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ABSTRACT

Zero-shot Neural Architecture Search (ZS-NAS) is a recently developed low-cost
NAS framework which identifies top-performer neural architectures from a large
candidate pool without training their parameters. Despite its popularity in recent
NAS literatures, the effectiveness of ZS-NAS has not been comprehensively un-
derstood. Previous works analyze ZS-NAS methods on NAS benchmark datasets
such as NAS-Bench-101/201/301 which are initially designed for learning net-
work topology with irregular connections. However, most modern state-of-the-art
networks as well as popular classical ones are designed in more conventional,
well-established search spaces such as ResNet (RS) and MobileNet (MB) search
space. This imposes a significant gap between the benchmark dataset and real-
world practice, hindering a deeper understanding of ZS-NAS. In this work, we
aim to bridge the gap systematically. First, we collect a novel large-scale dataset
termed NAS-Bench-Zero for benchmarking and understanding popular ZS-NAS
methods in the conventional RS/MB search spaces. Then the characteristics of
these ZS-NAS methods are extensively examined from various aspects. Notably,
we find that: 1) the performance of ZS-NAS on NAS-Bench-101/201/301 cannot
transfer to RS/MB search spaces; 2) A proxy with higher ranking correlation score
may actually perform worse in constrained NAS; 3) existing zero-shot proxies
cannot outperform naive proxies such as FLOPs/params in RS/MB search spaces;
4) Top best zero-shot proxies as well as FLOPs/params compensate each other.
Based on these new discoveries, we propose i) a novel hybrid zero-shot proxy
which outperforms existing ones by a large margin and is transferable among
popular search spaces; ii) a new index for better measuring the true performance
of ZS-NAS proxies in constrained NAS. Source code and the NAS-Bench-Zero
dataset will be released after publication.

1 INTRODUCTION

The success of deep learning models (Bengio et al., 2017) has been demonstrated in various com-
puter vision tasks such as image classification (He et al., 2016), instance segmentation (Long et al.,
2015) and object detection (Szegedy et al., 2015). As deep models are widely applied in various
applications nowadays, lots of time and money have been spent on adjusting network architectures
to find the optimal speed/accuracy trade-off for different hardware platforms. In order to reduce this
cost, Neural Architecture Search (NAS) (Zoph & Le, 2016) is invented to automatically discover
and design novel architectures, demanding fewer expert efforts and human interactions.

Nevertheless, one of the challenging problems of NAS is its expensive searching cost due to the
huge search space and slow network training. A number of methods, including weight sharing
(one-shot NAS) (Pham et al., 2018), differentiable search (Liu et al., 2018; Xu et al., 2019), search
space reduction (Chen et al., 2020; Chen et al.) and zero-shot NAS (ZS-NAS) (Mellor et al., 2021;
Abdelfattah et al., 2021; Chen et al., 2021; Lin et al., 2021), have emerged to conquer this problem.
Among these methods, ZS-NAS reduces the searching cost to nearly zero by estimating model
performance without training parameters. This makes it training-free which distinguishes itself from
previous training-based NAS methods.
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As a relatively new research direction, there are many mysteries in ZS-NAS. It is unclear why
ZS-NAS can work at all in a training-free way which takes nearly zero knowledge about the data
distribution. In (Mellor et al., 2021; Abdelfattah et al., 2021; Chen et al., 2021), ZS-NAS is able
to deliver competitive architecture ranking accuracies as good as one-shot NAS. Lin et al. (2021)
even show that ZS-NAS, under some mild conditions and constraints, can outperform state-of-the-
art (SOTA) training-based NAS methods on the target datasets. These findings are counter-intuitive
and require an in-depth investigation.

Just as ImageNet ushered in an era of deep learning, a comprehensive understanding of ZS-NAS
is inseparable from large-scale NAS datasets. Previous ZS-NAS works perform ablation studies on
existing NAS datasets such as NAS-Bench-101/201/301 (NB101/201/301) (Ying et al., 2019; Zela
et al., 2020; Dong & Yang, 2020; Siems et al., 2020). This raises several critical issues. First,
NB101/201/301 are originally designed for cell topology search. This means that the networks in
these benchmark datasets consist of irregularly connected operations which are rarely used in man-
ually designed networks. In real-world practice, many SOTA networks are built upon conventional
well-established designed spaces, such as ResNet (RS) and MobileNet (MB) search space. This
imposes a significant gap between the NAS benchmark datasets and real-world best practice. There
is no guarantee that a ZS-NAS method working well on existing NAS datasets will also work well
in the conventional RS/MB search spaces while the latter ones are more popular in computer vision.

Second, the irregular connection patterns of search spaces defined by existing NAS datasets pre-
vent a deeper understanding of the ablation results. These connection patterns are designed to be
computer-friendly rather than human-friendly. Human-brain is good at capturing high-level concepts
such as the depth and the width of the networks rather than randomly connected graphs of atomic
operations. Therefore, although previous works have conducted considerable amounts of studies on
NAS datasets, there is still little structure knowledge we can distill from these experiments.

Third, since the aforementioned NAS datasets share similar design principles, exclusively relying
on them might lead to incomprehensive evaluation. For example, we found that NB101/201/301
concentrate on small models in low FLOPs regime. (Ning et al., 2021) find that the model accuracies
have a strong correlation with the model FLOPs or number of parameters (params). Such patterns
may no longer hold in real-world practice and the transferability of conclusions derived from these
datasets remains in doubt.

To this end, this work aims to address all of the above problems systematically. The cornerstone of
this work is the collection of a novel large-scale NAS dataset named NAS-Bench-Zero (NBZero).
NBZero collects a full coverage of 50, 894 networks in three regularized RS/MB search spaces. Each
network is trained on CIFAR10/CIFAR100/ImageNet-16-120, following the best practice of modern
training recipes. All networks are endowed with pre-computed popular zero-shot proxy scores.
In this way, NBZero approximates the true performance of ZS-NAS in real-world applications as
closely as possible.

In NBZero, the building blocks are the well-established ResNet blocks and MobileNetV2 blocks.
The collection of networks vary by network depth, width and number of stages. This simulates
the practical scenario where the building blocks are manually designed and the macro-shape of the
network needs to be searched (Cai et al., 2020; Tan & Le, 2019; 2021; Howard et al., 2019). The
search spaces of NBZero are more interpretable than those in the previous NAS datasets. It is much
more easier to understand the successes or failures of ZS-Shot NAS in the language of network
depth and width, which shreds light on possible future improvements.

Although NBZero is built on regularized search spaces, it is counter-intuitively more challenging
than existing NAS datasets. Most zero-shot proxies working well on NB101/201/301 might not
achieve the same competitive performance in NBZero. The FLOPs/params/accuracy distribution
are more diverse in NBZero. While previous NAS datasets mostly consist of small lightweight
models, NBZero additionally includes large models in high accuracy regime. Therefore, NBZero is
perpendicular to previous NAS datasets. By studying ZS-NAS on NBZero as well as previous NAS
datasets, we will get a more comprehensive understanding of ZS-NAS methods.

After collecting the architecture-accuracy pairs in NBZero, we re-evaluate popular ZS-NAS proxies
on NBZero. We find that naive proxies such as FLOPs and params provides a strong baseline in
both NBZero and previous NAS datasets. When combining zero-shot proxies with FLOPs/params,
we obtain a hybrid zero-shot proxy that outperforms single zero-shot proxies and is comparable to
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oracle proxy (the ground-true accuracy). We also show that not all combinations of proxies lead to
improvements. Therefore, finding the best hybrid proxy is non-trivial.

Finally, as a by-product, we find that conventional indices such as Kendall’s τ or Pearson’s ρ cannot
precisely reflect the true performance of a zero-shot proxy in constrained NAS. We then propose a
novel index termed mean best-ranking under constraints (mBR). The definition of mBR is given in
Section 3.4.

We summarize our major contributions in this work as follows:

• We publish a large-scale NAS benchmark dataset NBZero for understanding zero-shot NAS
in the conventional search spaces.

• We show that the benchmark results on previous NAS datasets might not transfer well to the
conventional search spaces. The NBZero together with previous NAS datasets constitute a
more comprehensive, less biased evaluation for zero-shot NAS methods.

• Popular zero-shot proxies are extensively analyzed in NBZero from various aspects. Many
characteristics of zero-shot proxies are revealed for the first time. Particularly, existing
zero-shot proxies share a similar pattern in weighting depth/width importance but this pat-
tern is very different from the oracle proxy (ground-truth accuracy).

• A non-trivial hybrid zero-shot proxy is proposed to achieve the SOTA performance on
NBZero as well as previous NAS datasets.

• A novel index mBR is proposed to better measure the true performance of zero-shot proxy
in constrained NAS.

2 RELATED WORK

2.1 NAS BENCHMARKS

To boost researchers to verify the effectiveness of NAS methods efficiently, a series of NAS bench-
marks, such as NB101 (Ying et al., 2019), NAS-Bench-1shot1 (NB1shot1) (Zela et al., 2020),
NB201 (Dong & Yang, 2020), NB301 (Siems et al., 2020), etc, are established. NB101 (Ying
et al., 2019) provides the performances of the 423k valid architectures in a cell-based search space.
To apply NB101 to one-shot NAS and reuse NB101, NB1shot1 (Zela et al., 2020) picks out three
sub-spaces of NB101, and a supernet can be easily constructed for these sub-spaces, overcoming
NB101’s specific channel number rule. Another benchmark, NB201 (Dong & Yang, 2020) of-
fers the performances of all the 15625 architectures in a single-cell search space. But there is a
problem that previous tabular benchmarks exhaustively training all architectures in a search space
are much smaller than commonly-used ones (e.g. DARTS (Liu et al., 2018) with size over 1018).
Hence, NB301 (Siems et al., 2020) is introduced based on the cell-based search space, which adopts
a surrogate-based methodology that predicts architecture performances with the performances of
about 60k anchor architectures. Different from these existed celled-based benchmarks, our NSZero
is designed based on chain-structured search space. Also, NSZero is more challenging than existed
benchmarks because of their limited FLOPs, parameters and accuracies.

2.2 ZS-NAS

Recently, a new NAS framework called ZS-NAS (Mellor et al., 2021; Abdelfattah et al., 2021) is
proposed to further reduce the architecture evaluation cost by training-free architecture searching.
Mellor et al. (2021) introduce an zero-shot indicator based on input jacobian correlation. Abdelfattah
et al. (2021) combine several pruning proxies, including snip (Lee et al., 2018), grasp (Wang et al.,
2020), synflow (Tanaka et al., 2020) and fisher (Theis et al., 2018), to form a new zeros-shot NAS
proxy. TE-NAS (Chen et al., 2021) proposes a combination of NTK-score and number of active
region as zero-shot proxy. Recently, Zen-NAS (Lin et al., 2021) proposes a re-scaled version of
gradient norm of the network named Zen-score as zero-shot proxy and achieves SOTA performance
in ImageNet.
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3 NAS-BENCH-ZERO

We describe our design of the NBZero in this section. Then we compare NBZero to previous NAS
datasets, showing that they have different distribution patterns and the benchmark results on previous
ones cannot transfer well to NBZero. Finally we propose the novel mean Best Ranking (mBR) for
constrained NAS.

3.1 SEARCH SPACE

The search space of NBZero follows common practice in popular SOTA computer vision models,
such as ResNet (He et al., 2016; Bello et al., 2021) and MobileNetV2/EfficientNet (Sandler et al.;
Tan & Le, 2019). Moreover, our search spaces consists of 3 or 4 stages and 3 down-sampling parts,
and the positions of down-sampling is randomly selected from 3 or 4 stages. Also, the choices of
depth or channels are sampled from a series of predefined sets. Particularly, we consider three search
spaces:

Search Space SS-R1 SS-R1 uses the same building block as ResNet-18/34, which consist of two
3x3 convolutional layers wrapped inside residual link;

Search Space SS-R2 SS-R2 uses the same building block as ResNet-50, which consists of three
convolutional layers of kernel size 1x1+3x3+1x1 respectively;

Search Space SS-MB SS-MB uses the same block as MobileNetV2, which consists of two 1x1
convolutional layers and one 3× 3 depth-wise convolution.

The total number of networks on R1/R2/MB is 14, 964, 10, 187 and 9, 743 respectively. More details
can be found in our source code.

3.2 DATASETS AND TRAINING SETTINGS

We train each network in NBZero on three popular image recognition datasets: CIFAR-10, CIFAR-
100 Krizhevsky et al. (2009) and ImageNet-16-120. Detail information of these datasets can be
found in. For all datasets, we use the official training/testing splitting. For hyper-parameter tuning,
we further split the training set into 10% NAS validation set and 90% NAS training set. The valida-
tion is used for other NAS methods, like one-shot NAS, not for ZS-NAS methods here. Note that on
CIFAR-100 we train all the three search spaces proposed above, but on CIFAR-10 and ImageNet-
16-120, we just train SS-R1.

We use SGD to train all models. Following best practice suggested in (He et al., 2018), we use
initial learning rate 0.1, cosine learning rate decay, 360 training epochs, weight decay 5e-4, auto-
augmentation (Cubuk et al., 2019), mixup (Zhang et al., 2018), label smoothing (Szegedy et al.,
2016).

3.3 ZERO-SHOT PROXIES AND META DATA

For easy and fast evaluation of zero-shot proxies, we record several meta data in addition to the
accuracy for each network in the dataset. We pre-computed all zero-shot proxies used in this work:
grad norm, plain (Mozer & Smolensky, 1989), snip (Mozer & Smolensky, 1989), grasp (Wang
et al., 2020), fisher (Turner et al., 2019; Theis et al., 2018), synflow (Tanaka et al., 2020), jacob cov
(Mellor et al., 2021), ntk (Chen et al., 2021), and zen (Lin et al., 2021). The FLOPs and the number
of parameters (params) are saved for budget constrained NAS. In some experiments, FLOPs and
params are used as naive zero-shot proxies.

3.4 MEAN BEST RANK (MBR) INDEX FOR CONSTRAINED NAS

We mainly focus on a practical scenario of NAS where we are given inference budget constraints,
such as FLOPs and params, and aim to search for architectures with the highest accuracy. Previous
works rely on conventional indices such as Kendall’s τ or Pearson’s ρ to compare the performance
of different zero-shot proxies. We find that these conventional indices cannot precisely reflect the
true performance of ZS-NAS in constrained NAS. To this end, we propose a novel index termed
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mean Best Rank (mBR) for this purpose. Suppose we have N architectures in our candidate pool.
The set S S = s1, s2, · · · , sM specifies all possible budget constraints we want during the search.
The rank ri is the true rank of architecture found by a ZS-NAS method under budget si. The mBR
is then defined as:

mBRS ,
∑
s∈S

ri/(MN) (1)

Clearly, mBR is the smaller the better. A small mBR means that the corresponding NAS method
is able to find top-ranked architectures under budget constraints with high probability.

4 UNDERSTANDING ZERO-SHOT NAS

In this section, we prove the validness of mBR. Then the necessity of NSZero is domesticated by
comparing it with NB201. As NB101/201/301 follow similar design principles, we focus on NB201
in the following experiments. On top of that, we show the transferability of ZS-NAS on different
datasets and search spaces. Finally, improvements of ZS-NAS are presented.

4.1 MBR V.S. CONVENTIONAL PERFORMANCE INDEX IN CONSTRAINED NAS

Bench Proxies Multi-Column Accuracy (%)
LC KD SR mBR 20% 40% 60% 80% 100%

NBZero

Oracle 1.0 1.0 1.0 0.0 75.3 77.1 77.8 78.6 79.1
FLOPs 0.79 0.704 0.881 0.157 72.2 74.6 76.1 76.5 76.8
Params 0.626 0.592 0.77 0.213 71.7 72.9 76.6 76.6 76.6
depth 0.269 0.195 0.271 0.498 68.5 73.2 76.7 77.3 77.3
fisher 0.739 0.599 0.795 0.365 72.2 74.5 74.5 75.3 73.4

grad norm 0.703 0.498 0.689 0.282 72.2 74.1 76.6 75.0 75.0
snip 0.789 0.641 0.83 0.356 72.2 73.9 75.5 75.0 73.4
grasp -0.17 -0.138 -0.207 0.683 71.5 71.5 71.5 71.5 71.5

jacob cov 0.261 0.152 0.228 0.409 65.2 75.1 75.1 75.1 75.1
plain -0.034 -0.019 -0.029 0.675 62.2 62.2 74.3 74.3 74.3

synflow 0.507 0.356 0.514 0.102 73.3 75.9 75.5 77.6 76.3
ntk -0.162 -0.12 -0.187 0.796 63.4 71.5 71.5 71.5 71.1
zen 0.596 0.42 0.598 0.108 73.1 75.9 75.5 77.6 76.3

Table 1: Comparison with the state-of-the-art ZS-NAS methods under different assessment criteria.

In Tab. 1, the results of all kinds of ZS-NAS scores under different criterion are reported and the ac-
curacy is under different limitations of FLOPs. It shows that under conventional indices, FLOPs and
Params seem to perform better than ZS-NAS scores. For example, while snip achieves almost the
best result among ZS-NAS scores (0.789 LC, 0.641 KD τ , 0.83 SpearmanR, 0.025 BR@top0.1%
and 0.239% P@top5%), the FLOPs is better than snip (0.79 LC,0.704 KD τ , 0.881 SpearmanR
(SR)). However, under the more precise criteria of mBR, FLOPs and Params are worse than some
ZS-NAS scores, like zen and synflow, which is also demonstrated by accuracies. We can see from
the table, the performance of synflow is better than FLOPs and Params, which corresponds to mBR.
That’s because BR identities to rank and mBR is the mean of BRs on constrained NAS. Thus, mBR
can reflect the performance of constrained NAS better. Also, we find that there is a contradiction
between conventional indices and our mBR, which means scores with a high evaluation may not be
recognized well under the mBR criteria. It is reasonable because a good performance under conven-
tional indices means good correlation between estimated scores and true accuracies, but good corre-
lation does not mean a great performance of NAS. In Fig. 3, good correlation of fisher, grad norm,
snip, FLOPs and Params can be observed, but they will not obtain great true accuracies showed in
Fig. 4(b). Nevertheless, the consistency between mBR and true accuracies can be proved shown in
Tab. 1 and Fig. 4(b). In addition, although BR can sometimes represent true accuracies, there are so
many K to be selected and which one should we use is very tricky. In sum, the effectiveness of the
proposed criteria mBR is demonstrated.
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Figure 1: mBR between GT (Oracle), FLOPs/Params and ZS-NAS.
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Figure 2: The distribution between
GT (Oracle) and FLOPs/Params.

4.2 TRANSFER FROM NAS-BENCH-201 TO NAS-BENCH-ZERO

From Fig 1 showing the mBR between true accuracies (Oracle), FLOPs, Params and ZS-NAS on
both NB201 and NBZero, different phenomenon can be found: 1) both of the best NS-Zero methods
is synflow, but other methods, like fisher, grad norm grasp and jacob cov, which perform pretty
poor on NS201 are not so bad on NSZero; 2) FLOPs and Params perform better than synflow,
but on NBZero, the conclusion is reverse, which both demonstrate the necessity of NBZero. The
reasons lead to these phenomenon are the different FLOPs, Params and model accuracy, which are
represented in Fig. 2. On the Top of Fig. 2 is NB201 and the bottom one is NBZero. From it, we
can observe that the FLOPs and Params on NB201 are limited, only from 0 to 1.6 and 0 to 200
respectively, but on NBZero they are not so limited, from 0 to 14 and 0 to 700 respectively, which
are commonly used; also, maximum accuracy on NBZero is higher than NB201 (79.1 vs 73.3). Both
of them show NSZero is more challenging than NB201.
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Figure 3: The distribution between estimated scores and true accuracies.

In Fig. 3, it is apparent that the distribution of scores on both benchmarks are different. The distri-
bution on NB201 is a little bit strange, but on NBZero that is more regular. On NBZero, there are
four groups which have the same shape: the first is fisher, grad norm and snip; the second is grasp
and plain; the third is jacob cov and ntk; and the forth is synflow and zen.

4.3 THE PERFORMANCE OF ZERO-SHOT PROXY IN CONSTRAINED NAS

In order to observe and analyze constrained NAS, evaluation will be done from three aspects:
FLOPs, Params and depth.

FLOPs: Aimed at assessing the whole effectiveness of NAS searching under the different limitations
of FLOPs, 5 search subspaces are created based on the original search space under limitations of
FLOPs. The limitations are set evenly between minimum and maximum of FLOPs of the original
search space. In Fig. 4, both BRs and the best accuracies of different scores on five search subspaces
are given. We find that there’s an apparent gap between architectures searched by scores and the
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Figure 4: The accuracy and mBR under different lim-
itations of FLOPs.
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Figure 5: The accuracy and mBR under different lim-
itations of Params.

true best architectures in each search subspace. Also, zen and synflow perform better than FLOPs,
Params and depth, especially in the search subspace where FLOPs is < 20%.

Params: Attempting to evaluate the whole effectiveness of NAS searching under the different limi-
tations of Params, 5 search subspaces are created based on the original search space under limitations
of Params. The limitations are set evenly between minimum and maximum of Params of the original
search space. In Fig. 5, both BRs and the best accuracies of different scores on five search subspaces
are given. We also find that there’s an apparent gap between architectures searched by scores and the
true best architectures in each search subspace. And accuracies between different search subspaces
are not obviously different. Here, zen and synflow perform the similar as FLOPs, Params and depth.
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Figure 6: The accuracy and mBR under different
limitations of Depths.

Depth: In order to measure the whole effectiveness
of NAS searching under the different limitations of
depths, 5 search subspaces are created based on the
original search space under limitations of depths.
The limitations are set evenly between minimum and
maximum of depths of the original search space. In
Fig. 6, both BRs and the best accuracies of differ-
ent scores on five bsearch subspaces are given. We
find that there’s an apparent gap between architec-
tures searched by scores and the true best architec-
tures in each search subspace. Additionally, zen and synflow perform a little worse than FLOPs, but
perform better than Params and Depths.

4.4 EVALUATION OF TRANSFERABILITY OF ZS-NAS

In order to evaluate the transferability of ZS-NAS, two aspects, including different datasets and
search spaces, are considered.

Dataset Criteria fisher grad norm snip grasp jacob cov plain synflow ntk zen FLOPs Params Oracle

CIFAR-10 mBR 0.338 0.488 0.459 0.893 0.895 0.249 0.212 0.482 0.133 0.142 0.779 0.0
Acc (%) 94.9 94.2 94.8 92.6 92.6 95.1 94.7 94.9 95.3 95.5 93.4 95.7

CIFAR-100 mBR 0.365 0.282 0.356 0.683 0.409 0.675 0.102 0.796 0.108 0.157 0.213 0.0
Acc (%) 73.4 75.0 73.4 71.5 75.1 74.3 76.3 71.5 76.3 76.8 76.6 79.1

ImageNet mBR 0.312 0.182 0.175 0.766 0.705 0.345 0.093 0.672 0.093 0.286 0.277 0.0
-16-120 Acc (%) 50.2 51.9 51.0 48.2 45.7 49.3 51.9 46.0 51.9 50.0 51.3 53.0

Table 2: Comparison with ZS-NAS methods on different datasets.

Performances on Various Datasets: Here, three datasets, including CIFAR-10, CIFAR100 and
ImageNet-16-120, are applied to evaluate. From the Tab. 2, we can observe that on various datasets,
ZS-NAS performs pretty well and the best scores are robust. On the three datasets, synflow and
zen performs the best, which indicates the stability of ZS-NAS scores on different datasets and their
transference. However, FLOPs and Params do not perform stably: on CIFAR-10, FLOPs performs
the similar as zen (0.142 vs 0.133 on mBR), and also on CIFAR-100, FLOPs performs comparably
with synflow (0.157 vs 0.102 on mBR), but on ImageNet-16-120, they perform worse than synflow
and zen (0.286 vs 0.093 on mBR).
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Search Space Criteria fisher grad norm snip grasp jacob cov plain synflow ntk zen FLOPs Params Oracle
Bench-Zero mBR 0.365 0.282 0.356 0.683 0.409 0.675 0.102 0.796 0.108 0.157 0.213 0.0
-R1 Acc (%) 73.4 75.0 73.4 71.5 75.1 74.3 76.3 71.5 76.3 76.8 76.6 79.1
Bench-Zero mBR 0.222 0.269 0.154 0.475 0.342 0.226 0.057 0.934 0.045 0.132 0.253 0.0
-R2 Acc (%) 77.7 78.0 78.0 78.9 78.7 78.5 79.3 71.8 79.3 78.0 79.1 80.0
Bench-Zero mBR 0.14 0.1 0.142 0.389 0.11 0.409 0.125 0.982 0.125 0.109 0.251 0.0
-MB Acc (%) 73.4 74.0 73.9 72.9 74.6 71.9 74.3 58.4 74.3 74.0 74.3 75.7

Table 3: Comparison with ZS-NAS methods on different search space.

Performances on Assorted Search Space: In order to analyze the performance of ZS-NAS on
different structures, three search space, including Bench-Zero-R1, Bench-Zero-R2 and Bench-Zero-
MB, are applied to assess. From the Tab. 3, we can observe that on assorted search space, the best
scores are almost the same. On the three search space, synflow and zen have the better performance
than other scores, except for Bench-Zero-MB where jacob cov performs the best, but synflow and
zen have the similar performance with it. However, FLOPs and Params still have unstably per-
formance: on Bench-Zero-MB, FLOPs performs better than scores, but on Bench-Zero-R2, they
perform pretty worse than zen (0.132 vs 0.045 on mBR), which indicates the stability of ZS-NAS
scores on different search space and their transference.

4.5 FACTOR ANALYSIS
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Figure 7: The importance of the various attributes of
architectures.
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Figure 8: Best architectures searched by ZS-NAS.

4.5.1 WHICH ELEMENTS AFFECT ZS-NAS

As we all know, depth and width affect the performance of networks, but which one will affect
the estimation of ZS-NAS over networks? In order to figure out this question, XGBoost (Chen &
Guestrin, 2016) is applied to analyze the importance of the inputs, including input channels Siin,
output channels Siout, stride s and depth L of the ith stage Si. As we can see from Fig. 7(a), all the
ZS-NAS scores, except fisher, are affected by depth greatly and they almost have the same shape in
radar chart. The most important factors include S1L, S2L, S3L and S4L, which are the depth of each
stage. In contrast, fisher is influenced by channels largely and its important factors mainly contain
S1out, S4out, S2out and S3out, which are the width of each stage.

In order to improve ZS-NAS scores, it is necessary to find out which factors mainly contribute to
true performance. So XGBoost (Chen & Guestrin, 2016) is applied to analyze the importance of the
inputs too. As shown in Fig. 7(b), the true accuracy is primarily affected by width, which is different
from most of scores shown in Fig. 7(a). The most important factors include S2out, S3out, S4out
and S4L, which are almost the width of each stage, which indicates there are still lots of potential to
improve ZS-NAS scores. If scores can computed mainly by these factors, they will be improved.

4.5.2 BIAS OF ZS-NAS SCORES

By observing the best architectures searched by ZS-NAS scores, characteristics are of architectures
indicated by scores are presented in Fig. 8, where the width of each stage represents the width of
its out channels and the length of each stage shows the depth of it. Fig. 8 shows that snip has an
excessive preference for wide channels and grasp prefers to narrow architectures, perhaps which is
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why they perform badly. Moreover, the architecture search by zen is neither too wide nor too deep
and its depth is progressive, which matches the common experience of networks designing.

4.6 HYBRID ZERO-SHOT PROXY
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Figure 9: The best result in
each number of the combination of
scores.
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Figure 10: The results of architectures searched by original scores and
combined scores under different limitations of FLOPs.

Combination with Other Scores: Fig 9(a) shows the mBR of traversing the combination of multi
scores on NBZero-R1 and only the best result in each number of the combination of scores is pre-
sented. It can get the same conclusion as Abdelfattah et al. (2021) that voting (associating with
scores) can improve performance: the mBR of combination of 8 scores is better than only using
original best scores, but combining all scores is not optimal. Namely, not more is better. Just the
combination of 4 kinds of scores achieve the best mBR 0.08%. The four types of scores are ja-
cob cov, zen, snip and synflow, which are different in the distribution between estimated scores and
true accuracies shown in Fig 3: snip is monotonically increasing and the other are like rhombus.
It is meaningful because intuitively, mixing different useful characteristics can boost performance.
Also, other new scores combined by 2 kinds of scores which have the similar mBR all contain snip
and synflow, proving the conclusion. As we all know, ZS-NAS does not use the true performance
of networks, but we use performance to find the best combination here. So in order to domesticate
the validness of combination, we apply the combinations found on NBZero-R1 to NBRzero-MB
directly, and the results show in Fig 9(b). From it, we find that the combinations of 4 types of scores
is better than the original score, even if it is not the best one.

Combination with Computation Metrics: Besides combination with other scores, combining with
computation metrics, like FLOPs and Params, can also enhance the performance. However, when
combine scores with FLOPs and Params, there will be a great improvement in performance. From
the Fig. 10(b), we can see that performances of nearly every scores in every subspace are boosted
after combinations. For example, zen FLOPs, the combination of zen and FLOPs, is improved
from the original results of zen 73.1%, 75.9%, 75.5%, 77.6% and 76.3% to the combined results
73.1%, 76.0%, 76.7%, 77.6% and 77.3%. Also, even if scores, like grasp, which are worse than
FLOPs, they will perform better than FLOPs on the whole after combining with FLOPs, demon-
strating roles of ZS-NAS score.

5 CONCLUSIONS

In the paper, a new NAS benchmark called NAS-Bench-Zero based on layer-by-layer search space is
created to analyze zero-shot better. Also, a new assessment criterion, which can better measure the
performance than the existed criteria, is proposed to assess constrained NAS. Within the analysis,
ZS-NAS is proved promising, but it still have a long way to go to approach true performance. To
help enhance ZS-NAS, several suggestions and directions are proposed to develop ZS-NAS.
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