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ABSTRACT

We revisit the problem of sampling from a target distribution that has a smooth
strongly log-concave density everywhere in Rp. In this context, if no additional
density information is available, the randomized midpoint discretization for the
kinetic Langevin diffusion is known to be the most scalable method in high
dimensions with large condition numbers. Our main result is a nonasymptotic and
easy to compute upper bound on the W2-error of this method. To provide a more
thorough explanation of our method for establishing the computable upper bound,
we conduct an analysis of the midpoint discretization for the vanilla Langevin
process. This analysis helps to clarify the underlying principles and provides
valuable insights that we use to establish an improved upper bound for the kinetic
Langevin process with the midpoint discretization. Furthermore, by applying these
techniques we establish new guarantees for the kinetic Langevin process with
Euler discretization, which have a better dependence on the condition number than
existing upper bounds.

1 INTRODUCTION

The task of sampling from target distributions with smooth, strongly log-concave densities has been
a long-standing challenge in various fields such as statistics, machine learning, and computational
physics (Andrieu et al., 2003; Krauth, 2006; Andrieu et al., 2010). Over the years, researchers
have developed several algorithms to tackle this problem, and one prominent approach are the
Langevin algorithms (Rogers & Williams, 2000; Oksendal, 2013; Robert et al., 1999). Langevin
algorithms leverage the Langevin equation to design efficient and effective sampling algorithms.
These methods generate a Markov chain by iteratively updating the position of a particle based on the
Langevin equation. By simulating the particle’s motion over time, these algorithms explore the target
distribution and eventually converge to samples that approximate the desired distribution (Robert
et al., 1999).

The canonical sampling algorithm, Langevin Monte Carlo (LMC) (Roberts & Tweedie, 1996;
Dalalyan, 2017; Durmus & Moulines, 2017; Erdogdu & Hosseinzadeh, 2021; Mousavi-Hosseini
et al., 2023; Raginsky et al., 2017; Erdogdu et al., 2018; Mou et al., 2022; Erdogdu et al., 2022), is
a Markov chain Monte Carlo (MCMC) method that simulates the dynamics of a fictitious particle
moving through a potential energy landscape defined by the target distribution. Formally, it is the
Euler-Maruyama discretization of an SDE known as the Langevin diffusion. The underlying idea
can be traced back to the early 20th century when Paul Langevin introduced a stochastic differential
equation (SDE) to describe the motion of a particle in a fluid (Langevin, 1908). This SDE, combines
deterministic and random components to model the particle’s behavior under the influence of both a
deterministic force and random noise.
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One popular variant of the Langevin Monte Carlo is based on discretizing the kinetic Langevin
diffusion, which introduces a friction term to control the exploration-exploitation trade-off during
the sampling process (Einstein, 1905; Von Smoluchowski, 1906). According to Nelson (1967),
the Langevin diffusion is the rescaled limit of the kinetic Langevin diffusion. Its ergodicity
and mixing-time properties are studied in Eberle et al. (2019); Dalalyan & Riou-Durand (2020).
Euler-Maruyama time discretization of this SDE, called kinetic Langevin Monte Carlo (KLMC), is
prevalent in the sampling literature (Cheng et al., 2018b; Dalalyan & Riou-Durand, 2020; Shen &
Lee, 2019; Ma et al., 2021; Zhang et al., 2023).

The randomized midpoint discretization method, as an alternative to the Euler-Maruyama scheme
for KLMC, is proposed by Shen & Lee (2019). They demonstrate the superior performance of
this method in terms of both tolerance and condition number dependency. More recently, He et al.
(2020) analyze probabilistic properties of the randomized midpoint discretization method for the
(kinetic) Langevin diffusion. In this work, we undertake a comprehensive and thorough analysis of
the randomized midpoint discretization scheme for the kinetic Langevin diffusion under strongly
log-concavity. To achieve this, we introduce a novel proof technique relying on summation by part,
which helps to establish improved non-asymptotic and computable upper bounds on the discretization
error for this method. Our contributions can be summarized as follows.

• To lay the groundwork for our analysis, we initially delve into the midpoint discretization
technique applied to the vanilla Langevin process. In this context, we introduce our novel
proof technique, which plays a pivotal role in our study. Notably, in Theorem 1, we
provide the convergence guarantees for RLMC in W2-distance with explicit constants and
a transparent reliance on the initialization. These guarantees are competitive with the best
available results for LMC, and could be leveraged to derive an improved upper bound
specifically tailored for RKLMC.

• We further extend these techniques to RKLMC, and provide the corresponding convergence
guarantees in W2-distance in Theorem 2. Compared to the previous works, our bound
a) contains small constants and the explicit dependence on the initialization, b) does not
require the initialization to be at the minimizer of the potential, c) and is free from the linear
dependence on the sample size, which serves as a crucial step towards the method applied to
non-convex potentials.

• Employing the same techniques, we finally examine the convergence behavior of the KLMC
algorithm with the Euler-Maruyama discretization. In Theorem 3, we provide an upper
bound on the accuracy of this scheme in W2-distance with improved dependence on the
condition number.

We offer a systematic and unified treatment of the variants of LMC, which empowers us to derive
enhanced upper bounds for the W2-error associated with RKLMC, RLMC, and KLMC algorithms.
Furthermore, our techniques facilitate the determination of explicit constants and the dependence
on initialization, providing us with a clearer basis for choosing the step size and comparing the
convergence rates across these methods.

Notation. Denote the p-dimensional Euclidean space by Rp. The letter θ denotes the deterministic
vector and its calligraphic counterpart ϑ denotes the random vector. We use Ip and 0p to denote,
respectively, the p× p identity and zero matrices. Define the relations A ≼ B and B ≽ A for two
symmetric p× p matrices A and B to mean that B−A is positive semi-definite. The gradient and
the Hessian of a function f : Rp → R are denoted by ∇f and ∇2f , respectively. Given any pair of
measures µ and ν defined on (Rp,B(Rp)), the Wasserstein-2 distance between µ and ν is defined as

W2(µ, ν) =
(

inf
ϱ∈Γ(µ,ν)

∫
Rp×Rp

∥θ − θ′∥22 dϱ(θ,θ′)
)1/2

,

where the infimum is taken over all joint distributions ϱ that have µ and ν as marginals.

2 UNDERSTANDING THE RANDOMIZED MIDPOINT DISCRETIZATION: THE
VANILLA LANGEVIN DIFFUSION

The goal is to sample a random vector in Rp according to a given distribution π of the form
π(θ) ∝ exp{−f(θ)}, θ ∈ Rp,
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with a function f : Rp → R, referred to as the potential. Throughout the paper, we assume that the
potential function f is M -smooth and m-strongly convex for some constants 0 < m ⩽M <∞.

Assumption 1. The function f : Rp → R is twice differentiable, and its Hessian matrix ∇2f satisfies

mIp ≼ ∇2f(θ) ≼MIp, ∀θ ∈ Rp.

Let ϑ0 be a random vector drawn from a distribution ν on Rp and let W = (Wt : t ⩾ 0) be a
p-dimensional Brownian motion independent of ϑ0. Using the potential f , the random variable ϑ0

and the process W , one can define the stochastic differential equation

dLLD
t = −∇f(LLD

t ) dt+
√
2 dWt, t ⩾ 0, LLD

0 = ϑ0. (1)

This equation has a unique strong solution, which is a continuous-time Markov process, termed
Langevin diffusion. Under some further assumptions on f , such as strong convexity or dissipativity,
the Langevin diffusion is ergodic, geometrically mixing and has π as its unique invariant distribution
(Bhattacharya, 1978). Furthermore, the mixing properties of this process can be quantified. For
instance, if π satisfies the Poincaré inequality with constant CP, then (see e.g. Chewi et al. (2020))
the distribution νLDt of LLD

t satisfies

W2(ν
LD
t , π) ⩽ e−t/CP

√
2CPχ

2(ν∥π), ∀t ⩾ 0.

These results suggest that we can sample from the distribution π by using a suitable discretization of
the Langevin diffusion. The Langevin Monte Carlo (LMC) method is based on this idea, combining
the aforementioned considerations with the Euler discretization. Specifically, for small values of
h ⩾ 0 and ∆hWt = Wt+h −Wt, the following approximation holds

LLD
t+h = LLD

t −
∫ h

0

∇f(LLD
t+s) ds+

√
2 ∆hWt ≈ LLD

t − h∇f(LLD
t ) +

√
2 ∆hWt.

By repeatedly applying this approximation with a small step-size h, we can construct a Markov
chain (ϑLMC

k : k ∈ N) that converges to the target distribution π as h goes to zero. More precisely,
ϑLMC
k ≈ LLD

kh , for k ∈ N, is given by

ϑLMC
k+1 = ϑLMC

k − h∇f(ϑLMC
k ) +

√
2 (W(k+1)h −Wkh).

This method is computationally efficient and has been widely used in statistics and machine learning
for sampling from high-dimensional distributions (Gal & Ghahramani, 2016; Izmailov et al., 2020;
2021). To assess the discretization error, consider the case where LLD

0 is drawn from the invariant
distribution π and note that

LLD
(k+1)h − ϑLMC

k+1 = LLD
kh − ϑLMC

k −
∫ h

0

∇f(LLD
kh+s) ds+ h∇f(ϑLMC

k )

= LLD
kh − ϑLMC

k − h
(
∇f(LLD

kh)−∇f(ϑLMC
k )

)
− ζk, (2)

where ζk =
∫ h

0

(
∇f(LLD

kh+s) − ∇f(LLD
kh)

)
ds is a zero-mean random “noise” vector. Previous

work on LMC demonstrated that the squared L2 norm of ζk is of order M2h3p, whereas the term
LLD

kh − ϑLMC
k − h

(
∇f(LLD

kh)−∇f(ϑLMC
k )

)
satisfies the contraction inequality∥∥LLD

kh − ϑLMC
k − h

(
∇f(LLD

kh)−∇f(ϑLMC
k )

)∥∥2
L2

⩽ (1−mh)2∥LLD
kh − ϑLMC

k ∥2L2
. (3)

If we denote by rk the correlation between ζk and LLD
kh−ϑLMC

k , and by Errk the error ∥LLD
kh−ϑLMC

k ∥L2 ,
we infer from equation 2 and equation 3 that

Err2k+1 ⩽ (1−mh)2Err2k + CMhrkErrk
√
hp+ CM2h3p,

for some universal constant C. If we were able to check that rk is small enough so that the second
term of the right-hand side can be neglected, we would get Err2k+1 ⩽ (1−mh)2Err2k + C1M

2h3p,
which would eventually lead to Err2k+1 ⩽ (1−mh)2kErr21 +C2M

2h2(p/m). This would amount to

|rk| ≪ 1 =⇒ Errk+1 ⩽ (1−mh)k Err1 + C3Mh
√
p/m. (4)
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Unfortunately, without any additional conditions on f , the correlation rk cannot be shown to be
small, and one can only deduce from equation 3 that Errk+1 ⩽ (1−mh)Errk + CMh

√
ph, which

eventually yields

|rk| ̸≪ 1 =⇒ Errk+1 ⩽ (1−mh)k Err1 + C4(M/m)
√
ph. (5)

This inequality is established under the standard assumption Mh ⩽ 1, which implies that the last
term in equation 4 is significantly smaller than equation 5. To get such an error deflation, we need the
correlations rk to be small. While this is not guaranteed for the Euler discretization, we will see that
the randomized midpoint method allows us to achieve such a reduction.

Let U be a random variable uniformly distributed in [0, 1] and independent of the Brownian motion
W . The randomized midpoint method exploits the approximation

LLD
t+h = LLD

t −
∫ h

0

∇f(LLD
t+s) ds+

√
2 ∆hWt ≈ LLD

t − h∇f(LLD
t+hU ) +

√
2 ∆hWt.

The noise counterpart of ζk in this case is ζR
k =

∫ h

0
∇f(LLD

kh+s) ds − ∇f(LLD
kh+Uh). It is clearly

centered and uncorrelated with all the random vectors independent of U such as LLD
kh , ϑLMC

k and the
gradient of f evaluated at these points.

The explanation above provides the intuition of the randomized midpoint method, and a hint to why
it is preferable to the Euler discretization, but it cannot be taken as a formal definition of the method.
The formal definition of the randomized midpoint method for the Langevin Monte Carlo (RLMC) is
defined as follows: at each iteration k = 1, 2, . . . ,

1. we randomly, and independently of all the variables generated during the previous steps,
generate a pair of random vectors (ξ′k, ξ

′′
k) and a random variable Uk such that

• Uk is uniformly distributed in [0, 1] and independent of (ξ′k, ξ
′′
k),

• (ξ′k, ξ
′′
k) are independent Np(0, Ip).

2. we set ξk =
√
Uk ξ

′
k +

√
1− Ukξ

′′
k and define the (k + 1)th iterate ϑRLMC by

ϑRLMC
k+U = ϑRLMC

k − hUk∇f(ϑRLMC
k ) +

√
2hUk ξ

′
k (6)

ϑRLMC
k+1 = ϑRLMC

k − h∇f(ϑRLMC
k+U ) +

√
2h ξk. (7)

With a small step-size h and a large number of iterations n, the distribution of ϑRLMC
n can closely

approximate the target distribution π. In a smooth and strongly convex setting, it is even possible to
obtain a reliable estimate of the sampling error, as demonstrated in the following theorem (the the
proof is included in the supplementary material).

If the step-size h is small and the number of iterations n is large, the distribution of ϑRLMC
n is

close to the target π. Interestingly, in the smooth and strongly convex setting it is possible to get a
good evaluation of the error of sampling as shown in the next theorem (the proof is deferred to the
supplementary material).

Theorem 1. Assume the function f : Rp → R satisfies Assumption 1. Let h be such that Mh +√
κ (Mh)3/2 ⩽ 1/4 with κ =M/m. Then, every n ⩾ 1, the distribution νRLMC

n of ϑRLMC
n satisfies

W2(ν
RLMC
n , π) ⩽ 1.11e−mnh/2W2(ν0, π) +

(
2.4

√
κMh+ 1.77

)
Mh

√
p/m. (8)

Prior to discussing the relation of the above error estimate to those available in the literature, let us
state a consequence of it.

Corollary 1. Let ε ∈ (0, 1) be a small number. If we choose h > 0 and n ∈ N so that

Mh =
ε

1.5 + (6.5κε)1/3
, and n ⩾

(
3κ

ε
+

3.8κ4/3

ε2/3

)(
log(20/ε) +

1

2
log

(m
p
W2

2(ν0, π)
))

then1 we have W2(ν
RLMC
n , π) ⩽ ε

√
p/m.

1This follows from the fact that (6κ/ε) + 4.2κ4/3/ε2/3 ⩽ 2κ/(Mh) = 2/mh.
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Our results can be compared to the best available results for the Langevin Monte Carlo (LMC) under
Assumption 1 (Durmus et al., 2019, Eq. 22). We recall that LMC is defined by a recursive relation of
the same form as equation 7, with the only difference that ∇f(ϑk+U ) is replaced by ∇f(ϑk). The
tightest known bound for LMC is given by

W2(ν
LMC
n , π) ⩽ (1−mh)−n/2W2(ν0, π) +

√
2Mhp/m,

with Mh ⩽ 1. By choosing 2Mh = (19/20)2ε2 and

n ⩾ 2.22(κ/ε2)
{
log(20/ε) + 1

2 log
(
m
p W

2
2(ν0, π)

)}
,

we can ensure that W2(ν
LMC
n , π) ⩽ ε

√
p/m. Therefore, the complexity bound of Corollary 1 derived

from our result for RLMC is better than the best-known complexity bound for LMC in the regime of
κ of smaller order than2 ε−4.

To the best of our knowledge, the first results on the error analysis of RLMC have been obtained
in (He et al., 2020). They derived an upper bound on the discretization error (the second term on
the right-hand side of equation 8) under the assumption that the initial point of the algorithm is the
minimizer of the potential function f . Their bound takes the formC(

√
κMh+1)Mh

√
p/m×

√
mnh,

where C is a universal but unspecified constant. Compared to our bound, the one obtained in He
et al. (2020) has an additional factor

√
mnh. While this factor may not be very harmful in the case of

geometric ergodicity where the number of iterations n is chosen such that nmh goes to infinity at
the logarithmic rate log(1/ε), removing it can be an important step toward extending these results to
potentials that are not strongly convex.

While the proof of this theorem is deferred to the supplementary material, we can outline the main
argument that allowed us to remove the factor

√
nmh from the error bound. To convey the main idea,

let us consider three positive sequences an, bn, cn satisfying, for every n ∈ N,

an+1 ⩽ (1− α)an + bn (9)
cn+1 ⩽ cn − bn + C, (10)

with some α ∈ (0, 1) and C > 0. Using the standard telescoping sums argument, frequently employed
for proving the convergence of convex optimization algorithms, one can infer from equation 10 that∑n

k=0
bn ⩽ c0 − cn+1 + nC ⩽ c0 + nC. (11)

On the other hand, it follows from equation 9 that

an+1 ⩽ (1− α)n+1a0 +
∑n

k=0
(1− α)n−kbk. (12)

Upper bounding (1− α)n−k by one, and using equation 11, we arrive at

an+1 ⩽ (1− α)n+1a0 + c0 + nC. (13)

This type of argument, used in previous papers on RKLMC (Shen & Lee, 2019), is sub-optimal and
leads to the extra factor

√
nmh. A tighter bound can be obtained by replacing the telescoping sum

argument by the summation by parts. More precisely, one can check that equation 10 and equation 12
yield

an+1 ⩽ (1− α)n+1a0 +
∑n

k=0
(1− α)n−k(ck − ck+1) + C

∑n

k=0
(1− α)n−k

⩽ (1− α)n+1a0 + (1− α)nc0 + α
∑n

k=0
(1− α)n−kck +

C

α
. (14)

The upper bound provided by equation 14 has two advantages as compared to equation 13: the
term nC is replaced by C/α, which is generally smaller, and the dependence on the initial value
is (1 − α)nc0 instead of c0. This comes also with a challenge consisting in upper bounding the
sum present in the right-hand side of equation 14, which we managed to overcome using the strong
convexity (or, more precisely, the Polyak-Lojasiewicz condition). The full details are deferred to the
supplementary material.

2The condition κ = o(ε−4) is obtained by simple algebra from the condition κ4/3/ε2/3 = o(κ/ε2).
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3 RANDOMIZED MIDPOINT METHOD FOR THE KINETIC LANGEVIN DIFFUSION

The randomized midpoint method, introduced and studied in Shen & Lee (2019), aims at providing
a discretization of the kinetic Langevin process that reduces the bias of sampling as compared to
more conventional discretizations. Recall that the kinetic Langevin process LKLD is a solution to a
second-order stochastic differential equation that can be informally written as

1
γ L̈

KLD
t + L̇KLD

t = −∇f(LKLD
t ) +

√
2 Ẇt, (15)

with initial conditions LKLD
0 = ϑ0 and L̇KLD

0 = v0. In equation 15, γ > 0, W is a standard
p-dimensional Brownian motion and dots are used to designate derivatives with respect to time t ⩾ 0.
This can be formalized using Itô’s calculus and introducing the velocity field V KLD so that the joint
process (LKLD,V KLD) satisfies

dLKLD
t = V KLD

t dt; 1
γdV

KLD
t = −

(
V KLD
t +∇f(LKLD

t )
)
dt+

√
2 dWt. (16)

Similar to the vanilla Langevin diffusion equation 1, the kinetic Langevin diffusion (LKLD,V KLD)
is a Markov process that exhibits ergodic properties when the potential f is strongly convex (see
(Eberle et al., 2019) and references therein). The invariant density of this process is given by

p∗(θ,v) ∝ exp{−f(θ)− 1
2γ ∥v∥

2}, for all θ,v ∈ Rp.

Note that the marginal of p∗ corresponds to θ coincides with the target density π. However, unlike
the vanilla Langevin diffusion, the kinetic Langevin is not reversible. It is interesting to note that the
distribution of the process LKLD approaches that of the vanilla Langevin process as γ approaches
infinity (see e.g. (Nelson, 1967)). Therefore, LLD and LKLD are often referred to as the overdamped
and underdamped Langevin processes, respectively (where increasing the friction parameter γ is
characterized as damping).

The kinetic Langevin diffusion LKLD is particularly attractive for sampling because its distribution
νKLDt converges to the invariant distribution exponentially fast. This is especially true for strongly
convex potentials, as proven in3 (Dalalyan & Riou-Durand, 2020, Prop. 1), where it is shown that the
following inequality holds:

W2

(
C

[
V KLD
t

LKLD
t

]
,C

[
v
ϑ

])
⩽ e−mtW2

(
C

[
V0

L0

]
,C

[
v
ϑ

])
, C =

[
Ip 0p

Ip γIp

]
for every t ⩾ 0, provided that γ ⩾ m+M .

To discretize this continuous-time process and make it applicable to the sampling problem, Shen &
Lee (2019) proposed the following procedure: at each iteration k = 1, 2, . . .,

1. randomly, and independently of all the variables generated at the previous steps, generate
random vectors (ξ′k, ξ

′′
k , ξ

′′′
k ) and a random variable Uk such that

• Uk is uniformly distributed in [0, 1],
• conditionally to Uk = u, (ξ′k, ξ

′′
k , ξ

′′′
k ) has the same joint distribution as

(
Bu −

e−γhuGu,B1 − e−γhG1, γe
−γhG1

)
, where B is a p-dimensional Brownian motion

and Gt =
∫ t

0
eγhs dBs.

2. set ψ(x) = (1− e−x)/x and define the (k + 1)th iterate of ϑRKLMC by

ϑk+U = ϑk + Uhψ(γUh)vk − Uh
(
1− ψ(γUh)

)
∇f(ϑk) +

√
2h ξ′k

ϑk+1 = ϑk + hψ(γh)vk − γh2(1− U)ψ
(
γh(1− U)

)
∇f(ϑk+U ) +

√
2hξ′′k

vk+1 = e−γhvk − γhe−γh(1−U)∇f(ϑk+U ) +
√
2h ξ′′′k .

Although the sequence (vRKLMC
k ,ϑRKLMC

k ) approximates (V KLD
kh ,LKLD

kh ), it is not immediately
apparent. The supplementary material clarifies this point. We state now the main result of this
paper, providing a simple upper bound for the error of the RKLMC algorithm.

3For the sake of the self-containedness of this paper, we reproduce the proof of this inequality in Proposition 1
deferred to the Appendix.
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Theorem 2. Assume the function f : Rp → R satisfies Assumption 1. Choose γ and h so that
γ ⩾ 5M and γh ⩽ 0.1κ−1/6, where κ = M/m. Assume that ϑ0 is independent of v0 and that
v0 ∼ Np(0, γIp). Then, for any n ⩾ 1, the distribution νRKLMC

n of ϑRKLMC
n satisfies

W2(ν
RKLMC
n , π) ⩽ 1.6ϱnW2(ν0, π)+ 0.1

√
ϱnE[f(ϑ0)− f(θ∗)]/m

+0.2(γh)3
√
κp/m+ 10(γh)3/2

√
p/m ,

where ϱ = exp(−mh), and θ∗ = argminθ∈Rp f(θ).

This result has several strengths and limitations, which are discussed below, after the corollary
providing the number of required iterations to attain a predetermined level of accuracy.
Corollary 2. Let ε ∈ (0, 1) be a small constant. If γ = 5M , ϑ0 = θ∗ and we choose h > 0 and
n ∈ N so that

γh =
ε2/3

5 + 0.6(ε2κ)1/6
, and n ⩾ κε−2/3

(
25 + 3(ε2κ)1/6

)
log(20/ε) ,

then we have W2(ν
RKLMC
n , π) ⩽ ε

√
p/m.

The corollary presented above gives the best-known convergence rate for the number of gradient
evaluations required to achieve a prescribed error level in the case of a gradient Lipschitz potential,
without any additional assumptions on its structure or smoothness. This rate, κε−2/3(1 + (ε2κ)1/6),
was first discovered by Shen & Lee (2019) (see also (He et al., 2020)). By employing our proposed
proof technique described in Section 2, the result in Theorem 2 gets rid of the factor nmh from
the discretization error, which was present in the previous upper bounds of the sampling error.
Furthermore, our bound contains only small and explicit constants. Finally, our result does not require
the RKLMC algorithm to be initialized at the minimizer of the potential, which is important for
extending the method to non-convex potentials.

On the downside, the condition γ ⩾ 5M is stronger than the corresponding conditions used in prior
work on the KLMC (without randomization). Indeed, these prior results generally require γ ⩾ 2M .
Having a proof of Theorem 2 that reduces the factor 5 in γ ⩾ 5M would lead to significant savings
in running time.

4 IMPROVED ERROR BOUND FOR THE KINETIC LANGEVIN WITH EULER
DISCRETIZATION

The proof techniques presented in the previous section can be used to derive an upper bound on the
error of the kinetic Langevin Monte Carlo (KLMC) algorithm. KLMC is a discretized version of
KLD equation 16, where the term ∇f(Lt) is replaced by ∇f(Lkh) on each interval [kh, (k + 1)h).
The resulting error bound, given in the following theorem, exhibits a better dependence on κ than
previously established bounds.
Theorem 3. Let f : Rp → R satisfy mIp ≼ ∇2f(θ) ≼MIp for every θ ∈ Rp. Choose γ and h so
that γ ⩾ 5M and

√
κ γh ⩽ 0.1, where κ = M/m. Assume that ϑ0 is independent of v0 and that

v0 ∼ Np(0, γIp). Then, for any n ⩾ 1, the distribution ν KLMC
n of ϑKLMC

n satisfies

W2(ν
KLMC
n , π) ⩽ 2ϱnW2(ν0, π) + 0.05

√
ϱnE[f(ϑ0)− f(θ∗)]/m+ 0.9γh

√
κp/m ,

where ϱ = exp(−mh), and θ∗ = argminθ∈Rp f(θ).

Bounds on the error of KLMC under convexity assumption, or other related conditions, can be
found in recent papers (Cheng et al., 2018b; Dalalyan & Riou-Durand, 2020; Monmarché, 2021;
Monmarché, 2023). Our result has the advantage of providing an upper bound with the best known
dependence on the condition number κ and having relatively small numerical constants, as shown in
the next corollary.
Corollary 3. Let ε ∈ (0, 0.1). If γ = 5M , ϑ0 = θ∗ and we choose h > 0 and n ∈ N so that

γh = εκ−1/2, and n ⩾ 5κ3/2ε−1 log(20/ε)

then we have W2(ν
KLMC
n , π) ⩽ ε

√
p/m.
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It is worth noting that our error bounds, along with the other bounds mentioned previously under
strong convexity, rely on the synchronous coupling between the KLMC and the KLD. However, in
the case of the vanilla Langevin, it has been shown in Durmus et al. (2019) that the dependence of
the error bound on κ can be improved by considering other couplings (in their case, the coupling is
hidden in the analytical arguments). We conjecture that the dependence on κ in the kinetic Langevin
Monte Carlo algorithm can also be improved through non-synchronous coupling. Specifically, we
conjecture that the number of iterations required to achieve a W2-error bounded by ε

√
p/m should

scale as κ/ε rather than κ3/2/ε, as obtained in previous work and in Theorem 3.

5 NUMERICAL EXPERIMENTS

In this section, we compare the performance of LMC, KLMC, RLMC, and RKLMC algorithms.
We apply the four algorithms to the posterior density of penalized logistic regression, defined by
π(ϑ) ∝ exp(−f(ϑ)), with the potential function

f(ϑ) =
λ

2
∥ϑ∥2 + 1

ndata

ndata∑
i=1

log(1 + exp(−yix⊤
i ϑ)) ,

where λ > 0 denotes the tuning parameter. The data {xi, yi}mi=1, composed of binary labels yi ∈
{−1, 1} and features xi ∈ Rp generated from xi,j

iid∼ N (0, 1),N (0, 5), and N (0, 10), corresponding
to the plots from left to right, respectively. In our experiments, we have chosen λ = 1/100, p = 3
and ndata = 100.

Figure 1 shows the W2-distance measured along the first dimension between the empirical
distributions of the samples from the four algorithms and the target distribution4, with different
choices of h. These numerical results confirm our theoretical results. Indeed, we see that the
randomized midpoint versions of LMC and KLMC perform better than their vanilla counterparts
when the condition number is not too large (the leftmost plot). This order changes when κ becomes
large, as we see in the rightmost plot, where KLMC outperforms the other algorithms.

Figure 1: Error of {L,RL,KL,RKL}MC with different choice of step size.

6 DISCUSSION OF ASSUMPTIONS AND LIMITATIONS

The results presented in this paper provide easily computable guarantees for performing sampling
with assured accuracy. These guarantees are conservative, implying that the actual sampling error
may be smaller than ε even if the upper bounds stated in our theorems are larger than ε. However,
these bounds represent the most reliable technique available in the existing literature. The importance
of having such guarantees is further emphasized by the lack of reliable practical measures to assess
the quality of sampling methods. To better understand the computational complexity implied by our
bounds for various Monte Carlo algorithms, we present in Table 1 the number of gradient evaluations
required to achieve the accuracy of ε

√
p/m for different combinations of (ε, κ).

Strong convexity The assumption of strong convexity is often seen as too restrictive. In our theorems,
strong convexity is used for three purposes: (a) to ensure the contraction of the continuous-time

4Here, we execute the LMC algorithm with a small step size over an extended duration to approximate the
true distribution.
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Table 1: The number of iterations that are sufficient for the algorithms {L,RL,KL,RKL}MC to achieve an error
in W2 distance bounded by ε

√
p/m, provided that they are initialized at the minimum of the potential f .

(ε, κ) (0.11, 101) (0.11, 103) (0.11, 105) (0.11, 107) (0.11, 109) (0.11, 1011)

LMC 1.2 × 104 1.2 × 106 1.2 × 108 1.2 × 1010 1.2 × 1012 1.2 × 1014

RLMC 3.6 × 103 1.1 × 106 4.5 × 108 2.0 × 1011 9.3 × 1013 4.3 × 1016

KLMC 8.4 × 103 8.4 × 106 8.4 × 109 8.4 × 1012 8.4 × 1015 8.4 × 1018

RKLMC 1.0 × 104 1.1 × 106 1.1 × 108 1.3 × 1010 2.2 × 1012 4.2 × 1014

(ε, κ) (0.13, 101) (0.13, 103) (0.13, 105) (0.13, 107) (0.13, 109) (0.13, 1011)

LMC 2.2 × 108 2.2 × 1010 2.2 × 1012 2.2 × 1014 2.2 × 1016 2.2 × 1018

RLMC 3.8 × 105 6.8 × 107 2.0 × 1010 8.4 × 1012 3.8 × 1015 1.7 × 1018

KLMC 1.6 × 106 1.6 × 109 1.6 × 1012 1.6 × 1015 1.6 × 1018 1.6 × 1021

RKLMC 4.5 × 105 4.5 × 107 4.5 × 10 9 4.5 × 1011 4.7 × 1013 5.7 × 1015

(ε, κ) (0.15, 101) (0.15, 103) (0.15, 105) (0.15, 107) (0.15, 109) (0.15, 1011)

LMC 3.2 × 1012 3.2 × 1014 3.2 × 1016 3.2 × 1018 3.2 × 1020 3.2 × 1022

RLMC 4.6 × 107 5.5 × 109 9.9 × 1011 3.0 × 1014 1.2 × 1017 5.5 × 1019

KLMC 2.3 × 108 2.3 × 1011 2.3 × 1014 2.3 × 1017 2.3 × 1020 2.3 × 1023

RKLMC 1.5 × 107 1.5 × 109 1.5 × 1011 1.5 × 1013 1.5 × 1015 1.5 × 1017

Langevin dynamics, (b) to relate the potential’s values to its gradient through the Polyak-Lojasiewicz
condition ∥∇f(θ)∥2 ⩾ 2m(f(θ) − f(θ∗)) (Polyak, 1963; Łojasiewicz, 1963), and (c) to provide
the following simple upper bound on the 2-Wasserstein distance W2(δθ∗ , π) ⩽

√
p/m (Durmus &

Moulines, 2019, Prop. 1). The last two inequalities can be satisfied for many non-convex functions,
but the same is not true for the contraction of the Langevin dynamics.

Alternatively, we can assume that the function is only strongly convex outside a ball of radius R > 0,
whereas within the ball it is smooth but otherwise arbitrary. This approach requires an additional
factor of order eMR2

in the number of iterations necessary to achieve a specified error level (Cheng
et al., 2018a; Ma et al., 2019). We can also assume that the Markov semi-group has a spectral gap and
use this gap in the risk bounds. However, this approach goes against the spirit of our paper, which
aims to provide guarantees that are easy to interpret and verify.

Another important point to note is that the results obtained under the assumption of strong convexity
can be used as ready-made results in other frameworks as well. For instance, this is applicable to
weakly convex potentials or potentials supported on a compact set (Dalalyan et al., 2022; Dwivedi
et al., 2018; Brosse et al., 2017).

Smoothness Smoothness of f is a critical assumption for the results obtained in this paper. However,
in statistical applications, this assumption may not hold, such as when using a Laplace prior. In such
cases, various approaches have been proposed, mainly involving gradient approximation techniques,
as explored in the literature (Durmus et al., 2018; Chatterji et al., 2020). Our results open the door for
similar extensions of the randomized midpoint method for such scenarios.

It should also be stressed that if the potential is more than twice differentiable with a bounded tensor
of higher-order derivatives, then it is possible to design Monte Carlo algorithms that perform better
than the LMC and the KLMC (Dalalyan & Karagulyan, 2019; Dalalyan & Riou-Durand, 2020; Ma
et al., 2021). The same is true if the function f has some specific structure (Mou et al., 2021).

Functional inequalities Functional inequalities such as the Poincaré and the log-Sobolev inequalities
provide a convenient framework for analyzing sampling methods derived from continuous-time
Markov processes. This line of research was developed in a series of papers (Chewi et al., 2020;
Vempala & Wibisono, 2019; Chewi et al., 2022). Extending the techniques of this paper from strong
log-concavity to the framework of distributions satisfying one of the aforementioned functional
inequalities is a non-trivial task.

Other distances The Wasserstein-2 distance, utilized in this paper, serves as a natural metric for
measuring the error in sampling due to its connection with optimal transport. However, it is worth
noting that recent literature on gradient-based sampling has explored other metrics such as total
variation distance, KL divergence, and χ2 divergence (Ma et al., 2021; Vempala & Wibisono, 2019;
Durmus et al., 2019; Chewi et al., 2020; Balasubramanian et al., 2022; Zhang et al., 2023). An
interesting direction for future research involves establishing error guarantees for the randomized
midpoint method with respect to these alternative distances.
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A THE PROOF OF THE UPPER BOUND ON THE ERROR OF RLMC

This section is devoted to the proof of the upper bound on the error of sampling, measured in
W2-distance, of the randomized mid-point method for the vanilla Langevin Langevin diffusion. Since
no other sampling method is considered in this section, without any risk of confusion, we will use the
notation ϑk instead of ϑRLMC

k to refer to the k-th iterate of the RLMC. We will also use the shorthand
notation

fk = f(ϑk), ∇fk := ∇f(ϑk), and ∇fk+U := ∇f(ϑk+U ).

A.1 PROOF OF THEOREM 1

Let ϑ0 ∼ ν0 and L0 ∼ π be two random vectors in Rp defined on the same probability space. At
this stage, the joint distribution of these vectors is arbitrary; we will take an infimum over all possible
joint distributions with given marginals at the end of the proof. Note right away that the condition
Mh+

√
κ(Mh)3/2 ⩽ 1/4 implies that Mh+ (Mh)3/2 ⩽ 1/4, which also yields Mh ⩽ 0.18.

Assume that on the same probability space, we can define a Brownian motion W , independent of
(ϑ0,L0), and an infinite sequence of iid random variables, uniformly distributed in [0, 1], U0, U1, . . .,
independent of (ϑ0,L0,W ). We define the Langevin diffusion

Lt = L0 −
∫ t

0

∇f(Ls)ds+
√
2Wt. (17)

We also set
ϑk+U = ϑk − hUk∇fk +

√
2
(
W(k+Uk)h −Wkh

)
ϑk+1 = ϑk − h∇fk+U +

√
2 (W(k+1)h −Wkh).

One can check that this sequence {ϑk} has exactly the same distribution as the sequence defined in
equation 6 and equation 7. Therefore,

W2
2(νk+1, π) ⩽ E[∥ϑk+1 −L(k+1)h∥22] := ∥ϑk+1 −L(k+1)h∥2L2

:= x2k+1.

We will also consider the Langevin process on the time interval [0, h] given by

L′
t = L′

0 −
∫ t

0

∇f(L′
s) ds+

√
2 (Wkh+t −Wkh), L′

0 = ϑk.

Note that the Brownian motion is the same as in equation 17.

Let us introduce one additional notation, the average of ϑk+1 with respect to Uk,
ϑ̄k+1 = E[ϑk+1|ϑk,W ,L0].

Since L(k+1)h is independent of Uk, it is clear that

x2k+1 = ∥ϑk+1 − ϑ̄k+1∥2L2
+ ∥ϑ̄k+1 −L(k+1)h∥2L2

.

Furthermore, the triangle inequality yields
∥ϑ̄k+1 −L(k+1)h∥L2

⩽ ∥ϑ̄k+1 −L′
h∥L2

+ ∥L′
h −L(k+1)h∥L2

.

From the exponential ergodicity of the Langevin diffusion (Bhattacharya, 1978), we get

∥L′
h −L(k+1)h∥L2

⩽ e−mh∥L′
0 −Lkh∥L2

= e−mh∥ϑk −Lkh∥L2
= e−mhxk.

Therefore, we get

x2k+1 ⩽ ∥ϑk+1 − ϑ̄k+1∥2L2
+

(
∥ϑ̄k+1 −L′

h∥L2 + e−2mhxk
)2

=
(
e−mhxk + ∥ϑ̄k+1 −L′

h∥L2

)2
+ ∥ϑk+1 − ϑ̄k+1∥2L2

. (18)
The last term of the right-hand side can be bounded as follows

∥ϑk+1 − ϑ̄k+1∥L2
= h∥∇fk+U − EU [∇fk+U ]∥L2

⩽ h∥∇fk+U −∇f(ϑk)∥L2 .

Using the definition of ϑk+U , we get

∥ϑk+1 − ϑ̄k+1∥2L2
⩽ (Mh)2

(
(1/3)h2∥∇fk∥2L2

+ hp
)
. (19)

We will also need the following lemma, the proof of which is postponed.
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Lemma 1. If Mh ⩽ 0.18, then ∥ϑ̄k+1 −L′
h∥L2

⩽ (Mh)2
{
0.7h∥∇fk∥L2

+ 1.2
√
hp

}
.

One can check by induction that if for some A ∈ [0, 1] and for two positive sequences {Bk} and
{Ck} the inequality x2k+1 ⩽

{
(1−A)xk + Ck

}2
+B2

k holds for every integer k ⩾ 0, then5

xn ⩽ (1−A)nx0 +

n∑
k=0

(1−A)n−kCk +

{ n∑
k=0

(1−A)2(n−k)B2
k

}1/2

(20)

In view of equation 20, equation 18, equation 19 and Lemma 1, for ρ = e−mh, we get

xn ⩽ ρnx0 + (Mh)2
n∑

k=0

ρn−k
(
0.7h∥∇fk∥L2

+ 1.2
√
hp

)
+Mh

{ n∑
k=0

ρ2(n−k)
(
(1/3)h2∥∇fk∥2L2

+ hp
)}1/2

⩽ ρnx0 + 0.7(Mh)2h

n∑
k=0

ρn−k∥∇fk∥L2
+ 1.32

M2h
√
hp

m

+
Mh2√

3

{ n∑
k=0

ρ2(n−k)∥∇f(ϑk)∥2L2

}1/2

+ 0.92Mh
√
p/m. (21)

We need a last lemma for finding a suitable upper bound on the right-hand side of the last display.

Lemma 2. If Mh ⩽ 0.18 and k ⩾ 1, then the following inequalities hold

h2
n∑

k=0

ρn−k∥∇f(ϑk)∥2L2
⩽ 1.7Mhρn∥ϑ0∥2L2

+ 4.4Mh(p/m) ⩽ 0.31ρn∥ϑ0∥2L2
+ 0.8(p/m).

The claim of this lemma and together with equation 21 entail that

xn ⩽ ρnx0 + 0.7(Mh)2h

n∑
k=0

ρn−k∥∇fk∥L2 +
Mh2√

3

{ n∑
k=0

ρ2(n−k)∥∇f(ϑk)∥2L2

}1/2

+ (1.32
√
κMh+ 0.92)Mh

√
p/m

⩽ ρnx0 +
(
0.74

√
κMh+ 0.58

)
Mh

{
h2

n∑
k=0

ρn−k∥∇f(ϑk)∥2L2

}1/2

+
(
1.32

√
κMh+ 0.92

)
Mh

√
p/m

⩽ ρnx0 + (0.42
√
κMh+ 0.33)Mhρn/2∥ϑ0∥L2 +

(
1.98

√
κMh+ 1.44

)
Mh

√
p/m.

Assuming that h is such that (
√
κMh+1)Mh ⩽ 1/4 and noting that ∥ϑ0∥L2

⩽ W2(ν0, π)+
√
p/m,

we arrive at the desired inequality.

A.2 PROOF OF TECHNICAL LEMMAS

In this section, we present the proofs of two technical lemmas that have been used in the proof of the
main theorem. The first lemma provides an upper bound on the error of the averaged iterate ϑ̄k+1

and the continuous time diffusion L′ that starts from ϑk and runs until the time h. This upper bound
involves the norm of the gradient of the potential f evaluated at ϑk. The second lemma aims at
bounding the discounted sums of the squared norms of these gradients.

5This is an extension of (Dalalyan & Karagulyan, 2019, Lemma 7). It essentially relies on the elementary√
(a+ b)2 + c2 ⩽ a+

√
b2 + c2, which should be used to prove the induction step.

15



Published as a conference paper at ICLR 2024

A.2.1 PROOF OF LEMMA 1 (ONE-STEP MEAN DISCRETISATION ERROR)

We have

∥ϑ̄k+1 −L′
h∥L2

=

∥∥∥∥ϑk − hEU [∇fk+U ]−L′
0 +

∫ h

0

∇f(L′
s) ds

∥∥∥∥
L2

=
∥∥∥hEU [∇fk+U −∇f(L′

Uh)]
∥∥∥
L2

⩽Mh
∥∥ϑk+U −L′

Uh

∥∥
L2

=Mh
∥∥ϑk − Ukh∇fk −L′

0 +

∫ Ukh

0

∇f(L′
s)ds

∥∥
L2

=Mh

∥∥∥∥∥
∫ Ukh

0

(∇f(L′
s)−∇fk) ds

∥∥∥∥∥
L2

⩽Mh

∫ h

0

∥∇f(L′
s)−∇fk∥L2

ds

=Mh

∫ h

0

∥∥∇f(L′
s)−∇f(L′

0)
∥∥
L2

ds. (22)

Let us define φ(t) = ∥∇f(L′
t)−∇f(L′

0)∥L2
. Using the Lipschitz continuity of ∇f and the definition

of L′, we arrive at

φ(t)2 ⩽M2

{∥∥∥∥∫ t

0

∇f(L′
s) ds

∥∥∥∥2
L2

+ 2tp

}
⩽M2

{(
t∥∇fk∥L2

+

∫ t

0

∥∥∇f(L′
s)−∇f(L′

0)
∥∥
L2

ds

)2

+ 2tp

}
⩽M2

{∫ t

0

∥∥∇f(L′
s)−∇f(L′

0)
∥∥
L2

ds+
√
t2∥∇fk∥2L2

+ 2tp

}2

or, equivalently,

φ(t) ⩽M

∫ t

0

φ(s) ds+M
√
t2∥∇fk∥2L2

+ 2tp.

Using the Grönwall inequality, we get

φ(t) ⩽MeMt
√
t2∥∇fk∥2L2

+ 2tp.

Combining this inequality with the bound obtained in equation 22, and using the inequality eMh ⩽
1.2, we arrive at

∥ϑ̄k+1 −L′
h∥L2

⩽ 1.2M2h

∫ h

0

√
s2∥∇fk∥2L2

+ 2spds

⩽ 1.2M2h
√
h

{∫ h

0

(
s2∥∇fk∥2L2

+ 2sp
)
ds

}1/2

⩽ 1.2M2h
√
h
{
(h3/3)∥∇fk∥2L2

+ h2p
}1/2

.

This completes the proof.

A.2.2 PROOF OF LEMMA 2 (DISCOUNTED SUM OF SQUARED GRADIENTS)

We have

fk+1 ⩽ fk +∇f⊤k (ϑk+1 − ϑk) +
M

2
∥ϑk+1 − ϑk∥22

⩽ fk − h∇f⊤k ∇fk+U +
√
2∇f⊤k ξh +

M

2
∥h∇fk+U −

√
2 ξk∥22

⩽ fk − h∥∇fk∥22 +Mh∥∇fk∥2∥ϑk+U − ϑk∥2 +
√
2∇f⊤k ξh +

M

2
∥h∇fk+U −

√
2 ξk∥22.

(23)
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One checks that

∥ϑk+U − ϑk∥2L2
= h2∥U∇fk∥2L2

+ 2hpE[U ] = (h2/3)∥∇fk∥2L2
+ hp ⩽ 0.011

∥∇fk∥2L2

M2
+ hp

and, therefore,

M∥∇fk∥2∥ϑk+U − ϑk∥2 ⩽
(
0.011∥∇fk∥4L2

+M2hp∥∇fk∥22
)1/2

⩽ 0.105∥∇fk∥2L2
+ 4.55M2hp

⩽ 0.105∥∇fk∥2L2
+ 0.82Mp.

Furthermore,

∥h∇fk+U −
√
2 ξk∥L2 ⩽ ∥h∇fk −

√
2 ξk∥L2 + h∥∇fk+U −∇fk∥L2

⩽
√
h2∥∇fk∥2L2

+ hp+Mh∥ϑk+U − ϑk∥L2

⩽
√
h2∥∇fk∥2L2

+ hp+ h
√

0.011∥∇fk∥2L2
+M2hp

⩽
√
h2∥∇fk∥2L2

+ hp+
√

0.011h2∥∇fk∥2L2
+ 0.182hp

implying that
M

2
∥h∇fk+U −

√
2 ξk∥2L2

⩽
M

2

(
1.37h2∥∇fk∥2L2

+ 1.4hp
)

⩽ 0.124h2∥∇fk∥2L2
+ 0.7Mhp.

Combining these inequalities with equation 23, we get
E[fk+1] ⩽ E[fk]− 0.771h∥∇fk∥2L2

+ 1.52Mhp. (24)

Set Sn(f) =
∑n

k=0 ρ
n−kfk and Sn(∇f2) =

∑n
k=0 ρ

n−k∥∇fk∥2L2
. Using Lemma 3, we get

E[fn+1]− ρnE[f0] + ρSn(f) ⩽ Sn(f)− 0.771hSn(∇f2) +
1.52Mhp

1− ρ

Since mh ⩾ 1− ρ ⩾ 0.915mh, we get
0.771hSn(∇f2) ⩽ ρnE[f0] + (1− ρ)Sn(f) + 1.67κp

⩽ ρnE[f0] +mhSn(f) + 1.67κp

⩽ ρnE[f0] + 0.5hSn(∇f2) + 1.67κp

where the last line follows from the Polyak-Lojasiewicz inequality. Rearranging the terms, we get
hSn(∇f2) ⩽ 3.7ρnE[f0] + 6.2κp (25)

Note that equation 25 is obtained under the Polyak-Lojasiewicz condition, without explicitly using
the strong convexity of f . However, using the latter property, we can obtain a similar inequality with
slightly better constants.

Indeed, equation 24 yields
hE[∥∇fk∥22] ⩽ 1.3

(
E[fk]− E[fk+1]

)
+ 1.98Mhp. (26)

In what follows, without loss of generality, we assume that f(θ∗) = minθ f(θ) = 0. In view of
equation 26, we have

h

k∑
j=0

ρk−j∥∇f(ϑj)∥2L2
⩽ 1.3

k∑
j=0

ρk−j(E[f(ϑj)− f(ϑj+1)]) +
1.98Mhp

1− e−mh

⩽ 1.3
(
ρkE[f(ϑ0)]− E[fk+1]

)
+ 1.3

k∑
j=1

ρk−j(1− ρ)E[f(ϑj)] + 2.1κp

⩽ 1.3ρk+1E[f(ϑ0)] + 1.3(1− ρ)

k∑
j=0

ρk−jE[f(ϑj)] + 2.1κp

⩽
1.3M

2
ρk+1∥ϑ0∥2L2

+
1.3

2
M(1− ρ)

k∑
j=0

ρk−j∥ϑj∥2L2
+ 2.1κp.
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We have, in addition

∥ϑk+1∥2L2
= ∥ϑk − h∇fk∥2L2

+ 2hp ⩽ (1−mh)2∥ϑk∥2L2
+ 2hp.

Therefore,

∥ϑk∥2L2
⩽ (1−mh)2k∥ϑ0∥2L2

+
2hp

2mh− (mh)2
⩽ (1−mh)2k∥ϑ0∥2L2

+
1.1p

m
.

Using this inequality in conjunction with the fact that 1−mh ⩽ ρ, we arrive at

h

k∑
j=0

ρk−j∥∇f(ϑj)∥2L2
⩽

1.3M

2
ρk+1∥ϑ0∥2L2

+
1.3

2
Mρ2k∥ϑ0∥2L2

+ 2.9κp.

This completes the proof of the lemma.
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B THE PROOF OF THE UPPER BOUND ON THE ERROR OF KLMC

The goal of this section is to present the proof of the bound on the error of sampling of the “standard”
discretization of the kinetic Langevin diffusion. With a slight abuse of language, we will call it
Euler-Maruyama discretized kinetic Langevin diffusion, or kinetic Langevin Monte Carlo (KLMC).
To avoid complicated notation, and since there is no risk of confusion, throughout this section ϑk and
vk will refer to ϑKLMC

k and vKLMC
k , respectively. We will also use the following shorthand notation:

fn = f(ϑn), gn = ∇fn = ∇f(ϑn), η = γh, Mγ =M/γ.

The advantage of dealing with η instead of h is that the former is scale-free.

Note that the iterates of KLMC satisfy

vn+1 = (1− αη)vn − αη gn +
√
2γη σξn (27)

ϑn+1 = ϑn + γ−1η
(
αvn − βηgn +

√
2γη σ̃ξ̄n

)
, (28)

where

α =
1− e−η

η
∈ (0, 1), β =

e−η − 1 + η

η2
∈ (0, 1/2),

σ2 =
1− e−2η

2η
∈ (0, 1), σ̃2 =

2(1− 2η + 2η2 − e−2η)

(2η)3
∈ (0, 1/3)

and ξn, ξ̄n are two Np(0, Ip)-distributed random vectors independent of (ϑn,vn).

Since we assume throughout this section that 2Mh ⩽ 0.1, γ ⩾ 2M and κ ⩾ 10, we have

α =
1− exp(−η)

η
≥ 0.95, and mh =

Mh

κ
⩽
Mh

10
⩽

1

200
.

The latter, in particular, implies the following bound for ϱ:

1−mh ⩽ ϱ = e−mh ⩽ 1− 0.99mh = 1− 0.99mη/γ. (29)

For any sequence ω = (ωn)n∈N of real numbers, we denote by Sn(ω) the ρ-discounted sum∑n
k=0 ρ

n−kωk. Below we present a simple lemma for the function Sn(·) that we will use repeatedly
in this proof.

Lemma 3 (Summation by parts). Suppose ω = (ωn)n∈N is a sequence of real numbers and define
S+1
n (ω) :=

∑n
k=0 ϱ

n−kωk+1. Then, the following identity is true

S+1
n (ω) = ωn+1 − ϱn+1ω0 + ϱSn(ω).

Proof. The proof is based on simple algebra:

S+1
n (ω) = ωn+1 +

n∑
j=1

ϱn−j+1ωj = ωn+1 + ϱ (Sn(ω)− ϱnω0) .

B.1 EXPONENTIAL MIXING OF CONTINUOUS-TIME KINETIC LANGEVIN DIFFUSION

Consider the kinetic Langevin diffusions

dLt = Vt dt dVt = −γVt dt− γ∇f(Lt)dt+
√
2γ dWt (30)

Proposition 1. Let V0,L0 and L′
0 be random vectors in Rp. Let (Vt,Lt) and (V ′

t ,L
′
t) be kinetic

Langevin diffusions defined in equation 30 driven by the same Brownian motion and starting from
(V0,L0) and (V ′

0 ,L
′
0) respectively. It holds for any t ⩾ 0 that∥∥∥∥C [

Vt − V ′
t

Lt −L′
t

] ∥∥∥∥ ⩽ e−{m∧(γ−M)}t
∥∥∥∥C [

V0 − V ′
0

L0 −L′
0

] ∥∥∥∥, with C =

[
Ip 0p

Ip γIp

]
.
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Proof of Proposition 1. Set Yt := Vt − V ′
t + γ(Lt −L′

t), Zt := Vt − V ′
t , that is[

Zt

Yt

]
= C

[
Vt − V ′

t
Lt −L′

t

]
.

We note that by the Taylor expansion, we have

∇f(Lt)−∇f(L′
t) = Ht(Lt −L′

t) ,

where Ht :=
∫ 1

0
∇2f(Lt − x(Lt −L′

t)) dx. By the definition of (Vt,Lt) and (V ′
t ,L

′
t), we find

d

dt
(Vt − V ′

t + γ(Lt −L′
t)) = −γHt(Lt −L′

t)

= −Ht(Yt −Zt) .

Similarly, we obtain

d

dt
(Vt − V ′

t ) = −γ(Vt − V ′
t )− γHt(Lt −L′

t)

= −γZt −Ht(Yt −Zt) .

This implies

d

dt

[
∥Yt∥2 + ∥Zt∥2

]
= 2Y ⊤

t (−HtYt +HtZt) + 2Z⊤
t (−γZt −HtYt +HtZt)

⩽ 2
(
−m ∥Yt∥2 − γ

∥∥Z2
t

∥∥+M ∥Zt∥2
)

⩽ −2(m ∧ (γ −M))

∥∥∥∥ [Zt

Yt

] ∥∥∥∥2 .
Invoking Gronwall’s inequality, we get∥∥∥∥ [Zt

Yt

] ∥∥∥∥ ⩽ exp
(
− {m ∧ (γ −M)}t

)∥∥∥∥ [Z0

Y0

] ∥∥∥∥
as desired.

B.2 PROOF OF THEOREM 3

Let ϑn, vn be the iterates of the KLMC algorithm. Let (Lt,Vt) be the kinetic Langevin diffusion,
coupled with (ϑn,vn) through the same Brownian motion (Wt; t ⩾ 0) and starting from a random
point (L0,V0) ∝ exp(−f(y) + 1

2γ ∥v∥
2
2) such that V0 = v0. This means that

vn+1 = vne
−η − γ

∫ h

0

e−γ(h−s) ds∇f(ϑn) +
√
2 γ

∫ h

0

e−γ(h−s) dWs

ϑn+1 = ϑn +

∫ h

0

(
vne

−γu − γ

∫ u

0

e−γ(u−s) ds∇f(ϑn) +
√
2 γ

∫ u

0

e−γ(u−s) dWs

)
du .

We also consider the kinetic Langevin diffusion, (L′,V ′), defined on [0, h] with the starting point
(ϑn,vn) and driven by the Brownian motion (Wnh+t −Wnh; t ∈ [0, h]). It satisfies

V ′
t = vne

−γt − γ

∫ t

0

e−γ(t−s)∇f(L′
s) ds+

√
2 γ

∫ t

0

e−γ(t−s) dWs

L′
t = ϑn +

∫ t

0

V ′
s ds .

Our goal will be to bound the term xn defined by

xn =

∥∥∥∥C [
vn − Vnh

ϑn −Lnh

] ∥∥∥∥
L2

with C =

[
Ip 0p

Ip γIp

]
. (31)
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The triangle inequality yields

xn+1 ⩽

∥∥∥∥C [
vn − V ′

h
ϑn −L′

h

] ∥∥∥∥
L2

+

∥∥∥∥C [
V ′
h − Vnh

L′
h −Lnh

] ∥∥∥∥
L2

⩽

∥∥∥∥C [
vn − V ′

h
ϑn −L′

h

] ∥∥∥∥
L2

+ ϱxn

⩽ ϱxn +
√
2 ∥vn+1 − V ′

h∥L2
+ γ∥ϑn+1 −L′

h∥L2
, (32)

where the second inequality follows from Proposition 1 (see also the proof of (Dalalyan &
Riou-Durand, 2020, Prop. 1)), while the third inequality is a consequence of the elementary inequality√
a2 + (a+ b)2 ⩽

√
2 a+ b for a, b ⩾ 0.

The next lemma gives an upper bound on the terms appearing in the right-hand side of equation 32.
Lemma 4. If ∇f is M -Lipschitz continuous, then for every step-size η = γh ⩾ 0 and every γ ⩾ 0,
the following holds

∥vn+1 − V ′
h∥L2

⩽ 1
6

{
2
√
γpη + 3∥vn∥L2

+ η∥gn∥L2

}
Mγη

2eMγη
2/2

γ∥ϑn+1 −L′
h∥L2

⩽ 1
6

(
0.6

√
γpη + ∥vn∥L2

+ 0.25η∥gn∥L2
+

)
Mγη

3eMγη
2/2,

where Mγ =M/γ.

For η ⩽ 0.2 and γ ⩾ 2M , Lemma 4 implies

∥vn+1 − V ′
h∥L2 ⩽Mγη

2(0.15
√
γp+ 0.51∥vn∥L2 + 0.17η∥gn∥L2)

γ∥ϑn+1 −L′
h∥L2

⩽Mγη
3(0.046

√
γp+ 0.17∥vn∥L2

+ 0.043η∥gn∥L2
).

Therefore,
√
2 ∥vn+1 − V ′

h∥L2 + γ∥ϑn+1 −L′
h∥L2

⩽Mγη
2
(
0.23

√
γp+ 0.74∥vn∥L2 + 0.25η∥gn∥L2).

(33)

Combining equation 32 and equation 33, we get

xn+1 ⩽ ϱxn +Mγη
2
(
0.23

√
γp+ 0.74∥vn∥L2

+ 0.25η∥gn∥L2
).

From the last display, we infer that

xn ⩽ ϱnx0 +Mγη
2
n−1∑
k=0

ϱn−1−k
(
0.23

√
γp+ 0.74∥vk∥L2

+ 0.25η∥gk∥L2
).

This implies that

xn ⩽ ϱnx0 +
0.23Mγη

2√γp
1− ϱ

+ 0.74Mγη
2

n∑
k=1

ϱn−k
(
∥vk−1∥L2

+ 0.33η∥gk−1∥L2

)
⩽ ϱnx0 +

0.23Mγη
2√γp

1− ϱ
+

0.74Mγη
2

√
1− ϱ

{ n∑
k=1

ϱn−k
(
∥vk−1∥2L2

+ 0.33η2∥gk−1∥2L2

)}1/2

.

In view of equation 29, ϱ ⩽ 1− 0.99mη/γ and

xn ⩽ ϱnx0 + 0.233κη
√
γp+ 0.74Mγη

{
γη

mϱ

n∑
k=0

ϱn−k
(
∥vk∥2L2

+ 0.33η2∥gk∥2L2

)}1/2

.

Proposition 2. Assume that v0 ∼ N (0, γIp) is independent of ϑ0. If γ ⩾ 5M , κ ⩾ 10 and η ⩽ 1/10
then

η

n∑
k=0

ϱn−k∥gk∥2L2
⩽ 4.42ϱnγ E[f0] +

1.11γ2p

m
+ 4.98

(
xn + 0.96

√
γp

)2
η

n∑
k=0

ϱn−k∥vk∥2L2
⩽ 3.93ϱnγE[f0] +

1.87γ2p

m
+ 3.2

(
xn + 0.96

√
γp

)2
.
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We can apply Proposition 2 and ϱ ⩾ 0.998 to infer that

xn ⩽ ϱnx0 + 0.233κη
√
γp+ 0.74Mγη

{
γ

mϱ

(
3.98ϱnγ E[f0] +

1.87γ2p

m
+ 3.25

(
xn + 0.96

√
γp

)2)}1/2

⩽ ϱnx0 + 0.233κη
√
γp+ 0.74Mγη

{
γ

m

(
3.99ϱnγ E[f0] +

1.88γ2p

m
+ 3.26

(
xn + 0.96

√
γp

)2)}1/2

⩽ ϱnx0 ++0.233κη
√
γp+

1.54Mη√
m

√
ϱnE[f0] + 0.62

√
κ ηxn + 0.74Mγη

(1.88γ3p
m2

+
3γ2p

m

)1/2

⩽ ϱnx0 + 0.62
√
κ ηxn +

1.54Mη√
m

√
ϱnE[f0] +

Mη
√
γp

m

(
0.233 + 0.74

√
1.94

)
.

Therefore, under the condition
√
κ η ⩽ 0.1,

xn ⩽ 1.07ϱnx0 +
1.65Mη√

m

√
ϱnE[f0] +

1.35Mη
√
γp

m
.

Finally, one can check that 2x2n ⩾ γ2∥ϑn − ϑ̄n∥2L2
⩾ γ2W2

2(ν
KLMC
n , π) and x0 = γ∥ϑ0 −L0∥L2

=
γW2(ν0, π). This completes the proof of the theorem.

B.3 PROOF OF PROPOSITION 2 (DISCOUNTED SUMS OF SQUARED GRADIENTS AND
VELOCITIES)

To ease the notation, we set zn := E[v⊤
n gn] and define

Sn(z) :=

n∑
k=0

ϱn−kzk, Sn(g
2) :=

n∑
k=0

ϱn−k ∥gk∥2L2
,

Sn(f) :=

n∑
k=0

ϱn−kE[fk], Sn(v
2) :=

n∑
k=0

ϱn−k∥vk∥2L2
.

Throughout the proof, we will need some technical results that will be stated as lemmas and their
proof will be postponed to Appendix B.5.

Lemma 5. If for some M ⩾ 0, the gradient ∇f is M -Lipschitz continuous, then for every step-size
h > 0 and every γ > 0 it holds for the KLMC iterates defined in equation 28 that∣∣zn+1 − (1− αη)zn + αη∥gn∥2L2

∣∣ ⩽ ηMγ

(
∥vn∥2L2

+ 5
8η

2∥gn∥2L2
+ 4

3ηγp− α̃ηzn
)

for some positive number α̃η ⩽ 0.14.

Since Mγ ⩽ 1/5 and η ⩽ 0.1, we have

α− 5
8Mγη

2 ⩾ 1
η (1− e−η)− 1

8η
2 ⩾ 10(1− e−0.1)− 1

80.1
2 ⩾ 0.94.

Therefore, we can rewrite the claim of Lemma 5 with the notation β̃ = ηMγα̃ as follows:

zn+1 ⩽ (1− αη − β̃η)zn + 0.2η∥vn∥2L2
+ 0.67γpη2 − 0.94η∥gn∥2L2

.

Lemma 6. Let β̃ ⩽ 0.014 and η ∈ [0, 0.1]. If z0 = 0 and the sequences {zn} ⊂ R, {vn} ⊂ Rp and
{gn} ⊂ Rp satisfy the inequality

zn+1 ⩽ (e−η − β̃η)zn + 0.2η∥vn∥2L2
+ 0.67γpη2 − 0.94η∥gn∥2L2

(34)

then for every ϱ ∈ [0, 1] such that ϱ ⩾ e−η , it holds that

Sn(g
2) ⩽ 1.09α(Sn(z))− + 0.213Sn(v

2) +
0.73ηγp

1− ϱ
− 1.07zn+1

η
, (35)

where (Sn(z))− = max(0, Sn(z)) is the negative part of Sn(z) and α = (1− e−η)/η.
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In order to get rid of the last term in equation 35, we need a bound on (Sn(z))−. To this end, we use
the smoothness of the function f , in conjunction with equation 28, to infer that

2γE[fn+1 − fn] ⩽ 2γE[g⊤
n (ϑn+1 − ϑn)] +Mγ∥γ(ϑn+1 − ϑn)∥2L2

⩽ 2αη(1− βMγη
2)zn − βη2(2− βMγη

2)∥gn∥2L2
+Mγα

2η2∥vn∥2L2
+ 2

3Mγη
3γp

⩽ 2α0ηzn − 0.96η2∥gn∥2L2
+ 0.0182η∥vn∥2L2

+ 2
15η

3γp

with α0 = α(1− βMγη
2) ⩾ α(1− 0.1× 0.12) ⩾ 0.999α.

Lemma 7. Let α0, γ, η > 0. If the sequences {Fn} ⊂ R, {gn} ⊂ Rp and {vn} ⊂ Rp satisfy
Fn ⩾ 0 and

2(Fn+1 − Fn) ⩽ 2α0ηzn + 0.0182η∥vn∥2L2
+ 2

15η
3γp (36)

then, for every ϱ ∈ (0, 1), it holds that

α0(ηSn(z))− ⩽ ϱnF0 + (1− ϱ)γSn(F ) + 0.0182ηSn(v
2) +

2η3γp

15(1− ϱ)
.

In view of the strong convexity of the potential function and the assumption that f(θ∗) = 0, the
Polyak-Lojasiewicz inequality

fn ⩽ 1
2m ∥gn∥2

holds true. This implies that (1 − ϱ)Sn(f) ⩽ (η/γ)mSn(f) ⩽ 1
2 (η/γ)Sn(g

2). Combining this
inequality with the claim of Lemma 7, applied to Fn = γE[fn], we get

0.999α(Sn(z))− ⩽
ϱnγ

η
E[f0] + 0.5Sn(g

2) + 0.0182Sn(v
2) +

0.14ηγ2p

m
. (37)

Let us now combine equation 35 and equation 37:

Sn(g
2) ⩽

1.1ϱnγ

η
E[f0] + 0.55Sn(g

2) + 0.02Sn(v
2) +

0.16ηγ2p

m

+ 0.213Sn(v
2) +

0.73γ2p

m
+

1.07|zn+1|
η

⩽
1.1ϱnγ

η
E[f0] + 0.55Sn(g

2) + 0.223Sn(v
2) +

0.75γ2p

m
+

1.07|zn+1|
η

.

Subtracting 0.55Sn(g
2) from both sides and dividing by 0.45, we obtain

Sn(g
2) ⩽

2.45ϱnγE[f0]
η

+ 0.5Sn(v
2) +

1.7γ2p

m
+

2.38|zn+1|
η

. (38)

Let us now derive a bound for Sn(v
2). We start with the following property, which is a direct

consequence of the definition of vn+1:

∥vn+1∥2L2
− ∥vn∥2L2

⩽ −αη(2− αη)∥vn∥2L2
− 2αη(1− αη)zn + α2η2∥gn∥2L2

+ 2ηγp.

Using the same technique as before and applying Lemma 3, we deduce the following:

(ϱ− 1)Sn(v
2)− ϱn ∥v0∥2L2

= (ϱ− 1)Sn(v
2)− ϱnγp

⩽ −αη(2− αη)Sn(v
2)− 2αη(1− αη)Sn(z) + α2η2Sn(g

2) +
2ηγp

1− ϱ
.

Therefore, since ϱ ⩾ 1− m
γ η,

(2α− α2η − m
γ )ηSn(v

2) ⩽ −2αη(1− αη)Sn(z) + (αη)2Sn(g
2) +

2.021γ2p

m
.

Since α = (1− e−η)/η with η ⩽ 0.1, from the last display, we infer that

Sn(v
2) ⩽ 1.02α

(
Sn(z)

)
− + 0.51ηSn(g

2) +
1.13γ2p

mη
.
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Combining this inequality with equation 37, implies

Sn(v
2) ⩽

1.03ϱnγ

η
[f0] + 0.562Sn(g

2) + 0.019Sn(v
2) +

0.2ηγ2p

m
+ 0.51ηSn(g

2) +
1.13γ2p

mη

⩽
1.03ϱnγ

η
f0 + 0.62Sn(g

2) + 0.019Sn(v
2) +

1.13γ2p

mη

Therefore, subtracting 0.019Sn(v
2) and dividing by (1− 0.019), we get

Sn(v
2) ⩽

1.1ϱnγ

η
f0 + 0.64Sn(g

2) +
1.16γ2p

mη
(39)

Combining equation 38 and equation 39, we arrive at

Sn(v
2) ⩽

1.1ϱnγ

η
E[f0] +

1.16γ2p

mη
+ 0.64

(2.45ϱnγ
η

E[f0] + 0.5Sn(v
2) +

1.7γ2p

m
+

2.38|zn+1|
η

)
⩽

2.67ϱnγ

η
f0 +

1.27γ2p

mη
+

1.53|zn+1|
η

+ 0.32Sn(v
2).

Therefore, subtracting 0.32Sn(v
2) and dividing by (1− 0.32), we get

Sn(v
2) ⩽

3.93ϱnγ

η
f0 +

1.87γ2p

mη
+

2.25|zn+1|
η

.

Once again, combining with equation 38, we get

Sn(g
2) ⩽

2.45ϱnγ

η
E[f0] + 0.5

(3.93ϱnγ
η

f0 +
1.87γ2p

mη
+

2.25|zn+1|
η

)
+

1.7γ2p

m
+

2.38|zn+1|
η

that leads to

Sn(g
2) ⩽

4.42ϱnγ

η
E[f0] +

1.11γ2p

mη
+

3.51|zn+1|
η

. (40)

The last lemma we need is the one providing an upper bound on |zn+1|.
Lemma 8. For every η ⩽ 0.1 and γ ⩾ 5M , we have

|zn+1| ⩽
(
1.19xn + 1.14

√
γp

)2
,

where xn is given by equation 31.

Using Lemma 8 in conjunction with equation 39 and equation 40, we arrive at the inequalities stated
in Proposition 2.

B.4 PROOF OF LEMMA 4 (ONE-STEP DISCRETIZATION ERROR)

We use the notation

ψ0(t) = e−γt, ψ1(t) =
1− e−γt

γ
, ψ2(t) =

e−γt − 1 + γt

γ

and note that

ψ1(t) ⩽ t, ψ2(t) ⩽ 0.5γt2.

Furthermore,

∥vn+1 − V ′
h∥L2 = γ

∥∥∥∥∫ h

0

e−γ(h−s)
(
∇f(L′

s)−∇f(ϑn)
)
ds

∥∥∥∥
L2

⩽ γ

∫ h

0

e−γ(h−s)
∥∥∇f(L′

s)−∇f(ϑn)
∥∥
L2

ds

⩽Mγ

∫ h

0

∥∥L′
s − ϑn

∥∥
L2

ds, (41)
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where the last implication is due to the M -smoothness of the potential function f . On the one hand,
for every s ∈ [0, h], we have

L′
s − ϑn =

∫ s

0

V ′
u du

= ψ1(s)vn − γ

∫ s

0

∫ u

0

e−γ(u−t)
(
∇f(L′

t)−∇f(ϑn)
)
dtdu− ψ2(s) gn

+
√
2 γ

∫ s

0

∫ u

0

e−γ(u−t) dWt du

= ψ1(s)vn − ψ2(s) gn +
√
2 γ

∫ s

0

ψ1(t) dWt

− γ

∫ s

0

ψ1(s− t)
(
∇f(L′

t)−∇f(ϑn)
)
dt.

Therefore,∥∥L′
s − ϑn

∥∥
L2

⩽ s ∥vn∥L2
+ 0.5γs2 ∥gn∥L2

+
√
2ps/3 γs+Mγ

∫ s

0

(s− t)
∥∥L′

t − ϑn

∥∥
L2

dt.

The last inequality combined with s− t ⩽ h− t allows us to use the Grönwall lemma, which implies
that ∥∥L′

s − ϑn

∥∥
L2

⩽
(
s ∥vn∥L2 + 0.5γs2 ∥gn∥L2 +

√
(2/3)ps γs

)
eMγs(h−0.5s)

⩽
(
s∥vn∥L2

+ 0.5γs2 ∥gn∥L2
+

√
(2/3)ps γs

)
e0.5Mγh2

. (42)

Combining the last display with equation 41, we get∥∥vn+1 − V ′
h

∥∥
L2

⩽
{

1
2∥vn∥L2

+ 1
6η∥gn∥L2

+ 0.33
√
γpη

}
Mh2γeMγh2/2

⩽
{

1
2∥vn∥L2

+ 1
6η∥gn∥L2

+ 0.33
√
γpη

}
Mγη

2eMγη
2/2.

This completes the proof of the first inequality. To prove the second one, we again use the update
rules of θn+1 and L′:∥∥ϑn+1 −L′

h

∥∥
L2

= γ

∥∥∥∥∫ h

0

∫ t

0

e−γ2(t−s)
(
∇f(L′

s)−∇f(ϑn)
)
dsdt

∥∥∥∥
L2

⩽ γ

∫ h

0

∫ t

0

∥∥∇f(L′
s)−∇f(ϑn)

∥∥
L2

dsdt

⩽Mγ

∫ h

0

∫ t

0

∥∥L′
s − ϑn

∥∥
L2

dsdt.

The last term can be bounded using equation 42. This yields

γ
∥∥ϑn+1 −L′

h

∥∥
L2

⩽Mγγ
3eMγη

2/2

∫ h

0

∫ t

0

(
s∥vn∥L2

+ 0.5γs2∥gn∥L2
+

√
(2/3)ps3 γ

)
dsdt

⩽Mγη
3eMγη

2/2
(
1
6∥vn∥L2

+ 1
24η∥gn∥L2

+ 0.1
√
pηγ

)
⩽ (1/6)Mγη

3eMγη
2/2

(
∥vn∥L2 + 0.25η∥gn∥L2 + 0.6

√
pηγ

)
as desired.

B.5 PROOFS OF THE TECHNICAL LEMMAS USED IN PROPOSITION 2

B.5.1 PROOF OF LEMMA 5

Since zn = E[g⊤
n vn], we have∣∣zn+1 − zn − E[g⊤

n (vn+1 − vn)]
∣∣ = ∣∣E[(gn+1 − gn)

⊤vn+1]
∣∣. (43)
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On the one hand, definition equation 27 of vn+1 yields

E[g⊤
n (vn+1 − vn)] = −αηE[g⊤

n vn]− αη∥gn∥2L2
. (44)

On the other hand, the Cauchy-Schwartz inequality implies∣∣E[(gn+1 − gn)
⊤vn+1]

∣∣ ⩽ ∥∥gn+1 − gn
∥∥
L2
∥vn+1∥L2

⩽M∥ϑn+1 − ϑn∥L2∥vn+1∥L2 .

Similarly, using update rules equation 27 and equation 28 of the KLMC, and the triangle inequality
we get

γ2∥ϑn+1 − ϑn∥2L2
⩽ η2∥vn∥2L2

+ 1
4η

4∥gn∥2L2
− 2αβη2zn + 2

3η
3γp

∥vn+1∥2L2
⩽ ∥vn∥2L2

+ η2∥gn∥2L2
− 2αη(1− αη)zn + 2ηγp.

Hence,

γ
η ∥ϑn+1 − ϑn∥L2∥vn+1∥L2 ⩽

(γ/η)2∥ϑn+1 − ϑn∥2L2
+ ∥vn+1∥2L2

2

⩽ ∥vn∥2L2
+ 5

8η
2∥gn∥2L2

− αη(β + 1− αη)zn + 4
3ηγp. (45)

Therefore, combining equation 43, equation 44 and equation 45, we get∣∣zn+1 − (1− αη)zn + αη∥gn∥2L2

∣∣ ⩽ ηMγ

(
∥vn∥2L2

+ 5
8η

2∥gn∥2L2
+ 4

3ηγp
)

− η2Mγ α(β + 1− αη)︸ ︷︷ ︸
:=α̃

zn

with α̃η ⩽ αη(1.5− αη) ⩽ 0.14, as desired.

B.5.2 PROOF OF LEMMA 6

We apply inequality equation 34 for every index k ⩽ n multiply each side by ϱn−k:

ϱn−kzk+1 ⩽ (e−η − β̃η)ϱn−kzk + 0.2ϱn−kη∥vk∥2L2
+ 0.67η2γpϱn−k − 0.94ηϱn−k∥gk∥2L2

.

Summing over k, applying Lemma 3 and taking into account that z0 = 0, we get

zn+1 + ϱSn(z) ⩽ (e−η − β̃η)Sn(z) + 0.2ηSn(v
2) +

0.67η2γp

1− ϱ
− 0.94ηSn(g

2)

⩽ (e−η − β̃η)Sn(z) + 0.2ηSn(v
2) +

0.68η2γp

1− ϱ
− 0.94ηSn(g

2).

This implies that

0.94ηSn(g
2) ⩽ (ϱ− e−η + β̃η)(−Sn(z)) + 0.2ηSn(v

2) +
0.68η2γp

1− ϱ
− zn+1.

Note that ρ−e−η ⩾ 0 and ϱ−e−η+ β̃η ⩽ 1−e−η+0.014η ⩽ 1.02(e−η−1) = 1.02αη. Therefore,

0.94ηSn(g
2) ⩽ 1.02αη(Sn(z))− + 0.2ηSn(v

2) +
0.68η2γp

1− ϱ
− zn+1.

Dividing both sides of the last display by 0.94η, we get

Sn(g
2) ⩽ 1.09α(Sn(z))− + 0.213Sn(v

2) +
0.73ηγp

1− ϱ
− 1.07zn+1

η
.

This completes the proof of the lemma.
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B.5.3 PROOF OF LEMMA 7

We write inequality equation 36 for all indices k and multiply both sides of it by ϱn−k. Summing the
obtained inequalities and applying Lemma 3, we obtain the following:

2(ϱ− 1)Sn(F )− 2ϱnF0 ⩽ 2α0ηSn(z) + 0.0.182ηSn(v
2) +

2η3γp

15(1− ϱ)
,

where the left-hand side is obtained using Lemma 3 and the fact that Fn ⩾ 0. Rearranging the terms
and dividing by 2, we obtain

−α0ηSn(z) ⩽ ϱnF0 + (1− ϱ)Sn(F ) + 0.0.182ηSn(v
2) +

2η3γp

15(1− ϱ)
.

Since the right-hand side of the last display is nonnegative, we infer that

α0(ηSn(z))− ⩽ ϱnF0 + (1− ϱ)Sn(F ) + 0.0.182ηSn(v
2) +

2η3γp

15(1− ϱ)
,

which coincides with the claim of the lemma.

B.5.4 PROOF OF LEMMA 8

In view of Lemma 5, we have

|zn+1| ⩽ (e−η + 0.3η2)|zn|+ η∥gn∥2L2
+ η

(
0.2∥vn∥2L2

+ 0.2η2∥gn∥2L2
+ 0.027ηγp

)
⩽ 0.56(∥gn∥L2

+ ∥vn∥L2
)2 + 0.0027γp

⩽ 0.56
(
∥gn −∇f(Lnh)∥L2 + ∥vn − Vnh∥L2 +

√
Mp+

√
γp

)2
+ 0.0027γp,

where we have used the facts ∥∇f(Lnh)∥L2
=

∫
∥∇f∥2 dπ ⩽Mp (Dalalyan & Karagulyan, 2019,

Lemma 3) and E[∥Vnh∥2] = γp. Finally, one can note that

∥gn −∇f(Lnh)∥L2
+ ∥vn − Vnh∥L2

⩽ 0.5γ∥ϑn −Lnh∥L2
+ ∥vn − Vnh∥L2

⩽ 0.5∥vn − Vnh + γ(ϑn −Lnh)∥L2 + 1.5∥vn − Vnh∥L2

⩽
√

5/2xn.

Therefore,

|zn+1| ⩽
(
1.19xn + 1.09

√
γp

)2
+ 0.0027γp ⩽

(
1.19xn + 1.14

√
γp

)2
.

This completes the proof of the lemma.
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C THE PROOF OF THE UPPER BOUND ON THE ERROR OF RKLMC

Consider the underdamped Langevin diffusion

dLt = Vt dt, where dVt = −γVt dt− γ∇f(Lt) dt+
√
2γ dWt (46)

for every t ⩾ 0, with given initial conditions L0 and V0. Throughout this section, we assume that
V0 ∼ Np(0, γIp) is independent of L0, and the couple (V0,L0) is independent of the Brownian
motion W . We also assume that L0 is drawn from the target distribution π; this implies that the
process (Lt,Vt) is stationary.

In the sequel, we use the following shorthand notation

η = γh, g = ∇f, fn = f(ϑn), gn = g(ϑn), gn+U = g(ϑn+U ), Mγ =M/γ.

The randomized midpoint discretization—proposed and studied in (Shen & Lee, 2019)—of the
kinetic Langevin process equation 51, can be written as

ϑn+U = ϑn +
1− e−Uη

γ
vn −

∫ Uh

0

(1− e−γ(Uh−s)) ds∇fn +
√
2

∫ Uh

0

(1− e−γ(Uh−s)) dW̄s

ϑn+1 = ϑn +
1− e−η

γ
vn − η

1− e−η(1−U)

γ
∇fn+U +

√
2

∫ h

0

(1− e−γ(h−s)) dW̄s

vn+1 = vne
−η − ηe−γ(h−Uh)∇fn+U +

√
2 γ

∫ h

0

e−γ(h−s) dW̄s (47)

where W̄s = Wnh+s −Wnh. We rewrite these relations in the shorter form

ϑn+U = ϑn + γ−1η
(
Uᾱ1vn − U2ηβ̄1 gn + U

√
2Uγη σ̄1ξ1

)
(48)

ϑn+1 = ϑn + γ−1η
(
ᾱ2vn − ηβ̄2 gn+U +

√
2γη σ̄2ξ2

)
(49)

vn+1 = vn − ηᾱ2vn − 2ηβ̄3gn+U +
√
2γη σ̄3ξ3 (50)

where ᾱ1, β̄1, β̄2, β̄3 and σ̄1 are positive random variables (with randomness inherited from U only)
satisfying

ᾱ1 ⩽ 1, β̄1 ⩽ 1/2, β̄2 ⩽ 1− U ⩽ 1, β̄3 ⩽ 1/2, σ̄2
1 ⩽ 1/3

and E[β̄2] ∈ [0.468, 0.5]. Similarly, ᾱ2, σ̄2 and σ̄3 are positive real numbers depending on γ and h
such that

ᾱ2 ⩽ 1, σ̄2
2 ⩽ 1/3, σ̄2

3 ⩽ 1.

We define

v̄n+1 := EU [vn+1], ϑ̄n+1 := EU [ϑn+1].

The solution to SDE equation 46 starting from (vn,ϑn) at the n-th iteration at time h admits the
following integral formulation

L′
t = ϑn +

∫ t

0

V ′
sds

V ′
t = vne

−γt − γ

∫ t

0

e−γ(t−s)∇f(L′
s) ds+

√
2 γ

∫ t

0

e−γ(t−s)dWnh+s . (51)

These expressions will be used in the proofs provided in the present section. Furthermore, without
loss of generality, we assume that the f(θ∗) = minθ∈Rp f(θ) = 0.

C.1 SOME PRELIMINARY RESULTS

We start with some technical results required to prove Theorem 2. They mainly assess the
discretisation error as well as discounted sums of squared gradients and velocities.
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Lemma 9 (Precision of the mid-point). For every h > 0, it holds that

∥ϑn+U −L′
Uh∥L2

⩽ γ−1Mγη
3eMγη

2/2
(
0.065η∥gn∥L2

+ (1/6)∥vn∥L2
+

√
ηγp/54

)
.

Lemma 10 (Discretization error). Let (L′
t,V

′
t ) be the exact solution of the kinetic Langevin diffusion

starting from (ϑn,vn). If γ ⩾M and h > 0, it holds that

γ∥ϑ̄n+1 −L′
h∥L2

⩽
M2

γη
5eMγη

2/2

√
3

(
0.065η∥gn∥L2

+ (1/6)∥vn∥L2
+

√
ηγp/54

)
γ∥ϑn+1 − ϑ̄n+1∥L2 ⩽Mγη

3
(
0.26∥vn∥L2 + 0.106

√
ηγp

)
+
η2√
3

(
0.12Mγη

2 + 1
)
∥gn∥L2

∥v̄n+1 − V ′
h∥L2

⩽M2
γη

4eMγη
2/2

(
0.065η∥gn∥L2

+ (1/6)∥vn∥L2
+

√
ηγp/54

)
∥vn+1 − v̄n+1∥L2

⩽Mγη
2
(
0.82∥vn∥L2

+ 0.41
√
ηγp

)
+
η2√
3

(
0.55Mγη + 1)

∥∥gn∥∥L2
.

Corollary 4. If γ ⩾ 2M and η ⩽ 1/5, it holds that

γ∥ϑ̄n+1 −L′
h∥L2 ⩽M2

γη
5
(
0.038η∥gn∥L2+ 0.098∥vn∥L2+ 0.084

√
ηγp

)
,

γ∥ϑn+1 − ϑ̄n+1∥L2
⩽ η2

(
0.578∥gn∥L2

+ 0.02∥vn∥L2
+ 0.005

√
ηγp

)
,

∥v̄n+1 − V ′
h∥L2 ⩽M2

γη
4
(
0.066η∥gn∥L2+ 0.168∥vn∥L2+ 0.137

√
ηγp

)
,

∥vn+1 − v̄n+1∥L2
⩽ η2

(
0.591

∥∥gn∥∥L2
+ 0.164∥vn∥L2

+ 0.082
√
ηγp

)
.

Proposition 3. If γ ⩾ 5M and η ⩽ 1/5, then, for any n ∈ N, the iterates of the RKLMC satisfy

η

n∑
k=0

ϱn−k∥vk∥2L2
⩽ 18.8ϱnγE[f0] + 3.92(xn + 1.5

√
γp)2 +

10.6γ2p

m
,

η

n∑
k=0

ϱn−k∥gk∥2L2
⩽ 21.7ϱnγE[f0] + 4.88(xn + 1.5

√
γp)2 +

11.2γ2p

m
,

where ϱ = exp(−mh) and xn =
(
∥vn − Vnh∥2L2

+ ∥vn − Vnh + γ(ϑn −Lnh)∥2L2

)1/2
.

Proof of Proposition 3. We use the same shorthand notation as in the previous proofs and assume
without loss of generality that θ∗ = 0. Let us define zk = E[v⊤

k gk], and

Sn(z) :=

n∑
k=0

ϱn−kzk, Sn(g
2) :=

n∑
k=0

ϱn−k ∥gk∥2L2
,

Sn(f) :=

n∑
k=0

ϱn−kE[fk], Sn(v
2) :=

n∑
k=0

ϱn−k∥vk∥2L2
.

We will need the following lemma, the proof of which is postponed.

Lemma 11. For any γ > 0 and h > 0 satisfying γ ⩾ 5M and any η ⩽ 1/5, the iterates of the
randomized midpoint discretization of the kinetic Langevin diffusion satisfy

∥vn+1∥2L2
⩽(1− 1.47η)∥vn∥2L2

− 2ᾱ2ηE[v⊤
n gn]+ 2η2∥gn∥2L2

+2.12γηp (52)

E[v⊤
n+1gn+1] ⩽ 0.51η∥vn∥2L2

+(1− ᾱ2η)E[v⊤
n gn]− 0.97η∥gn∥2L2

+0.9η2γp (53)

γE[fn+1 − fn] ⩽ 0.28η2∥vn∥2L2
+ ᾱ2ηE[v⊤

n gn]− 0.46η2∥gn∥2L2
+0.09η3γp.

From the first inequality equation 52 in Lemma 11, we infer that

S+1
n (v2) ⩽ (1− 1.47η)Sn(v

2)− 2ᾱ2ηSn(z) + 2η2Sn(g
2) + 2.12γ2p/m.

In view of Lemma 3 and the fact that ∥v0∥2L2
= γp, this implies that

1.47ηSn(v
2) + 2ᾱ2ηSn(z) ⩽ Sn(v

2)− S+1
n (v2) + 2η2Sn(g

2) + 2.12γ2p/m

⩽ (1− ϱ)Sn(v
2) + 2η2Sn(g

2) + 2.12γ2p/m+ γp.
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Note that 1− ϱ ⩽ mη
γ ⩽ 0.02η. Therefore, we obtain

(1.47− 0.02)Sn(v
2) + 2ᾱ2Sn(z) ⩽ 2ηSn(g

2) +
2.14γ2p

mη
,

that is equivalent to

Sn(v
2) ⩽ 1.38ᾱ2Sn(z)− + 1.38ηSn(g

2) +
1.48γ2p

mη
. (54)

The second step is to use the second inequality equation 53 of Lemma 11. Note that mη/γ ⩽ 1/500
implies 1− ϱ ⩾ 0.998mη/γ. It then follows that

S+1
n (z) = (1− ᾱ2η)Sn(z)− 0.97ηSn(g

2) + 0.51ηSn(v
2) + 0.9ηγ2p/m.

This inequality, combined with Lemma 3, yields

0.97ηSn(g
2) ⩽ −(ᾱ2η + ϱ− 1)Sn(z) + 0.51ηSn(v

2) + |zn+1|+ 0.9ηγ2p/m

⩽ ᾱ2ηSn(z)− + 0.51ηSn(v
2) + |zn+1|+ 0.9ηγ2p/m.

This can be rewritten as

Sn(g
2) ⩽ 1.03ᾱ2Sn(z)− + 0.53Sn(v

2) +
1.03|zn+1|

η
+

0.93γ2p

m
. (55)

Let us now proceed with a similar treatment for the last inequality of Lemma 11. Applying Lemma 3,
we get S+1

n (f) ⩾ ϱSn(f)− ϱn+1E[f0] ⩾ (1−mη/γ)Sn(f)− ϱn+1E[f0], which leads to

−mηSn(f) ⩽ ϱn+1γE[f0] + 0.28η2Sn(v
2) + ᾱ2ηSn(z)− 0.46η2Sn(g

2) + 0.09
η2γ2p

m
.

From this inequality, and the Polyak-Lojasievicz condition, one can infer that

ᾱ2Sn(z)− ⩽ ϱn+1γE[f0]/η + 0.28ηSn(v
2) + (0.5− 0.46η)Sn(g

2) + 0.09
ηγ2p

m
. (56)

Combining equation 56 with equation 54, we get

Sn(v
2) ⩽ 1.38

(
ϱn+1γE[f0]/η + 0.28ηSn(v

2) + (0.5− 0.46η)Sn(g
2) + 0.09

ηγ2p

m

)
+ 1.38ηSn(g

2) +
1.48γ2p

mη
.

Since η ⩽ 0.2, it follows then

Sn(v
2) ⩽ 0.8

(
Sn(g

2) +
1.8ϱnγ

η
E[f0] +

2γ2p

mη

)
. (57)

Similarly, combining equation 56 and equation 55, we get

Sn(g
2) ⩽ 1.03

(
ϱnγE[f0]/η + 0.28ηSn(v

2) + (0.5− 0.46η)Sn(g
2) + 0.09

ηγ2p

m

)
+ 0.53Sn(v

2) +
1.03|zn+1|

η
+

0.93γ2p

m
.

Since η ⩽ 0.2, it follows then

Sn(g
2) ⩽ 1.05Sn(v

2) +
1.94ϱnγ

η
E[f0] +

1.94|zn+1|
η

+
0.94γ2p

m
. (58)

Equations equation 57 and equation 58 together yield

Sn(g
2) ⩽ 0.84

(
Sn(g

2) +
1.8ϱnγ

η
E[f0] +

2γ2p

mη

)
+

1.94ϱnγ

η
E[f0] +

1.94|zn+1|
η

+
0.94γ2p

m

⩽ 0.84Sn(g
2) +

3.46ϱnγ

η
E[f0] +

1.94|zn+1|
η

+
1.78γ2p

mη
.
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Hence, we get

Sn(g
2) ⩽

21.7ϱnγ

η
E[f0] +

12.2|zn+1|
η

+
11.2γ2p

mη
.

Using once again equation equation 57, we arrive at

Sn(v
2) ⩽ 0.8

(21.7ϱnγ
η

E[f0] +
12.2|zn+1|

η
+

11.2γ2p

mη
+

1.8ϱn+1

η
E[f0] +

2γ2p

mη

)
,

which is equivalent to

Sn(v
2) ⩽

18.8ϱnγ

η
E[f0] +

9.8|zn+1|
η

+
10.6γ2p

mη
.

To complete the proof of the proposition, it remains to establish the suitable upper bound on |zn+1|.
To this end, we note that

∥gn∥L2
⩽M ∥ϑn −Lnh∥L2

+
√
Mp

⩽ 0.2 ∥γ(ϑn −Lnh)∥L2
+
√

0.2γp

⩽ 0.3(xn + 1.5
√
γp)

∥vn∥L2
⩽ ∥vn − Vnh∥L2

+
√
γp

⩽ ∥vn − Vnh∥L2
+

√
γp

⩽ xn +
√
γp.

Then, following the same steps as those used in the proof of the second inequality of Lemma 11, one
can infer that

|zn+1| ⩽ |zn|+ 0.97η∥gn∥2L2
+ 0.51η∥vn∥2L2

+ 0.09η2γp

⩽ ∥gn∥L2∥vn∥L2 + 0.1∥gn∥2L2
+ 0.051∥vn∥2L2

+ 0.001γp

⩽ 1.1∥gn∥2L2
+ 0.301∥vn∥2L2

+ 0.001γp

⩽ 0.099(xn + 1.5
√
γp)2 + 0.301(xn + 1.1

√
p)2

⩽ 0.4
(
xn + 1.5

√
p
)2
.

This completes the proof of the proposition.

C.2 PROOF OF THEOREM 2

Let ϑn+U ,ϑn+1,vn+1 be the iterates of Algorithm. Let (Lt,Vt) be the kinetic Langevin diffusion,
coupled with (ϑn,vn) through the same Brownian motion and starting from a random point
(L0,V0) ∝ exp(−f(θ) − 1

2∥v∥
2) such that V0 = v0. Let (L′

t,V
′
t ) be the kinetic Langevin

diffusion defined on [0, h] using the same Brownian motion and starting from (ϑn,vn).

Our goal will be to bound the term xn defined by

xn =

∥∥∥∥C [
vn − Vnh

ϑn −Lnh

] ∥∥∥∥
L2

with C =

[
Ip 0p

Ip γIp

]
.

To this end, define

v̄n+1 = EU [vn+1], ϑ̄n+1 = EU [ϑn+1].

Since (V(n+1)h,L(n+1)h) are independent of U , we have

x2n+1 =

∥∥∥∥C [
vn+1 − v̄n+1

ϑn+1 − ϑ̄n+1

] ∥∥∥∥2
L2

+

∥∥∥∥C [
v̄n+1 − V(n+1)h

ϑ̄n+1 −L(n+1)h

] ∥∥∥∥2
L2

.
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Using the triangle inequality and Proposition 1 (See also Proposition 1 from (Dalalyan & Riou-Durand,
2020)), we get∥∥∥∥C [

v̄n+1 − V(n+1)h

ϑ̄n+1 −L(n+1)h

] ∥∥∥∥
L2

⩽

∥∥∥∥C [
v̄n+1 − V ′

h

ϑ̄n+1 −L′
h

] ∥∥∥∥
L2

+

∥∥∥∥C [
V̄ ′
h − V(n+1)h

L̄′
h −L(n+1)h

] ∥∥∥∥
L2

⩽

∥∥∥∥C [
v̄n+1 − V ′

h

ϑ̄n+1 −L′
h

] ∥∥∥∥
L2

+ ϱxn

where ϱ = e−mh. Combining these inequalities, we get

x2n+1 ⩽
(
ϱxn + yn+1

)2
+ z2n+1

where

yn+1 =

∥∥∥∥C [
v̄n+1 − V ′

h

ϑ̄n+1 −L′
h

] ∥∥∥∥
L2

, zn+1 =

∥∥∥∥C [
vn+1 − v̄n+1

ϑn+1 − ϑ̄n+1

] ∥∥∥∥2
L2

.

This yields6

xn ⩽ ϱnx0 +

n∑
k=1

ϱn−kyk +

( n∑
k=1

ϱ2(n−k)z2k

)1/2

⩽ ϱnx0 +

(
1

1− ϱ

n∑
k=1

ϱn−ky2k

)1/2

+

( n∑
k=1

ϱ2(n−k)z2k

)1/2

,

where the second inequality follows from the Cauchy-Schwarz inequality and the formula of the sum
of a geometric progression. Using the fact that ∥C[a, b]⊤∥2 = ∥a∥2+∥a+γb∥2 ⩽ 3∥a∥2+2γ2∥b∥2,
we arrive at

y2n+1 ⩽ 3∥v̄n+1 − V ′
h∥2L2

+ 2γ2∥ϑ̄n+1 −L′
h∥2L2

,

z2n+1 ⩽ 3∥vn+1 − v̄n+1∥2L2
+ 2γ2∥ϑn+1 − ϑ̄n+1∥2L2

.

We then have

xn ⩽ ϱnx0 +

(
1.001γ

mη

n∑
k=1

ϱn−k(3∥v̄k − V ′
h∥2L2

+ 2γ2∥ϑ̄k −L′
h∥2L2

)

)1/2

+

( n∑
k=1

ϱ2(n−k)(3∥vk − v̄k∥2L2
+ 2γ2∥ϑk − ϑ̄k∥2L2

)

)1/2

. (59)

By Corollary 4, we find

∥v̄k − V ′
h∥2L2

⩽M4
γη

8
(
0.066η∥gk−1∥L2

+ 0.168∥vk−1∥L2
+ 0.137

√
ηγp

)2

⩽ 0.23Mγη
8 × 0.0514

(
η2∥gk−1∥2L2

+ ∥vk−1∥2L2
+ ηγp

)
,

γ2∥ϑ̄k −L′
h∥2L2

⩽M4
γη

10
(
0.038η∥gk−1∥L2

+ 0.098∥vk−1∥L2
+ 0.084

√
ηγp

)2

⩽ 0.23Mγη
8 × 0.0002

(
η2∥gk−1∥2L2

+ ∥vk−1∥2L2
+ ηγp

)
∥vk − v̄k∥2L2

⩽ η4
(
0.591∥gk−1∥L2

+ 0.164∥vk−1∥L2
+ 0.082

√
ηγp

)2

⩽ η4 × 0.39
(
∥gk−1∥2L2

+ ∥vk−1∥2L2
+ ηγp

)
,

γ2∥ϑk − ϑ̄k∥2L2
⩽ η4

(
0.578∥gk−1∥L2

+ 0.02∥vk−1∥L2
+ 0.005

√
ηγp

)2

⩽ η4 × 0.32
(
∥gk−1∥2L2

+ ∥vk−1∥2L2
+ ηγp

)
6One can check by induction, that if for some sequences xn, yn, zn and some ϱ ∈ (0, 1) it holds that

x2
n+1 ⩽ (ϱxn + yn+1)

2 + z2n+1, then necessarily xn ⩽ ϱnx0 +
∑n

k=1 ϱ
n−kyk + (

∑n
k=1 ϱ

2(n−k)z2k)
1/2 for

every n ∈ N.
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Therefore, we infer from equation 59 that

xn ⩽ ϱnx0+

(
γ

mη

n∑
k=0

0.22Mγη
8 × 0.031ϱn−k

(
η2∥gk∥2L2

+ ∥vk∥2L2
+ ηγp

))1/2

+

( n∑
k=0

1.82η4ϱ2(n−k)
(
∥gk∥2L2

+ ∥vk∥2L2
+ ηγp

))1/2

.

From Proposition 3 it then follows that

η

n∑
k=0

ϱn−k
(
η2∥gk∥2L2

+ ∥vk∥2L2
+ ηγp

)
⩽ 18.9ϱnγE[f0] + 3.97(xn + 1.5

√
γp)2 +

10.8γ2p

m
,

η

n∑
k=0

ϱ2(n−k)
(
∥gk∥2L2

+ ∥vk∥2L2
+ ηγp

)
⩽ 40.5ϱnγE[f0] + 8.8(xn + 1.5

√
γp)2 +

21.9γ2p

m
.

This yields

xn ⩽ ϱnx0+0.036η3
√
κ
(
18.9ϱnγE[f0] + 3.97(xn + 1.5

√
γp)2 +

10.8γ2p

m

)1/2

+η3/2
(
74ϱnγE[f0] + 16(xn + 1.5

√
γp)2 +

40γ2p

m

)1/2

⩽ ϱnx0+(0.072η3
√
κ+ 4η3/2)xn + (0.16η3

√
κ+ 8.7η3/2)

√
ϱnγE[f0]

+0.12η3γ
√
κp/m+ 6.4η3/2γ

√
p/m.

We assume that ηκ1/6 ⩽ 0.1, which implies that

xn ⩽ ϱnx0 + 0.072xn + 0.16
√
ϱnγE[f0] + 0.12η3γ

√
κp/m+ 6.4η3/2γ

√
p/m.

Rearranging the display leads to

xn ⩽ 1.08ϱnx0 + 0.18
√
ϱnγE[f0] + 0.12η3γ

√
κp/m+ 6.9η3/2γ

√
p/m.

Finally, we use the fact that x0 = γW2(ν0, π) and xn ⩾ γW2(νn, π)/
√
2 to get the claim of the

theorem.

C.3 PROOFS OF THE TECHNICAL LEMMAS

We now provide the proofs of the technical lemmas that we used in this section.

C.3.1 PROOF OF LEMMA 9

By the definition of ϑn+U , we have

∥ϑn+U −L′
Uh∥ ⩽

∥∥∥∥∫ Uh

0

(
1− e−γ(Uh−s)

)(
∇f(ϑn)−∇f(L′

s)
)
ds

∥∥∥∥
⩽

∫ Uh

0

∥∥∥(1− e−γ(Uh−s)
)(
∇f(L′

0)−∇f(L′
s)
)∥∥∥ds

= Uh

∫ 1

0

(
1− e−Uη(1−t)

)∥∥∇f(L′
0)−∇f(L′

Uht)
∥∥ dt

⩽MhηU2

∫ 1

0

(1− t)
∥∥L′

0 −L′
Uht

∥∥dt,
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where in the last inequality we have used the Lipschitz property of ∇f and the inequality 1 −
e−Uη(1−t) ⩽ Uη(1− t). By taking the expectation wrt to U , we get

EU∥ϑn+U −L′
Uh∥2 ⩽M2h2η2EU

[
U4

{∫ 1

0

(1− t)
∥∥L′

0 −L′
Uht

∥∥dt}2]
⩽
M2h2η2

3
EU

[
U4

∫ 1

0

∥∥L′
0 −L′

Uht

∥∥2 dt]
⩽
M2h2η2

3
EU [U

3]

∫ 1

0

∥∥L′
0 −L′

ht

∥∥2 dt.
Hence, we obtain in view of eq. (42)

∥ϑn+U −L′
Uh∥2L2

⩽
M2h2η2

12

∫ 1

0

∥L′
0 −L′

ht∥2L2
dt

⩽
M2h2η2eMγη

2

12

∫ 1

0

(√
2γ2p(ht)3

3
+ ht∥vn∥L2

+
γ(ht)2

2
∥∇f(ϑn)∥L2

)2

dt

⩽
γ−2M2

γη
6eMγη

2

12

{√
(2/3)ηγp+

√
1/3 ∥vn∥L2

+
√
0.05γh∥∇f(ϑn)∥L2

}2

.

Taking the square root of the two sides of the inequality, we get the claim of the lemma.

C.3.2 PROOF OF LEMMA 10

By the definition of ϑn+1, we have

∥ϑ̄n+1 −L′
h∥ =

∥∥∥EU

[
h
(
1− e−γ(h−Uh)

)
∇f(ϑn+U )

]
−

∫ h

0

(
1− e−γ(h−s)

)
∇f(L′

s) ds
∥∥∥

=
∥∥∥EU

[
h
(
1− e−γ(h−Uh)

)
∇fn+U

]
− hEU

[(
1− e−γ(h−hU)

)
∇f(L′

Uh)
]∥∥∥

⩽ hEU

[(
1− e−γ(1−U)h

)
∥∇fn+U −∇f(L′

Uh)∥
]

⩽Mγη
2EU

[
(1− U)∥ϑn+U −L′

Uh∥
]
,

where in the last inequality follows from the smoothness of function f and the fact that 1 −
e−γ(h−Uh) ⩽ γ(1− U)h. Using the Cauchy-Schwarz inequality, we get

∥ϑ̄n+1 −L′
h∥2 ⩽M2

γη
4EU [(1− U)2]EU

[
∥ϑn+U −L′

Uh∥2
]

=
M2

γη
4

3
EU

[
∥ϑn+U −L′

Uh∥2
]
.

By Lemma 9, we then obtain

∥ϑ̄n+1 −L′
h∥L2

⩽
Mγη

2

√
3

∥ϑn+U −L′
Uh∥L2

⩽
M2

γη
5eMγη

2/2

√
3γ

(
0.065η∥gn∥L2 + (1/6)∥vn∥L2 + (1/7)

√
ηγp

)
.

This completes the proof of the first claim.

Using the definition of ϑn+1, and the fact that the mean minimizes the squared integrated error, we
get

∥ϑn+1 − ϑ̄n+1∥L2
= h

∥∥∥(1− e−γh(1−U)
)
∇fn+U − EU

[(
1− e−γh(1−U)

)
∇fn+U

]∥∥∥
L2

⩽ h
∥∥∥(1− e−γh(1−U)

)
∇fn+U − EU

[
1− e−γh(1−U)

]
∇fn

∥∥∥
L2

.
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Recall that Ū = 1− U , combining this with the last display and the triangle inequality yields

∥ϑn+1 − ϑ̄n+1∥L2
⩽ h

∥∥∥(1− e−ηŪ
)(
∇fn+U −∇fn

)∥∥∥
L2

+ h
∥∥∥(e−ηŪ − E[e−ηŪ ]

)
∇fn

∥∥∥
L2

⩽Mγη
2
∥∥Ū(ϑn+U − ϑn)

∥∥
L2

+ hη∥Ū∥L2
∥gn∥L2

. (60)

In view of equation 48, we get∥∥(1− U)(ϑn+U − ϑn)
∥∥2
L2

= E
[
(1− U)2

(
∥(η/γ)(Uᾱ1vn − U2ηβ̄1gn)∥2 + (2/3)U3η3p/γ

)]
⩽
η2∥vn∥2L2

15γ2
+
η4∥gn∥2L2

210γ2
+
η3p

90γ
.

In addition, ∥1− U∥L2
=

√
1/3. Therefore, we infer from equation 60 that

∥ϑn+1 − ϑ̄n+1∥L2
⩽
Mγη

3

γ

(∥vn∥L2√
15

+

√
ηγp

90

)
+
η2

γ

(Mγη
2

√
210

+
1√
3

)
∥gn∥L2

.

Numerical computations complete the proof of the second claim.

By the definition equation 50 of vn+1, we have

∥v̄n+1 − V ′
h∥L2 = γ

∥∥∥∥EU

[
he−γ(h−Uh)∇fn+U

]
−

∫ h

0

e−γ(t−s)∇f(L′
s) ds

∥∥∥∥
L2

⩽ γ
∥∥∥he−γ(h−Uh)∇fn+U − he−γ(h−Uh)∇f(L′

Uh)
∥∥∥
L2

⩽Mγh∥ϑn+U −L′
Uh∥L2

.

By Lemma 9, we obtain the third claim of the lemma.

In view of equation 47, and the fact that the expectation minimizes the mean squared error, we have

∥vn+1 − v̄n+1∥L2
= γh

∥∥∥e−γh(1−U)∇fn+U − EU

[
e−γh(1−U)∇fn+U

]∥∥∥
L2

⩽ γh
∥∥∥e−γh(1−U)∇fn+U − EU

[
e−γh(1−U)

]
∇fn

∥∥∥
L2

.

The last display, the notation Ū = 1− U and the triangle inequality imply that

∥vn+1 − v̄n+1∥L2
⩽ γh

∥∥e−ηŪ
(
∇fn+U −∇fn

)∥∥
L2

+ γh
∥∥(e−ηŪ − EU [e

−ηŪ ]
)
∇fn

∥∥
L2

⩽Mγh
∥∥ϑn+U − ϑn

∥∥
L2

+ γh
∥∥(e−η(1−U) − 1

)
∇fn

∥∥
L2

⩽Mγh
∥∥ϑn+U − ϑn

∥∥
L2

+
η2√
3

∥∥gn∥∥L2
. (61)

In view of equation 48, we get∥∥ϑn+U − ϑn

∥∥2
L2

= E
[
∥(η/γ)(Uᾱ1vn − U2ηβ̄1 gn)∥2 + (2/3)η3U3p/γ

]
⩽

2η2∥vn∥2L2

3γ2
+
η4∥gn∥2L2

10γ2
+
η3p

6γ
.

The last claim of the lemma follows from the previous display and equation 61.

C.3.3 PROOF OF LEMMA 11

From equation 48, equation 49 and equation 50, it follows that

γ2∥ϑn+U − ϑn∥2L2
⩽ ∥Uηᾱ1vn − (Uη)2β̄1 gn∥2L2

+ (1/6)η3γp

⩽ (2η2/3)∥vn∥2L2
+ (η4/10)∥gn∥2L2

+ (η3/6)γp (62)

and

γ∥ϑn+1 − ϑn∥L2 ⩽ η∥vn∥L2 + 0.5η2∥gn+U∥L2 +
√

(2/3)η3γp

⩽ η∥vn∥L2
+ 0.5η2∥gn∥L2

+ 0.5Mγη
2γ∥ϑn+U − ϑn∥L2

+
√

(2/3)η3γp

⩽ 1.001η∥vn∥L2
+ 0.501η2∥gn∥L2

+
√

0.67η3γp (63)
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where in the last step we have used equation 62 and the fact that Mγη
2/2 ⩽ η2/8 ⩽ 1/200. A bit

more precise computations also yield

γ∥ϑn+1 − ϑn∥L2 ⩽
{
(η∥vn∥L2 + η2∥β̄2gn∥L2)

2 + 2
3γη

3p
}1/2

+
η2

2
∥gn+U − gn∥L2

⩽
{(
η∥vn∥L2

+ η2

√
3
∥gn∥L2

)2
+ 2

3γη
3p
}1/2

+
Mγη

2γ

2
∥ϑn+U − ϑn∥L2

⩽
{(
η∥vn∥L2 +

η2

√
3
∥gn∥L2

)2
+ 2

3γη
3p
}1/2

+ 1
10η

2γ∥ϑn+U − ϑn∥L2 .

Taking the squares of this inequality, we get

γ2∥ϑn+1 − ϑn∥2L2
⩽

(
η∥vn∥L2 +

η2

√
3
∥gn∥L2

)2
+ 2

3γη
3p+ 1

100η
4γ2∥ϑn+U − ϑn∥2L2

+ 1
5η

2γ
{(
η∥vn∥L2

+ η2

√
3
∥gn∥L2

)2
+ 2

3γη
3p
}1/2

∥ϑn+U − ϑn∥L2

⩽
(
1 + 1

10η
2
)
η2
{(

∥vn∥L2
+ η√

3
∥gn∥L2

)2
+ 2

3ηγp+
1
10γ

2∥ϑn+U − ϑn∥2L2

}
⩽ 1.01η2

{(
∥vn∥L2 +

η√
3
∥gn∥L2

)2
+ 2

3ηγp+ 0.1γ2∥ϑn+U − ϑn∥2L2

}
⩽ 0.68η2

(
3∥vn∥2L2

+ η2∥gn∥2L2
+ ηγp

)
. (64)

This implies that for γ ⩾ 5M and η ⩽ 1/5, we have

∥vn+1∥2L2
⩽ (1− ᾱ2η)

2∥vn∥2L2
− 4η(1− ᾱ2η)E[β̄2v⊤

n gn+U ] + η2∥gn+U∥2L2
+ 2ηγp

+ 2η
√
2ηγp∥gn+U − gn∥L2

⩽ (1− ᾱ2η)
2∥vn∥2L2

− 4η(1− ᾱ2η)E[β̄2v⊤
n gn+U ] + η2∥gn+U∥2L2

+ 2ηγp

+ 2Mγη
√
2ηγp∥γ(ϑn+U − ϑn)∥L2

⩽ (1− ηᾱ2)
2∥vn∥2L2

− 4η(1− ηᾱ2)E[β̄2v⊤
n gn+U ] + η2∥gn+U∥2L2

+ 2.1ηγp

+ 20(Mγη)
2∥γ(ϑn+U − ϑn)∥2L2

⩽ (1− ᾱ2η)
2∥vn∥2L2

− 2ᾱ2η(1− ηᾱ2)E[v⊤
n gn] + 1.1η2∥gn∥2L2

+ 2.1ηγp

+ 2Mγη∥vn∥L2
∥γ(ϑn+U − ϑn)∥L2

+ 31(Mγη)
2∥γ(ϑn+U − ϑn)∥2L2

⩽ (1− ᾱ2η)
2∥vn∥2L2

− 2ᾱ2η(1− ηᾱ2)E[v⊤
n gn] + 1.1η2∥gn∥2L2

+ 2.1ηγp

+ 0.2Mγη
2∥vn∥2L2

+ 5Mγ∥γ(ϑn+U − ϑn)∥2L2
+ 31(Mγη)

2∥γ(ϑn+U − ϑn)∥2L2

⩽ (1− ᾱ2η)
2∥vn∥2L2

− 2ᾱ2η(1− ᾱ2η)E[v⊤
n gn] + 1.1η2∥gn∥2L2

+ 2.1ηγp

+ 0.2Mγη
2∥vn∥2L2

+ 5.4Mγ∥γ(ϑn+U − ϑn)∥2L2
.

Since for η ⩽ 0.2 we have ᾱ2 ⩾ 0.9, we get (1 − ᾱ2η)
2 + 0.2Mγη

2 + 5.4Mγ(2η
2/3) ⩽ (1 −

0.9η)2 + 0.008η + 0.16η ⩽ 1− 1.47η. Therefore,

∥vn+1∥2L2
⩽ (1− 1.47η)∥vn∥2L2

− 2ᾱ2η(1− ηᾱ2)E[v⊤
n gn] + 1.12η2∥gn∥2L2

+ 2.12ηγp.

The next step is to get an upper bound on E[v⊤
n+1gn+1]−E[v⊤

n gn] in order to prove equation 53. To
this end, we first note that

∥vn+1∥L2 ⩽ ∥vn∥L2 + η∥gn+U∥L2 +
√

2ηγp

⩽ ∥vn∥L2
+ η∥gn∥L2

+Mγη∥γ(ϑn+U − ϑn)∥L2
+

√
2ηγp

⩽ 1.004
(
∥vn∥L2

+ η∥gn∥L2
+

√
2ηγp

)
. (65)

From equation 63 and equation 65, we also infer that

γ∥vn+1∥L2
∥ϑn+1 − ϑn∥L2

⩽ η
√
3(1.0012 + 0.5012 + 0.34)

(
∥vn∥2L2

+ η2∥gn∥2L2
+ 2ηγp

)
⩽ 2.2η

(
∥vn∥2L2

+ η2∥gn∥2L2
+ 2ηγp

)
.
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Therefore, this bound and some elementary computations yield

E[v⊤
n+1gn+1] ⩽ E[v⊤

n gn] + E[v⊤
n+1(gn+1 − gn)] + E[(vn+1 − vn)

⊤gn]

⩽ E[v⊤
n gn] +Mγ∥vn+1∥L2

∥γ(ϑn+1 − ϑn)∥L2
− ᾱ2ηE[v⊤

n gn]− ηE[g⊤
n gn+U ]

⩽ (1− ᾱ2η)E[v⊤
n gn] +Mγ∥vn+1∥L2∥γ(ϑn+1 − ϑn)∥L2 − η∥gn∥2L2

+Mγη∥gn∥L2
∥γ(ϑn+U − ϑn)∥L2

⩽ (1− ᾱ2η)E[v⊤
n gn]− η∥gn∥2L2

+ 2.2Mγη
(
∥vn∥2L2

+ η2∥gn∥2L2
+ 2ηγp

)
+Mγη

2∥gn∥L2

(
2
3 ∥vn∥2L2

+ 1
10η

2∥gn∥2L2
+ 1

6ηγp
)1/2

⩽ (1− ᾱ2η)E[v⊤
n gn]− η∥gn∥2L2

+ 2.2Mγη
(
∥vn∥2L2

+ η2∥gn∥2L2
+ 2ηγp

)
+ 0.5Mγη

(
2
3 ∥vn∥2L2

+ 11
10η

2∥gn∥2L2
+ 1

6ηγp
)
.

Grouping the terms, and using the fact that Mγη ⩽ 1/25, we arrive at

E[v⊤
n+1gn+1] ⩽ (1− ᾱ2η)E[v⊤

n gn]− 0.97η∥gn∥2L2
+ 2.54Mγη∥vn∥2L2

+ 4.5Mγγη
2p

⩽ (1− ᾱ2η)E[v⊤
n gn]− 0.97η∥gn∥2L2

+ 0.51η∥vn∥2L2
+ 0.9γη2p.

Similarly, using the Lipschitz property of ∇f and equation 64, we get

γE[fn+1 − fn] ⩽ γE[g⊤
n (ϑn+1 − ϑn)] + (Mγ/2)∥γ(ϑn+1 − ϑn)∥2L2

= E[g⊤
n (ᾱ2ηvn − η2β̄2gn+U )] + 0.07η2(3∥vn∥2L2

+ η2∥gn∥2L2
+ ηγp)

⩽ ᾱ2ηE[v⊤
n gn]− η2E[β̄2]∥gn∥2L2

+ 0.2η2∥gn∥L2∥γ(ϑn+U − ϑn)∥L2

+ 0.07η2(3∥vn∥2L2
+ η2∥gn∥2L2

+ ηγp)

⩽ ᾱ2ηE[v⊤
n gn]− η2E[β̄2]∥gn∥2L2

+ 0.1η4∥gn∥2L2
+ 0.1∥γ(ϑn+U − ϑn)∥2L2

+ 0.07η2(3∥vn∥2L2
+ η2∥gn∥2L2

+ ηγp)

⩽ ᾱ2ηE[v⊤
n gn]− 0.468η2∥gn∥2L2

+ 0.1η4∥gn∥2L2

+ 0.07η2∥vn∥2L2
+ 0.01η4∥gn∥2L2

+ 0.02η3γp

+ 0.07η2(3∥vn∥2L2
+ η2∥gn∥2L2

+ ηγp).

Grouping the terms, and using the fact that Mγη
2 ⩽ 1/50, we arrive at

γE[fn+1 − fn] ⩽ ᾱ2ηE[v⊤
n gn]− 0.46η2∥gn∥2L2

+ 0.28η2∥vn∥2L2
+ 0.09η3γp.

This completes the proof of the lemma.
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