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Abstract

Recognizing emotions in conversations in-001
volves an internal cognitive process that inter-002
prets emotional cues by using a collection of003
past emotional experiences. However, many ex-004
isting methods struggle to decipher emotional005
cues in dialogues due to their models’ lack of006
capacity for cognitive reasoning. In this work,007
we introduce an innovative Detective Network008
(DetectiveNN), a novel model that is grounded009
in the cognitive theory of emotion and utilizes010
a "recall-detect-predict" framework to imitate011
human emotional reasoning. This process be-012
gins by ‘recalling’ past interactions of a spe-013
cific speaker to collect emotional cues. It then014
‘detects’ relevant emotional patterns by inter-015
preting these cues in the context of the ongoing016
conversation. Finally, it ‘predicts’ the speaker’s017
emotional state in the next moment. Tested018
on three benchmark datasets, our approach sig-019
nificantly outperforms existing methods. This020
highlights the advantages of incorporating cog-021
nitive factors into deep learning, enhancing task022
efficiency and prediction accuracy1.023

1 Introduction024

In recent years, recognizing emotions in dialogues025

has gained increasing attention in the field of natu-026

ral language processing (NLP). This surge in atten-027

tion is driven by its vast potential for application in028

areas like human-computer interaction and empa-029

thetic dialogue systems (Ma et al., 2020; Concan-030

non and Tomalin, 2023)031

In the realm of conversational emotion recogni-032

tion (ERC), interpreting emotional cues embedded033

in conversational context is crucial (Mittal et al.,034

2020; Gomathy, 2021). Conversations are filled035

with emotional cues that act as triggers for the emo-036

tions expressed in a current utterance (Oberlän-037

der et al., 2020; Hu et al., 2021). ERC seeks to038

detect and interpret these emotional clues within039

the flow of conversation, aiming for a nuanced040

1our code can be found here

understanding of the emotional context. Tradi- 041

tional ERC approaches typically adopt a ’recall- 042

then-predict’ strategy (Mitra et al., 2023), model- 043

ing both speaker-level and dialogue-level contexts 044

to predict emotional states in conversations. Di- 045

alogueGCN (Ghosal et al., 2019) models interac- 046

tions between speakers using graph networks to 047

capture emotional cues throughout the conversa- 048

tion. DialogXL (Shen et al., 2021) introduces a 049

dialog-aware self-attention mechanism within a 050

transformer structure to capture emotional cues, 051

including intra- and inter-speaker dependencies. C- 052

LSTM (Zhou et al., 2015) leverages a LSTM-based 053

approach to encode the global context, whereas 054

DialogueRNN (Majumder et al., 2019) employs 055

GRUs to track both speaker state and global state 056

for each conversation. COSMIC (Ghosal et al., 057

2020) leverages external commonsense knowledge 058

to enhance the model’s ability to detect rich emo- 059

tional cues. Additionally, DialogueCRN (Hu et al., 060

2021) employs a multi-turn reasoning module that 061

extracts and integrates emotional clues from the di- 062

alogue. Although termed ‘reasoning,’ this process 063

fundamentally involves retrieving and combining 064

contextual clues at each turn before classifying the 065

emotion. Existing models face challenges in ac- 066

curately analyzing and decoding emotional cues, 067

primarily due to the absence of a cognitive reason- 068

ing phase. 069

Emotion recognition can be understood as the 070

process of deciphering emotional cues to compre- 071

hend the cognitive context, aligning with the Cogni- 072

tive Theory of Constructed Emotion (Russell, 2003, 073

2009; Barrett and Russell, 2014). This theory sug- 074

gests that emotions are formed from an individ- 075

ual’s cognitive context, shaped by their thoughts, 076

memories, and social interactions (Barrett, 2014). 077

Inspired by this theory, we approach the ERC tasks 078

as an internal cognitive process that deciphers each 079

participant’s emotional cues based on their past 080

emotional experiences in a dialogue. This process 081
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involves identifying and organizing emotional cues,082

synthesizing them into a coherent emotional nar-083

rative, and subsequently examining this narrative084

throughout the conversational context to validate085

the cues. We propose a novel Detective Network086

(DetectiveNN) with a ’recall-detect-predict’ strat-087

egy for enhanced ERC accuracy. The DetectiveNN088

model features a detection phase that deciphers089

emotional cues throughout the conversation con-090

text, connecting these cues to decode the evolution091

of a speaker’s emotional responses. This phase re-092

veals patterns in a speaker’s emotional flows, akin093

to a detective piecing together clues to map an in-094

dividual’s emotional states.095

DetectiveNN begins with a recall phase, where096

we utilize a sequence-based model to retrieve con-097

textual information from the personal emotional098

experiences and interactions of each speaker. This099

approach is inspired by the pioneering work of Hu100

(Hu et al., 2021) and Yang (Yang and Shen, 2021),101

who demonstrated the efficacy of sequence-based102

models in learning diverse contextual information.103

In the detection phase, we employ a transformer-104

like architecture to iteratively analyze and decode105

emotional cues drawn from the extensive emotional106

experiences of a specific speaker. This phase is di-107

vided into two key operations: an examination pro-108

cess and a conscious detection process. The exami-109

nation process utilizes transformer encoders to both110

identify and clarify the logical connections between111

emotional cues, effectively merging these cues into112

a coherent emotional narrative. It achieves a deep113

understanding of the speaker’s emotional context114

by integrating cues through a set of encoder blocks.115

The conscious detection process employs a cross-116

attention mechanism, probing the speaker’s con-117

structed emotional narrative and integrating the118

dynamic interplay between emotional cues and the119

speaker’s historical interactions. This method un-120

covers patterns that decode the speaker’s emotional121

journey, offering insights into the evolution of emo-122

tional states over time.123

Following the insights gained from the detec-124

tion phase, an emotion classifier predicts the emo-125

tion label of each utterance. By incorporating the126

‘recall-detect-predict’ framework, DetectiveNN ef-127

fectively mirrors the cognitive reasoning process128

humans use to understand emotional states. We hy-129

pothesize that integrating cognitive reasoning into130

deep learning models significantly enhances their131

capability to analyze and interpret emotions in each132

dialogue segment. 133

To assess the efficacy of our proposed model, 134

extensive experiments were conducted on three 135

widely accepted benchmark datasets: IEMOCAP, 136

EmoryNLP and Dailydialog. The experimental 137

results demonstrate that our model significantly 138

outperforms existing methods, primarily attributed 139

to the application of a cognitive approach in deci- 140

phering emotional cues. 141

The primary contributions of our research are as 142

follows: 143

• We introduce an innovative Detective Net- 144

work (DetectiveNN) designed within a ’recall- 145

detect-predict’ framework, drawing on princi- 146

ples of cognitive theory of constructed emo- 147

tion. 148

• We design a transformer architecture to per- 149

form the detection process. This architecture 150

plays a key role in interpreting emotional cues 151

in conversations, enhancing the accuracy and 152

nuances of recognizing different emotions in 153

dialogues. 154

• We conduct extensive experiments on three 155

benchmark datasets. The results consistently 156

demonstrate the effectiveness and superiority 157

of the proposed model (see Figure 1). 158

2 Related Work 159

The ERC field has significantly advanced, with an 160

emphasis on extracting and integrating emotional 161

clues from conversations. This progress can be 162

grouped into three major methodologies: Sequence- 163

based models, Pre-trained Language Model-based 164

Models and Graph-based Models. 165

Sequence-based models: DialogueRNN (Ma- 166

jumder et al., 2019) utilizes three gated recurrent 167

units (GRUs) to track emotional states in conversa- 168

tions by integrating speaker identity, context, and 169

emotions from neighboring utterances to maintain 170

individual speaker states. DialogueCRN (Hu et al., 171

2021) integrates cognitive theories of emotion, fea- 172

turing a reasoning module for iterative extraction 173

and integration of emotional clues, combining in- 174

tuitive retrieving (attention mechanisms) and con- 175

scious reasoning using Long Short-Term Memory 176

(LSTM) network. BC-LSTM (Poria et al., 2018) 177

captures both the left and right context of each 178

utterance using bidirectional LSTMs, understand- 179

ing the influence of preceding and following ut- 180

terances. CMN (Hazarika et al., 2018b) utilizes 181
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a multimodal approach to model past utterances182

of each speaker into memories with GRUs. Emo-183

tionIC (Yingjian et al., 2023) employs a three-part184

framework: Identity Masked Multi-Head Attention185

(IMMHA) to grasp the overall context, Dialogue-186

based Gated Recurrent Unit (DiaGRU) to capture187

immediate conversational nuances, and Skip-chain188

Conditional Random Field (SkipCRF) to trace the189

progression of emotions, thus integrating attention190

with recurrence for comprehensive emotion detec-191

tion in dialogue. COSMIC (Ghosal et al., 2020)192

integrates commonsense knowledge with GRUs to193

model various states of conversation, including the194

internal, external, intent, and emotional states of195

speakers.196

Pre-trained Language Model-based Models: Di-197

alogXL (Shen et al., 2021) employs XLNet (Yang198

et al., 2019) to process longer conversational histo-199

ries and incorporates dialogue-level self-attention200

to manage multi-party conversation dynamics ef-201

fectively. Emoberta (Kim and Vossen, 2021) uses202

RoBERTa (Liu et al., 2019) to predict the emotion203

of a current speaker by learning speaker-level and204

dialogue-level context.205

Graph-based Models: DialogueGCN (Ghosal206

et al., 2019) utilizes a graph convolutional neural207

network to model conversational context. It rep-208

resents utterances as nodes in a graph, capturing209

dependencies between utterances as edges for a210

better understanding of conversational dynamics.211

Zhang et al. (2019) employs a graph convolutional212

neural network to capture the context-sensitive de-213

pendence between utterances in the same conversa-214

tion and the speaker-sensitive dependence between215

an utterance and its speaker node. Lian et al. (2020)216

utilizes a graph neural network with an attention217

mechanism to model utterance-level and speaker-218

level context.219

3 Methodology220

3.1 Problem Definition221

We define a conversation consisting of a total num-222

ber of N utterances. Each utterance in the conver-223

sation is associated with a specific speaker. There224

are S distinct speakers in the conversation. For225

each speaker, we have a subset of utterances corre-226

sponding to this speaker.227

The objective of the ERC task is to predict the228

emotion label for each utterance from the set of229

emotional labels {y1, y2, . . . , yP } where P is the230

number of emotional labels.231

3.2 Recall Phase 232

In the realm of ERC, the intra-context is crucial for 233

understanding the emotional journey and thematic 234

progressions of each speaker within their dialogue 235

contributions. 236

We first utilize a bi-directional GRU network to 237

gather emotional cues and information from utter- 238

ances generated by speaker s. Each utterance is rep- 239

resented by a feature embedding xi ∈ Rdu, where 240

du is the embedding dimension of each utterance. 241

The sequence of these embeddings is processed by 242

the GRU, with i = Φ(k, s) mapping the k-th step 243

in the GRU to the corresponding utterance index 244

for the speaker s. 245

cintra
i , hintra

s,k = GRU intra(xi, h
intra
s,k−1) (1) 246

where cintra
i ∈ R2du represents an intra-context em- 247

bedding, and hintra
s,k is the hidden state of the GRU 248

after processing the k-th step for the speaker s. 249

We sequentially process each cintra
i and compile 250

them into a matrix C intra
s ∈ RNs×2du. Ns is the 251

total number of utterances spoken by the speaker s. 252

This matrix builds up as we go through the steps, 253

eventually leading to the final state. 254

To obtain the global context embedding c
global
j 255

representing all interactions between interlocutors, 256

we employ another bi-directional GRU model to 257

capture sequential dependencies between adjacent 258

utterances of interlocutors. The context representa- 259

tion can be computed as: 260

c
global
j , h

global
j = GRUglobal(xj , h

global
j−1 ) (2) 261

where j is an utterance index from the conversation. 262

Similarly we concatenate c
global
j to form the matrix 263

Cglobal ∈ RL×2du. hglobal
j is the j-th global hidden 264

state of the GRU. 265

3.3 Detection Phase 266

The detection phase offers a systematic method for 267

analyzing the underlying emotional dynamics of 268

the speaker s. Initially, it identifies and organizes 269

emotional cues in a logical order. It then synthe- 270

sizes those cues to form a coherent emotional nar- 271

rative. Subsequently, the detection phase examines 272

the emotional narrative against the context of the 273

entire conversation, aiming to validate those initial 274

emotional cues. Throughout this analysis, it uncov- 275

ers patterns in the emotional flows of the speaker 276

s, akin to a detective connecting dots to reveal a 277

broad map of an individual’s emotional states. 278
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Figure 1: The architecture of the proposed model DetectiveNN

Positional Encoding: We first apply positional279

encoding, denoted as PE, to inject ordering infor-280

mation to the intra-context matrix C intra
s . This en-281

sures that the DetectiveNN not only processes the282

inherent emotional cues at each step but also un-283

derstands its sequential context within the entire284

process.285

We adopt transformer encoder blocks with each286

block consisting of a Multi-Head Attention layer287

and a Feed-Forward Network layer to identify and288

integrate emotional cues from the intra-context.289

Multi-Head Self-Attention (MHA) Layer: Our290

architecture includes an MHA layer with four heads291

to process the intra-context embedding C intra
s . This292

layer functions as a detective examining the context293

of speaker s with each head focusing on different294

aspects of the emotional content in the speaker’s295

utterances. MHA ensures a thorough, multi-faceted296

analysis by capturing emotional cues from the intra-297

context.298

Feed-Forward Network (FFN) Layer: Build-299

ing on the raw emotional cues identified by the300

MHA layer, the FFN analyzes how those cues in-301

teract and connect. Similar to a detective piec-302

ing together different clues in a story, the FFN303

layer builds a comprehensive emotional narrative304

of speaker s.305

Therefore we obtain C̃ intra
s as the representation306

of the emotional narrative. It can be expressed as307

follows:308

C̃ intra
s = FFN

(
MHA(C intra

s + PE(C intra
s ))

)
(3)309

where C̃ intra
s ∈ RNs×dc. dc is the embedding di-310

mension of the emotional narrative.311

Cross-Verification Layer: The DetectiveNN312

then connects the dots by examining the derived313

emotional narrative against a broad conversational314

context. Through careful evaluation, the model315

identifies patterns in the emotional flows of speaker 316

s. We employ a cross-attention mechanism to mir- 317

ror this progress. The emotional narrative ˜C intra
s is 318

treated as a query Q to retrieve additional contex- 319

tual information from past interactions between the 320

speakers. We set the global context matrix Cglobal 321

as both Key K and Value V . 322

Ĉ intra
s = Softmax

(
C̃ intra
s CglobalT

√
dc

)
Cglobal (4) 323

where Ĉ intra
s ∈ RNs×dc represents emotional pat- 324

terns captured through cross verification. 325

3.4 Emotion Prediction 326

After retrieving and reasoning emotional clues, the 327

detective is to piece together the puzzle in a way to 328

assess the current emotional state of speaker s. 329

The emotion classification process constitutes 330

the final stage of our model, where we integrate 331

insights derived from the detection phase with a 332

Multi-Layer Perceptron (MLP) layer to predict the 333

emotional state of the targeted utterance. 334

We employ a skip connection to concatenate 335

original intra-context embedding cintra
i,s with the out- 336

put of the cross-verification layer ĉintra
i,s along the 337

feature dimension axis. The concatenated feature 338

vector Fi,s represents the updated embedding of 339

the i-th utterance from speaker s: 340

Fi,s = Concat
(
ĉintra
i,s , cintra

i,s

)
(5) 341

Next Fi,s is fed into the MLP for further pro- 342

cessing. The MLP transforms Fi,s into a high-level 343

representation hi,s for making a final prediction: 344

hi,s = MLP(Fi,s) (6) 345

In the final step, we employ the softmax function 346

to the output of the MLP layer hi,s to obtain a 347
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probability distribution over the possible emotional348

states. The predicted emotional state ŷi,s for the349

targeted utterance is thus given by:350

ŷi,s = Softmax(hi,s) (7)351

4 Experiments and Results352

4.1 Datasets353

DetectiveNN was tested on three benchmark354

datasets for recognizing emotions in conversations:355

IEMOCAP (Busso et al., 2008), EmoryNLP (Zahiri356

and Choi, 2018), and DailyDialog (Li et al., 2017).357

While IEMOCAP and DailyDialog are designed358

for dialogues between two parties, EmoryNLP is359

designed to learn from multi-party conversations.360

We report experimental results for conversational361

emotion recognition for all three datasets. The de-362

tails of all datasets are presented in Table 1.363

IEMOCAP (Busso et al., 2008): IEMOCAP is364

a dataset of two-person conversations among ten365

different unique speakers. However, for training366

purposes, only the first eight speakers from ses-367

sions one to four are included. Each video in this368

collection captures an individual dyadic dialogue,369

which is further divided into separate utterances.370

These utterances have been classified with anno-371

tations corresponding to six different emotional372

states: happiness, sadness, neutrality, anger, excite-373

ment, and frustration.374

EmoryNLP (Zahiri and Choi, 2018): EmoryNLP375

utilizes content from the TV series "Friends". This376

dataset includes utterances that are classified into377

seven specific emotional categories: neutral, joyful,378

peaceful, powerful, scared, mad, and sad. Addi-379

tionally, sentiments in this dataset are identified as380

either positive, negative, or neutral.381

DailyDialog (Li et al., 2017): DailyDialog cov-382

ers a wide array of topics pertinent to everyday life,383

closely mirroring the style of natural human con-384

versation. This dataset is distinctive in that each385

of its utterances is annotated with labels for both386

emotional categories and dialogue acts. It includes387

a comprehensive range of seven emotional labels:388

angry, disgusted, fearful, joyful, neutral, sad, and389

surprised.390

Our research primarily investigates the emo-391

tional categorization and text aspects of these392

datasets. We align our study with COSMIC’s393

(Ghosal et al., 2020) train/validation/test splits for394

consistency.395

4.2 Baselines 396

We compare our model, DetectiveNN, with sev- 397

eral models introduced in the related work section, 398

including DialogueRNN, DialogueGCN, Dialogue- 399

CRN, BC-LSTM, CMN, EmotionIC, COSMIC, 400

and DialogXL. Additionally, we also evaluate De- 401

tectiveNN against two other models: EmoCaps and 402

CNN. 403

EmoCaps (Li et al., 2022): EmoCaps utilizes a 404

transformer-based architecture to extract emotional 405

trends across various modalities. It leverages a 406

bi-directional LSTM for contextual analysis, inte- 407

grating both past and future conversational context 408

to classify emotions. 409

CNN (Kim, 2014): CNN is a convolutional neu- 410

ral network designed to be trained on utterances 411

that are context-independent. 412

Table 2, Table 3, and Table 4 present the perfor- 413

mance evaluation of DetectiveNN on the test data. 414

In training the model on the IEMOCAP dataset, we 415

integrate texutal, visual and aduio features to create 416

multimodal fused embeddings. All three modal- 417

ity feature embeddings are obtained from Li et al. 418

(2022). For training the model on the EmoryNLP 419

and DailyDialog datasets, we utilized RoBERTa to 420

extract contextual features. RoBERTa embeddings 421

are taken from Ghosal et al. (2020). 422

4.3 Evaluation Metrics 423

Consistent with prior studies by Hazarika et al. 424

(2018a), Ghosal et al. (2020), and Jiao et al. (2020), 425

we select the accuracy score (Acc.) as our pri- 426

mary metric for evaluating overall performance 427

on the IEMOCAP, EmoryNLP, and DailyDialog 428

datasets. Additionally, to provide a comprehensive 429

assessment of our model’s capability across both 430

majority and minority classes, we report both the 431

Weighted-average F1 score (Weighted-F1) and the 432

Macro-averaged F1 score (Macro-F1) for IEMO- 433

CAP and EmoryNLP datasets. We report both the 434

micro-average F1 score (Micro-F1) and the Macro- 435

averaged F1 score (Macro-F1) for the DailyDialog 436

dataset. These metrics offer a more nuanced view 437

of the model’s effectiveness in handling different 438

class distributions. 439

4.4 Implementation Details 440

In our experimental setup, the validation set is uti- 441

lized for hyperparameter optimization. The archi- 442

tecture varies between datasets: a single-layer bidi- 443

rectional GRU is applied to IEMOCAP, EmoryNLP 444
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Dataset # Dialogues # Utterances Avg. # Classes
train val test train val test Length

IEMOCAP 108 12 31 5,810 — 1,623 47 6
DailyDialog 11,118 1,000 1,000 87,832 7,912 7,863 72 7
EmoryNLP 659 89 79 7,551 954 984 10 7

Table 1: Table 1: The statistics of three datasets.

and Dailydialog datasets. In the subsequent detec-445

tion phase, a two-layer transformer encoder block446

is used for the EmoryNLP dataset, while a one-447

layer transformer encoder block is used for both448

IEMOCAP and Dailydialog datasets.449

The batch size is uniformly maintained at 30450

for all experiments. For each dataset, the learn-451

ing rate and dropout are set specifically as fol-452

lows: 10−3 and 0.5 for IEMOCAP, 10−4 and 0.2453

for EmoryNLP, and 10−4 and 0.5 for Dailydialog.454

L2 weight decay is set to 2 × 10−3 for all exper-455

iments. The loss objective for all experiments is456

cross-entropy loss. We trained the DetectiveNN for457

a maximum of 80 epochs using the Adam optimizer458

(Kingma and Ba, 2014) and stopped training if the459

validation loss does not decrease for 10 consecu-460

tive epochs. For benchmarking against existing461

models like CNN, BC-LSTM, DialogueGCN, Dia-462

logueRNN, and DialogueCRN, we replicate their463

setups using the publicly available code provided464

by Kim (2014), Poria et al. (2018), Majumder et al.465

(2019), Ghosal et al. (2019), and Hu et al. (2021),466

ensuring consistency in the experimental environ-467

ment.468

Methods Acc. Weighted-F1 Macro-F1
CNN † 53.16 52.13 47.28
BC-LSTM † 55.86 55.24 53.19
CMN* 56.56 56.13 54.30
COSMIC* – 65.28 –
DialogXL* – 65.94 –
DialogueRNN† 63.50 63.18 62.99
DialogueGCN† 62.42 62.11 61.17
DialogueCRN† 70.65 70.35 70.01
EmoCaps* – 71.77 –
DetectiveNN 76.15 76.01 76.40

Table 2: Experimental results on the IEMOCAP dataset.
Annotated with an * indicates results sourced from the
model’s paper, and a (†) denotes results from reproduc-
tions conducted by the authors.

4.5 Main Results469

Table 2, Table 3, and Table 4 illustrate the results470

of comparing our DetectiveNN model with other471

models and backbones from different perspectives.472

Methods Acc. Micro-F1 Macro-F1
CNN† 65.35 57.21 50.13
BC-LSTM† 64.19 53.19 48.94
EmotionIC* – 60.13 54.19
COSMIC* – 58.48 51.05
DialogXL* – 54.93 –
DialogueRNN† 63.03 61.50 57.66
DialogueGCN† 71.56 62.20 60.43
DialogueCRN† 73.15 64.10 53.18
DetectiveNN 75.55 70.20 57.38

Table 3: Experimental results on the Dailydialog dataset.
Annotated with an * indicates results sourced from the
model’s paper, and a (†) denotes results from reproduc-
tions conducted by the authors.

Methods Acc. Weighted-F1 Macro-F1
CNN† 34.21 30.19 28.59
BC-LSTM† 38.17 34.27 29.87
SACL-LSTM* – 39.65 –
COSMIC* – 38.11 –
DialogXL* – 34.73 –
DialogueGCN† 37.75 34.98 31.30
DialogueCRN† 40.65 37.59 32.31
DialogueRNN† 41.04 35.76 31.22
EmotionIC* – 40.25 –
DetectiveNN 42.68 40.78 33.65

Table 4: Experimental results on the EmoryNLP dataset.
Annotated with an * indicates results sourced from the
model’s paper, and a (†) denotes results from reproduc-
tions conducted by the authors.

Based on this, we make the following observations: 473

(1) Our method achieves significant improve- 474

ments over the SOTA baseline models on all bench- 475

marks. Specifically, we outperform EmoCaps, Dia- 476

logueCRN, and EmotionIC by 4.24%, 6.10%, and 477

0.53% on IEMOCAP, Dailydialog and EmoryNLP 478

respectively. 479

(2) DetectiveNN improves over all the models; 480

however, the performance gain of the model on 481

the IEMOCAP dataset is not as significant as it is 482

on the DailyDialog dataset. DetectiveNN achieves 483

new state-of-the-art scores of 70.20% for Micro-F1 484

and 75.55% for Accuracy on DailyDialog. 485

(3) Previous research has highlighted the com- 486

plexity involved in emotion modeling in the 487

EmoryNLP dataset, challenges stemming from the 488

diversity of speakers and limited conversational 489
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exchanges (Ghosal et al., 2019; Li et al., 2020). De-490

tectiveNN, in contrast, shows notable performance491

enhancements on the IEMOCAP and DailyDialog492

datasets. This advancement is attributed to longer493

and more in-depth conversational exchanges and494

richer utterance content in these datasets. These as-495

pects allow for a more comprehensive understand-496

ing of the global context and emotional cues, thus497

enhancing the accuracy of DetectiveNN.498

4.6 Ablation Study499

The DetectiveNN model is built on a recall-detect-500

predict framework. To understand the impact of501

its recall and detection phases on overall perfor-502

mance, we conducted a series of ablation exper-503

iments on both the IEMOCAP and EmoryNLP504

datasets. When two modules are removed succes-505

sively, the performance is greatly decreased. This506

indicates the importance of both the recall phase507

and the detection phase in the DetectiveNN model.508

The outcomes of these experiments are detailed in509

Table 5.510

Recall Phase Analysis: The recall phase plays511

a crucial role in gathering relevant global context512

from dialogues. As indicated in the second column513

of our results, excluding this phase led to a no-514

table reduction in the model’s effectiveness on both515

datasets. This result demonstrates that the essential516

nature of the recall phase in forming a contextual517

base, which is crucial for the subsequent reasoning518

process.519

Detection Phase Analysis: In the subsequent set520

of experiments, we focused on the removal of the521

detection phase, a critical component for analyzing522

emotional cues retrieved in the recall phase. The523

absence of this phase resulted in a marked decrease524

in performance across both datasets, as highlighted525

in our results. This decline shows the critical role of526

the detection phase in decoding emotional cues in a527

conversational context. Furthermore, our findings,528

as detailed in the final row of Table 5, reveal that529

eliminating both the recall and detection phases530

also results in a significant drop in performance.531

This marked decline highlights the interdependent532

and synergistic nature of these two phases, under-533

lining their combined importance in augmenting534

the reasoning capability of the DetectiveNN model.535

Impact of Intra-Contextual Dependency: Our536

study further explored the significance of intra-537

contextual dependency, essential for understand-538

ing how a speaker’s emotional state is shaped by539

their unique conversational context. Excluding 540

this dependency-tracking component from Detec- 541

tiveNN resulted in a great decline in performance 542

across both datasets. This outcome highlights the 543

imperative for DetectiveNN to effectively moni- 544

tor each speaker’s emotional journey, allowing the 545

model to accurately identify and interpret personal 546

emotional cues. 547

Figure 2: The case study

4.7 Case Study 548

Conventional methods like DialogueRNN and Di- 549

alogueGCN encounter difficulties in interpreting 550

emotional cues, such as discerning the root causes 551

and intensity of emotions such as conflict, lead- 552

ing to inaccurate recognition of the emotion as 553

frustrated or neutral. Although DialogueCRN pos- 554

sesses the cognitive ability to retrieve and com- 555

bine emotional cues from conversational contexts, 556

it cannot further interpret those cues for accurate 557

prediction. In contrast, our model, DetectiveNN, 558

utilizes a recall-detect-predict framework to deci- 559

pher emotional clues more effectively. Figure 2 560

shows a conversation sampled from the IEMOCAP 561

dataset. The goal is to recognize the emotional 562

state of the targeted utterance 8 from person A. 563

DetectiveNN operates through two iterative 564

phases: 565

• The Recall Phase: This phase is dedicated 566

to extracting relevant emotional cues from a 567

sequence of utterances (2, 4, 6, and 8) made 568

by speaker A, denoted by red circles. 569

• The Detection Phase: This phase involves 570

examining emotional cues within an emo- 571

7



Context Cognition IEMOCAP EmoryNLP

Intra-Contextual Recall Detection Acc. W-F1 M-F1 Acc. W-F1 M-F1
Dependency Phase Phase

✓ ✓ ✓ 76.15 76.01 76.40 42.68 40.78 33.65
✓ × ✓ 51.60 50.38 50.62 38.21 36.03 29.15
✓ ✓ × 41.46 38.60 36.77 39.11 37.39 31.15
× ✓ ✓ 70.40 70.68 70.98 40.55 38.35 30.85
× × ✓ 57.74 57.13 57.80 37.60 37.10 30.45
× × × 50.26 50.14 50.30 38.92 37.00 30.07

Table 5: Experimental results of ablation studies on IEMOCAP and EmoryNLP datasets.

tional narrative (indicated by red circles a-b-c)572

against the context of the entire conversation573

from utterances 1 to 8 (marked by both red574

and blue circles). It decodes these emotional575

cues to uncover patterns in the emotional flow576

of speaker A’s responses (indicated by yellow577

blocks).578

This dual-phase process enables the model to579

make a precise final prediction. DetectiveNN, in580

this case, identifies an intensifying dispute between581

speakers A and B. This nuanced understanding of582

the escalating conflict leads to a more accurate iden-583

tification of the emotion as anger, rather than an584

incorrect prediction of it being neutral or depressed.585

5 Conclusions586

In this paper, we introduce DetectiveNN, a novel587

framework for Emotion Recognition in Conversa-588

tion. This framework utilizes an innovative recall-589

detect-predict structure to interpret emotions in con-590

versations. Initially, DetectiveNN identifies key591

emotional cues within the dialogue. Subsequently,592

it conducts a thorough analysis of these cues to593

accurately predict the emotional state.594

Rigorously evaluated across three benchmark595

datasets, DetectiveNN has demonstrated its superi-596

ority over existing models, revealing the profound597

impact of integrating cognitive reasoning into deep598

learning architectures. This cognitive factor plays599

an important role not only in enhancing the model’s600

efficiency and accuracy in prediction but also in ad-601

vancing ERC methodologies.602

6 Limitations603

DetectiveNN boosts emotion prediction accuracy604

through its analysis of long-term dialogue turns but605

faces challenges with short-term turns due to its de- 606

pendence on extended interaction context. This 607

dependence constrains its capability to identify 608

and understand emotional cues in brief dialogic 609

exchanges. Moreover, the lack of information on a 610

speaker’s personality traits impacts DetectiveNN’s 611

ability to capture complex emotional dynamics, as 612

seen in datasets like EmoryNLP from the "Friends" 613

TV series. Speakers’ personality traits are essential 614

for identifying sarcasm, humor, and other subtle 615

emotional cues. Without integrating this knowl- 616

edge, DetectiveNN struggles to accurately predict 617

nuanced emotions in conversations. 618
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