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Abstract

Gloss-free Sign Language Translation (SLT)
converts sign videos directly into spoken lan-
guage sentences without relying on glosses. Re-
cently, Large Language Models (LLMs) have
shown remarkable translation performance in
gloss-free methods by harnessing their pow-
erful natural language generation capabili-
ties. However, these methods often rely on
domain-specific fine-tuning of visual encoders
to achieve optimal results. By contrast, this
paper emphasizes the importance of capturing
the spatial configurations and motion dynamics
inherent in sign language. With this in mind,
we introduce Spatial and Motion-based Sign
Language Translation (SpaMo), a novel LLM-
based SLT framework. The core idea of SpaMo
is simple yet effective. We first extract spatial
and motion features using off-the-shelf visual
encoders and then input these features into an
LLM with a language prompt. Additionally,
we employ a visual-text alignment process as a
warm-up before the SLT supervision. Our ex-
periments demonstrate that SpaMo achieves
state-of-the-art performance on two popular
datasets, PHOENIX 14T and How2Sign'.

1 Introduction

Sign language is a visual means of communication
primarily used by Deaf communities, relying on
physical movements rather than spoken words. In
this paper, we tackle Sign Language Translation
(SLT), focusing on converting sign videos into spo-
ken language sentences. Early SLT methods (Cam-
goz et al., 2020; Voskou et al., 2021; Zhou et al.,
2021b,a; Yin et al., 2021; Jin et al., 2022; Chen
et al., 2022a,b; Zhang et al., 2023b) have primar-
ily relied on glosses—written representations of
signs using corresponding words. Glosses provide
a structured form of sign language, which helps
identify semantic boundaries within continuous
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Figure 1: Visual examples of spatial configurations and
motion dynamics in sign language. The images are
sourced from WLASL (Li et al., 2020a).

sign sequences. This, in turn, allows the models
to better comprehend the overall content of the
sign videos (Yin et al., 2023; Wei and Chen, 2023).
However, annotating glosses is a labor-intensive
and time-consuming process that requires expertise
in sign language. This significantly hinders the
expansion of sign language datasets and limits the
development of SLT methods (Li et al., 2020b; Shi
et al., 2022; Lin et al., 2023).

To address these limitations, there is a shift
towards gloss-free methods that rely solely on
the sign videos and corresponding translated text.
While these methods still underperform compared
to the gloss-based methods, efforts have been made
to reduce the performance gap by focusing on tem-
poral semantic structures (Li et al., 2020b) and
aligning visual and textual modalities (Zhao et al.,
2021; Yin et al., 2023; Fu et al., 2023; Zhou et al.,
2023). Recently, Large Language Models (LLMs)
have demonstrated remarkable translation perfor-
mance in a gloss-free setting by harnessing their
powerful language generation capabilities. How-
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ever, the modality gap between the continuous
sign videos and discrete text poses a challenge for
the LLMs in effectively understanding the sign
videos. To address this problem, these methods
fine-tune their visual encoders to be more domain-
specific (Wong et al., 2024; Chen et al., 2024;
Rust et al., 2024; Gong et al., 2024). However,
these approaches are resource-intensive and time-
consuming, presenting significant challenges that
are hard to overcome. Moreover, there has been
limited research on how the LLMs process the sign
videos and the reasons behind their superior perfor-
mance compared to other methods.

In this paper, we challenge the understanding
that fine-tuning visual encoders is necessary to
achieve optimal performance in gloss-free SLT
based on LLMs. Instead, we revisit a fundamental
question: “What are the key components in sign
language that most effectively convey meaning?”
Our focus is on the important roles of spatial con-
figuration and motion dynamics in sign language.
Spatial configuration encompasses the arrangement
and positioning of signs within the signing space,
including hand shapes, facial expressions, and body
postures. These components work together to dis-
tinguish different signs and convey their intended
meanings (Emmorey and Casey, 1995). As shown
in Figure 1a, the signs for “cold” and “winter” both
use the same handshape, with a shivering motion
of the fists. The primary difference lies in the fa-
cial expressions: “cold” is typically accompanied
by a tensed or grimaced expression, while “win-
ter” may feature a more neutral expression. Mo-
tion dynamics, on the other hand, involve the path,
speed, and rhythm of hand movements, illustrat-
ing how movements alter the meanings of signs
over time (Bosworth et al., 2019). As shown in
Figure 1b, the signs for “chair” and “sit” both use
the same ‘H” handshape and involve the interaction
of both hands. However, the motion differentiates
these signs: “chair” involves a repetitive tapping
motion, while “sit” involves a single, smooth mo-
tion. These examples highlight the importance of
both spatial configuration and motion dynamics in
conveying accurate messages in sign language.

To this end, we introduce a novel gloss-free
framework, Spatial and Motion-based Sign Lan-
guage Translation (SpaMo), designed to fully lever-
age the spatial configurations and motion dynamics
in the sign videos, all without the need for domain-
specific fine-tuning. As shown in Figure 2, the core
idea is simple: We extract spatial and motion fea-

tures using two different visual encoders and input
these features into an LLM with a language prompt.
Specifically, we use a pre-trained image encoder
(e.g., ViT) as Spatial Encoder (SE), to individu-
ally encode each frame for its spatial features. To
further refine the spatial configurations, we apply
S? scaling (Shi et al., 2024), which processes a
sign image at multiple scales. Additionally, we
use a video encoder (e.g., VideoMAE) as Motion
Encoder (ME) to encode sign clips (groups of sign
frames) into the motion features. To capture finer
motion dynamics, we apply a sliding window ap-
proach, which results in implicit gloss-level repre-
sentations (Cheng et al., 2023; Hwang et al., 2024).
Next, Sign Adapter (SA), comprising Multi-Layer
Perceptron (MLP) layers, transfers these features to
the LLM. Additionally, we introduce Visual-Text
Alignment (VT-Align), a training strategy to effec-
tively narrow the modality gap, ensuring efficient
training and enhanced translation performance.
In all, our contributions can be summarized as:

* We introduce SPaMo, a novel gloss-free
framework. Our method eliminates the need
for fine-tuning visual encoders by utilizing
readily available, off-the-shelf models. Rather
than focusing on the expensive training, it fo-
cuses on the fundamental components in sign
language, enabling offering a simple yet effec-
tive translation with LLMs.

* Our proposed method achieves state-of-the-
art performance on two popular sign language
datasets: PHOENIX14T and How?2Sign.

* We provide a novel and comprehensive analy-
sis of how the LLM interprets the sign videos
within its embedding space and translate them
into corresponding text.

2 Related Work

2.1 Gloss-free Sign Language Translation

Gloss-free SLT directly converts sign videos into
spoken language sentences without relying on
glosses. These methods, however, often under-
perform compared to gloss-based methods (Cam-
goz et al., 2020; Voskou et al., 2021; Zhou et al.,
2021b,a; Yin et al., 2021; Jin et al., 2022; Chen
et al., 2022a,b; Zhang et al., 2023b). To address
the performance gap, recent work has focused on
several key areas: enhancing the temporal semantic
structure (Li et al., 2020b), improving the align-
ment between visual and textual modalities (Zhao



et al., 2021; Lin et al., 2023; Fu et al., 2023), lever-
aging large language models (LLMs) (Wong et al.,
2024; Gong et al., 2024; Chen et al., 2024), and
scaling efforts by utilizing larger sign language
datasets (Uthus et al., 2024; Rust et al., 2024).

Despite these advancements, most gloss-free
methods depend on fine-tuning visual encoders
using the glosses (Li et al., 2020b; Yin et al.,
2023; Fu et al., 2023), target translations (Zhou
et al., 2023; Wong et al., 2024), or self-supervised
learning (Gong et al., 2024; Rust et al., 2024).
In particular, fine-tuning with the glosses (gloss-
supervision) helps the visual encoders to be
more domain-specific training on continuous
or isolated Sign Language Recognition (SLR)
datasets, such as WLASL (Li et al., 2020a) and
PHOENIX14T (Camgoz et al., 2018). Conse-
quently, we classify these methods as weakly gloss-
free due to the implicit involvement of gloss infor-
mation, as further elaborated in Section 4.3. On the
other hand, the rest of the fine-tuning methods elim-
inate reliance on these annotations. However, these
methods often require substantial resources, mak-
ing it difficult to achieve robust visual representa-
tions and enhance translation performance without
access to a sufficiently large dataset. To address this
limitation, our approach diverges from this norm
by focusing on capturing the spatial configurations
and motion dynamics, thereby avoiding the need
for resource-intensive fine-tuning.

2.2 Large Language Models

Recently, LLMs (Touvron et al., 2023; Chiang
et al., 2023; Chung et al., 2024) have demonstrated
impressive text generation capabilities, through ex-
tensive training on web-scale text corpora. This
extensive training has endowed the LLMs with ro-
bust generalization abilities across various tasks.
Notable applications include multilingual transla-
tion (Zhu et al., 2023; Zhang et al., 2023a; Gao
et al., 2024), pose generation (Feng et al., 2024;
Zhang et al., 2024a), and, visual question answer-
ing (Li et al., 2023; Liu et al., 2024a,b). In SLT,
LLMs also demonstrate impressive translation per-
formance. These methods focus on aligning high-
dimensional visual features with inputs comprehen-
sible to LLMs. To achieve this alignment, the vi-
sual encoders are pre-trained to produce language-
like tokens (Gong et al., 2024), utilize pseudo-
glosses (Wong et al., 2024), or perform video-
grounded text generation tasks (Chen et al., 2024).

Our work shows that a domain-specific fine-

tuning of the visual encoders is unnecessary for
optimal performance. Instead, we extract spatial
and motion features and pass them to the LLM
through a simple connector, accompanied by a light
warm-up process. This approach is both simple and
effective, proving that a complex learning process
is not required to achieve peak performance.

3 Method

We first give an overview of our framework in
Section 3.1, We then explain SE and ME in Sec-
tions 3.2 and 3.3, respectively. Next, we discuss SA
in Section 3.4 and VT-Align in Section 3.5. Finally,
we explain the training details in Section 3.6.

3.1 Framework Overview

Given a sign video X = {z;}L,, where each
frame z; € R”*W represents a frame with height
H and width W, the objective of SLT is to gen-
erate a corresponding spoken language sentence
Y = {y; }gjzl, composed of U words. Previous
gloss-free methods (Zhou et al., 2023; Wong et al.,
2024; Gong et al., 2024; Chen et al., 2024) have
involved fine-tuning visual encoders using sign lan-
guage data to be more domain-specific, thereby
improving on translation performance. However,
while this fine-tuning process injects more domain
knowledge at the feature extraction level, it is of-
ten unnecessary and resource-intensive, especially
with LLMs, which already maintain rich visual in-
formation from the visual encoder in their latent
space (Zhang et al., 2024b). This creates a trade-
off, but we argue that the latter approach is more
effective. Thus, we emphasize the importance of
encoding the spatial configurations and motion dy-
namics in sign language and decoding this informa-
tion through proper alignment and training.

As shown in Figure 2, Spatial Encoder (SE) and
Motion Encoders (ME) extract two distinct features
from the sign video X: Spatial features Z; capture
the spatial configurations (Emmorey and Casey,
1995), and motion features Z,, represent the mo-
tion dynamics (Bosworth et al., 2019). These fea-
tures are then integrated into a combined sign fea-
ture Z,,, via Sign Adapter (SA). The combined fea-
ture is then fed to an LLLM with an language prompt,
guiding the LLM to generate the translation in the
desired language. Additionally, we perform Visual-
Text Alignment (VT-Align) to minimize the gap
between the visual and textual modalities before
and during training under SLT supervision.



L. Sign Feature Extraction

II. VT-Align III. Large Language Model (LLM)

Spatial
Encoder
(SE)

N
ra

Spatial Feature

(VS) 19)depy usig

Motion
Encoder
(ME)

Nxd
Motion Feature

- 4

und nun dic wettervorhersage

fiir morgen freitag den sechsten mai

J Embed Language

Mxd
Sign Feature

Instruction
LLM’s Embedding Layer t J _
:
i U
H Text Feature
I 1 1 ]
W | 75 || [T LLM
VT,V T3 ViTy|
WVaT2\VoT3| ... |VaTy|
o T VT, VsTs| .. V3Tyl h
I' b LoRA
VNTo[VnTs| ... WyTy
(© Dimension-wise Concatenation Frozen Weights

for N Clips

@ Temporal-wise Concatenation ” Trainable Weights

® Mean Pooling == Only for Training

Figure 2: An overview of the SpaMo framework, which consists of three parts: (i) Sign Feature Extraction:
Spatial and motion features are extracted using SE and ME, leveraging the S? and sliding window approaches to
capture detailed spatial configurations and motion dynamics. (ii) VT-Align: The extracted features are combined
within SA to form a unified sign feature. During training, a warm-up process is employed to ensure that SA has
well-initialized weights, effectively bridging the modality gap between the sign video and text. (iii) LLM: Finally,
the LLM processes the sign feature along with a language-instructive prompt and is trained using LoRA.

3.2 Spatial Encoder

SE extracts spatial features Z5 from the sign video
X. We utilize a pre-trained image encoder (e.g.,
ViT), which is kept frozen, and enhances its ca-
pability to capture more detailed spatial informa-
tion by applying Scaling on Scales (52) (Shi et al.,
2024). S? is parameter-free and enables the ex-
traction of multi-scale features without altering the
original pre-trained encoder. By processing sign
images at multiple resolutions, S? provides a more
comprehensive spatial understanding, ensuring that
SE captures both fine-grained and broad spatial
details for accurate sign language interpretation.
The resulting spatial features can be represented
as /s € RT*2d \where T is the number of frames,
and 2d is the enhanced embedding dimension, re-
flecting the integration of multi-scale features.

3.3 Motion Encoder

ME derives motion features from the sign video
X. Similar to SE, we employ a pre-trained video
encoder (e.g., VideoMAE), which remains frozen,
to process sign clips segmented from the video.
However, accurately segmenting the sign video
into distinct gloss-level clips is challenging with-
out the support of pre-trained Continuous Sign Lan-
guage Recognition (CSLR) models (Wei and Chen,
2023). To address this limitation, we use a sliding
window approach to capture implicit gloss-level
representations (Cheng et al., 2023; Hwang et al.,
2024). Specifically, we divide the sign video into
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Figure 3: An overview of Sign Adapter.

short, overlapping clips, then feed each clip into
ME to extract the implicit gloss-level motion fea-
tures Z,, € RV*4d where N = % and ¢ denotes
the number of frames between the start of neighbor-
ing clips. Since Z,, is generated by processing N
short clips, it can also be interpreted as a sequence
of N clip-wise features.

3.4 Sign Adapter

In the previous sections, we extracted two distinct
visual features: the spatial features Z; and the mo-
tion features Z,,,. These features differ in both their
dimensions and representation, as depicted in Fig-
ure 2. To effectively integrate these features, we
introduce an additional module called Sign Adaptor
(SA). As shown in Figure 3, SA includes linear pro-
jection layers, a 1D CNN, and a Multi-Layer Per-
ceptron (MLP). These components work together
to integrate the spatial and motion features into a
unified sign representation, denoted as Z,,. First,



the spatial and motion features are passed through
linear projection layers to transform them into fea-
tures with matching dimensions. Next, the 1D
CNN is applied for short-term modeling of the com-
bined features. Finally, a cross-modal MLP (Liu
et al., 2024a) is employed to bridge the visual and
textual modalities. The resulting outputs are repre-
sented as Zs,, € RM Xd/, where M represents the
reduced number of frames after convolution, and
d' is the dimension aligned with that of the LLM.
Although SA aids in bridging the modality gap be-
tween visual and textual features during training
under the SLT supervision, the gap still persists.
To tackle this issue, we introduce VT-Align, which
will be detailed in the next section.

3.5 Visual-Text Alignment

VT-Align is a warm-up and go process designed
to provide the SA module with well-initialized
weights before the SLT supervision begins. This
initial alignment is crucial, as it helps the model
more effectively bridge the modality gap during
training. To achieve this alignment, we use a
widely-used softmax-based contrastive learning ap-
proach (Radford et al., 2021; Jia et al., 2021).

Specifically, given a mini-batch B =
{(S1,Y1),(52,Y2),...} of sign-text pairs, the
contrastive learning objective encourages the
embeddings of matching pairs (.S;,Y;) to align
closely while pushing apart the embeddings of
mismatched pairs (S;,Y.;). Text features Z;
are extracted from the target translation Y; using
the LLM’s embedding layer Ej;, (). Note that
only the SA module f,,(+) is updated during this
process, while Ej;,,(-) remains fixed to preserve
the LLM’s language capabilities. The VT-Align
loss function L, is represented as follows:

sign—text softmax text—sign softmax
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3.6 Training Details

Our framework is optimized in two stages: an ini-
tial warm-up phase followed by training with the
SLT supervision. In the warm-up phase, we begin
by training the SA module using VI-Align for a

designated number of steps (e.g., 4K steps). After
completing the warm-up phase, we proceed to a
joint training of both SA and the LLM. For fine-
tuning the LLM, we utilize LoRA (Hu et al., 2021),
a lightweight and efficient method specifically de-
signed for this purpose. Overall, our method is
trained with a combined loss function as:

ESpaMo = »cce + )\E’Uta (2)

where ) is a hyperparameter, and L. represents
cross-entropy loss.

4 Experiments

4.1 Implementation Details

For SE and ME, we use CLIP ViT-L/14 (Radford
et al.,, 2021) and VideoMAE-L/16 (Tong et al.,
2022), respectively. To extract the spatial fea-
tures, the sign images are interpolated to multiple
scales, such as 224 x 224 and 448 x 448. For each
scale, larger images are split into sub-images of
regular size (224 x 224) and processed individu-
ally. These features from the sub-images are then
pooled and concatenated with features from the
original representation. For the motion features,
each clip consists of 16 frames aligned with the
findings from (Wilbur, 2009), which suggests that
this frame interval captures a single sign. We use
an 8-frame gap between neighboring clips. We uti-
lize FlanT5-XL-16bit (Chung et al., 2024) as our
LLM. During the warm-up phase with VT-Align,
we use 4K steps on PHOENIX14T and 15K steps
on How2Sign. Additional implementation details
can be found in Appendix Section A.

4.2 Datasets and Evaluation Metrics

Datasets. We evaluated our method on two
sign language datasets: PHOENIX14T (Camgoz
et al., 2018) and How2Sign (Duarte et al., 2021).
PHOENIX14T is a German Sign Language (DGS)
dataset focused on weather forecasts, featuring a
closed domain with a vocabulary of 3K words and
an average of 116 frames. How2Sign is a large-
scale American Sign Language (ASL) dataset that
spans over a more open instructional domain, con-
taining a vocabulary of 16K words and an average
of 173 frames. Detailed statistics for both datasets
are provided in Appendix Section C.

Evaluation Metrics. We report BLEU via Sacre-
BLEU (Papineni et al., 2002; Post, 2018)2 and

2nrefs:1 |case:mixed|eff:no|tok:13a|smooth:exp|version:2.2.1



Setting Methods Vis. Ft. BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE

SLRT (Camgoz et al., 2020) v 46.61 33.73 26.19 21.32 -
STN-SLT (Voskou et al., 2021) v 48.61 35.97 28.37 23.65 -

STMC-T (Zhou et al., 2021b) 46.98 36.09 28.70 23.65 46.65

BN-TIN-Transf.+SignBT (Zhou et al., 2021a) 50.80 37.75 29.72 24.32 49.54

Gloss-based SimulSLT (Yin et al., 2021) 48.23 35.59 28.04 23.14 49.23

PET (Jin et al., 2022) v 49.54 37.19 29.30 24.02 49.97

MMTLB (Chen et al., 2022a) v 53.97 41.75 33.84 28.39 52.65

TS-SLT (Chen et al., 2022b) v 54.90 42.43 34.46 28.95 53.48

SLTUNET (Zhang et al., 2023b) v 52.92 41.76 33.99 28.47 52.11

TSPNet (Li et al., 2020b) v 36.10 23.12 16.88 13.41 34.96

Weakly Gloss-free GASLT (Yin et al., 2023) v 39.07 26.74 21.86 15.74 39.86

ConSLT (Fu et al., 2023) v - - - 21.59 47.69

CSGCR (Zhao et al., 2021) 36.71 25.40 18.86 15.18 38.85

GFSLT-VLP (Zhou et al., 2023) v 43.71 33.18 26.11 21.44 42.29

Gloss-free FLa-LLM (Chen et al., 2024) v 46.29 35.33 28.03 23.09 45.27

Sign2GPT (Wong et al., 2024) v 49.54 35.96 28.83 22.52 48.90

SignLLM (Gong et al., 2024) v 45.21 34.78 28.05 23.40 44.49

SpaMo (Ours) 49.80 37.32 29.50 24.32 46.57

Table 1: Performance comparison on the PHOENIX 14T dataset. “Vis. Ft.” denotes to the visually fine-tuned on
sign language datasets. The best results are highlighted in bold, and the second-best are underlined.

Setting Methods Modality Vis.Ft. BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEURT
Weakly Gloss-free GIoFE-VN (Lin et al., 2023) Landmark v 14.94 727 3.93 2.24 12.61 31.65
y - OpenSLT (Tarrés et al., 2023) RGB v 34.01 19.30 12.18 8.03 - -
YT-ASL-SLT (Uthus et al., 2024)F ~ Landmark 14.96 5.11 2.26 1.22 - 29.98
Gloss-free SSVP-SLT (Rust et al., 2024) RGB v 30.20 16.70 10.50 7.00 25.70 39.30
FLa-LLM (Chen et al., 2024) RGB v 29.81 18.99 13.27 9.66 27.81 -
SpaMo (Ours) RGB 33.41 20.28 13.96 10.11 30.56 42.23

Table 2: Performance comparison of translation results on the How2Sign dataset. YT-ASL-SLT and SSVP-SLT
(marked with t) are reported without dataset scaling to ensure a fair comparison.

ROUGE-L (Lin and Och, 2004). BLEU-n as-
sesses translation precision by evaluating n-grams.
ROUGE-L measures text similarity by calculating
the F1 score based on the longest common subse-
quences between predicted and reference texts. We
also report BLEURT (Sellam et al., 2020) from the
BLEURT-20 checkpoint®, which has been shown
to correlate well with human judgments.

4.3 Comparison with State-of-the-Art

A Taxonomy of SLT. In Section 2, we explore
gloss-free methods, including those that incorpo-
rate gloss-supervised visual encoders. Although
these approaches have traditionally been catego-
rized as gloss-free, we argue that they should
more accurately be described as weakly gloss-free
due to their dependence on gloss-annotated data.
This classification is detailed in Table 1. Specifi-
cally, methods such as TSPNet (Li et al., 2020b),
GASLT (Yin et al., 2023), ConSLT (Fu et al., 2023),
GloFE-VN (Lin et al., 2023), and OpenSLT (Tar-
rés et al., 2023) rely on sign features extracted by
visual encoders trained on continuous or isolated
sign language recognition (SLR) datasets.

3https ://huggingface.co/lucadiliello/BLEURT-20

Results on PHOENIX14T. We compare our
method with both gloss-based and gloss-free meth-
ods on PHOENIX14T. As shown in Table 1, most
previous methods rely on the domain-specific fine-
tuning of their visual encoders. By contrast,
our method demonstrates consistent improvements
across all reported metrics without such fine-tuning,
except for ROUGE, where it achieves the second-
best result. Notably, the improvement on BLEU-
4 is particularly significant, with a margin of
0.92, representing a 3.93% increase over Sign-
LLM (Gong et al., 2024). These results demon-
strate that conveying the key components of sign
language to LL.Ms is crucial for enhancing transla-
tion performance and adopting LLMs in SLT with-
out expensive training or complex training steps.

Results on How2Sign. We also evaluated our
method on How2Sign, which poses greater chal-
lenges than PHOENIX14T due to its more open-
domain nature, longer sign video lengths, and
larger vocabulary. The results are presented in Ta-
ble 2. Our method outperforms previous methods
across all reported metrics. Specifically, we achieve
a 0.45 margin in BLEU-4, representing a 4.66%
improvement over Fla-LLM (Chen et al., 2024).
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Component Metric
SE ME VT-Align B1 B2 B3 B4 RG
46.44 3379  26.07 21.11  42.15
v 29.71 16.23 10.99 8.36 22.44
v v 47.59 3505 2734 2226 4392
v v v 4980 37.32 2950 2432  46.57

Models Params B1 B2 B3 B4 RG

W/o LLM 60.5M 24.93 12.76 8.45 6.35 18.96
mT5-Large 1.2B 3231 19.23 13.21 9.87 26.32
Flan-T5-Large 0.8B 47.63 3475 27.04 2202 43.66
Flan-T5-XL 3B 4980 37.32 2950 2432 46.57

Table 4: Ablation study for impact of LLM.

Notably, we see a performance gain in BLEURT,
reaching 2.93, which is 7.46% higher than SSVP-
SLT (Rust et al., 2024) under the non-scaled dataset
setting. These results suggest that our method is
more robust for open-domain scenarios with gen-
eral topics and longer video lengths, even without
the domain-specific fine-tuning.

Kernel Density Estimation. To assess the qual-
ity of sign representations, following Ye et al.
(2023), we employ Kernel Density Estimation
(KDE) to estimate the probability density func-
tions of embeddings from GFSLT-VLP and our
method on PHOENIX14T. Note that we repro-
duced GFSLT-VLP using the official code*. As
shown in Table 5, our method produces more com-
pact and confident representations than GFSLT-
VLP. More details can be found in Appendix Sec-
tion A

4.4 Ablation Study

To further evaluate our method, we conducted ex-
tensive ablation experiments on PHOENIX 14T, the
most widely used sign language dataset. Additional
results can be found in Appendix Section B.

Effect of Main Components. We begin by evalu-
ating the effect of the key components in our frame-
work, specifically SE (spatial features), ME (mo-
tion features), and VT-align. As shown in Table 3,
using both spatial and motion features alone yields
results comparable to Sign2GPT in terms of BLEU-
4 score (22.52 vs. 22.26). However, when VT-align
is incorporated with these features, it achieves the
best overall performance, demonstrating the impor-
tance of each component in SpaMo.

Effect of LLM. Next, we examine the effect of
different LLMs by replacing the model with various

4https ://github.com/zhoubenjia/GFSLT-VLP

Method KDEs Entropy |
GFSLT-VLP (Zhou et al., 2023) 0.32
SPaMo (Ours) 0.12

Table 5: Comparison of KDE entropy values across
different embeddings. Lower entropy values indicate
more confident and distinct representations.

21.2 8.5
8.4

21.0
é % 8.3
2208 2 82

8.1

8.0

0 ) B o A AR
Q\@W 2 c;,“’“ ¢ ‘“(—_\“/ ‘3@\""/ e\“/’ £\“4
g A o

Figure 4: Ablation study for SE and ME. S? repre-
sents Scaling on Scales, and n denotes the gap between
neighboring clips. Note that the results presented do not
include VT-Align.

LLM types, as shown in Table 4. We compare four
baselines, each with a different model size: our
method without pre-trained weights, mT5-Large,
Flan-T5-Large, and Flan-T5-XL. Of these, Flan-
T5-XL demonstrates the best performance.

Effect of S? and Neighboring Gap. Finally, we
evaluate the effect of S2 and the gap between neigh-
boring clips on SE and ME, respectively. As shown
in Figure 4, S? substantially improves translation
performance, highlighting its effectiveness to help
SE capture more detailed spatial details. Addition-
ally, our analysis reveals that an 8-frame gap be-
tween neighboring clips produces the best results,
indicating that this specific gap optimally facilitates
ME in extracting dynamic motion information.

4.5 Qualitative Analysis

Translation Results. Table 6 presents two exam-
ple translations on PHOENIX14T, comparing our
method with GFSLT-VLP, the only other publicly
available baseline. In the first example (top), our
method provides an accurate translation, whereas
GFSLT-VLP fails to capture the correct semantic
meaning. In the second example (bottom), our
method again produces a precise translation, while
GFSLT-VLP introduces errors, resulting in incor-
rect information. These examples demonstrate the
superior accuracy of our method in generating re-
liable translations. Please refer to Appendix Sec-
tion D for more translation examples.

Visual Token Analysis. We performed an addi-
tional analysis to explore how the LLM interprets


https://github.com/zhoubenjia/GFSLT-VLP

die neue woche beginnt noch wechselhaft und etwas kiihler.

: the new week begins still changeable and somewhat cooler,
Ref: (th k b 1l ch ble and h ler)
am montag wieder wechselhaft und kiihler.
B : on Monday again changeable and cooler,
GFSLT-VLP Monday ag hangeable and cool
Ours: die neue woche beginnt wechselhaft und wieder kiihler.
the new week begins changeable and again cooler,
: (th k begins ch ble and i ler)
Ref: sonst viel sonnenschein.
) otherwise, a lot of sunshine.
GESLT-VLP: im iibrigen land viel sonne.

in the rest of the country, a lot of sun.
sonst viel sonnenschein.

Ours: R .
otherwise, a lot of sunshine.

Table 6: Translation results on the test set compared
to GFSLT-VLP on PHOENIX14T. Correctly translated
1-grams are highlighted in blue, while incorrect transla-
tions are marked in red.

NORDWEST SONST FREUNDLICH STURDY
(NORTHWEST OTHERWISE FRIENDLY STURDY)
NORDWEST FREUNDLICH
(NORTHWEST FRIENDLY)
richtung norden und westen ist es recht freundlich.
(Towards the north and west it is quite pleasant.)

Vis. Token:

Gloss:

Translation:

BLEIBT WIND WINTER

Vis. Token:
15 TR REMAINS WIND WINTER)
Gloss.  BLEIBEN WIND
" (REMAIN WIND)

es bleibt windig.

Translation: . . .
(it remains windy.)

LIEBE GUTEN ABEND SCHONEN

Vis. Token: |, FAR GOOD EVENING BEAUTIFUL)
Glows.  GUT ABEND BEGRUESSEN
(GOOD EVENING GREETINGS)
Translation: guten abend | liebe | zuschauer.

(good evening dear viewers.)

Table 7: Comparison between visual tokens (Vis. Token)
and their corresponding glosses. Words highlighted in
green are exact matches, those in pink are semantic
matches, and words in [blue are absent in the gloss but
appear in the translation.

the sign videos. Inspired from the reverse engi-
neering (Ju et al., 2023), we first compute the Eu-
clidean distance between the sign feature Z,,,, and
the LLM’s embedding table Ej;,,, € RVXd’, where
V represents the vocabulary size. Each sign fea-
ture is then mapped to the word associated with
the shortest distance in this space. This process
can be expressed as dist(Zsy,, Fim) < A, where
dist(+) denotes the Euclidean distance function, and
A represents the shortest distance to Ej,,, across
all sign features.

Figure 5 shows the t-SNE visualization of each
sign feature mapped to the corresponding vocabu-
lary. We observed that certain visual features align
closely with specific words, which likely represent
the semantic concepts the LLM associates with
these features. In other words, these words rep-
resent the LLLM’s interpretation or labeling of the
visual content. We refer to these mapped words as

60

40

-60 -40 -20 0 20 40 60

Figure 5: The t-SNE visualization of sign features. Dif-
ferent colors represent sign features with distinct seman-
tics, while gray points are other categories not listed.

“visual tokens”. We further compare these visual
tokens with the ground-truth glosses as shown in
Table 7. To ensure a clearer and more accurate se-
mantic comparison, repetitive words were removed
from the visual tokens. Surprisingly, the LLM’s
interpretation of the sign videos is similar to the
glosses, though not perfectly aligned. This suggests
that the LLM has learned to link particular video
patterns with specific textual concepts, explaining
why those words cluster near the visual features in
the embedding space. Additionally, we found that
the visual tokens capture words that are present in
the translation but not in the glosses. This finding
suggests that visual tokens may provide a more
comprehensive representation than current glosses,
potentially broadening their scope beyond what has
been traditionally documented.

5 Conclusion

In this paper, we introduce SpaMo, a novel gloss-
free SLT framework based on LLMs. Apart from
the previous methods that rely on domain-specific
fine-tuning of their visual encoders, SpaMo focuses
on capturing the spatial configurations and mo-
tion dynamics, eliminating the need for resource-
intensive fine-tuning. We also propose VT-Align, a
training strategy that effectively aligns and narrows
the modality gap between the sign videos and target
translations, enabling the transformation of the sign
videos into inputs interpretable by the LLM. Our
approach achieves state-of-the-art results on two
widely-used datasets. Furthermore, we provide the
first comprehensive analysis of how the LLM in-
terpret the sign videos within its embedding space
and translate them into corresponding text.



Limitations

Limited Use of LLMs. Currently, SpaMo has
been tested on a limited range of LLMs. As shown
in Table 4, our method scales effectively as the
size of the LLMs increases. Therefore, there is
a significant opportunity to expand this testing to
include various other models, such as Llama (Tou-
vron et al., 2023), Vicuna (Chiang et al., 2023), and
Alpaca (Taori et al., 2023). The primary constraint
has been the limited availability of GPU resources.
Expanding the testing to more LL.Ms could provide
deeper insights and potentially enhance SpaMo’s
performance across different architectures. Addi-
tionally, techniques such as 4-bit quantization can
be employed to optimize these models, reducing
the computational resources required and enabling
more extensive testing. Future work will focus
on broadening the range of tested models and ex-
ploring these optimization techniques to further
improve the scalability and efficiency of SpaMo
across diverse LLMs.

Limited Use of Sign Language Datasets. In re-
cent studies (Uthus et al., 2024; Rust et al., 2024),
scaling datasets has consistently led to performance
improvements, as seen with larger sign language
datasets, such as Youtube-ASL (Uthus et al., 2024).
While the dataset scaling could also enhance our
method, in this work, we focus on a constrained set-
ting. Specifically, we use a limited sign language
dataset to evaluate and compare results, demon-
strating the effectiveness of our method in resource-
limited scenarios. Future work will involve expand-
ing the dataset size to explore the full potential of
our method and to assess its scalability and perfor-
mance across more extensive and diverse datasets.

LoRA Fine-Tuning for LLM. In this paper, we
highlight that domain-specific fine-tuning of visual
encoders is not essential for our method. However,
our method incorporates LoRA fine-tuning for the
LLM. While this might appear to be a compromise,
it significantly reduces the resource requirements
compared to fine-tuning both the visual encoders
and the LLM. Additionally, as we discussed in the
previous section, this limitation can be addressed
as more data becomes available, allowing for im-
proved scalability and performance over time.

Ethics Statement

Our work is focused on developing a practical
framework for sign language translation with the

goal of overcoming communication barriers faced
by the Deaf and hard-of-hearing communities. Al-
though our approach utilizes off-the-shelf visual
encoders and LLMs, there is a possibility that
the framework could produce unexpected or bi-
ased outputs due to the inherent limitations in
the pre-trained models. However, we are opti-
mistic that future advancements in LLMs will help
mitigate these issues. We rely on open datasets
such as PHOENIX14T (Camgoz et al., 2018) and
How2Sign (Duarte et al., 2021), which, while con-
taining potentially identifiable information, present
minimal concerns regarding personal privacy. Ad-
ditionally, our method has been validated only on
American and German sign languages, limiting its
applicability to other sign languages. We call for
future research in sign language translation to ex-
pand the diversity of sign language datasets, such
as YouTube-ASL (Uthus et al., 2024), BOBSL (Al-
banie et al., 2021), and CSL-Daily (Zhou et al.,
2021a), to enhance the framework’s applicability
and inclusively across different sign languages.
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Appendix

In this Supplementary Material, we begin by pro-
viding further implementation details in Section A.
Section B presents additional experimental results.
In Section C, we delve into a more detailed analysis,
offering statistics and insights on the sign language
datasets used in our study. Finally, in Section D, we
conclude by demonstrating additional qualitative
results for PHOENIX14T and How2Sign.

A More Implementation Details

Components of SpaMo. In the SA module, we
utilize two distinct linear projection layers tailored
for the output feature of ME and SE. For short-term
modeling, we employ a 1D CNN configured with
a specific sequence of layers: { K5, P2, K5, P2},
where K, represents a kernel size of o, and P,
indicates a pooling layer with a kernel size of
o (Hu et al., 2023). To integrate features into
the LLM’s embedding space, we leverage an MLP
cross-modal connector (Liu et al., 2024a), project-
ing the features into a 2048-dimensional space.

Prompt Template. To focus the LLM on the SLT
task, we employ a specific prompting strategy. Our
prompt includes a clear instructive prompt: “Trans-
late the given sentence into German.” Following
this, we incorporate multilingual translations via
a translation engine such as Google Translator’,
which are sampled from the training set. These
translations are included to facilitate In-Context
Learning (ICL) (Brown et al., 2020). The prompt
is structured as follows: ‘“Translate the given sen-
tence into German. [SRC] = [TRG].” Here, the
source input (e.g., a sentence in French) serves
as the foreign language example, and the corre-
sponding response is the translation into the target
language (e.g., German, as used in PHOENIX14T).
An example of this prompt structure is provided
in Table 8. To ensure that the LLM does not di-
rectly access the target translations during training,
we shuffle the translation samples so they do not
match the target translation. At test time, we select
a translation pair from the training set to use as a
reference.

Training. For training, we use the AdamW op-
timizer (Loshchilov and Hutter, 2017), with 5; =
0.9, B2 = 0.98, and a weight decay of 0.01. The
learning rate schedule includes a cosine decay with

5https ://cloud.google.com/translate
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Sign Video Input: [Extracted Sign Feature]

Soil frost is possible there and in the southern
low mountain ranges.=dort sowie in den siidlichen
mittelgebirgen ist bodenfrost moglich.

La helada del suelo es posible alli y en las cadenas
montafiosas del sur.=dort sowie in den siidlichen
mittelgebirgen ist bodenfrost moglich.

In Context Examplars:

Le gel du sol est possible la-bas et dans les chaines
de montagnes basses du sud.=dort sowie in den siidlichen
mittelgebirgen ist bodenfrost moglich.

Table 8: An example of prompt used in this paper.

Visual Encoders (SE + ME) B1 B2 B3 B4 RG

DINOV2 + V-JEPA 4567 3294 2527 2035 4132
DINOV2 + VideoMAE 47.31 3460 2690 2186  42.50
CLIP + V-JEPA 47.82 3471 2676 21.66  43.68
CLIP + VideoMAE 49.80 37.32 2950 2432 46.57

Table 9: Ablation study on various combinations of
visual encoders. The results are with VT-Align.

Methods B1 B2 B3 B4 RG
Ours (w/o LoRA) 46.11 32.65 24.69 19.67 4291
Ours (w/ LoRA) 49.80 37.32 2950 2432 46.57

Table 10: Ablation on our method with and without
LoRA.

a peak learning rate of le-4 and a linear warmup
of than 10k steps, with a minimum learning rate of
5e-5. We train our model for 40 epochs, using a
single NVIDIA A100 GPU, completing the entire
process within 24 hours.

Evaluating Process with KDEs. To evaluate the
quality of the learned representations, we utilize
Kernel Density Estimation (KDE) to estimate the
probability density functions of the embeddings
from GFSLT-VLP and ours. Due to different di-
mensionality from these methods (1,024 vs. 2,048),
we run Principal Component Analysis (PCA) to
reduce the number of dimensions while retaining
the most significant variance components. This
dimensionality reduction facilitated more efficient
and stable KDE fitting. KDE can be expressed as:

hatd) = S (S55). @)
i=1

where z; denotes the representation points, K de-
notes the kernel function, A is the bandwidth pa-
rameter, d is the dimensionality of the data, and n
is the number of data points.

The entropy of KDE is then calculated as:

7 — 7Zj

h

H=— Z fkde(zi) log fkde(zi)7 “)
i=1


https://cloud.google.com/translate

Dataset Language  # Vocab Train / Valid / Test Avg. No. Frame  Gloss  Domain
PHOENIX14T (Camgoz et al., 2018) DGS 3K 7,096 /519 /642 116 O Weather Forecast
How2Sign (Duarte et al., 2021) ASL 16K 31,128/1,741/2,322 173 X Instructional

Table 11: Statistics of two sign language datasets used in this work. DGS: German Sign Language; ASL: American
Sign Language; Avg. No. Frame: average number of video frames.

where H represents the entropy, and f(z;) are
the estimated density values at the representation
points.

B More Experiments

Effect of Visual Encoders. We assess the effect
of various combination of visual encoders (SE &
ME). Table 9 shows four different encoders: DI-
NOv2 (Oquab et al., 2023), CLIP (Radford et al.,
2021), V-JEPA (Bardes et al., 2024), and Video-
MAE (Tong et al., 2022). The results demonstrate
that the combination of CLIP and VideoMAE deliv-
ers the highest performance, suggesting potential
for further improvement as visual encoders con-
tinue to advance.

Effect of LORA. We evaluate the effect of LoRA
on the LLM. As illustrated in Table 10, the LLM
with LoRA demonstrates superior performance.

C Statistics of Sign Language Datasets

Table 11 provides an overview of two sign language
datasets: PHOENIX 14T and How2Sign, which dif-
fer significantly in their characteristics and applica-
tions. PHOENIX14T focuses on German Sign Lan-
guage (DGS) within the specific domain of weather
forecasting, featuring a relatively small vocabulary
of 3K words and a concise average video length
of 116 frames. It includes 7,096 training samples,
519 validation samples, and 642 test samples, with
gloss annotations available. This dataset is tailored
for domain-specific tasks, offering clear and repet-
itive patterns ideal for translation and recognition
within weather-related contexts.

In contrast, How2Sign, centered on American
Sign Language (ASL) in the instructional domain,
presents a much larger and more diverse dataset
with a 16K word vocabulary and an average of
173 frames per video. It provides a substantial
amount of data, with 31,128 training samples, 1,741
validation samples, and 2,322 test samples, though
it lacks gloss annotations. The broader and more
complex nature of How2Sign makes it suitable for
general sign language processing tasks, especially
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those requiring an understanding of diverse and
intricate sign sequences.

D More Qualitative Results

We provide additional translation examples for
PHOENIX14T and How2Sign in Tables 12 and
13, respectively. As shown in Table 12, our method
consistently delivers accurate translations, while
GFSLT-VLP struggles to capture the correct se-
mantic meaning.

For How2Sign, Table 13 presents translation re-
sults along with their corresponding visual tokens.
Since How2Sign lacks gloss annotations, we in-
clude actual sign frames for qualitative comparison.
Similar to the PHOENIX14T results, several visual
tokens in How2Sign are closely aligned with the
translations. Note that although OpenSLT (Tarrés
et al., 2023) is the only publicly available baseline®,
we were unable to reproduce their results due to
a broken link to the fine-tuned I3D features at the
time of drafting.

6https ://github.com/imatge-upc/slt_how2sign_wicv2023


https://github.com/imatge-upc/slt_how2sign_wicv2023

und nun die wettervorhersage fiir morgen sonntag den zwolften juli.

Ref: (and now the weather forecast for tomorrow Sunday the twelfth of July.)
GFSLT-VLP: und nun die wettervorhersage fiir morgen sonntag den zwdlften juni.
: (and now the weather forecast for tomorrow, Sunday, the twelfth of June.)
Ours: und nun die wettervorhersage fiir morgen sonntag den zwolften juli.
: (and now the weather forecast for tomorrow Sunday the twelfth of July.)
Ref: in der nacht muss vor allem in der nordwesthilfte mit schauern und gewittern gerechnet werden die heftig ausfallen konnen.
: (During the night, showers and thunderstorms are expected, especially in the northwest half, which could be heavy.)
heute nacht gibt es im norden teilweise kriiftige schauer und gewitter die ortlich unwetterartig sein kénnen.
GFSLT-VLP: . . . . .
(At night, showers and thunderstorms can be expected, especially in the northwest half, which can sometimes be strong.)
in der nacht muss vor allem in der nordwesthilfte mit schauern und gewittern gerechnet werden die mitunter kréftig sein konnen.
Ours: . . . . N
(During the night, showers and thunderstorms are expected, particularly in the northwest half, which may be heavy.)
und nun die wettervorhersage fiir morgen donnerstag den siebenundzwanzigsten august.
Ref:
(and now the weather forecast for tomorrow, Thursday the twenty-seventh of August.)
und nun die wettervorhersage fiir morgen donnerstag den sechsundzwanzigsten august.
GFSLT-VLP: .
(and now the weather forecast for tomorrow, Thursday the twenty-sixth of August.)
Ours: und nun die wettervorhersage fiir morgen donnerstag den siebenundzwanzigsten august.
: (and now the weather forecast for tomorrow, Thursday the twenty-seventh of August.)
Ref: amtag ist es im westen freundlich sonst sonne und dichtere wolken im wechsel hier und da fallen einzelne schauer.
" (During the day it is friendly in the west, otherwise sun and denser clouds alternate, with occasional showers here and there)
am tag wechseln sonne und wolken einander ab im westen fallen mitunter gewittrige schauer.
GFSLT-VLP: ; . .
(During the day sun and clouds alternate, in the west, occasional stormy showers may occur)
Ours: M tag ist es im westen freundlich mit sonne und dichteren wolken hier und da fallen schauer.
" (During the day it is friendly in the west with sun and denser clouds, with occasional showers here and there)
abseits der gewittern weht der wind schwach bis miBig an der kiiste frisch.
Ref: N
(Away from the thunderstorms, the wind blows weak to moderate, fresh at the coast.)
abgesehen von gewitterbden schwacher bis maBiger an den kiisten auch frischer wind
GFSLT-VLP: N
(Apart from thunderstorm gusts, weak to moderate, also fresh wind at the coasts.)
Ours: abseits der gewittern weht der wind schwach bis miBig an den kiisten auch frisch.
) (Away from the thunderstorms, the wind blows weak to moderate, also fresh at the coasts.)
Ref: am sonntag im norden und an den alpen mal sonne mal wolken und ab und an schauer sonst ist es recht freundlich.
. (On Sunday in the north and in the Alps sometimes sun sometimes clouds and occasional showers otherwise it is quite pleasant.)
am sonntag im norden an den alpen einige schauer sonst ist es recht freundlich.
GFSLT-VLP: . . Lo .
(On Sunday in the north in the Alps some showers otherwise it is quite pleasant.)
am sonntag im norden und an den alpen mal sonne mal wolken und nur einzelne schauer sonst meist freundlich.
Ours: . . . N . .
(On Sunday in the north and in the Alps sometimes sun sometimes clouds and only a few showers otherwise mostly pleasant.)
am mittwoch eine mischung aus sonne wolken und nebelfeldern im nordwesten hier und da schauer sonst ist es trocken.
Ref: o . N Lo
(On Wednesday a mix of sun, clouds, and fog patches in the northwest; here and there showers, otherwise it is dry.)
am mittwoch gibt es viele wolken hier und da schauer vor allem im nordwesten bleibt es meist trocken.
GFSLT-VLP: . . . . .
(On Wednesday there will be many clouds; here and there showers, especially in the northwest, it remains mostly dry.)
am mittwoch eine mischung aus sonne wolken und nebel im nordwesten einige schauer sonst bleibt es meist trocken.
Ours: X . S ;
(On Wednesday a mix of sun, clouds, and fog in the northwest; some showers, otherwise it remains mostly dry.)
am tag scheint verbreitet die sonne im siiden und westen bilden sich spiter gebietsweise quellwolken.
Ref: : ; ) . . .
(During the day, the sun shines widely in the south, and later, isolated cumulus clouds form in the west.)
GFSLT.VLP: M tag scheint in der siidhilfte hidufig die sonne hier und da ein paar wolken.
: (During the day, the sun often shines in the southern half, here and there a few clouds.)
Ours: &M tag scheint verbreitet die sonne im siiden und im duBersten westen tauchen hier und da ein paar quellwolken auf.
: (During the day, the sun shines widely in the south, and in the far west, here and there, a few cumulus clouds appear.)
Ref: der wind weht méBig bis frisch mit starken bis stiirmischen boen im bergland teilweise schwere sturmboen im siidosten mitunter nur schwacher wind.
: (The wind blows moderately to freshly with strong to stormy gusts in the mountainous regions, partly severe storm gusts in the southeast, occasionally only weak wind.)
der wind weht mifig bis frisch bei schauern sowie im siidosten schwere sturmboen im bergland starker bis stiirmbden.
GFSLT-VLP: R . . . . .
(The wind blows moderately to freshly with showers, as well as severe storm gusts in the southeast, in the mountainous regions strong to storny gusts.)
Ours: der wind weht miBig bis frisch mit starken bis stiirmischen boen auf den bergen schwere sturmbden im siiden sonst schwacher wind.
. (The wind blows moderately to freshly with strong to stormy gusts on the mountains, severe storm gusts in the south, otherwise weak wind.)
am montag iiberall wechselhaft und deutlich kiihler.
Ref: . S
(On Monday, everywhere is changeable and significantly cooler.)
GFSLT-VLP: am montag Wl.l'd es wieder wechselhafter kiihler. )
(On Monday, it will be changeable and cooler again.)
Ours: &M montag iiberall wechselhaft und deutlich kiihler.
) (On Monday, everywhere is changeable and significantly cooler.)
Ref: sonst ein wechsel aus sonne und wolken.
. (Otherwise a mix of sun and clouds.)
ansonsten wechseln sich teilweise dichte wolken und sonne ab.
FSLT-VLP: . .
GFS (Otherwise partially dense clouds and sun alternate.)
Ours: sonst ein wechsel aus sonne und wolken.
o (Otherwise a mix of sun and clouds.)
Ref: und nun die wettervorhersage fiir morgen samstag den sechsundzwanzigsten januar.
* And now the weather forecast for tomorrow, Saturday, the twenty-sixth of January.
und nun die wettervorhersage fiir morgen samstag den sechsundzwanzigsten dezember.
GFSLT-VLP: .
And now the weather forecast for tomorrow, Saturday, the twenty-sixth of December.
und nun die wettervorhersage fiir morgen samstag den sechsundzwanzigsten januar.
Ours: .
And now the weather forecast for tomorrow, Saturday, the twenty-sixth of January.
sonst ist es recht freundlich.
Ref: L .
Otherwise it is quite pleasant.
sonst iiberwiegend freundlich.
GFSLT.vLp;  $Oonst iberwicgend freundiic
Otherwise mostly pleasant.
sonst ist es recht freundlich.
Ours:

Otherwise it is quite pleasant.

Table 12: Translation results on the test set compared to GFSLT-VLP on PHOENIX14T. Correctly translated
1-grams are highlighted in blue, while incorrect translations are marked in red.
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Image:
Vis. Token: AGAIN SOMEONE ONE SHOW

Ref:  again, one more time we’ll show it for you.
Ours: again, one more time.

Image:
Vis. Token: LITTLE MORE HOW

Ref:  alittle bit more then this maybe.
Ours:  alittle bit more about it.

Y &S & @

Image:
Vis. Token: NOW GO TODAY TO TAKE LITTLE THREE SEVEN FOUR WEED OUT LITTLE HERE JUILLET VORSCHRIFTEN

Ref:  and we’re going to take a little weed out here.
Ours:  now we're going to take a little bit of the weed out here.

Image:
Vis. Token: WANT TO REPEAT TWO LOOK ON YOURANG KISS AGEIS YOUR HORSE

Ref:  you want to look at the age of your horse.
Ours: you want to take a look at the age of your horse.

Image:
Vis. Token: MANY PEOPLE NOT OTHER UNDERSTAND THOUGHT

Ref:  many people don’t understand.
Ours: many people don’t understand that.

Image:
Vis. Token: I PRACTICE WHEN WITH B FOAMERS CAST WAS SO OROU CAN KNOW IF OR GROUP
Ref: i practice with the barton oaks dental group.
Ours: i practice with the barton oaks tennis team.

Ref:  so, let’s keep doing the same thing with the arms.
Ours: s0, let’s keep doing the same thing with the arms.

Ref:  here, two, three, four, elbow and follow wherever you’re going to go, like the knee to the groin and your elbow.
Ours: here, two, three, four, follow through where you’re going to want to squeegee, woo, woo, your elbow.

Ref:  my name is robert segundo and have fun.
Ours:  my name is robert todd and have fun.

Ref: watch our next segment to learn more about natural beauty products.
Ours:  watch our next segment and we’ll talk a little bit more about natural beauty products.

Ref:  remember, be careful when doing your home remedies, and if you’re not sure, check with your local professional.
Ours: remember very carefully when doing your home remedies if you have a cell phone.

Ref:  you can start to rotate your shoulders and start to get more comfortable with your feet by turning.
Ours:  you can start rotating your shoulders and start getting comfortable with your five by rotating.

Ref:  hi, i’m johanna krynytzky with hip expressions belly dance studio in st. petersburg, florida.
Ours:  hi, i’'m johanna krynytzky with hip expressions belly dance studio in st. petersburg, florida.

Ref: i’m going to show you how to do some step-touch side foot work for belly dancing.
Ours:  i’'m going to show you some step touch side and medium rock for belly dancing.

Table 13: Translation results on the How2Sign test set. Correctly translated 1-gram matches are highlighted in blue.
Exact visual token matches within the translation are highlighted in green .
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