ImageNet100 are reported. We
observe that ω has a limited effect on performance, indicating that SOLAR is relatively insensitive
to the choice of this hyperparameter – an advantageous property in online settings such as OCSSL.
Overall, slightly lower Final Accuracy occur at smallest values of ω, consistent with the ablation
results in Table 2. This behavior aligns with expectations, as lower ω makes SOLAR closer to
just the Deviation Aware buffer, which performs worse than the full SOLAR formulation in Final
Accuracy.

We use ω = 0.3 only for the main experiments on ImageNet100, for all other setups, we used a fixed
ω = 1.0.
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APPENDIX D MORE ON EXPERIMENTS

In this appendix we provide additional details on the experimental setup used in the main paper,
analyze the distillation regularization employed by CLA-R and its relationship to Latent Rehearsal
Decay, and extend the analysis of buffer size introduced in the main paper with experiments on
ImageNet100.

D.1 ADDITIONAL DETAILS ON EXPERIMENTAL SETUP

Backbone. We chose ResNet-18 as backbone, initialized from scratch, as it is a lightweight encoder
network, widely tested in CL (Soutif-Cormerais et al., 2023; Urettini & Carta, 2025), and especially
in OCSSL (Yu et al., 2023; Cignoni et al., 2025b). As commonly done in the literature, for CIFAR-
100 we substituted the first 7x7 convolutional layer with a 3x3 convolutional layer and removed the
first MaxPool.

Optimization. We employ plain SGD, with momentum = 0.9 and weight decay = 1e-4. We em-
ployed a different learning rate for each of the 3 benchmarks, respectively 0.05, 0.02 and 0.01
respectively for CIFAR-100, ImageNet100 and CLEAR100. All methods use these same learning
rates for the corresponding benchmarks. All other hyperparameters of the methods were kept fixed
as in their original implementation.

Probing. Probing is performed with a linear probe trained with a minibatch size of 256 and initial
learning rate of 0.05, which decreases by a factor of 3 whenever the validation accuracy stops im-
proving. Training of the probe stops when a minimum learning rate or 100 epochs are reached. We
reserve 10% of each training split as validation data.

Augmentations. Extraction of multiple views from a single image is performed in two ways:
first, to obtain the two views used for the SSL instance discrimination training; secondly, to ex-
tract 20 views for calculating overlap and deviation metrics offline. We employ the same set of
augmentations for all methods: RandomCrop, RandomHorizontalFlip, randomly applied
ColorJitter and RandomGrayscale.

SCALE. SCALE is the only tested strategy that does not employ SimSiam as the underlying SSL
method, as it has its own contrastive loss Lcont. Additionally, the original implementation of the PSA
buffer would require a forward pass to calculate features of the buffer that are as recent as possible;
this would be not only computationally burdensome, but would also break OCSSL assumptions of
lightweight training. For this reason, we estimate buffer features via an EMA instead, similarly
as done in SOLAR for z̄Mi ; this EMA update of buffer features is exploited also by other OCSSL
strategies (Purushwalkam et al., 2022; Cignoni et al., 2025b).

D.2 FURTHER ANLAYSIS OF CLA

Figure 15 shows the training curves for CLA-E, CLA-R, and SOLAR on ImageNet100. In the
early phases, CLA-R achieves accuracy comparable to SOLAR, highlighting its fast convergence.
However, towards the end of training, its accuracy drops – imilarly to Reservoir in Figure 3 – a
phenomenon that can be attributed to Latent Rehearsal Decay. In contrast, CLA-E exhibits much
higher plasticity: its accuracy remains almost flat throughout training, with weaker performance
in the initial stages. Nevertheless, akin to FIFO (see Figure 3), its plasticity prevents accuracy
degradation over time.

D.3 CHANGING BUFFER SIZE ON IMAGENET100

Figure 16 reports Final and Average Accuracy on ImageNet100 when the maximum dimension
of the buffer |M| is changed. Similar to CIFAR-100, the final accuracy of Reservoir sampling is
strongly affected by a reduced buffer size, whereas FIFO remains comparatively more stable. In
contrast to CIFAR-100 (see Figure 5), however, the performance of MinRed also degrades under
reduced buffer capacity, suggesting that constructing a maximally representative set of samples is
impractical for complex datasets when the available buffer is too small. SOLAR, on the other hand,
remains largely unaffected by buffer size reductions and continues to outperform other methods in
terms of Average Accuracy.
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Figure 15: Dynamic regularization versus fixed distillation. These training curves on ImageNet100
show that CLA-E converges slowly when compared to SOLAR, while CLA-R, despite fast conver-
gence, suffers from Latent Rehearsal Decay.
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Figure 16: Changing buffer sizes on ImageNet100. We note that MinRed performance is greatly
impacted by the reduced buffer size.
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