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Abstract
Multi-player multi-armed bandit (MP-MAB) has
been widely studied owing to its diverse appli-
cations across numerous domains. We consider
an MP-MAB problem where N players com-
pete for K arms in T rounds. The reward dis-
tributions are heterogeneous where each player
has a different expected reward for the same
arm. When multiple players select the same arm,
they collide and obtain zero rewards. In this pa-
per, our target is to find the max-min fairness
matching that maximizes the reward of the player
who receives the lowest reward. This paper im-
proves the existing max-min regret upper bound
of O(exp(1/∆) + K3 log T log log T ). More
specifically, our decentralized fair elimination al-
gorithm (DFE) deals with heterogeneity and col-
lision carefully and attains a regret upper bound
of O((N2 + K) log T/∆), where ∆ is the min-
imum reward gap between max-min value and
sub-optimal arms. In addition, this paper also pro-
vides an Ω(max{N2,K} log T/∆) regret lower
bound for this problem, which indicates that our
algorithm is optimal with respect to key parame-
ters T,N,K, and ∆. Additional numerical exper-
iments also show the efficiency and improvement
of our algorithms.

1. Introduction
Multi-player multi-armed bandit (MP-MAB) problem has
been widely studied in recent years due to its wide applica-
tions like cognitive radio and wireless network (Wang et al.,
2020a; Yang et al., 2022; Wang et al., 2020b; 2022). In such
a problem, N players simultaneously play K arms. In each
round, each player selects an arm and observes the reward
generated from a fixed distribution. In typical MP-MAB
problems, players try to maximize the summation of their
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expected reward throughout T rounds. Equivalently, they
minimize the total regret, defined as the difference of cumu-
lative reward between their decision and the optimal strategy.
MP-MAB problems can be divided into the homogeneous
setting and the heterogeneous setting by whether the arm’s
reward varies among players. Besides, collision is also con-
sidered in many applications: when different players select
the same arm in one round, they collide and all receive a 0
reward rather than the original rewards drawn from the fixed
distribution (Wang et al., 2020b; Boursier & Perchet, 2019;
Wang et al., 2020a). For instance, in wireless networks,
when more than one users transfer information using one
channel, they will interfere with one another and fail, and
this is modeled as collisions in our MP-MAB problem.

When considering the heterogeneous setting and collisions,
it often raises concerns about unfairness. In order to maxi-
mize the total rewards and avoid collisions meanwhile, some
players have to sacrifice for the global objective by selecting
arms with lower reward (Hossain et al., 2021; Bistritz et al.,
2020; Leshem, 2025). Therefore, the primitive objective
which only cares about maximizing total rewards, is unfair
to those players and makes them have a willingness to not
follow the algorithm. Thus researchers hope to search for
a better objective to avoid this unfairness. One reasonable
objective is to maximize the expected reward of the player
who receives the lowest reward, which is called max-min
fairness (Bistritz et al., 2020; Leshem, 2025). This ensures
that every player is considered equally and nobody should
sacrifice. In wireless networks, if only pursuing the maxi-
mal Quality of Service (QoS) globally, some users will be
annoyed as they can only use channels with low quality to
avoid collisions of others.

Bistritz et al. (2020); Leshem (2025) study this max-min
fairness topic, but both of them have the following limita-
tions. 1) Their regret upper bounds are larger than O(log T ).
The work of Bistritz et al. (2020) derives a regret lower
bound of Ω(log T ). However, existing works only achieve
the O(log T log log T ) regret upper bound (Bistritz et al.,
2020; Leshem, 2025). Additionally, their regret analysis
also relies on a large constant, which can grow exponen-
tially with N and 1/∆, where N is the number of players
and ∆ is the minimum reward gap. 2) The lower bound
Ω(log T/∆) in Bistritz et al. (2020) only works for parame-
ter T . Nevertheless, no lower bound for parameter N or K
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is provided, which makes the hardness of the problem still
unclear. 3) They have some strong assumptions about the
setting. Both assume the rewards are bounded, and the latter
also assumes K = N . Besides, they both assume the re-
ward means of different arms for each player to be different,
which is infeasible in many scenarios. These assumptions
limit the application scenarios and are of significant interest
to be relaxed for wider application.

In order to address the limitations above, we propose our
decentralized fair elimination (DFE) algorithm to find the
max-min fairness for the decentralized heterogeneous MP-
MAB problem where there exists no central server to assign
matching directly. We relax the assumptions mentioned
before to make our algorithm more general. Besides, it
turns out later that this algorithm is optimal since its regret
upper bound matches the problem’s regret lower bound.

The algorithm makes each player run a phased elimina-
tion algorithm. In each phase, players first communicate
their current reward estimation to each other. Then all play-
ers can compute the lower bound of the max-min value
and then eliminate arms whose upper confidence bound
(UCB) index is lower than that value. After that, players
explore their remaining arms in a round-robin way and the
exploration length grows exponentially with the phase. Our
decentralized fair elimination algorithm has the following
novelties and advantages. 1) Our algorithm adaptively ex-
plores sub-optimal arms and eliminates them efficiently,
assuring that those sub-optimal arms will not be selected in
the later phase. This is the key to improving the regret from
O(log T log log T ) to the optimal regret of O(log T ). 2) We
design a novel exploration assignment algorithm for play-
ers at each phase. Due to the elimination procedure, each
player may be left with a different set of remaining arms,
leading to uneven exploration frequency between different
pairs and thus making the exploration process non-trivial.
Our DFE algorithm optimizes this process and guarantees
that all remaining player-arm pairs will be explored once in
at most N2 +K −N rounds, rather than naive NK rounds.

This paper also shows that one can not find another as-
signment procedure that achieves better result. 3) A tight
O((N2 + K) log T/∆) regret bound is obtained and this
paper also shows that this regret is optimal with respect to
all parameters.

More specifically, we also derive a tighter
Ω(max{N2,K} log T/∆) regret lower bound for this
max-min fairness problem. A special case is designed to
ensure the regret is lower bounded by ∆ times the selection
numbers of specific ⌊N/2⌋2 sub-optimal player-arm pairs.
Then it can be shown that any two of these pairs can
not be selected at the same time in case of suffering a
large regret. Then we construct another instance that only
improves the reward of one of these pairs resulting in a

better max-min value. Thus by divergence decomposition,
any pair must be selected Ω(log T/∆2), implying the final
Ω(max{N2,K} log T/∆) lower bound.

Our Contribution. Our contributions are outlined as fol-
lows.

1. In Section 3, we propose the Decentralized Fair Elim-
ination algorithm (Algorithm 1), which improves the
existing result of decentralized case significantly. The
regret upper bound of our algorithm is O((N2 +
K) log T/∆). In addition, we relax some assumptions
required by previous works in both settings, which
allows our algorithm to be applied more widely.

2. In Section 4, we give a tight lower bound,
Ω(max{N2,K} log T/∆), for max-min MP-MAB
problem, which is with respect to not only parame-
ter T proposed in previous work, but also N , K and
∆. This lower bound implies that our Algorithm 1 is
optimal with respect to all parameters, and thus closes
the gap of this problem.

3. In Section 5, numerical experiments are conducted as
well. We compare our algorithm with previous works,
and these baselines show that our algorithm indeed
improves results.

Related Work. There is a number of work studying the
problem of MP-MAB (Wang et al., 2020a; Yang et al., 2022;
Wang et al., 2020b; 2022; Kong & Li, 2023; Kong et al.,
2024). They focus on the algorithms’ regret, including
group regret, individual regret (Wang et al., 2022) and cor-
responding communication cost (Boursier & Perchet, 2019).
Besides, some papers discuss the homogeneous and the
more general heterogeneous settings of MP-MAB and pro-
pose algorithms for them respectively(Yang et al., 2022;
Magesh & Veeravalli, 2022). On the other hand, the exis-
tence or absence of central server are discussed in Shi et al.
(2021); Mehrabian et al. (2020); Buccapatnam et al. (2015);
Kolla et al. (2018). However, the fairness problem is ignored
in these scenarios. As we discussed above, the potential risk
of unfairness for sacrificed players is of great significance
to be studied, and this paper proposes an efficient algorithm
to fill this gap.

Regarding the fairness problem, there are many kinds of
fairness. Some are from the aspect of arms (Joseph et al.,
2016; Wang et al., 2021; Fang et al., 2022; Mansoury et al.,
2024; Jeunen & Goethals, 2021), and some are for players
(Hossain et al., 2021; Bistritz et al., 2020; Leshem, 2025).
Max-min fairness is a kind of fairness for players and is
widely considered in wireless networks. Although Bistritz
et al. (2020); Leshem (2025) have proposed some algorithms
to handle unfairness in max-min MP-MAB, their assump-
tions and results are still not tight and need to be improved,
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as we have discussed before. Our near-optimal algorithms
with tight bounds for all parameters dramatically improve
the results.

2. Preliminaries
This paper considers the multi-player multi-armed bandit
problem consisting of N players and K arms, denoted as
sets N := {1, . . . , N} and K := {1, . . . ,K}, respectively.
We assume N ≤ K to ensure that all players are able
to select their arms if no collision happens. There are T
rounds and each player i ∈ N selects an arm ki(t) ∈ K
and receives a reward ri,k(t) in each round t ∈ [T ]. De-
note all players’ selections in round t by the matching
set m(t) := {(1, k1(t)), . . . , (N, kN (t))}. When multiple
players select the same arm simultaneously, a collision oc-
curs between these players and the reward of these colliding
players is ri,ki(t)(t) = 0; otherwise, the reward ri,ki(t)(t) is
an i.i.d. random variable generated from a 1-sub-gaussian
distribution with mean µi,ki(t) ≥ 0. The reward means
are heterogeneous, i.e., µi,k can be different from µi′,k for
i ̸= i′. Denote the collision indicator for player i in round t
by Ci(t) = 1{player i suffers a collision in round t}. This
paper considers the decentralized setting where there is
no central platform to assign matching. Each player i
selects the arm based on its own history observations
{rs,ki(s)(s), Ci(s)}s∈[t−1].

In the multi-player bandit literature, max-min fairness is
of great importance as it maximizes the minimum resource
share, ensuring fairness and system stability among multiple
entities. The fairness objective of players is to find the
max-min value, i.e., to maximize the minimum reward in a
matching m, denoted by γ(m) = mini µi,mi , where mi is
the arm selected by player i in matching m. We define the
optimal max-min value γ∗ and optimal max-min matching
m∗ by

γ∗ = max
m

min
i

µi,mi
, m∗ ∈ argmax

m
min
i

µi,mi
.

The regret is defined as the difference between the opti-
mal max-min reward γ∗ and the minimum expected reward
among the selected arms at each round t, same as (Bistritz
et al., 2020; Leshem, 2025):

R(T ) = E

[
T∑

t=1

(
γ∗ −min

i

{
(1− Ci(t)) · µi,ki(t)

})]
.

3. Decentralized Fair Elimination Algorithm
In this section, we introduce the Decentralized Fair Elimina-
tion algorithm (Algorithm 1).

In general, the Decentralized Fair Elimination algorithm
(Algorithm 1) executes by epochs. In each epoch s, Al-
gorithm 1 has three phases: elimination (Lines 3 - 12),

Algorithm 1 Decentralized Fair Elimination (for player i)

1: Initialize: µ̂i,k(0) = 0, Ni,k(0) = 0,UCBi,k(0) =
∞,LCBi,k(0) = −∞, ∀i ∈ [N ], k ∈ [K]; P =
{(i, k) | ∀i ∈ [N ], k ∈ [K]}.

2: for phase s = 1, 2, · · · do
3: Set Ms = ∅.
4: Compute max-min matching based on {LCBi,k(s−

1)}i∈[N ],k∈[K], obtain max-min value γ
s
;

5: for ∀j ∈ [N ], k ∈ [K] do
6: if UCBj,k(s− 1) < γ

s
then

7: P = P\{(j, k)};
8: end if
9: if there does not exist matching m which contains

(j, k) s.t. mini UCBi,mi
(s) > γ

s
then

10: P = P\{(j, k)};
11: end if
12: end for
13: Ms = Assign Exploration(P) by Algorithm 2;
14: for m ∈ Ms do
15: Select mi for 2s times;
16: Update µ̂i,k(s), Ni,k(s),UCBi,k(s),LCBi,k(s),

∀i ∈ [N ], k ∈ [K];
17: end for
18: Communicate by Algorithm 3, get information

UCBi′,k(s),LCBi′,k(s) for any player i′;
19: end for

exploration (Lines 13 - 17), and communication (Line 18).
In the elimination phase, players compute the lower bound
of max-min matching based on the observed information
and eliminate those sub-optimal arms; in the exploration
phase, players explore their corresponding non-eliminating
arms in a round-robin way. At last, players share their local
information during the communication phase.

3.1. Elimination Phase

In the s-th elimination phase, all players follow the same
rule to compute the lower bound of current max-min match-
ing and to eliminate sub-optimal arms based on the latest
information derived from the communication phase. Each
player i computes LCBj,k(s) = µ̂i,k(s) −

√
6 log T
Ni,k(s)

and

UCBj,k(s) = µ̂i,k(s) +
√

6 log T
Ni,k(s)

for all j ∈ N , k ∈ K.
Then, players compute the max-min matching and corre-
sponding max-min value γ

s
with respect to LCBs (Line

4).

The max-min matching can be found through a threshold-
based algorithm (Panagiotas et al., 2023). First, sort all
LCB indexes {LCBi,k(s)}i∈[N ],k∈[K] in decreasing order,
and set as threshold γ′ in order of sorting (or we can apply
binary search to set threshold for reducing time complexity),
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testing if one can construct a perfect matching only using
player-arm LCB index higher than the threshold, i.e., con-
struct a perfect matching m with LCBi,mi(s) ≥ γ′. The
maximum threshold that can form a perfect matching is
the corresponding max-min value with respect to LCBs,
denoted as γ

s
. For finding the max-min matching we can

apply the Hungarian algorithm (Algorithm 5 in Leshem
(2025)). The total time complexity is O(poly(N,K)), and
we remark that this can be solved offline and does not affect
the online learning efficiency.

After that, players eliminate the player-arm pairs who can
not form a matching with minimum UCB value larger than
the computed lower bound of max-min value (Lines 5 - 12).
Denote P as the remaining non-eliminating player-arm set.
If UCBj,k(s) < γ

s
, then pair (j, k) will be eliminated from

the set P (Lines 6 - 8). Additionally, if for pair (j, k), we
can not construct a perfect matching m containing (j, k)
with minimum UCB index mini UCBi,mi(s) greater than
γ
s
, (j, k) will also be eliminated from P since with high

probability (j, k) will not occur in the optimal max-min
matching m∗ (Lines 9 - 11). The details of elimination
phase are described in Algorithm 1.

3.2. Exploration Phase

The elimination phase is followed by the exploration phase
in each epoch. Here we introduce our new assignment
algorithm (Algorithm 2), which only takes at most N2 +K
rounds to explore all non-eliminating pairs once under the
constraint of not selecting eliminated pairs, shown to be the
optimal assignment method in Section 4.

In the s-th exploration phase, the exploration of all player-
arm pairs within P remains necessary. By the eliminating
rule, it is established that for each pair (i, k) ∈ P , there
must exist a corresponding matching m such that every pair
within m also belongs to P , which can be precisely denoted
as ∀(i, k) ∈ P,∃m,mi = k, ∀(i′, k′) ∈ m, (i′, k′) ∈ P .

Consequently, a matching m′ can be initially located such
that all pairs within m′ are elements of P . Subsequently,
an arm set Km′ = {m′

1, . . . ,m
′
N}, which comprises all

the arms within m′, is obtained (Lines 2 - 3). For any pair
(i, k) in P , if k ∈ Km′ , a matching m is constructed with
mi = k and ∀i′ ∈ [N ], (i′,mi′) ∈ P . Each such m is then
appended to M, and during this construction, at most N2

matchings are generated (Lines 4 - 9).

Afterward, for the remaining K − N arms that are not
included in Km′ , new indexes ranging from N +1 to K are
assigned (Line 10). That is, the index of m′

i is extended to
m′

K in such a manner that each arm k ∈ [K] has a unique
index u ∈ [K] satisfying m′

u = k. To explore those pairs
within P whose arms are not in Km′ , K − N matchings
can be constructed to explore those arms in a round-robin

way. Specifically, in the r-th matching, player i will select
m′

N+((i+r) mod (K−N)) if the corresponding pair is in P;
otherwise, player i will select m′

i (Lines 11 - 12). Through
this design, it can be ensured that all pairs within P will
be explored precisely once within at most N2 +K rounds,
and moreover, all the eliminated pairs will not be selected.
In the s-th exploration phase, all players will select each
matching for 2s rounds.

Figure 1 provides an illustrative example to explain the
exploration phase, in which blue dashed circles represent
eliminated player pairs, i.e., (i, k) /∈ P . Other solid circles
are available, i.e., (i, k) ∈ P . When exploring pairs to
the left of the vertical dashed line (arms in Km′), players
can cover all of them once in at most N2 rounds. When
exploring pairs to the right of the vertical dashed line in a
round-robin way, players select the corresponding red pair
in its line if they meet a blank, i.e., an eliminated pair. For
example, in Figure 1 player 2 has eliminated arm mN+1,
so when it is her turn to select mN+1 in round-robin explo-
ration, it will select m2 instead to avoid selecting eliminated
arms. Therefore, these pairs can be explored once with no
more than K −N rounds.

Compared with naively constructing a matching for every
pair in P which needs at most NK matchings, we improve
this upper bound to N2 +K. Later in the instance shown
in the lower bound analysis, it can be seen that there exists
a pair set P such that the number of times for selecting
all pairs once is lower bounded by Ω(N2 + K) rounds if
not selecting pairs out of P . This shows our assignment
algorithm is near optimal.

Note that if we relax the constraint that lets players select
eliminated arms, i.e, pairs out of P , a round-robin explo-
ration strategy can be directly used to explore all arms in
K rounds. However, we make such a constraint that avoids
selecting any eliminated pair in the exploration phase since
selecting the eliminated pair leads to more regret in one
round. For those eliminated arms, they have been identified
as sub-optimal and usually with low reward, which means
there will be large regret if selecting the eliminated arm in
the exploration phase. In the regret analysis we can see that
by avoiding exploring the eliminated arm, the regret can
be improved from O(log T/∆2) to O(log T/∆), where ∆
is the minimum reward gap between γ∗. This shows our
algorithm outperforms in the scenario where there are pairs
with rewards near γ∗.

3.3. Communication Phase

Note that in this paper we study the problem in decentralized
setting where each player can only observe its own reward
and make decisions based on its historical observation. This
setting is extensively studied by MP-MAB works. Further-
more, communication process among players is unavoidable
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Algorithm 2 Assign Exploration

Input: Non-eliminating player-arm set P .
1: Initialize M = ∅;
2: Find a matching m′ satisfying ∀(i, k) ∈ m′, (i, k) ∈ P;
3: M = M∪ {m′}. Denote Km′ = {m′

i | i ∈ [N ]};
4: for ∀(i, k) ∈ P do
5: if k ∈ P then
6: Construct a matching m with mi = k and ∀(i′, k) ∈ m, (i′, k) ∈ P;
7: M = M∪ {m};
8: end if
9: end for

10: Extend the index of m′
i to m′

K such that each arm k ∈ [K] has its unique corresponding index u satisfying m′
u = k;

11: Construct K −N matching such that in the r-th matching mr, player i selects

mr
i =

{
m′

N+((i+r) mod (K−N)), (i,m′
N+((i+r) mod (K−N))) ∈ P

m′
i, (i,m′

N+((i+r) mod (K−N))) /∈ P

12: M = M∪ {mr} for ∀r ∈ [K −N ];
Output: Exploration matching set M;

since all players have to agree on a matching to avoid col-
lisions. In this paper we control the exponential growth of
communication intervals, guaranteeing that the total com-
munication times is bounded by O(log T ). Here, we assume
that at each round a player can transmit estimated reward
information of one arm to another player with regret γ∗,
where γ∗ is the optimal max-min value. This assumption
is mild since the amount of information transmitted in one
round is bounded. Moreover, this assumption can also be
removed by making players transfer the information into
binary and communicate by colliding on bit “1” (Boursier
& Perchet, 2019) (Remark 1).

The communication phase has a fixed length. In s-phase
communication, player i sends µ̂i,k(s) for k ∈ [K] to all
other N − 1 players, and receives µ̂j,k(s) from each player
j ∈ [N ] for k ∈ [K]. As K ≥ N , there are at most
⌊N

2 ⌋ pairs of players exchanging information meanwhile.
The order of the exchange can be fixed before the game,
which only needs to know the number and index of players.
Here we assume that any two players can exchange their
estimations of reward in one round with regret γ∗ (maximal
regret in one round). Therefore, each communication phase
has a fixed length of N .

3.4. Analysis and Discussion

Now, we are ready to state our main result as the next theo-
rem. The proof is deferred in Appendix B.

Theorem 3.1. For max-min MPMAB problem with N play-
ers, K arms, and time horizon T . Let each player play ac-
cording to Algorithm 1, the total expected regret is bounded

by

E [R(T )] ≤ 164(N2 +K) log T/∆+ γ∗N log T + 2NK ,

where ∆ := mini,k:µi,k<γ∗{γ∗ − µi,k} and γ∗ is the max-
min value.

Remark 1. We assume that each player can communicate
with another player in one round with regret γ∗. This
assumption simplifies the analysis of the communication
phase. Without this assumption, we could still use collisions
to transmit information bit by bit, resulting in an additional
constant length of information bits. The details of this pro-
cess can be found in Appendix F. If the minimum reward
gap between max-min value γ∗ is ∆, then the length of each
communication phase is bounded by N log(1/∆). Here,
log(1/∆) is the length of transmitting a reward’s informa-
tion by bit and through collisions. We only need the bit
length with log(1/∆) since it is enough to distinguish two
pairs with gap larger than ∆. Then the total communica-
tion regret is bounded by N log(1/∆) log T . We also note
that the minimum communication cost studied in previous
work is 3

2N
3 log(1/∆) log T (Leshem, 2025). Additionally,

we note that ∆ in their works is the minimum reward gap
among all player-arm pairs, whereas in our work ∆ is only
the minimum reward gap between γ∗. Thus we also sig-
nificantly improve the communication cost compared with
previous works.

Remark 2. We highlight that this exploration design is opti-
mal with order O(N2 +K). In Section 4 we will see that
the given special case provides a Ω(N2 +K) assignment
lower bound when the player-arm pairs with 0 reward are
all eliminated. Thus our method indeed gives an optimal so-
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· · · · · ·

· · · · · ·

· · · · · ·

player 1

player 2
...

player N

m′
1 m′

2
· · · m′

N m′
N+1 m′

N+2
· · · m′

K

Figure 1: Example for exploration phase. For the left N arms, we construct the matching for each (i, k) pairs, requiring at
most N2 matchings. For the right K −N arms, we apply the round-robin methods and replace those eliminated arms with
corresponding red solid arms to avoid collisions.

lution for such a player-arm pair covering problem without
collisions. Besides, this technique can also be considered
to apply for other MP-MAB problems with heterogeneous
reward, which requires different exploration times for each
player-arm pair to reach the optimal regret.

Remark 3. Note that previous works (Bistritz et al., 2020;
Leshem, 2025) also provide a phased-based algorithm to
deal with the decentralized setting. However, they both ap-
ply an explore-then-commit (ETC) method at each epoch
s. Specifically, they let each player explore each arm log s
times at the beginning of the epoch s, and then compute the
max-min matching based on history observations in explo-
ration phase. After that each player follows this matching in
the following 2s rounds. Their algorithms both only obtain
an O(log T log log T ) regret bound since they have to set an
increasing length of exploration at each epoch. This design
is to make sure the probability of computing a wrong max-
min matching is bounded by exp(−s) when s is sufficiently
large that log s > 1/∆, then the regret in the exploitation
phase can be bounded. This design also raises the prob-
lem of a large constant to guarantee log s > 1/∆, which
requires initial warm-up rounds is O(exp(1/∆)), which
could be very large when ∆ is small enough. We handle this
problem by applying the elimination method which elimi-
nate sub-optimal player-arm pair efficiently. This assures
that no forced explorations will happen in later epochs.

Remark 4. We claim that in the beginning of the game, there
will be an index searching process if players do not know
their indices beforehand. We note that this is a standard
process in decentralized MP-MAP problem (Rosenski et al.,
2016; Boursier & Perchet, 2019) and we can run the pro-
cess proposed in (Leshem, 2025). In this algorithm, players
determine their respective indices according to a randomly
choosing arm method. They show that this process will end
in less than O(N logN) rounds with probability 1, there-
fore, the regret of this process is also less than O(N logN).
Since the regret of by index searching process never domi-
nates, for the convenience of description, we ignore it when

considering the overall regret.

4. Regret Lower Bound
In this section, we present a regret lower bound analysis for
max-min MP-MAB problems, which shows that the regret
of the DFE algorithm (Algorithm 1) is tight with respect to
parameters K,N,∆ and T .

Let R(T, ν, π) denote the expected regret of a policy π on
the instance with an arm distributions ν = {νi,k : i ∈
[N ], k ∈ [K]} for a horizon of length T . Denote P as the
set of all probability distributions of reward bounded by
[0, 1].

Define a policy is uniformly consistent if and only if for all
ν ∈ P , all α ∈ (0, 1), the regret lim supT→∞

R(T,ν,π)
Tα = 0.

This notion is used to eliminate tuning a policy to the cur-
rent instance while admitting large regret in other instances.
In this paper, a tight lower bound result is derived in the
following theorem.

Theorem 4.1. For max-min MPMAB problem with N play-
ers, K arms, and time horizon T , there exists a instance ν
with minimum gap ∆ < 1/N and the reward distributions
are Bernoulli, for any uniformly consistent policy π satisfies

R(T, ν, π) ≥
N∑

i=N−⌊N
2 ⌋+1

⌊N
2 ⌋∑

k=1

log T

∆
.

Theorem 4.1 states that for max-min MP-MAB problem
with N players, K arms, and time horizon T , there exists
an instance that for any uniformly consistent policy, for
minimum gap ∆ < 1/N , it takes the regret at least

Ω(max{N2,K}log T/∆) ,

where ∆ = min(i,k):γ∗>µi,k
{γ∗ − µi,k}.

Then, we provide the proof sketch of Theorem 4.1. The
detail of the lower bound proof is deferred to Appendix C.
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+ 1
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.
.

N − 1

N

1 2 · · · N
2

N
2

+ 1N − 1 · · ·N N + 1 K

Figure 2: Base case when N is even and solid circles
represent max-min matching. The yellow cycle represents the
reward of 1

2 + 2∆, the red cycle represents the reward of
1
2 +∆, the black cycle represents the reward of 1

2 , and the
blue cycle represents the reward of 0.

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

1

2
.
.
.

N
2

N
2

+ 1
.
.
.

N − 1

N

1 2 · · · N
2

N
2

+ 1N − 1 · · ·N N + 1 K

Figure 3: Increasing the value of the pair (N, 1) to be
optimal, the max-min matching changes. The solid circles
represent the corresponding max-min matching.

We first construct the special instance ν with N < K, the
reward mean is designed as follows:

• For player i ∈ [1, ⌊N
2 ⌋ − 1], the mean reward of arm

k ∈ [1, i + 1] is 1/2 + 2∆, the mean reward of k ∈
[i+ 2,K] is 0.

• For player i ∈ [⌊N
2 ⌋, N − ⌊N

2 ⌋+ 1], the mean reward
of arm k ∈ [1, i − 1] is 1/2, the mean reward of arm
k = i is 1/2+∆, the mean reward of arm k = i+1 is
1/2 + 2∆, and the mean reward of arm k ∈ [i+ 2,K]
is 0.

• For player i ∈ [N − ⌊N
2 ⌋+ 2, N ], the mean reward of

arm k ∈ [1, N − ⌊N
2 ⌋+ 2] is 1/2, the mean reward of

arm k ∈ [N − ⌊N
2 ⌋ + 3,min{i + 1, N}] is 1

2 + 2∆,
and the mean reward of k ∈ [min{i+ 1, N}+ 1,K]
is 0.

Denote νi,k as the distribution of rewards obtained when
arm k is matched to player i in this environment. The special
case is shown in Figures 2 and 3.

For this instance, it can be shown that the max-min value
γ∗ = 1

2 + ∆ with corresponding max-min matching

m∗ = {(1, 1), (2, 2), . . . , (N,N)}, shown in Figure 2:
First, matching m∗ has the minimum reward 1

2+∆. Second,
if there exists a matching m′ with minimum reward 1

2 +2∆,
then by construction the player i ∈ [⌊N

2 ⌋+1, N−⌊N
2 ⌋+1]

must select arm k = i + 1. To reach the reward 1
2 + 2∆

player i ∈ [N − ⌊N
2 ⌋ + 2, N − 1] must select arm i + 1,

and then player i = N fails to select any arm with reward
1
2 + 2∆. Thus the max-min value is 1

2 +∆.

Denote the set of player-arm pairs S1 = {(i, k) | µi,k = 0},
S2 = {(i, k) | i ∈ [N − ⌊N

2 ⌋+ 1, N ], k ∈ [1, ⌊N
2 ⌋]} (gray

shaded area in Figure 2). Selecting a player-arm pair in S1

will suffer a large constant regret 1
2 + ∆. Note that when

not selecting any pair in S1, any two pairs in S2 will not be
in the same matching, as stated in the following claim:
Claim 1. Given a matching m, if ∀(i, k) ∈ S1, (i, k) /∈ m,
then ∀(i, k), (i′, k′) ∈ S2 with (i, k) ̸= (i′, k′), we have
(i, k) /∈ m or (i′, k′) /∈ m.

Proof. We show this claim by contradiction. Consider
a matching m that ∀(i, k) ∈ S1, (i, k) /∈ m. Sup-
pose ∃(i, k), (i′, k′) ∈ m with i < i′, (i, k) ∈ S2 and
(i′, k′) ∈ S2. From the construction of S1 and instance ν,
we have that for player i′′ ≤ ⌊N

2 ⌋, it can only select arm
with index less than ⌊N

2 ⌋ + 1. Since i′ > i > ⌊N
2 ⌋, the

number of remaining arms available for top ⌊N
2 ⌋ players is

⌊N
2 ⌋ − 1. This contradicts that m is a matching.

This claim shows that in order to explore all pairs in S2

without selecting low reward pairs in S1, it is necessary to
construct matching for each pair in S2 separately. In other
words, at least ⌊N

2 ⌋
2 matchings are needed in exploration.

Then we can derive the following lemma, which is proved
in Appendix D:
Lemma 4.2. For the above instance ν, and any uniformly
consistent policy π, for ∆ < 1/N , the following inequality
holds:

R(T, ν, π) ≥ ∆

N∑
i=N−⌊N

2 ⌋+1

⌊N
2 ⌋∑

k=1

E [Ni,k(T )] ,

where Ni,k(T ) is the number of times (i, k) is selected up
to time t.

For any pair (i, k) in S2, we can show that when µi,k is
changed to µ′

i,k higher than 1
2 +∆, then the max-min value

will be changed to µ′
i,k. Figure 3 shows the corresponding

max-min matching in this instance. This motivates us to
design another instance ν′ which only changes the distribu-
tion of (i, k). Then applying the divergence decomposition
technique to lower bound Ni,k(T ) Theorem 4.1 is obtained.

Remark. Note that Bistritz et al. (2020) first derived an
Ω(log T/∆) lower bound of max-min problem. However,
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(a) Cumulative regrets for the DFE
algorithm, My Fair Bandit algorithm and

the Leshem algorithm with
N = 4,K = 4.

(b) Cumulative regrets for the DFE
algorithm, My Fair Bandit algorithm and

the Leshem algorithm with
N = 10,K = 10.

(c) Cumulative regrets for the DFE
algorithm, My Fair Bandit algorithm and

the Leshem algorithm with
N = 10,K = 15.

Figure 4: Experimental comparisons of our DFE algorithm with Leshem (Leshem, 2025) and My Fair Bandit algorithms
(Bistritz et al., 2020) under (N,K) = (4, 4), (10, 10), (10, 15) settings respectively.

that is a loose result that does not underscore the roles of
K and N . By contrast, we give a tighter lower bound in
Theorem 4.1, which works for all related parameters. In
Section 3, the regret of the algorithm proposed in this paper
matches such lower bound on all parameters. It means that
this paper not only improves the theoretical result, but also
closes the gap of this problem.

5. Experiments
This section provides numerical simulations to validate that
our DFE algorithm performs well in max-min MP-MAB
problems. Besides, the comparison with previous works
verifies significant improvements of our algorithm.

Here, we take T = 500, 000, and change the values of
N and K to conduct multiple experiments: (N,K) =
(4, 4), (10, 10), (10, 15). The reward of each player-arm
pair (i, k) follows a Gaussian distribution N (µi,k, σ

2) with
σ = 1. The reward means form a reward matrix U , whose
element in the i-th row and the k-th column is µi,k. The re-
ward matrix of (4, 4) and (10, 10) are the same with which
in Bistritz et al. (2020), shown in Appendix E. And for
(10, 15), the mean value is generated uniformly from [0, 1].
We conduct experiments with three algorithms for compar-
ison: DFE (Algorithm 1), Leshem ((Leshem, 2025)), and
My Fair Bandit ((Bistritz et al., 2020)). Each experiment is
repeated 20 times. All plots are averaged over 20 trials with
confidence intervals of 95%.

Figure 4 shows that our DFE algorithm dramatically de-
creases the regret compared to the other two algorithms.
Specifically, in all three experiments, The regret of DFE
algorithm decreases by more than 90% of My Fair Bandit
algorithm and more than 80% of the Leshem algorithm. In
addition, the DFE algorithm converges quickly. On the other
hand, the other two algorithms may experience a long time

before converging, as Figure 4b shows. Besides, the other
two algorithms both suffer regret continuously since they
apply the phased ETC method which requires lasting ex-
plorations even though each player has enough exploration,
while our algorithm would stop selecting sub-optimal pairs
when they are eliminated. At last, note that our novel ex-
ploration assignment method which explores not eliminated
pairs nearly uniformly also helps the algorithm attain less
regret, as the other two algorithms simply explore all arms
even if they have been identified to be sub-optimal. These
numerical results verify the advantage of our algorithm.

6. Conclusion
This paper discusses the max-min MP-MAB problem and
proposes a new algorithm with a tight regret upper bound,
which effectively solves the problem of unfairness. Specif-
ically, the decentralized fair elimination (DFE) algorithm
is proposed and attains the O((N2 + K) log T/∆) regret
upper bound to achieve the max-min fairness. This re-
sult significantly improves the previous regret bound of
O(exp(1/∆) +K3 log T log log T ) with respect to all pa-
rameters (Leshem, 2025). Moreover, a tighter regret lower
bound of Ω(max{N2,K} log T/∆) is derived, which
shows our proposed algorithm exactly matches the lower
bound. Additional experiments also show the efficiency and
improvements of our DFE algorithm.

One future direction of our work is to focus on the robust-
ness and incentive compatibility of the max-min MP-MAB
problem. Another promising future direction is that our in-
sights into the exploration stage in our DFE algorithm can be
generalized into other kinds of MP-MAB problems, which
serves as an effective technique dealing with collisions.
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Appendix

A. Notation
In this section, we summarize all used notations with their meanings in the following table.

N Number of players
K Number of arms
T Number of rounds
ki(t) Arm player i selects at round t
ri,k(t) Reward of player i selecting arm k at round t
µi,k Mean of reward player i selecting arm j
Ci(t) Collision indicator of player i at time t
m Matching
M Set of matching
γ(m) Minimum mean reward in matching m
γ∗ Max-min mean reward
m∗ Matching with max-min mean reward
µ̂i,k(t) Empirical mean reward of i selecting k at t
Ni,k(t) Number of times player i selects arm k up t
UCBi,k(t) UCB index of player i for arm k at round t
LCBi,k(t) LCB index of player i for arm k at round t
γ
s
(m) Minimum LCB value at phase s in matching m

γ̄s(m) Minimum UCB value at phase s in matching m
γ
s

Max-min LCB index at phase s

Table 1: Notation table that includes all used notations with their meanings in the paper.

B. Proof for Section 3
In this section, we first state the supplementary lemma (proved in Appendix D) for Theorem 3.1, and then prove this theorem.

Lemma B.1. Let F = {∃i ∈ [N ],∃k ∈ [K], |µ̂i,k(t)− µi,k| >
√

6 log(T )
Ni,k(t)

} be the bad event that some player-arm rewards
are not estimated well at time t. We have:

P (F) ≤ 2NK/T .

B.1. Proof for Theorem 3.1

Proof. First, from algorithm design we have that the regret is caused by the communication phase and exploration phase
respectively. Then we have

E [R(T )] = E [Rcomm(T )] + E [Rexpl(T )] .

Recall the definition of F , under event ⌝F we can imply that UCBi,k ≥ µi,k ≥ LCBi,k. And the regret caused by
exploration can be bounded by

E [Rexpl(T )] ≤ E [Rexpl(T ) |⌝F ] + TP (F) .

For each epoch s, we define the set of player-arm pair Ds as the eliminated pair at epoch s.

For arm (i, k) ∈ Ds, we have that it is not eliminated at epoch s− 1, where each non-eliminated arm including (i, k) has
been selected at least 2s number of times. Then conditioned on good event ⌝F , we have that

|µ̂i,k(s)− µi,k| ≤
√

6 log T

2s
.

11
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Moreover, since the optimal player-arm pair (i’, k’) with max-min reward γ∗ is not eliminated, it is also selected at least 2s

number of times, we have that

|µ̂i′,k′(s)− µi′,k′ | ≤
√

6 log T

2s
.

Since sub-optimal pair (i, k) is not eliminated, we have that 2
√

6 log T
2s ≥ µi′,k′ − µi,k := ∆i,k. Otherwise it must hold that

UCBi,k(s) < LCBi′,k′(s) and (i,k) will be eliminated after s− 1 epoch.

Thus conditioned on ⌝F , we have that

2s ≤ 24 log T/∆2
i,k .

This implies that ∆i,k ≤
√

24 log T
2s , where ∆i,k := γ∗ − µi,k. Denote ni,k(T ) =

∑T
t=1 1

{
(i, k) ∈ argmin(j,ℓ)∈mt

µj,ℓ

}
as the number of times sub-optimal pair (i, k) counts for the regret. Following the algorithm design, we know that the total
rounds up to epoch s is at most (N2 +K)2s+1, thus∑

(i,k)∈Ds

ni,k(T ) ≤ (N2 +K)2s+1 .

Denote smax as the last epoch that eliminates sub-optimal pairs. We have that

smax ≤ log
(
24 log T/∆2

)
.

Thus regret can be decomposed as

E [Rexpl(T ) |⌝F ] =
∑
(i,k)

ni,k(T )∆i,k

=

smax∑
s=1

∑
(i,k)∈Ds

ni,k(T )∆i,k

≤
smax∑
s=1

(N2 +K)2s+1

√
24 log T

2s

=

smax∑
s=1

4(N2 +K)
√

6 log T2
s
2

≤4(N2 +K)
√
6 log T

√
2(1−

√
2
smax

)

1−
√
2

≤4(N2 +K)
√
6 log T

√
2(1−

√
24 log T/∆2)

1−
√
2

≤164(N2 +K) log T/∆ .

The regret for the communication phase is bounded by the communication length times the number of phase. Since the
length of phase grows exponentially we have that the total number of phase is less than log T . Then the communication
regret is

E [Rcomm(T )] ≤ γ∗N(N − 1)

2⌊N
2 ⌋

log T ≤ γ∗N log T .

Together with above results, we get the final regret bound.
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C. Proof for Section 4
We construct the special instance ν with N ≤ K, the reward mean is designed as follows: For player i ∈ [1, N − 2], the
reward mean of arms k ∈ [i + 2, N ] is 0. For arm k > N , the reward mean is 0 for every player i ∈ [N ]. For player
i ∈ [1, ⌊N

2 ⌋], the reward mean of arms k ∈ [1, i+1] is 1
2 +2∆. For player i ∈ [⌊N

2 ⌋, N −⌊N
2 ⌋+1], the reward mean of arm

k = i is 1
2 +∆, the reward mean of arm k = i+ 1 is 1

2 + 2∆. For player i ∈ [N − ⌊N
2 ⌋+ 2, N ], the reward mean of arm

k ∈ [N −⌊N
2 ⌋+3,min{i+1, N}] is 1

2 +2∆. Other player-arm pairs have reward means 1
2 . Denote νi,k as the distribution

of rewards obtained when arm k is matched to player i in this environment. The special case is shown in Figures 2 and 3.

We denote the set of player-arm pairs S1 = {(i, k) | µi,k = 0}, S2 = {(i, k) | i ∈ [N − ⌊N
2 ⌋+ 1, N ], k ∈ [1, ⌊N

2 ⌋]}.

We first show that the max-min value is 1
2 + ∆. First, we can find a matching m∗ = {(1, 1), (2, 2), . . . , (N,N)} with

minimum reward 1
2 +∆. Second, if there exists a matching m′ with minimum reward 1

2 + 2∆, then by construction the
player i ∈ [⌊N

2 ⌋+1, N−⌊N
2 ⌋+1] must select arm k = i+1. To reach the reward 1

2 +2∆ player i ∈ [N−⌊N
2 ⌋+2, N−1]

must select arm i+ 1, and then player i = N fails to select any arm with reward 1
2 + 2∆. Thus the max-min value is 1

2 +∆.

C.1. Proof for Theorem 4.1

Proof. For term Ni,k(T ), we apply the basic technique in lower bound proof. We consider the above instance ν,universally
consistent policy π, player-arm (i, k) ∈ S2. Let us consider another instance ν′ (which is specific to player i and arm k)
where ν′i′,k′ = νi′,k′ for all (i′, k′) ̸= (i, k), ν′i,k such that D(νi,k, ν

′
i,k) ≤ Dinf(νi,k,

1
2 + ∆,P) + ϵ and µ′

i,k > 1
2 + ∆.

Here Dinf(ν, µ,P) = infν′∈P{D(ν, ν′) : µ′
i,k > x}. Then the max-min value is µ′

i,k and the corresponding max-min
player-arm is (i, k).

For any event A (and its complement Ac), applying Pinsker’s inequality we have

D(Pν,π,Pν′,π) ≥ log

(
1

2(Pν,π(A) + Pν′,π(Ac))

)
.

Now consider A = {Ni,k(T ) ≥ T/2}. Thus we have the regret:

1. In instance ν as R(T, ν, π) ≥ ∆T
2 Pν,π(A).

2. In instance ν′ as R(T, ν′, π) ≥ (µ′
i,k − ( 12 +∆))T2 Pν′,π(A

c).

As the only change in reward distribution happens in (i, k) pair, from the divergence decomposition lemma (Lemma 18 in
Sankararaman et al. (2021)), we have that

D(Pν,π,Pν′,π) = D(νi,k, µ
′
i,k)Eν,π[Ni,k(T )] ≤

(
ϵ+Dinf(νi,k,

1

2
+ ∆,P)Eν,π

)
[Ni,k(T )] .

Then we have (
ϵ+Dinf(νi,k,

1

2
+ ∆,P)Eν,π

)
[Ni,k(T )] ≥ log

(
1

2(Pν,π(A) + Pν′,π(Ac))

)
≥ log

(
T min(µ′

i,k − ( 12 +∆),∆)

4(R(T, ν, π) +R(T, ν′, π))

)
.

The final inequality holds as the policy π is assumed to be universally consistent. Thus we have

lim
ϵ→0

lim
T→∞

∈ Eν,π[Ni,k(T )]

log T
≥ lim

ϵ→0

1

ϵ+Dinf(νi,k,
1
2 +∆,P)

=
1

Dinf(νi,k,
1
2 +∆,P)

.

For P be the class of Bernoulli rewards, we have Dinf(νi,k,
1
2 +∆,P) ≤ ∆2/2. Then we have E [Ni,k(T )] ≥ 2 log T/∆2.

And thus the total regret is lower bounded by

R(T ) ≥
(
⌊N
2
⌋
)2

2 log T

∆
.
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As for the Ω(K log T/∆) lower bound, we can simply let N = 1 and this problem is reduced to the classic single-player
multi-armed bandit problem, which has Ω(K log T/∆) lower bound.

D. Proof for Technical Lemmas
Lemma D.1. (Corollary 5.5 in Lattimore & Szepesvári (2020)) Assume that X1, X2, . . . , Xn are independent, σ-
subgaussian random variables centered around µ. Then for any ε > 0,

P

(
1

n

n∑
i=1

Xi ≥ µ+ ε

)
≤ exp

(
−nε2

2σ2

)
, P

(
1

n

n∑
i=1

Xi ≤ µ− ε

)
≤ exp

(
−nε2

2σ2

)
.

D.1. Proof for Lemma 4.2

We also divide T rounds into two parts: if any pair in S1 occurs in m(t), or there is an empty matching pair, then t ∈ T1. If
m(t) contains no S1 pairs but contains any S2 pairs, then t ∈ T2. It is easy to verify that T1 and T2 do not intersect. Denote
T1 = E [|T1|] and T2 = E [|T2|].

R(T, ν, π) = E

[
T∑

t=1

(
1−min

i

{
(1− Ci(t)) · µi,ki(t)

})]

≥ (
1

2
+ ∆)E

[
T∑

t=1

1{t ∈ T1}

]
+∆E

[
T∑

t=1

1{t ∈ T2}

]

= (
1

2
+∆) · T1 +∆ · T2 .

(1)

Before analyzing term T2, we first claim the following property of matching when no pair in S1 is selected.

For term T2, recall that it means the number of times m(t) contains no S1 pairs but any S2 pairs. Then we can lower bound
this term by

T2 =

T∑
t=1

1{∀(i′, k′) ∈ S1, (i
′, k′) /∈ m(t) and ∃(i, k) ∈ S2, (i, k) ∈ m(t)}

≥
T∑

t=1

N∑
i=N−⌊N

2 ⌋+1

⌊N
2 ⌋∑

k=1

1{∀(i′, k′) ∈ S1, (i
′, k′) /∈ m(t) and (i, k) ∈ m(t)}

=

N∑
i=N−⌊N

2 ⌋+1

⌊N
2 ⌋∑

k=1

T∑
t=1

1{∀(i′, k′) ∈ S1, (i
′, k′) /∈ m(t) and (i, k) ∈ m(t)}

=

N∑
i=N−⌊N

2 ⌋+1

⌊N
2 ⌋∑

k=1

T∑
t=1

(1{(i, k) ∈ m(t)} − 1{(i, k) ∈ m(t),∃(i′, k′) ∈ S1, (i
′, k′) ∈ m(t)})

=

N∑
i=N−⌊N

2 ⌋+1

⌊N
2 ⌋∑

k=1

T∑
t=1

1{(i, k) ∈ m(t)}

−
N∑

i=N−⌊N
2 ⌋+1

⌊N
2 ⌋∑

k=1

T∑
t=1

1{(i, k) ∈ m(t),∃(i′, k′) ∈ S1, (i
′, k′) ∈ m(t)}

≥
N∑

i=N−⌊N
2 ⌋+1

⌊N
2 ⌋∑

k=1

T∑
t=1

1{(i, k) ∈ m(t)} −
(
⌊N
2
⌋
) T∑

t=1

1{∃(i′, k′) ∈ S1, (i
′, k′) ∈ m(t)}
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=

N∑
i=N−⌊N

2 ⌋+1

⌊N
2 ⌋∑

k=1

Ni,k(T )−
(
⌊N
2
⌋
)
T1 .

The first inequality is derived by Claim 1. The last inequality holds since at most ⌊N
2 ⌋ player-arm pairs in S2 can be

simultaneously selected in one matching. And thus T1 can be repeated count ⌊N
2 ⌋ times, leading to

N∑
i=N−⌊N

2 ⌋+1

⌊N
2 ⌋∑

k=1

T∑
t=1

1{(i, k) ∈ m(t),∃(i′, k′) ∈ S1, (i
′, k′) ∈ m(t)}

≤
(
⌊N
2
⌋
) T∑

t=1

1{∃(i′, k′) ∈ S1, (i
′, k′) ∈ m(t)} .

Therefore, we can lower bound the regret as

R(T, ν, π) ≥ (
1

2
+ ∆) · T1 +∆ · T2

≥ (
1

2
− ⌊N

2
⌋∆)T1 +∆

N∑
i=N−⌊N

2 ⌋+1

⌊N
2 ⌋∑

k=1

E [Ni,k(T )]

≥ ∆

N∑
i=N−⌊N

2 ⌋+1

⌊N
2 ⌋∑

k=1

E [Ni,k(T )] ,

(2)

where last inequality holds for ∆ sufficiently small that ∆ < 1/N . This ends the proof.

D.2. Proof for Lemma B.1

P (F) = P

(
∃1 ≤ t ≤ T, i ∈ [N ], k ∈ [K] : |µ̂i,k(t)− µi,k| >

√
6 log T

Ni,k(t)

)

≤
T∑

t=1

∑
i∈[N ]

∑
k∈[K]

P

(
|µ̂i,k(t)− µi,k| >

√
6 log T

Ni,k(t)

)

≤
T∑

t=1

∑
i∈[N ]

∑
k∈[K]

t∑
s=1

P

(
Ni,k(t) = s, |µ̂i,k(t)− µi,k| >

√
6 log T

s

)

≤
T∑

t=1

∑
i∈[N ]

∑
k∈[K]

t · 2 exp(−3 log T )

≤ 2NK/T ,

where the second last inequality is due to Lemma D.1.

E. Details of Experiments
We give the reward matrix of the experiments in Section 5 here. As for another reward matrix with shape 10× 15, all reward
means are uniformly sampled from [0, 1] with no other constraints. All experiments are conducted on CPU.

U4×4 =


0.5 0.9 0.1 0.25
0.25 0.5 0.25 0.1
0.1 0.25 0.5 0.5
0.1 0.9 0.25 0.5

 ,
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U10×10 =



0.9 0.4 0.8 0.1 0.3 0.05 0.2 0.1 0.3 0.2
0.4 0.3 0.3 0.1 0.2 0.3 0.4 0.4 0.3 0.4
0.1 0.05 0.1 0.4 0.1 0.2 0.9 0.3 0.4 0.1
0.05 0.1 0.9 0.2 0.9 0.75 0.1 0.9 0.25 0.05
0.8 0.3 0.1 0.7 0.1 0.4 0.05 0.2 0.75 0.05
0.4 0.05 0.3 0.7 0.05 0.1 0.25 0.75 0.6 0.05
0.9 0.3 0.3 0.8 0.1 0.25 0.7 0.05 0.2 0.3
0.3 0.1 0.4 0.25 0.05 0.9 0.25 0.1 0.05 0.4
0.8 0.75 0.1 0.2 0.4 0.05 0.3 0.2 0.1 0.25
0.4 0.4 0.9 0.7 0.25 0.2 0.05 0.1 0.4 0.25


.

F. Details of Communication Phase
In this section, we provide the details of communication phase in Algorithm 1 if we send information by bit. As the
communication order can be decided as soon as the number of players is given, we focus on the communication between any
player i ∈ N and player j ∈ N , where i < j in epoch s in Algorithm 3. If player i and j collide in arm i, they receive digit
1 from each other; if they collide in arm j, they receive digit 0 from each other, otherwise, their current digit is different
from one another. By such process, player i can receive µ̂j,k(s) and player j can receive µ̂i,k(s) for all k.

Algorithm 3 Communication phase in Decentralized Fair Elimination (for players i and j)

1: Players i and j transfer µ̂i,k(s) and µ̂j,k(s) for every k ∈ K into binary data, µ̃i,k(s) and µ̃j,k(s), respectively.
2: for k = 1, 2, . . . ,K do
3: for τ = 1, 2, . . . , L do
4: if the τ ’s digit of µ̃i,k(s) is 1 then
5: Player i selects arm i.
6: else
7: Player i selects arm j.
8: end if
9: if the τ ’s digit of µ̃j,k(s) is 1 then

10: Player j selects arm i.
11: else
12: Player j selects arm j.
13: end if
14: end for
15: end for
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