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Abstract

Gloss-free Sign Language Translation (SLT)001
converts sign videos directly into spoken lan-002
guage sentences without relying on glosses. Re-003
cently, Large Language Models (LLMs) have004
shown remarkable translation performance in005
gloss-free methods by harnessing their pow-006
erful natural language generation capabili-007
ties. However, these methods often rely on008
domain-specific fine-tuning of visual encoders009
to achieve optimal results. By contrast, this010
paper emphasizes the importance of capturing011
the spatial configurations and motion dynamics012
inherent in sign language. With this in mind,013
we introduce Spatial and Motion-based Sign014
Language Translation (SpaMo), a novel LLM-015
based SLT framework. The core idea of SpaMo016
is simple yet effective. We first extract spatial017
and motion features using off-the-shelf visual018
encoders and then input these features into an019
LLM with a language prompt. Additionally,020
we employ a visual-text alignment process as a021
warm-up before the SLT supervision. Our ex-022
periments demonstrate that SpaMo achieves023
state-of-the-art performance on two popular024
datasets, PHOENIX14T and How2Sign1.025

1 Introduction026

Sign language is a visual means of communication027

primarily used by Deaf communities, relying on028

physical movements rather than spoken words. In029

this paper, we tackle Sign Language Translation030

(SLT), focusing on converting sign videos into spo-031

ken language sentences. Early SLT methods (Cam-032

goz et al., 2020; Voskou et al., 2021; Zhou et al.,033

2021b,a; Yin et al., 2021; Jin et al., 2022; Chen034

et al., 2022a,b; Zhang et al., 2023b) have primar-035

ily relied on glosses—written representations of036

signs using corresponding words. Glosses provide037

a structured form of sign language, which helps038

identify semantic boundaries within continuous039
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“Cold”
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(a) Spatial configuration

“Chair”

“Sit”
(b) Motion dynamics

Figure 1: Visual examples of spatial configurations and
motion dynamics in sign language. The images are
sourced from WLASL (Li et al., 2020a).

sign sequences. This, in turn, allows the models 040

to better comprehend the overall content of the 041

sign videos (Yin et al., 2023; Wei and Chen, 2023). 042

However, annotating glosses is a labor-intensive 043

and time-consuming process that requires expertise 044

in sign language. This significantly hinders the 045

expansion of sign language datasets and limits the 046

development of SLT methods (Li et al., 2020b; Shi 047

et al., 2022; Lin et al., 2023). 048

To address these limitations, there is a shift 049

towards gloss-free methods that rely solely on 050

the sign videos and corresponding translated text. 051

While these methods still underperform compared 052

to the gloss-based methods, efforts have been made 053

to reduce the performance gap by focusing on tem- 054

poral semantic structures (Li et al., 2020b) and 055

aligning visual and textual modalities (Zhao et al., 056

2021; Yin et al., 2023; Fu et al., 2023; Zhou et al., 057

2023). Recently, Large Language Models (LLMs) 058

have demonstrated remarkable translation perfor- 059

mance in a gloss-free setting by harnessing their 060

powerful language generation capabilities. How- 061
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ever, the modality gap between the continuous062

sign videos and discrete text poses a challenge for063

the LLMs in effectively understanding the sign064

videos. To address this problem, these methods065

fine-tune their visual encoders to be more domain-066

specific (Wong et al., 2024; Chen et al., 2024;067

Rust et al., 2024; Gong et al., 2024). However,068

these approaches are resource-intensive and time-069

consuming, presenting significant challenges that070

are hard to overcome. Moreover, there has been071

limited research on how the LLMs process the sign072

videos and the reasons behind their superior perfor-073

mance compared to other methods.074

In this paper, we challenge the understanding075

that fine-tuning visual encoders is necessary to076

achieve optimal performance in gloss-free SLT077

based on LLMs. Instead, we revisit a fundamental078

question: “What are the key components in sign079

language that most effectively convey meaning?”080

Our focus is on the important roles of spatial con-081

figuration and motion dynamics in sign language.082

Spatial configuration encompasses the arrangement083

and positioning of signs within the signing space,084

including hand shapes, facial expressions, and body085

postures. These components work together to dis-086

tinguish different signs and convey their intended087

meanings (Emmorey and Casey, 1995). As shown088

in Figure 1a, the signs for “cold” and “winter” both089

use the same handshape, with a shivering motion090

of the fists. The primary difference lies in the fa-091

cial expressions: “cold” is typically accompanied092

by a tensed or grimaced expression, while “win-093

ter” may feature a more neutral expression. Mo-094

tion dynamics, on the other hand, involve the path,095

speed, and rhythm of hand movements, illustrat-096

ing how movements alter the meanings of signs097

over time (Bosworth et al., 2019). As shown in098

Figure 1b, the signs for “chair” and “sit” both use099

the same ‘H” handshape and involve the interaction100

of both hands. However, the motion differentiates101

these signs: “chair” involves a repetitive tapping102

motion, while “sit” involves a single, smooth mo-103

tion. These examples highlight the importance of104

both spatial configuration and motion dynamics in105

conveying accurate messages in sign language.106

To this end, we introduce a novel gloss-free107

framework, Spatial and Motion-based Sign Lan-108

guage Translation (SpaMo), designed to fully lever-109

age the spatial configurations and motion dynamics110

in the sign videos, all without the need for domain-111

specific fine-tuning. As shown in Figure 2, the core112

idea is simple: We extract spatial and motion fea-113

tures using two different visual encoders and input 114

these features into an LLM with a language prompt. 115

Specifically, we use a pre-trained image encoder 116

(e.g., ViT) as Spatial Encoder (SE), to individu- 117

ally encode each frame for its spatial features. To 118

further refine the spatial configurations, we apply 119

S2 scaling (Shi et al., 2024), which processes a 120

sign image at multiple scales. Additionally, we 121

use a video encoder (e.g., VideoMAE) as Motion 122

Encoder (ME) to encode sign clips (groups of sign 123

frames) into the motion features. To capture finer 124

motion dynamics, we apply a sliding window ap- 125

proach, which results in implicit gloss-level repre- 126

sentations (Cheng et al., 2023; Hwang et al., 2024). 127

Next, Sign Adapter (SA), comprising Multi-Layer 128

Perceptron (MLP) layers, transfers these features to 129

the LLM. Additionally, we introduce Visual-Text 130

Alignment (VT-Align), a training strategy to effec- 131

tively narrow the modality gap, ensuring efficient 132

training and enhanced translation performance. 133

In all, our contributions can be summarized as: 134

• We introduce SPaMo, a novel gloss-free 135

framework. Our method eliminates the need 136

for fine-tuning visual encoders by utilizing 137

readily available, off-the-shelf models. Rather 138

than focusing on the expensive training, it fo- 139

cuses on the fundamental components in sign 140

language, enabling offering a simple yet effec- 141

tive translation with LLMs. 142

• Our proposed method achieves state-of-the- 143

art performance on two popular sign language 144

datasets: PHOENIX14T and How2Sign. 145

• We provide a novel and comprehensive analy- 146

sis of how the LLM interprets the sign videos 147

within its embedding space and translate them 148

into corresponding text. 149

2 Related Work 150

2.1 Gloss-free Sign Language Translation 151

Gloss-free SLT directly converts sign videos into 152

spoken language sentences without relying on 153

glosses. These methods, however, often under- 154

perform compared to gloss-based methods (Cam- 155

goz et al., 2020; Voskou et al., 2021; Zhou et al., 156

2021b,a; Yin et al., 2021; Jin et al., 2022; Chen 157

et al., 2022a,b; Zhang et al., 2023b). To address 158

the performance gap, recent work has focused on 159

several key areas: enhancing the temporal semantic 160

structure (Li et al., 2020b), improving the align- 161

ment between visual and textual modalities (Zhao 162
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et al., 2021; Lin et al., 2023; Fu et al., 2023), lever-163

aging large language models (LLMs) (Wong et al.,164

2024; Gong et al., 2024; Chen et al., 2024), and165

scaling efforts by utilizing larger sign language166

datasets (Uthus et al., 2024; Rust et al., 2024).167

Despite these advancements, most gloss-free168

methods depend on fine-tuning visual encoders169

using the glosses (Li et al., 2020b; Yin et al.,170

2023; Fu et al., 2023), target translations (Zhou171

et al., 2023; Wong et al., 2024), or self-supervised172

learning (Gong et al., 2024; Rust et al., 2024).173

In particular, fine-tuning with the glosses (gloss-174

supervision) helps the visual encoders to be175

more domain-specific training on continuous176

or isolated Sign Language Recognition (SLR)177

datasets, such as WLASL (Li et al., 2020a) and178

PHOENIX14T (Camgoz et al., 2018). Conse-179

quently, we classify these methods as weakly gloss-180

free due to the implicit involvement of gloss infor-181

mation, as further elaborated in Section 4.3. On the182

other hand, the rest of the fine-tuning methods elim-183

inate reliance on these annotations. However, these184

methods often require substantial resources, mak-185

ing it difficult to achieve robust visual representa-186

tions and enhance translation performance without187

access to a sufficiently large dataset. To address this188

limitation, our approach diverges from this norm189

by focusing on capturing the spatial configurations190

and motion dynamics, thereby avoiding the need191

for resource-intensive fine-tuning.192

2.2 Large Language Models193

Recently, LLMs (Touvron et al., 2023; Chiang194

et al., 2023; Chung et al., 2024) have demonstrated195

impressive text generation capabilities, through ex-196

tensive training on web-scale text corpora. This197

extensive training has endowed the LLMs with ro-198

bust generalization abilities across various tasks.199

Notable applications include multilingual transla-200

tion (Zhu et al., 2023; Zhang et al., 2023a; Gao201

et al., 2024), pose generation (Feng et al., 2024;202

Zhang et al., 2024a), and, visual question answer-203

ing (Li et al., 2023; Liu et al., 2024a,b). In SLT,204

LLMs also demonstrate impressive translation per-205

formance. These methods focus on aligning high-206

dimensional visual features with inputs comprehen-207

sible to LLMs. To achieve this alignment, the vi-208

sual encoders are pre-trained to produce language-209

like tokens (Gong et al., 2024), utilize pseudo-210

glosses (Wong et al., 2024), or perform video-211

grounded text generation tasks (Chen et al., 2024).212

Our work shows that a domain-specific fine-213

tuning of the visual encoders is unnecessary for 214

optimal performance. Instead, we extract spatial 215

and motion features and pass them to the LLM 216

through a simple connector, accompanied by a light 217

warm-up process. This approach is both simple and 218

effective, proving that a complex learning process 219

is not required to achieve peak performance. 220

3 Method 221

We first give an overview of our framework in 222

Section 3.1, We then explain SE and ME in Sec- 223

tions 3.2 and 3.3, respectively. Next, we discuss SA 224

in Section 3.4 and VT-Align in Section 3.5. Finally, 225

we explain the training details in Section 3.6. 226

3.1 Framework Overview 227

Given a sign video X = {xi}Ti=1, where each 228

frame xi ∈ RH×W represents a frame with height 229

H and width W , the objective of SLT is to gen- 230

erate a corresponding spoken language sentence 231

Y = {yj}Uj=1, composed of U words. Previous 232

gloss-free methods (Zhou et al., 2023; Wong et al., 233

2024; Gong et al., 2024; Chen et al., 2024) have 234

involved fine-tuning visual encoders using sign lan- 235

guage data to be more domain-specific, thereby 236

improving on translation performance. However, 237

while this fine-tuning process injects more domain 238

knowledge at the feature extraction level, it is of- 239

ten unnecessary and resource-intensive, especially 240

with LLMs, which already maintain rich visual in- 241

formation from the visual encoder in their latent 242

space (Zhang et al., 2024b). This creates a trade- 243

off, but we argue that the latter approach is more 244

effective. Thus, we emphasize the importance of 245

encoding the spatial configurations and motion dy- 246

namics in sign language and decoding this informa- 247

tion through proper alignment and training. 248

As shown in Figure 2, Spatial Encoder (SE) and 249

Motion Encoders (ME) extract two distinct features 250

from the sign video X: Spatial features Zs capture 251

the spatial configurations (Emmorey and Casey, 252

1995), and motion features Zm represent the mo- 253

tion dynamics (Bosworth et al., 2019). These fea- 254

tures are then integrated into a combined sign fea- 255

ture Zsm via Sign Adapter (SA). The combined fea- 256

ture is then fed to an LLM with an language prompt, 257

guiding the LLM to generate the translation in the 258

desired language. Additionally, we perform Visual- 259

Text Alignment (VT-Align) to minimize the gap 260

between the visual and textual modalities before 261

and during training under SLT supervision. 262
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Figure 2: An overview of the SpaMo framework, which consists of three parts: (i) Sign Feature Extraction:
Spatial and motion features are extracted using SE and ME, leveraging the S2 and sliding window approaches to
capture detailed spatial configurations and motion dynamics. (ii) VT-Align: The extracted features are combined
within SA to form a unified sign feature. During training, a warm-up process is employed to ensure that SA has
well-initialized weights, effectively bridging the modality gap between the sign video and text. (iii) LLM: Finally,
the LLM processes the sign feature along with a language-instructive prompt and is trained using LoRA.

3.2 Spatial Encoder263

SE extracts spatial features Zs from the sign video264

X . We utilize a pre-trained image encoder (e.g.,265

ViT), which is kept frozen, and enhances its ca-266

pability to capture more detailed spatial informa-267

tion by applying Scaling on Scales (S2) (Shi et al.,268

2024). S2 is parameter-free and enables the ex-269

traction of multi-scale features without altering the270

original pre-trained encoder. By processing sign271

images at multiple resolutions, S2 provides a more272

comprehensive spatial understanding, ensuring that273

SE captures both fine-grained and broad spatial274

details for accurate sign language interpretation.275

The resulting spatial features can be represented276

as Zs ∈ RT×2d, where T is the number of frames,277

and 2d is the enhanced embedding dimension, re-278

flecting the integration of multi-scale features.279

3.3 Motion Encoder280

ME derives motion features from the sign video281

X . Similar to SE, we employ a pre-trained video282

encoder (e.g., VideoMAE), which remains frozen,283

to process sign clips segmented from the video.284

However, accurately segmenting the sign video285

into distinct gloss-level clips is challenging with-286

out the support of pre-trained Continuous Sign Lan-287

guage Recognition (CSLR) models (Wei and Chen,288

2023). To address this limitation, we use a sliding289

window approach to capture implicit gloss-level290

representations (Cheng et al., 2023; Hwang et al.,291

2024). Specifically, we divide the sign video into292

Figure 3: An overview of Sign Adapter.

short, overlapping clips, then feed each clip into 293

ME to extract the implicit gloss-level motion fea- 294

tures Zm ∈ RN×d, where N = T
t and t denotes 295

the number of frames between the start of neighbor- 296

ing clips. Since Zm is generated by processing N 297

short clips, it can also be interpreted as a sequence 298

of N clip-wise features. 299

3.4 Sign Adapter 300

In the previous sections, we extracted two distinct 301

visual features: the spatial features Zs and the mo- 302

tion features Zm. These features differ in both their 303

dimensions and representation, as depicted in Fig- 304

ure 2. To effectively integrate these features, we 305

introduce an additional module called Sign Adaptor 306

(SA). As shown in Figure 3, SA includes linear pro- 307

jection layers, a 1D CNN, and a Multi-Layer Per- 308

ceptron (MLP). These components work together 309

to integrate the spatial and motion features into a 310

unified sign representation, denoted as Zsm. First, 311
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the spatial and motion features are passed through312

linear projection layers to transform them into fea-313

tures with matching dimensions. Next, the 1D314

CNN is applied for short-term modeling of the com-315

bined features. Finally, a cross-modal MLP (Liu316

et al., 2024a) is employed to bridge the visual and317

textual modalities. The resulting outputs are repre-318

sented as Zsm ∈ RM×d′ , where M represents the319

reduced number of frames after convolution, and320

d′ is the dimension aligned with that of the LLM.321

Although SA aids in bridging the modality gap be-322

tween visual and textual features during training323

under the SLT supervision, the gap still persists.324

To tackle this issue, we introduce VT-Align, which325

will be detailed in the next section.326

3.5 Visual-Text Alignment327

VT-Align is a warm-up and go process designed328

to provide the SA module with well-initialized329

weights before the SLT supervision begins. This330

initial alignment is crucial, as it helps the model331

more effectively bridge the modality gap during332

training. To achieve this alignment, we use a333

widely-used softmax-based contrastive learning ap-334

proach (Radford et al., 2021; Jia et al., 2021).335

Specifically, given a mini-batch B =336

{(S1, Y1), (S2, Y2), ...} of sign-text pairs, the337

contrastive learning objective encourages the338

embeddings of matching pairs (Si, Yi) to align339

closely while pushing apart the embeddings of340

mismatched pairs (Si, Yj ̸=i). Text features Zt341

are extracted from the target translation Yi using342

the LLM’s embedding layer Ellm(·). Note that343

only the SA module fsa(·) is updated during this344

process, while Ellm(·) remains fixed to preserve345

the LLM’s language capabilities. The VT-Align346

loss function Lvt is represented as follows:347

−
1

2|B|

|B|∑
i=1



sign→text softmax︷ ︸︸ ︷
log

eτZ
(i)
sm·z(i)t∑|B|

j=1 eτZ
(i)
sm·Z(j)

t

+

text→sign softmax︷ ︸︸ ︷
log

eτZ
(i)
sm·Z(i)

t∑|B|
j=1 eτZ

(j)
sm·Z(i)

t


, (1)348

where Z
(i)
sm = fsa(Si)

∥fsa(Si)∥2
, Z(i)

t = Ellm(Ti)
∥Ellm(Ti)∥2

, and349

τ denotes a learnable temperature parameter used350

to scale the logits.351

3.6 Training Details352

Our framework is optimized in two stages: an ini-353

tial warm-up phase followed by training with the354

SLT supervision. In the warm-up phase, we begin355

by training the SA module using VT-Align for a356

designated number of steps (e.g., 4K steps). After 357

completing the warm-up phase, we proceed to a 358

joint training of both SA and the LLM. For fine- 359

tuning the LLM, we utilize LoRA (Hu et al., 2021), 360

a lightweight and efficient method specifically de- 361

signed for this purpose. Overall, our method is 362

trained with a combined loss function as: 363

LSpaMo = Lce + λLvt, (2) 364

where λ is a hyperparameter, and Lce represents 365

cross-entropy loss. 366

4 Experiments 367

4.1 Implementation Details 368

For SE and ME, we use CLIP ViT-L/14 (Radford 369

et al., 2021) and VideoMAE-L/16 (Tong et al., 370

2022), respectively. To extract the spatial fea- 371

tures, the sign images are interpolated to multiple 372

scales, such as 224× 224 and 448× 448. For each 373

scale, larger images are split into sub-images of 374

regular size (224 × 224) and processed individu- 375

ally. These features from the sub-images are then 376

pooled and concatenated with features from the 377

original representation. For the motion features, 378

each clip consists of 16 frames aligned with the 379

findings from (Wilbur, 2009), which suggests that 380

this frame interval captures a single sign. We use 381

an 8-frame gap between neighboring clips. We uti- 382

lize FlanT5-XL-16bit (Chung et al., 2024) as our 383

LLM. During the warm-up phase with VT-Align, 384

we use 4K steps on PHOENIX14T and 15K steps 385

on How2Sign. Additional implementation details 386

can be found in Appendix Section A. 387

4.2 Datasets and Evaluation Metrics 388

Datasets. We evaluated our method on two 389

sign language datasets: PHOENIX14T (Camgoz 390

et al., 2018) and How2Sign (Duarte et al., 2021). 391

PHOENIX14T is a German Sign Language (DGS) 392

dataset focused on weather forecasts, featuring a 393

closed domain with a vocabulary of 3K words and 394

an average of 116 frames. How2Sign is a large- 395

scale American Sign Language (ASL) dataset that 396

spans over a more open instructional domain, con- 397

taining a vocabulary of 16K words and an average 398

of 173 frames. Detailed statistics for both datasets 399

are provided in Appendix Section C. 400

Evaluation Metrics. We report BLEU via Sacre- 401

BLEU (Papineni et al., 2002; Post, 2018)2 and 402

2
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.2.1
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Setting Methods Vis. Ft. BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE

Gloss-based

SLRT (Camgoz et al., 2020) ✓ 46.61 33.73 26.19 21.32 -
STN-SLT (Voskou et al., 2021) ✓ 48.61 35.97 28.37 23.65 -
STMC-T (Zhou et al., 2021b) 46.98 36.09 28.70 23.65 46.65
BN-TIN-Transf.+SignBT (Zhou et al., 2021a) 50.80 37.75 29.72 24.32 49.54
SimulSLT (Yin et al., 2021) 48.23 35.59 28.04 23.14 49.23
PET (Jin et al., 2022) ✓ 49.54 37.19 29.30 24.02 49.97
MMTLB (Chen et al., 2022a) ✓ 53.97 41.75 33.84 28.39 52.65
TS-SLT (Chen et al., 2022b) ✓ 54.90 42.43 34.46 28.95 53.48
SLTUNET (Zhang et al., 2023b) ✓ 52.92 41.76 33.99 28.47 52.11

Weakly Gloss-free
TSPNet (Li et al., 2020b) ✓ 36.10 23.12 16.88 13.41 34.96
GASLT (Yin et al., 2023) ✓ 39.07 26.74 21.86 15.74 39.86
ConSLT (Fu et al., 2023) ✓ - - - 21.59 47.69

Gloss-free

CSGCR (Zhao et al., 2021) 36.71 25.40 18.86 15.18 38.85
GFSLT-VLP (Zhou et al., 2023) ✓ 43.71 33.18 26.11 21.44 42.29
FLa-LLM (Chen et al., 2024) ✓ 46.29 35.33 28.03 23.09 45.27
Sign2GPT (Wong et al., 2024) ✓ 49.54 35.96 28.83 22.52 48.90
SignLLM (Gong et al., 2024) ✓ 45.21 34.78 28.05 23.40 44.49

SpaMo (Ours) 49.80 37.32 29.50 24.32 46.57

Table 1: Performance comparison on the PHOENIX14T dataset. “Vis. Ft.” denotes to the visually fine-tuned on
sign language datasets. The best results are highlighted in bold, and the second-best are underlined.

Setting Methods Modality Vis.Ft. BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEURT

Weakly Gloss-free GloFE-VN (Lin et al., 2023) Landmark ✓ 14.94 7.27 3.93 2.24 12.61 31.65
OpenSLT (Tarrés et al., 2023) RGB ✓ 34.01 19.30 12.18 8.03 - -

Gloss-free

YT-ASL-SLT (Uthus et al., 2024)† Landmark 14.96 5.11 2.26 1.22 - 29.98
SSVP-SLT (Rust et al., 2024)† RGB ✓ 30.20 16.70 10.50 7.00 25.70 39.30
FLa-LLM (Chen et al., 2024) RGB ✓ 29.81 18.99 13.27 9.66 27.81 -

SpaMo (Ours) RGB 33.41 20.28 13.96 10.11 30.56 42.23

Table 2: Performance comparison of translation results on the How2Sign dataset. YT-ASL-SLT and SSVP-SLT
(marked with †) are reported without dataset scaling to ensure a fair comparison.

ROUGE-L (Lin and Och, 2004). BLEU-n as-403

sesses translation precision by evaluating n-grams.404

ROUGE-L measures text similarity by calculating405

the F1 score based on the longest common subse-406

quences between predicted and reference texts. We407

also report BLEURT (Sellam et al., 2020) from the408

BLEURT-20 checkpoint3, which has been shown409

to correlate well with human judgments.410

4.3 Comparison with State-of-the-Art411

A Taxonomy of SLT. In Section 2, we explore412

gloss-free methods, including those that incorpo-413

rate gloss-supervised visual encoders. Although414

these approaches have traditionally been catego-415

rized as gloss-free, we argue that they should416

more accurately be described as weakly gloss-free417

due to their dependence on gloss-annotated data.418

This classification is detailed in Table 1. Specifi-419

cally, methods such as TSPNet (Li et al., 2020b),420

GASLT (Yin et al., 2023), ConSLT (Fu et al., 2023),421

GloFE-VN (Lin et al., 2023), and OpenSLT (Tar-422

rés et al., 2023) rely on sign features extracted by423

visual encoders trained on continuous or isolated424

sign language recognition (SLR) datasets.425

3
https://huggingface.co/lucadiliello/BLEURT-20

Results on PHOENIX14T. We compare our 426

method with both gloss-based and gloss-free meth- 427

ods on PHOENIX14T. As shown in Table 1, most 428

previous methods rely on the domain-specific fine- 429

tuning of their visual encoders. By contrast, 430

our method demonstrates consistent improvements 431

across all reported metrics without such fine-tuning, 432

except for ROUGE, where it achieves the second- 433

best result. Notably, the improvement on BLEU- 434

4 is particularly significant, with a margin of 435

0.92, representing a 3.93% increase over Sign- 436

LLM (Gong et al., 2024). These results demon- 437

strate that conveying the key components of sign 438

language to LLMs is crucial for enhancing transla- 439

tion performance and adopting LLMs in SLT with- 440

out expensive training or complex training steps. 441

Results on How2Sign. We also evaluated our 442

method on How2Sign, which poses greater chal- 443

lenges than PHOENIX14T due to its more open- 444

domain nature, longer sign video lengths, and 445

larger vocabulary. The results are presented in Ta- 446

ble 2. Our method outperforms previous methods 447

across all reported metrics. Specifically, we achieve 448

a 0.45 margin in BLEU-4, representing a 4.66% 449

improvement over Fla-LLM (Chen et al., 2024). 450

6
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Component Metric

SE ME VT-Align B1 B2 B3 B4 RG

✓ 46.44 33.79 26.07 21.11 42.15
✓ 29.71 16.23 10.99 8.36 22.44

✓ ✓ 47.59 35.05 27.34 22.26 43.92

✓ ✓ ✓ 49.80 37.32 29.50 24.32 46.57

Table 3: Ablation study of main component.

Models Params B1 B2 B3 B4 RG

W/o LLM 60.5M 24.93 12.76 8.45 6.35 18.96
mT5-Large 1.2B 32.31 19.23 13.21 9.87 26.32
Flan-T5-Large 0.8B 47.63 34.75 27.04 22.02 43.66

Flan-T5-XL 3B 49.80 37.32 29.50 24.32 46.57

Table 4: Ablation study for impact of LLM.

Notably, we see a performance gain in BLEURT,451

reaching 2.93, which is 7.46% higher than SSVP-452

SLT (Rust et al., 2024) under the non-scaled dataset453

setting. These results suggest that our method is454

more robust for open-domain scenarios with gen-455

eral topics and longer video lengths, even without456

the domain-specific fine-tuning.457

Kernel Density Estimation. To assess the qual-458

ity of sign representations, following Ye et al.459

(2023), we employ Kernel Density Estimation460

(KDE) to estimate the probability density func-461

tions of embeddings from GFSLT-VLP and our462

method on PHOENIX14T. Note that we repro-463

duced GFSLT-VLP using the official code4. As464

shown in Table 5, our method produces more com-465

pact and confident representations than GFSLT-466

VLP. More details can be found in Appendix Sec-467

tion A468

4.4 Ablation Study469

To further evaluate our method, we conducted ex-470

tensive ablation experiments on PHOENIX14T, the471

most widely used sign language dataset. Additional472

results can be found in Appendix Section B.473

Effect of Main Components. We begin by evalu-474

ating the effect of the key components in our frame-475

work, specifically SE (spatial features), ME (mo-476

tion features), and VT-align. As shown in Table 3,477

using both spatial and motion features alone yields478

results comparable to Sign2GPT in terms of BLEU-479

4 score (22.52 vs. 22.26). However, when VT-align480

is incorporated with these features, it achieves the481

best overall performance, demonstrating the impor-482

tance of each component in SpaMo.483

Effect of LLM. Next, we examine the effect of484

different LLMs by replacing the model with various485

4
https://github.com/zhoubenjia/GFSLT-VLP

Method KDEs Entropy ↓

GFSLT-VLP (Zhou et al., 2023) 0.32
SPaMo (Ours) 0.12

Table 5: Comparison of KDE entropy values across
different embeddings. Lower entropy values indicate
more confident and distinct representations.

Figure 4: Ablation study for SE and ME. S2 repre-
sents Scaling on Scales, and n denotes the gap between
neighboring clips. Note that the results presented do not
include VT-Align.

LLM types, as shown in Table 4. We compare four 486

baselines, each with a different model size: our 487

method without pre-trained weights, mT5-Large, 488

Flan-T5-Large, and Flan-T5-XL. Of these, Flan- 489

T5-XL demonstrates the best performance. 490

Effect of S2 and Neighboring Gap. Finally, we 491

evaluate the effect of S2 and the gap between neigh- 492

boring clips on SE and ME, respectively. As shown 493

in Figure 4, S2 substantially improves translation 494

performance, highlighting its effectiveness to help 495

SE capture more detailed spatial details. Addition- 496

ally, our analysis reveals that an 8-frame gap be- 497

tween neighboring clips produces the best results, 498

indicating that this specific gap optimally facilitates 499

ME in extracting dynamic motion information. 500

4.5 Qualitative Analysis 501

Translation Results. Table 6 presents two exam- 502

ple translations on PHOENIX14T, comparing our 503

method with GFSLT-VLP, the only other publicly 504

available baseline. In the first example (top), our 505

method provides an accurate translation, whereas 506

GFSLT-VLP fails to capture the correct semantic 507

meaning. In the second example (bottom), our 508

method again produces a precise translation, while 509

GFSLT-VLP introduces errors, resulting in incor- 510

rect information. These examples demonstrate the 511

superior accuracy of our method in generating re- 512

liable translations. Please refer to Appendix Sec- 513

tion D for more translation examples. 514

Visual Token Analysis. We performed an addi- 515

tional analysis to explore how the LLM interprets 516
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Ref: die neue woche beginnt noch wechselhaft und etwas kühler.
(the new week begins still changeable and somewhat cooler)

GFSLT-VLP: am montag wieder wechselhaft und kühler.
(on Monday again changeable and cooler)

Ours: die neue woche beginnt wechselhaft und wieder kühler.
(the new week begins changeable and again cooler)

Ref: sonst viel sonnenschein.
otherwise, a lot of sunshine.

GFSLT-VLP: im übrigen land viel sonne.
in the rest of the country, a lot of sun.

Ours: sonst viel sonnenschein.
otherwise, a lot of sunshine.

Table 6: Translation results on the test set compared
to GFSLT-VLP on PHOENIX14T. Correctly translated
1-grams are highlighted in blue, while incorrect transla-
tions are marked in red.

Vis. Token: NORDWEST SONST FREUNDLICH STURDY
(NORTHWEST OTHERWISE FRIENDLY STURDY)

Gloss: NORDWEST FREUNDLICH
(NORTHWEST FRIENDLY)

Translation: richtung norden und westen ist es recht freundlich.
(Towards the north and west it is quite pleasant.)

Vis. Token: BLEIBT WIND WINTER
(REMAINS WIND WINTER)

Gloss: BLEIBEN WIND
(REMAIN WIND)

Translation: es bleibt windig.
(it remains windy.)

Vis. Token: LIEBE GUTEN ABEND SCHÖNEN
(DEAR GOOD EVENING BEAUTIFUL)

Gloss: GUT ABEND BEGRUESSEN
(GOOD EVENING GREETINGS)

Translation: guten abend liebe zuschauer.
(good evening dear viewers.)

Table 7: Comparison between visual tokens (Vis. Token)
and their corresponding glosses. Words highlighted in
green are exact matches, those in pink are semantic
matches, and words in blue are absent in the gloss but
appear in the translation.

the sign videos. Inspired from the reverse engi-517

neering (Ju et al., 2023), we first compute the Eu-518

clidean distance between the sign feature Zsm and519

the LLM’s embedding table Ellm ∈ RV×d′ , where520

V represents the vocabulary size. Each sign fea-521

ture is then mapped to the word associated with522

the shortest distance in this space. This process523

can be expressed as dist(Zsm, Ellm) ≤ ∆, where524

dist(·) denotes the Euclidean distance function, and525

∆ represents the shortest distance to Ellm across526

all sign features.527

Figure 5 shows the t-SNE visualization of each528

sign feature mapped to the corresponding vocabu-529

lary. We observed that certain visual features align530

closely with specific words, which likely represent531

the semantic concepts the LLM associates with532

these features. In other words, these words rep-533

resent the LLM’s interpretation or labeling of the534

visual content. We refer to these mapped words as535

Figure 5: The t-SNE visualization of sign features. Dif-
ferent colors represent sign features with distinct seman-
tics, while gray points are other categories not listed.

“visual tokens”. We further compare these visual 536

tokens with the ground-truth glosses as shown in 537

Table 7. To ensure a clearer and more accurate se- 538

mantic comparison, repetitive words were removed 539

from the visual tokens. Surprisingly, the LLM’s 540

interpretation of the sign videos is similar to the 541

glosses, though not perfectly aligned. This suggests 542

that the LLM has learned to link particular video 543

patterns with specific textual concepts, explaining 544

why those words cluster near the visual features in 545

the embedding space. Additionally, we found that 546

the visual tokens capture words that are present in 547

the translation but not in the glosses. This finding 548

suggests that visual tokens may provide a more 549

comprehensive representation than current glosses, 550

potentially broadening their scope beyond what has 551

been traditionally documented. 552

5 Conclusion 553

In this paper, we introduce SpaMo, a novel gloss- 554

free SLT framework based on LLMs. Apart from 555

the previous methods that rely on domain-specific 556

fine-tuning of their visual encoders, SpaMo focuses 557

on capturing the spatial configurations and mo- 558

tion dynamics, eliminating the need for resource- 559

intensive fine-tuning. We also propose VT-Align, a 560

training strategy that effectively aligns and narrows 561

the modality gap between the sign videos and target 562

translations, enabling the transformation of the sign 563

videos into inputs interpretable by the LLM. Our 564

approach achieves state-of-the-art results on two 565

widely-used datasets. Furthermore, we provide the 566

first comprehensive analysis of how the LLM in- 567

terpret the sign videos within its embedding space 568

and translate them into corresponding text. 569
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Limitations570

Limited Use of LLMs. Currently, SpaMo has571

been tested on a limited range of LLMs. As shown572

in Table 4, our method scales effectively as the573

size of the LLMs increases. Therefore, there is574

a significant opportunity to expand this testing to575

include various other models, such as Llama (Tou-576

vron et al., 2023), Vicuna (Chiang et al., 2023), and577

Alpaca (Taori et al., 2023). The primary constraint578

has been the limited availability of GPU resources.579

Expanding the testing to more LLMs could provide580

deeper insights and potentially enhance SpaMo’s581

performance across different architectures. Addi-582

tionally, techniques such as 4-bit quantization can583

be employed to optimize these models, reducing584

the computational resources required and enabling585

more extensive testing. Future work will focus586

on broadening the range of tested models and ex-587

ploring these optimization techniques to further588

improve the scalability and efficiency of SpaMo589

across diverse LLMs.590

Limited Use of Sign Language Datasets. In re-591

cent studies (Uthus et al., 2024; Rust et al., 2024),592

scaling datasets has consistently led to performance593

improvements, as seen with larger sign language594

datasets, such as Youtube-ASL (Uthus et al., 2024).595

While the dataset scaling could also enhance our596

method, in this work, we focus on a constrained set-597

ting. Specifically, we use a limited sign language598

dataset to evaluate and compare results, demon-599

strating the effectiveness of our method in resource-600

limited scenarios. Future work will involve expand-601

ing the dataset size to explore the full potential of602

our method and to assess its scalability and perfor-603

mance across more extensive and diverse datasets.604

LoRA Fine-Tuning for LLM. In this paper, we605

highlight that domain-specific fine-tuning of visual606

encoders is not essential for our method. However,607

our method incorporates LoRA fine-tuning for the608

LLM. While this might appear to be a compromise,609

it significantly reduces the resource requirements610

compared to fine-tuning both the visual encoders611

and the LLM. Additionally, as we discussed in the612

previous section, this limitation can be addressed613

as more data becomes available, allowing for im-614

proved scalability and performance over time.615

Ethics Statement616

Our work is focused on developing a practical617

framework for sign language translation with the618

goal of overcoming communication barriers faced 619

by the Deaf and hard-of-hearing communities. Al- 620

though our approach utilizes off-the-shelf visual 621

encoders and LLMs, there is a possibility that 622

the framework could produce unexpected or bi- 623

ased outputs due to the inherent limitations in 624

the pre-trained models. However, we are opti- 625

mistic that future advancements in LLMs will help 626

mitigate these issues. We rely on open datasets 627

such as PHOENIX14T (Camgoz et al., 2018) and 628

How2Sign (Duarte et al., 2021), which, while con- 629

taining potentially identifiable information, present 630

minimal concerns regarding personal privacy. Ad- 631

ditionally, our method has been validated only on 632

American and German sign languages, limiting its 633

applicability to other sign languages. We call for 634

future research in sign language translation to ex- 635

pand the diversity of sign language datasets, such 636

as YouTube-ASL (Uthus et al., 2024), BOBSL (Al- 637

banie et al., 2021), and CSL-Daily (Zhou et al., 638

2021a), to enhance the framework’s applicability 639

and inclusively across different sign languages. 640
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Appendix954

In this Supplementary Material, we begin by pro-955

viding further implementation details in Section A.956

Section B presents additional experimental results.957

In Section C, we delve into a more detailed analysis,958

offering statistics and insights on the sign language959

datasets used in our study. Finally, in Section D, we960

conclude by demonstrating additional qualitative961

results for PHOENIX14T and How2Sign.962

A More Implementation Details963

Components of SpaMo. In the SA module, we964

utilize two distinct linear projection layers tailored965

for the output feature of ME and SE. For short-term966

modeling, we employ a 1D CNN configured with967

a specific sequence of layers: {K5, P2,K5, P2},968

where Kσ represents a kernel size of σ, and Pσ969

indicates a pooling layer with a kernel size of970

σ (Hu et al., 2023). To integrate features into971

the LLM’s embedding space, we leverage an MLP972

cross-modal connector (Liu et al., 2024a), project-973

ing the features into a 2048-dimensional space.974

Prompt Template. To focus the LLM on the SLT975

task, we employ a specific prompting strategy. Our976

prompt includes a clear instructive prompt: “Trans-977

late the given sentence into German.” Following978

this, we incorporate multilingual translations via979

a translation engine such as Google Translator5,980

which are sampled from the training set. These981

translations are included to facilitate In-Context982

Learning (ICL) (Brown et al., 2020). The prompt983

is structured as follows: “Translate the given sen-984

tence into German. [SRC] = [TRG].” Here, the985

source input (e.g., a sentence in French) serves986

as the foreign language example, and the corre-987

sponding response is the translation into the target988

language (e.g., German, as used in PHOENIX14T).989

An example of this prompt structure is provided990

in Table 8. To ensure that the LLM does not di-991

rectly access the target translations during training,992

we shuffle the translation samples so they do not993

match the target translation. At test time, we select994

a translation pair from the training set to use as a995

reference.996

Training. For training, we use the AdamW op-997

timizer (Loshchilov and Hutter, 2017), with β1 =998

0.9, β2 = 0.98, and a weight decay of 0.01. The999

learning rate schedule includes a cosine decay with1000

5
https://cloud.google.com/translate

Sign Video Input: [Extracted Sign Feature]

Instruction: Translate the given sentence into German.

In Context Examplars:

Soil frost is possible there and in the southern
low mountain ranges.=dort sowie in den südlichen
mittelgebirgen ist bodenfrost möglich.

La helada del suelo es posible allí y en las cadenas
montañosas del sur.=dort sowie in den südlichen
mittelgebirgen ist bodenfrost möglich.

Le gel du sol est possible là-bas et dans les chaînes
de montagnes basses du sud.=dort sowie in den südlichen
mittelgebirgen ist bodenfrost möglich.

Table 8: An example of prompt used in this paper.

Visual Encoders (SE + ME) B1 B2 B3 B4 RG

DINOv2 + V-JEPA 45.67 32.94 25.27 20.35 41.32
DINOv2 + VideoMAE 47.31 34.60 26.90 21.86 42.50
CLIP + V-JEPA 47.82 34.71 26.76 21.66 43.68

CLIP + VideoMAE 49.80 37.32 29.50 24.32 46.57

Table 9: Ablation study on various combinations of
visual encoders. The results are with VT-Align.

Methods B1 B2 B3 B4 RG

Ours (w/o LoRA) 46.11 32.65 24.69 19.67 42.91
Ours (w/ LoRA) 49.80 37.32 29.50 24.32 46.57

Table 10: Ablation on our method with and without
LoRA.

a peak learning rate of 1e-4 and a linear warmup 1001

of than 10k steps, with a minimum learning rate of 1002

5e-5. We train our model for 40 epochs, using a 1003

single NVIDIA A100 GPU, completing the entire 1004

process within 24 hours. 1005

Evaluating Process with KDEs. To evaluate the 1006

quality of the learned representations, we utilize 1007

Kernel Density Estimation (KDE) to estimate the 1008

probability density functions of the embeddings 1009

from GFSLT-VLP and ours. Due to different di- 1010

mensionality from these methods (1,024 vs. 2,048), 1011

we run Principal Component Analysis (PCA) to 1012

reduce the number of dimensions while retaining 1013

the most significant variance components. This 1014

dimensionality reduction facilitated more efficient 1015

and stable KDE fitting. KDE can be expressed as: 1016

fkde(z) =
1

nhd

n∑
i=1

K

(
z− zi
h

)
, (3) 1017

where zi denotes the representation points, K de- 1018

notes the kernel function, h is the bandwidth pa- 1019

rameter, d is the dimensionality of the data, and n 1020

is the number of data points. 1021

The entropy of KDE is then calculated as: 1022

H = −
n∑

i=1

fkde(zi) log fkde(zi), (4) 1023
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Dataset Language # Vocab Train / Valid / Test Avg. No. Frame Gloss Domain

PHOENIX14T (Camgoz et al., 2018) DGS 3K 7,096 / 519 / 642 116 O Weather Forecast
How2Sign (Duarte et al., 2021) ASL 16K 31,128 / 1,741 / 2,322 173 X Instructional

Table 11: Statistics of two sign language datasets used in this work. DGS: German Sign Language; ASL: American
Sign Language; Avg. No. Frame: average number of video frames.

where H represents the entropy, and f(zi) are1024

the estimated density values at the representation1025

points.1026

B More Experiments1027

Effect of Visual Encoders. We assess the effect1028

of various combination of visual encoders (SE &1029

ME). Table 9 shows four different encoders: DI-1030

NOv2 (Oquab et al., 2023), CLIP (Radford et al.,1031

2021), V-JEPA (Bardes et al., 2024), and Video-1032

MAE (Tong et al., 2022). The results demonstrate1033

that the combination of CLIP and VideoMAE deliv-1034

ers the highest performance, suggesting potential1035

for further improvement as visual encoders con-1036

tinue to advance.1037

Effect of LoRA. We evaluate the effect of LoRA1038

on the LLM. As illustrated in Table 10, the LLM1039

with LoRA demonstrates superior performance.1040

C Statistics of Sign Language Datasets1041

Table 11 provides an overview of two sign language1042

datasets: PHOENIX14T and How2Sign, which dif-1043

fer significantly in their characteristics and applica-1044

tions. PHOENIX14T focuses on German Sign Lan-1045

guage (DGS) within the specific domain of weather1046

forecasting, featuring a relatively small vocabulary1047

of 3K words and a concise average video length1048

of 116 frames. It includes 7,096 training samples,1049

519 validation samples, and 642 test samples, with1050

gloss annotations available. This dataset is tailored1051

for domain-specific tasks, offering clear and repet-1052

itive patterns ideal for translation and recognition1053

within weather-related contexts.1054

In contrast, How2Sign, centered on American1055

Sign Language (ASL) in the instructional domain,1056

presents a much larger and more diverse dataset1057

with a 16K word vocabulary and an average of1058

173 frames per video. It provides a substantial1059

amount of data, with 31,128 training samples, 1,7411060

validation samples, and 2,322 test samples, though1061

it lacks gloss annotations. The broader and more1062

complex nature of How2Sign makes it suitable for1063

general sign language processing tasks, especially1064

those requiring an understanding of diverse and 1065

intricate sign sequences. 1066

D More Qualitative Results 1067

We provide additional translation examples for 1068

PHOENIX14T and How2Sign in Tables 12 and 1069

13, respectively. As shown in Table 12, our method 1070

consistently delivers accurate translations, while 1071

GFSLT-VLP struggles to capture the correct se- 1072

mantic meaning. 1073

For How2Sign, Table 13 presents translation re- 1074

sults along with their corresponding visual tokens. 1075

Since How2Sign lacks gloss annotations, we in- 1076

clude actual sign frames for qualitative comparison. 1077

Similar to the PHOENIX14T results, several visual 1078

tokens in How2Sign are closely aligned with the 1079

translations. Note that although OpenSLT (Tarrés 1080

et al., 2023) is the only publicly available baseline6, 1081

we were unable to reproduce their results due to 1082

a broken link to the fine-tuned I3D features at the 1083

time of drafting. 1084

6
https://github.com/imatge-upc/slt_how2sign_wicv2023
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Ref: und nun die wettervorhersage für morgen sonntag den zwölften juli.
(and now the weather forecast for tomorrow Sunday the twelfth of July.)

GFSLT-VLP: und nun die wettervorhersage für morgen sonntag den zwölften juni.
(and now the weather forecast for tomorrow, Sunday, the twelfth of June.)

Ours: und nun die wettervorhersage für morgen sonntag den zwölften juli.
(and now the weather forecast for tomorrow Sunday the twelfth of July.)

Ref: in der nacht muss vor allem in der nordwesthälfte mit schauern und gewittern gerechnet werden die heftig ausfallen können.
(During the night, showers and thunderstorms are expected, especially in the northwest half, which could be heavy.)

GFSLT-VLP: heute nacht gibt es im norden teilweise kräftige schauer und gewitter die örtlich unwetterartig sein können.
(At night, showers and thunderstorms can be expected, especially in the northwest half, which can sometimes be strong.)

Ours: in der nacht muss vor allem in der nordwesthälfte mit schauern und gewittern gerechnet werden die mitunter kräftig sein können.
(During the night, showers and thunderstorms are expected, particularly in the northwest half, which may be heavy.)

Ref: und nun die wettervorhersage für morgen donnerstag den siebenundzwanzigsten august.
(and now the weather forecast for tomorrow, Thursday the twenty-seventh of August.)

GFSLT-VLP: und nun die wettervorhersage für morgen donnerstag den sechsundzwanzigsten august.
(and now the weather forecast for tomorrow, Thursday the twenty-sixth of August.)

Ours: und nun die wettervorhersage für morgen donnerstag den siebenundzwanzigsten august.
(and now the weather forecast for tomorrow, Thursday the twenty-seventh of August.)

Ref: am tag ist es im westen freundlich sonst sonne und dichtere wolken im wechsel hier und da fallen einzelne schauer.
(During the day it is friendly in the west, otherwise sun and denser clouds alternate, with occasional showers here and there)

GFSLT-VLP: am tag wechseln sonne und wolken einander ab im westen fallen mitunter gewittrige schauer.
(During the day sun and clouds alternate, in the west, occasional stormy showers may occur)

Ours: am tag ist es im westen freundlich mit sonne und dichteren wolken hier und da fallen schauer.
(During the day it is friendly in the west with sun and denser clouds, with occasional showers here and there)

Ref: abseits der gewittern weht der wind schwach bis mäßig an der küste frisch.
(Away from the thunderstorms, the wind blows weak to moderate, fresh at the coast.)

GFSLT-VLP: abgesehen von gewitterböen schwacher bis mäßiger an den küsten auch frischer wind
(Apart from thunderstorm gusts, weak to moderate, also fresh wind at the coasts.)

Ours: abseits der gewittern weht der wind schwach bis mäßig an den küsten auch frisch.
(Away from the thunderstorms, the wind blows weak to moderate, also fresh at the coasts.)

Ref: am sonntag im norden und an den alpen mal sonne mal wolken und ab und an schauer sonst ist es recht freundlich.
(On Sunday in the north and in the Alps sometimes sun sometimes clouds and occasional showers otherwise it is quite pleasant.)

GFSLT-VLP: am sonntag im norden an den alpen einige schauer sonst ist es recht freundlich.
(On Sunday in the north in the Alps some showers otherwise it is quite pleasant.)

Ours: am sonntag im norden und an den alpen mal sonne mal wolken und nur einzelne schauer sonst meist freundlich.
(On Sunday in the north and in the Alps sometimes sun sometimes clouds and only a few showers otherwise mostly pleasant.)

Ref: am mittwoch eine mischung aus sonne wolken und nebelfeldern im nordwesten hier und da schauer sonst ist es trocken.
(On Wednesday a mix of sun, clouds, and fog patches in the northwest; here and there showers, otherwise it is dry.)

GFSLT-VLP: am mittwoch gibt es viele wolken hier und da schauer vor allem im nordwesten bleibt es meist trocken.
(On Wednesday there will be many clouds; here and there showers, especially in the northwest, it remains mostly dry.)

Ours: am mittwoch eine mischung aus sonne wolken und nebel im nordwesten einige schauer sonst bleibt es meist trocken.
(On Wednesday a mix of sun, clouds, and fog in the northwest; some showers, otherwise it remains mostly dry.)

Ref: am tag scheint verbreitet die sonne im süden und westen bilden sich später gebietsweise quellwolken.
(During the day, the sun shines widely in the south, and later, isolated cumulus clouds form in the west.)

GFSLT-VLP: am tag scheint in der südhälfte häufig die sonne hier und da ein paar wolken.
(During the day, the sun often shines in the southern half, here and there a few clouds.)

Ours: am tag scheint verbreitet die sonne im süden und im äußersten westen tauchen hier und da ein paar quellwolken auf.
(During the day, the sun shines widely in the south, and in the far west, here and there, a few cumulus clouds appear.)

Ref: der wind weht mäßig bis frisch mit starken bis stürmischen böen im bergland teilweise schwere sturmböen im südosten mitunter nur schwacher wind.
(The wind blows moderately to freshly with strong to stormy gusts in the mountainous regions, partly severe storm gusts in the southeast, occasionally only weak wind.)

GFSLT-VLP: der wind weht mäßig bis frisch bei schauern sowie im südosten schwere sturmböen im bergland starker bis stürmböen.
(The wind blows moderately to freshly with showers, as well as severe storm gusts in the southeast, in the mountainous regions strong to stormy gusts.)

Ours: der wind weht mäßig bis frisch mit starken bis stürmischen böen auf den bergen schwere sturmböen im süden sonst schwacher wind.
(The wind blows moderately to freshly with strong to stormy gusts on the mountains, severe storm gusts in the south, otherwise weak wind.)

Ref: am montag überall wechselhaft und deutlich kühler.
(On Monday, everywhere is changeable and significantly cooler.)

GFSLT-VLP: am montag wird es wieder wechselhafter kühler.
(On Monday, it will be changeable and cooler again.)

Ours: am montag überall wechselhaft und deutlich kühler.
(On Monday, everywhere is changeable and significantly cooler.)

Ref: sonst ein wechsel aus sonne und wolken.
(Otherwise a mix of sun and clouds.)

GFSLT-VLP: ansonsten wechseln sich teilweise dichte wolken und sonne ab.
(Otherwise partially dense clouds and sun alternate.)

Ours: sonst ein wechsel aus sonne und wolken.
(Otherwise a mix of sun and clouds.)

Ref: und nun die wettervorhersage für morgen samstag den sechsundzwanzigsten januar.
And now the weather forecast for tomorrow, Saturday, the twenty-sixth of January.

GFSLT-VLP: und nun die wettervorhersage für morgen samstag den sechsundzwanzigsten dezember.
And now the weather forecast for tomorrow, Saturday, the twenty-sixth of December.

Ours: und nun die wettervorhersage für morgen samstag den sechsundzwanzigsten januar.
And now the weather forecast for tomorrow, Saturday, the twenty-sixth of January.

Ref: sonst ist es recht freundlich.
Otherwise it is quite pleasant.

GFSLT-VLP: sonst überwiegend freundlich.
Otherwise mostly pleasant.

Ours: sonst ist es recht freundlich.
Otherwise it is quite pleasant.

Table 12: Translation results on the test set compared to GFSLT-VLP on PHOENIX14T. Correctly translated
1-grams are highlighted in blue, while incorrect translations are marked in red.
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Image:
Vis. Token: AGAIN SOMEONE ONE SHOW

Ref: again, one more time we’ll show it for you.
Ours: again, one more time.

Image:
Vis. Token: LITTLE MORE HOW

Ref: a little bit more then this maybe.
Ours: a little bit more about it.

Image:
Vis. Token: NOW GO TODAY TO TAKE LITTLE THREE SEVEN FOUR WEED OUT LITTLE HERE JUILLET VORSCHRIFTEN

Ref: and we’re going to take a little weed out here.
Ours: now we’re going to take a little bit of the weed out here.

Image:
Vis. Token: WANT TO REPEAT TWO LOOK ON YOURÄNG KISS AGE IS YOUR HORSE

Ref: you want to look at the age of your horse.
Ours: you want to take a look at the age of your horse.

Image:
Vis. Token: MANY PEOPLE NOT OTHER UNDERSTAND THOUGHT

Ref: many people don’t understand.
Ours: many people don’t understand that.

Image:
Vis. Token: I PRACTICE WHEN WITH B FOAMERS CAST WAS SO OROU CAN KNOW IF OR GROUP

Ref: i practice with the barton oaks dental group.
Ours: i practice with the barton oaks tennis team.

Ref: so, let’s keep doing the same thing with the arms.
Ours: so, let’s keep doing the same thing with the arms.

Ref: here, two, three, four, elbow and follow wherever you’re going to go, like the knee to the groin and your elbow.
Ours: here, two, three, four, follow through where you’re going to want to squeegee, woo, woo, your elbow.

Ref: my name is robert segundo and have fun.
Ours: my name is robert todd and have fun.

Ref: watch our next segment to learn more about natural beauty products.
Ours: watch our next segment and we’ll talk a little bit more about natural beauty products.

Ref: remember, be careful when doing your home remedies, and if you’re not sure, check with your local professional.
Ours: remember very carefully when doing your home remedies if you have a cell phone.

Ref: you can start to rotate your shoulders and start to get more comfortable with your feet by turning.
Ours: you can start rotating your shoulders and start getting comfortable with your five by rotating.

Ref: hi, i’m johanna krynytzky with hip expressions belly dance studio in st. petersburg, florida.
Ours: hi, i’m johanna krynytzky with hip expressions belly dance studio in st. petersburg, florida.

Ref: i’m going to show you how to do some step-touch side foot work for belly dancing.
Ours: i’m going to show you some step touch side and medium rock for belly dancing.

Table 13: Translation results on the How2Sign test set. Correctly translated 1-gram matches are highlighted in blue.
Exact visual token matches within the translation are highlighted in green .
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