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ABSTRACT

The paper focuses on the a posteriori tuning of a generative model in order to
favor the generation of good instances in the sense of some external differentiable
criterion. The proposed approach, called Boltzmann Tuning of Generative Models
(BTGM), applies to a wide range of applications. It covers conditional generative
modelling as a particular case, and offers an affordable alternative to rejection
sampling. The contribution of the paper is twofold. Firstly, the objective is formal-
ized and tackled as a well-posed optimization problem; a practical methodology is
proposed to choose among the candidate criteria representing the same goal, the
one best suited to efficiently learn a tuned generative model. Secondly, the merits
of the approach are demonstrated on a real-world application, in the context of
robust design for energy policies, showing the ability of BTGM to sample the
extreme regions of the considered criteria.

1 INTRODUCTION

Deep generative models, including Variational Auto-Encoders (VAEs) (Kingma & Welling, 2014;
Rezende et al., 2014), Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), and
Normalizing Flows (Rezende & Mohamed, 2015), have been used in a number of ways for (semi)-
supervised learning and design. Their usage ranges from robustifying classifiers (Kingma et al., 2014;
Li et al., 2019) to achieving anomaly detection (Pidhorskyi et al., 2018; Choi et al., 2019)) or solving
undetermined inverse problems (Ardizzone et al., 2019), from super-resolution of images (Ledig
et al., 2017) to computer-assisted creative design (Park et al., 2019). In most cases, the fine-tuning
of the generative model is seamlessly integrated within the learning process: through the design of
the latent representation (Radford et al., 2016; Mathieu et al., 2016) or through the loss itself, e.g.
leveraging labelled information to train conditional generative models (van den Oord et al., 2016)
(more in section 2).

This paper tackles the a posteriori tuning of a trained generative model, aimed at favoring the
generation of good samples in the sense of a given criterion. The applicative motivation for the
proposed approach comes from the design of energy safety policies. In this context, an infrastructure
must be tested against a host of diverse production and consumption scenarios, and specifically against
their associated consumption peaks.1 One applicative goal of the proposed approach, called Boltzmann
Tuning of Generative Models (BTGM), is to address this problem by generating consumption curves
directly sampling the desired top quantiles of the aggregated consumption distribution.

This paper considers the general setting defined by a trained generative model and some criterion
f , with the goal of generating samples biased toward maximizing f . This goal is formalized as a
constrained optimization problem in the considered distribution space, and a first contribution is to
show how to soundly and effectively tackle this problem within the variational inference framework,
assuming the differentiability of the criterion (section 3). The proposed BTGM approach can be
applied on the top of any deep generative model, covering conditional generative models (van den
Oord et al., 2016) as a particular case. It also opens some perspectives in privacy-sensitive domains,
e.g. to generate samples in critical and data-poor regions (see also Dash et al. (2020)). In practice,
BTGM offers an affordable and, to our best knowledge, new alternative to rejection sampling.

1These consumption peaks are usually estimated by Monte-Carlo methods, coupling a generative model with
rejection sampling, along a tedious and computationnally heavy process, involving the critical estimation of the
diversity factor (Gonen, 2015; Sarfraz & Bach, 2018).
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Most generally, BTGM is an attempt toward reconciling data-driven models (here, the generative
model learned from extensive data) on the one hand, and analytical, interpretable knowledge (here,
the characterization of f ) on the other hand. While ML traditionally focuses on cases where
knowledge/specification is better conveyed through data, some specifications are better conveyed
analytically, particularly so when they are poorly illustrated in the data (see also Bessiere et al.
(2017)). The challenge is to take advantage of both raw data and analytical criteria in an integrated
way. Along this line, a second contribution of the paper regards how to formulate the user’s criterion
f in the most effective way. Indeed the objective can be formulated in many different ways, up to
monotonous transformations of f . In order to avoid determining the best formulation of the criterion
along a tedious trial-and-error phase, an indicator based on the analysis of the underlying optimization
process is defined, enabling the comparison of candidate criteria w.r.t. the tuning of the generative
model at hand.

Section 4 presents several case studies to illustrate the merits and flexibility of the approach: recover-
ing conditional generative modeling (4.1), comparing candidate criteria (4.2), showing the flexibility
of the approach in the energy consumption modeling domain (4.3) and investigating the a posteriori
deblurring of a generative model (4.4).

2 RELATED WORK

Probability distribution learning is most generally tackled within the Variational Inference (VI)
framework. VI being also at the core of the proposed approach, it is presented in section 3.2 in a
unified way, to both learn a probability distribution from raw data, and tune an existing probability
distribution along an analytical criterion.

The current trends in generative modelling mostly leverage the deep learning efficiency and flexibility
to estimate a probability distribution from data, supporting an efficient sampling mechanism (Kingma
& Welling, 2014; Rezende et al., 2014; Goodfellow et al., 2014; Rezende & Mohamed, 2015). Most
approaches rely on the introduction of a latent space, whose samples are decoded into a data space.
The generative model is trained to optimize a goodness-of-fit criterion on the original data. In VAEs
(Kingma & Welling, 2014), the goodness of fit is the log-likelihood (LL) of the initial data, estimated
using the Evidence Lower Bound (ELBO) (Bishop et al., 1998), as the distribution involves an
unknown/unmanageable normalization constant. In GANs (Goodfellow et al., 2014), the goodness of
fit criterion is replaced by a 2-sample test, adversarially training the generator and a discriminator
estimating whether the generated examples can be discriminated from the original samples.

Distribution spaces. How to make the generative model space flexible enough to accurately ap-
proximate the true distribution is mostly handled through using richer latent spaces and/or inference
models (Burda et al., 2016; van den Oord et al., 2017; Roy et al., 2018; Razavi et al., 2019; Huang
et al., 2019; Mathieu et al., 2019a; Kalatzis et al., 2020; Skopek et al., 2020). The modelling of
multi-mode distributions can also be tackled using continuous and discrete latent variables (Jang
et al., 2017; Vahdat et al., 2018). Specific architectures are designed to exploit the specifics of the
data structure, such as Wavenet or Magenta for signal processing (Oord et al., 2016b; Roberts et al.,
2018) or PixelRNN/CNN for images (Oord et al., 2016a; Salimans et al., 2017), enabling the data
likelihood to be explicitly computed and optimized. Normalizing Flows (Rezende & Mohamed, 2015;
Dinh et al., 2015) also proceed by gradually complexifying a distribution, with the particularity that
each layer is invertible and enables its Jacobian to be analytically determined, thereby supporting the
approximation of the posterior distributions (Dinh et al., 2017; Kingma et al., 2017; Ardizzone et al.,
2019; Chen et al., 2020).

Loss functions. The loss function encapsulates the goodness of fit criterion. Many VAE variants
focus on the reformulation of the loss to finely control the trade-off between the reconstruction quality
and encoding compression (Higgins et al., 2017; Rezende & Viola, 2018; Alemi et al., 2018; Mathieu
et al., 2019b). The loss design also aims to avoid pitfalls, notably in terms of instability or mode
dropping (Arjovsky et al., 2017) with GANs; other distances between the generated and the original
distributions (Nowozin et al., 2016; Arjovsky et al., 2017) and/or more elaborate model architectures
(Sajjadi et al., 2018; Shaham et al., 2019; Torkzadehmahani et al., 2019) have thus been investigated.

Refining Generative Models. Most generally, the refinement of generative models is based on
exploiting supervised information to build conditional models (Mirza & Osindero, 2014; Sohn et al.,
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2015; van den Oord et al., 2016; Jaiswal et al., 2019). Another strategy is to use several data samples,
within a domain adaptation or multi-task setting (Ganin et al., 2016), and to learn coupled generative
models (Chu et al., 2017). Most generally, the customization and refinement of generative models
builds upon one or several datasets, exploiting prior knowledge about their features (labels), or about
the relationships between the datasets (Courty et al., 2017).

The alternative explored by BTGM is to use high-level, analytical information, expressed via criteria,
to refine a generative model. On the positive side, this approach is flexible and does not depend on
the regions of interest of the instance space to be "sufficiently" represented in the dataset(s). On the
negative side, the approach might be too flexible, in the sense that the regions of interest might be
specified in a number of ways, although not all specifications are equally easy to deal with. We shall
return to this point in section 4.2.

3 BOLTZMANN TUNING OF GENERATIVE MODELS

Let p and f respectively denote the initial generative model defined on the sample space X ⊂ Rd,
and the criterion of interest (f : X 7→ R). It is assumed wlog that the generative model should be
biased toward regions where f takes high values. The sought biased generative model q is expressed
as the solution of a constrained optimization problem: maximizing the expectation of f under q,
subject to q remaining "sufficiently" close to p in the sense of their Kullback-Leibler divergence:

Find q = argmaxEq[f ] s.t. DKL(q‖|p) ≤ CD (1)

with CD a positive constant. The Lagrangian L associated to this primal constrained optimization
problem is, with λ the Lagrange multiplier accounting for the constraint:

L(q) =
∫
X
q(x)f(x)dx+ λ

∫
X
q(x) log

q(x)

p(x)
dx (2)

reaching its optimum for:

qβ(x) =
1

Z(β)
p(x)eβf(x) (3)

with β = 1/λ and Z(β) the normalization constant. BTGM tackles the dual optimization problem
of minimizing DKL(q||p) subject to Eqf being greater than some constant Cf , yielding solution qβ
for some β depending on Cf (below):

qβ = argmax
q

β Eqf −DKL(q‖p) (4)

3.1 FINDING β

Varying the strength of the bias, from no bias (β = 0 yields qβ = p) to β =∞ (with qβ with support
in the optima of f ) yields a family of distributions, the Pareto front associated to the maximization of
Eqf and minimization of DKL(q‖p). Simple calculations yield (Appendix A):

d

dβ
DKL(qβ‖p) = βV arqβ (f) and

d

dβ
Eqβf = V arqβ (f) (5)

DKL(qβ‖p) and Eqβf being strictly increasing functions of β, there exists a one-to-one mapping
between the values of DKL(qβ‖p), and Eqβf , hence there exists a single β value such that qβ solves
the constrained optimization problem. Further calculations yield the second order derivatives:

d2

dβ2
DKL(qβ‖p) = V arqβ (f) + βEqβ

(
f − Eqβf

)3 d2

dβ2
Eqβf = Eqβ

(
f − Eqβf

)3
(6)

Note that any generative model qβ enables by construction to empirically estimate the first three
moments of f under qβ , as well as DKL(qβ‖|p). Plugging these estimates in Eqs. 5 and 6 and
using second order optimization methods (Boyd & Vandenberghe, 2004) enables to quickly converge
toward the desired value of β, i.e. such that Eqβf = Cf (Alg. 1).
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Algorithm 1 BTGM

β ← 0
repeat
qβ ← argmaxq βEqf −DKL(q‖p) (section 3.2)

Estimate DKL(qβ‖p), Eqβf , V arqβ (f) and Eqβ
(
f − Eqβf

)3
by Monte-Carlo sampling

Do a second-order update of β using Eq. 5 and 6.
until convergence of β

3.2 BUILDING qβ

It is seen that Eq. 4 essentially defines a Variational Inference (VI) problem for each β value. This
problem is reformulated using the Evidence Lower Bound (ELBO) (Bishop et al., 1998):

qβ = argmax
q

H(q) + E
x∼q

[βf(x) + log p(x)] (7)

with H(q) the entropy of q.

VI is intensively used for generative modelling, optimizing q based on samples of the true distribution.
The optimization of the ELBO (Ranganath et al., 2014) classically proceeds by leveraging stochastic
optimization (Hoffman et al., 2013) or building upon the reparametrization trick (Kingma & Welling,
2014). The distribution space is chosen to efficiently approximate the posterior beyond the mean-field
approximation, using low-rank Gaussian distributions (Ong et al., 2018), mixtures of Gaussian
distributions (Gershman et al., 2012), or mixtures of an arbitrary number of distributions via boosting
methods (Guo et al., 2017; Miller et al., 2017). An alternative is offered by Normalizing Flows,
where the neural architecture achieves an invertible transformation enabling its Jacobian to be
analytically determined, thereby supporting the approximation of the posterior distributions (Rezende
& Mohamed, 2015; Kingma et al., 2017). The use of stochastic equations such as Langevin Monte-
Carlo (Welling & Teh, 2011) can also be used to directly sample from the target distribution, without
explicitly modelling it beforehand.

In the considered context, VI is used to tune an existing q after f . Note that qβ mostly specializes
the initial generative model p (as opposed to, exploring the very low probability regions of p, which
would significantly degradeDKL(qβ‖p)). Therefore qβ will expectedly have its typical set (Nalisnick
et al., 2019) roughly included in the typical set of p. Accordingly, q is sought via deterministically
perturbing the samples drawn according to p (returning x = g(x̂) with x̂ sampled from p and
g : X 7→ X the perturbation). The Normalized Flow neural architecture2 is used to find g, for it
makes its Jacobian explicit and easy to compute its determinant. With J(g) the Jacobian matrix of g,
it comes:

q(x) = p(x̂) |J(g)(x̂)|−1 (8)
The optimization problem (Eq. 7) then reads:

Find g = argmax
g

E
x̂∼p

[βf(g(x̂)) + log p(g(x̂)) + log |J(g)(x̂)|] (9)

Some care is exercised at the initialization of Algorithm 1, setting g very close to identity; the
subsequent iterations proceed by warm-start, setting gi to the gi−1 learned in the previous iteration.

3.3 OPERATING IN LATENT SPACE

The use of latent space is pervasive in generative modelling, notably for the sake of dimensionality
reduction. The samples in the latent space (drawn after some simple, usually Gaussian, prior
distribution p(z)) are mapped onto the instance space by the decoder module p(x|z), in a deterministic
(x = E dec(z)) or probabilistic (x ∼ dec(z)) way. The generative model is p(x) =

∫
z
p(x|z)p(z)dz.3

Most interestingly, BTGM can operate in the latent space too, tuning the latent distribution p(z) and
yielding a tuned latent distribution noted qβ(z). The sought tuned distribution qβ(x) in the instance

2The study of other neural architectures is left for further work.
3Note that in the VAE case, p(x|z) can be considered as a quasi deterministic distribution when using an

observation model with small variance.
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space is derived from qβ(z) through the decoder module:

qβ(x) =

∫
z

p(x|z)qβ(z)dz

Operating on the latent space with a frozen decoder module offers several advantages. Firstly,
the optimization criterion remains well defined, with DKL(qβ(z)‖p(z)) an upper bound of
DKL(qβ(x)‖p(x)) (Appendix B). Secondly, conducting the optimization process in the latent space
is easier and yields more robust results, due to the dimension of the latent space being usually lower
than that of X by one or several orders of magnitude, and the generative distribution p(z) being
usually a simple one, e.g. N (0; Id). Last, freezing the decoder ensures that the support of the
eventual generative model remains included in the support of the initial one. Formally, applying
BTGM in the latent space amounts to replacing criterion f by f̂ defined on the latent space as4:

f̂(z) = Ex∼p(x|z)f(x) (10)

4 CASE STUDIES

This section reports on four case studies conducted with BTGM. The code is available in supplemen-
tary material.

4.1 CONDITIONAL GENERATIVE MODELLING

BTGM covers conditional generative modelling as a particular case. In a supervised learning context,
with h an (independently trained) classifier and h(`|x) the probability of x to be labelled as `, let
criterion f be set to log h(`|x) in order to bias the generative model toward class `. Model qβ reads:

qβ(x) ∝ p(x)h(`|x)β (11)

defining a standard conditional generative model of class ` for β = 1 (assuming that h(`|x) accurately
estimates p(`|x)). Through parameter β, one can also control the fraction of samples closest to class
`, by setting the constraint DKL(qβ‖p) ≤ −log(ρ) with ρ the mass of the desired fraction (Fig.
5, Appendix D). In the same spirit, BTGM can be used to debug classifier h, e.g. by generating
samples in the ambiguous regions at the frontier of two or several classes (e.g. using as criterionf the
probability of the second most probable class or the entropy of the prediction of the classifier), and
inspecting h behavior in this region.

4.2 ASSESSING CRITERIA ex ante

As said, an criterion f can be represented in a number of ways, e.g. considering all g ◦ f with g a
monotonous function; still, the associated optimization problems (Eq. 7) are in general of varying
difficulty. In order to facilitate the usage of BTGM and avoid a tedious trials and errors phase, some
way of comparing a priori two criteria is thus desirable.

It is easy to see that the Pareto front of BTGM solutions (section 3.1) is invariant under affine
transformations5 of f . In the following, any criterion f is normalized via an affine transformation
(below), yielding an expectation and variance under p respectively set to 0 and 1.

Informally, the difficulty of the optimization problem reflects how much p has to be transformed to
match qβ . This difficulty can be quantified from the log ratio of p and qβ , specifically measuring
whether this log ratio is subject to fast variations. A measure of difficulty thus is the norm of
∇x log qβ(x)

p(x) . Note that the distribution of this gradient norm can be empirically estimated:

∇x log
qβ(x)

p(x)
= β∇xf(x) (12)

4If p(x|z) is deterministic or has a low variance, the expectation can be well approximated by a single
sample.

5The addition of a constant is cancelled out by the normalisation constant of qβ , and a multiplicative transform
resulting in choosing another β value.
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Figure 1: Comparing criteriaflog.h (in blue) and fh (in orange) on MNIST: binned distribution of their
gradient norms (better seen in color). The distribution tails are truncated for the sake of visualization,
see text.

Overall, samples generated from p are used: i/ to normalize the candidate criteria; ii/ to estimate the
distribution of their gradient norm; and iii/ to compare two criteria and prefer the one with more
regular distribution, as defining a smoother optimization problem. This analysis extends to the tuning
of generative models in latent space, replacing f with f̂ (Eq. 10).

The methodology is illustrated in the conditional modelling context (section 4.1), to compare the
two criteria f(x) = h(`|x) and f(x) = log(h(`|x)), respectively referred to as flog.h and fh. The
distribution of their gradients under p is displayed on Fig. 1. The binned distribution of the gradient
norms in latent space for all ten classes, is estimated from 10,000 samples (truncated for readability:
the highest values for the gradient norm of fh go up to 60-100, to be compared to 10-15 for the
gradient norm of flog.h).

The distribution of the fh gradient norm shows a high mass on 0 with quite some high values,
suggesting a complex optimization landscape with a number of plateaus (gradient norm 0) separated
by sharp boundaries (high gradient norms). In opposition, the distribution of the flog.h gradient norm
is flatter with a more compact support, suggesting a manageable optimization landscape where the
gradient offers some (bounded) information in most regions. Accordingly, it is suggested flog.h is
much more amenable to the tuning of the generative model than fh, which is empirically confirmed
(Appendix C). Overall, the proposed methodology allows to efficiently and inexpensively compare a
priori candidate criteria, and retain the most convenient one.

4.3 A REAL-WORLD CASE STUDY

This section focuses on using BTGM as an alternative to rejection sampling on the real-world
problem of smart grid energy management and dimensioning. For the sake of reproducibility, an
experiment on MNIST along the same rejection sampling ideas is detailed in Appendix D.

The goal is to sample the extreme energy consumption aggregated curves under a number of usage
scenarii (e.g. traffic schedules, localisation of electric car charging stations, telecommuting and its
prevalence), to estimate the peak consumption. The aggregation of multiple consumers into a single
consumption curve tends to smooth the consumption peak, as measured by the so-called diversity
factor (Sarfraz & Bach, 2018). The difficulty is that the relationship between the aggregated and the
individual consumption curves is ill-known, essentially studied by Monte-Carlo sampling, making it
desirable to design a flexible generative model of aggregated consumption curves.

In a preliminary phase, a VAE is trained on weekly consumption curves to model the aggregated
consumption of 10 households (Fig. 2a and 2b). A first criterion f1 considers the maximum
consumption reached over the week, with the aim to sample the 1% top quantile of the curves
(yielding CD = − log 10−2 = 4.61). The tuned generative model (Fig. 2c and 2d) sample curves
with a significantly higher peak consumption; note that these curves have a high weekly consumption,
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(a) 5 true consumption curves. (b) 5 samples from the unbiased model p.

(c) 5 samples from the model qβ tuned to maximize
peak consumption.

(d) Mean and standard deviation of samples generated
after p and qβ tuned to maximize peak consumption.

(e) 5 samples from the tuned model qβ tuned to maxi-
mize Wednesday’s consumption only.

(f) Mean and standard deviation of samples gener-
ated after p and qβ tuned to maximize Wednesday’s
consumption only.

Figure 2: Applying BTGM to tune the generation of weekly energy consumption curves, reporting
the consumption (in kW on y axis) vs the day (on x axis).
Top: real sample curves (a) and p-generated samples, with p the initial VAE model (b).
Middle row: tuning p toward top 1% weekly energy consumption curves (criterionf1); tuned generated
samples (c), and comparison of p with p tuned after f1 (d).
Bottom row: tuning p toward top 1% Wednesday energy consumption curves (criterionf2, see text);
tuned generated samples (e), and comparison of p with p tuned after f2 (f). The VAE p, composed of
encoder and decoder modules with 10 blocks of residual networks each, is trained from ca 8 million
weekly consumption curves; the mean and deviation of the initial and tuned generative models are
computed over 1,000 samples. Better seen in color.

too. Indeed, the generative model makes it more likely to reach a high peak during a high consumption
week than in an average consumption week (e.g. due to external factors such as cold weather). The
freezing of the decoder enables to preserve the plausibility of the generated samples, while sampling
in the extreme regions of the distribution according to f1.

A second criterion f2, concerned with maximizing the difference between the mean consumption on
Wednesdays and the mean consumption over the whole week, is considered to illustrate the versatility
of BTGM (Fig. 2e and 2f). Other choices of f are discussed in Appendix E.
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4.4 REFINING A GENERATIVE MODEL a posteriori

Another potential usage of BTGM is to refine existing generative models, e.g. preventing a VAE
from generating out-of-distribution samples (Arjovsky & Bottou, 2017). Let pV AE denote an overly
general generative model, and let f be defined as a adversarial classifier, discriminating the generated
samples from the true data distribution pD. When converged and in the large sample limit, the
discriminator yields an estimation of pD(x)

pD(x)+pVAE(x) (Goodfellow et al., 2014).

When using criterion f(x) = log pD(x)
pVAE(x) , given by the pre-activation output of the discriminator, to

tune model pV AE , one gets the generative model qβ defined as:

qβ(x) ∝ pV AE(x)1−βpD(x)β (13)

In this scheme, BTGM aims to actually draw the generative model closer to the true distribution
pD. Compared to the mainstream GAN scheme, the difference is that the discriminator is used a
posteriori: the generative modelling is decoupled from its adversarial tuning and the concurrent
training procedure is replaced by the sequence of two (comparatively straightforward) optimization
procedures, firstly training pV AE and secondly tuning it toward f . Results illustrating the proposed
methodology are presented in Appendix F. This sequential adversarial generative modelling relies
on two interdependent assumptions. Firstly, pV AE must be able to accurately reconstruct the
whole training dataset; more precisely, the support of distribution pV AE must cover that of the
data distribution pD. Secondly, the discriminator needs be not saturated and give highly-confident
predictions, for its gradient to provide sufficient information to refine pV AE (this also requires the
former assumption to hold).

5 DISCUSSION AND PERSPECTIVES

The contribution of the paper is a new theoretical formulation and algorithm for the a posteriori
refinement of a wide class of generative models, including GANs, VAEs, and explicit likelihood
models. When the considered generative model relies on the use of a latent space, BTGM can operate
directly in the latent space, favoring the scalability of the approach w.r.t. high-dimensional spaces.
BTGM offers a new alternative to rejection sampling in order to explore the extreme quantiles of
the data distribution w.r.t. any criterion f , subject to f being differentiable. The proof of concept
presented in the domain of energy management, where the consumption peak is estimated from the
extreme quantiles of the consumption curves, is to our best knowledge the first and only alternative to
rejection sampling in this context.

Three perspectives for further work are considered. In the short term, a first goal is to use BTGM
to better understand when and why the dropping phenomenon occurs in the adversarial setting.
On-going results show that a VAE model can indeed be refined a posteriori using a discriminator
as criterionf ; however, it is observed that mode dropping does appear when the pressure on f is
increased beyond a certain level. In order to avoid this loss of diversity, a research perspective is to
extend BTGM to the general multi-criteria optimization setting, tuning the considered generative
models with several criteria (e.g. the discriminator f , and the lequi-distribution of the classes).

A second perspective is to use BTGM in the context of privacy-sensitive data. The use of generative
models for releasing non-sensitive though realistic samples has been explored (Torkzadehmahani
et al., 2019; Long et al., 2019; Augenstein et al., 2020). BTGM makes it feasible to train a model
from large datasets (thus offering a better model with better privacy guarantees) and focus it a
posteriori on the target of interest, e.g. a rare mode of a disease. The eventual biased generative
model will expectedly both inherit the privacy guarantees of the general model, and yield the focused
samples as desired.

Another perspective is to extend BTGM in the direction of Bayesian Optimization (Mockus et al.,
1978; Rasmussen, 2004), and Interactive Preference Learning pioneered by (Brochu et al., 2010;
Viappiani & Boutilier, 2011). Specifically in the context of Optimal Design, the expert-in-the-loop
setting can be leveraged to alternatively bias the generative model toward the experts’ preferences,
and learn a model of their preferences. While facing the challenges of interactive preference learning,
this approach would pave the way toward a focused augmentation of the data, under the experts’
control.
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A CLOSED FORM DERIVATIVES OF DKL(q‖p) AND Eqf

From Eqs. (1-2)

qβ(x) = argmin

∫
X
q(x)f(x)dx+

1

β

∫
X
q(x) log

q(x)

p(x)
dx

it follows:

qβ(x) =
1

Z(β)
p(x)eβf(x) (14)

with normalization constant Z(β) ensuring that qβ is a probability distribution. The derivatives of
DKL(q‖p) and Eqf follow from Lemmas 1 and 2.

Lemma 1. The derivative d
dβ logZ(β) reads:

d

dβ
logZ(β) = Eqβf (15)

Proof. As Z(β) =
∫
x
p(x)eβf(x)dx by definition, it follows:

d

dβ
logZ(β) =

1

Z(β)

d

dβ
Z(β)

=
1

Z(β)

d

dβ

∫
X
p(x)eβf(x)dx

=
1

Z(β)

∫
X
f(x)p(x)eβf(x)dx

=

∫
x

f(x)qβ(x)

= Eqβf

(16)

Lemma 2. Let h : X → R be a function (possibly depending on β). The derivative of its expectation
on qβ wrt β reads:

d

dβ
Eqβh = Eqβ

[
fh+

∂h

∂β

]
−
(
Eqβf

) (
Eqβh

)
(17)

Proof.
d

dβ
Eqβh =

d

dβ

1

Z(β)

∫
x

h(x)p(x)eβf(x)dx

=
1

Z(β)

∫
x

(
h(x)f(x) +

∂h

∂β
(x)

)
p(x)eβf(x)dx

− 1

Z(β)2
dZ

dβ

∫
x

h(x)p(x)eβf(x)dx

= Eqβ
[
hf +

∂h

∂β

]
−
(
Eqβh

) d

dβ
logZ(β)

= Eqβ
[
fh+

∂h

∂β

]
−
(
Eqβf

) (
Eqβh

)

(18)

Lemmas 1 and 2 yield the first and second derivatives of Eqβf .
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Lemma 3. The first and second derivatives of Eqβf wrt β read:

d

dβ
Eqβf = V arqβf and

d2

dβ2
Eqβf = Eqβ

(
f − Eqβf

)3
(19)

Proof. Replacing h with f in Eq. 17, and noting that f does not depend on β, yields the first
derivative:

d

dβ
Eqβf = Eqβf2 −

(
Eqβf

)2
= V arqβf (20)

Noting that V arqβf = Eqβ
(
f − Eqβf

)2
and replacing h with

(
f − Eqβf

)2
(that does depend on β)

in Eq. 17 yields the second derivative:

d2

dβ2
Eqβf =

d

dβ
Eqβ

(
f − Eqβf

)2
= Eqβ

[
f
(
f − Eqβf

)2 − 2
(
f − Eqβf

) d

dβ
Eqβf

]
−
(
Eqβf

) (
Eqβ

(
f − Eqβf

)2)
= Eqβ

(
f − Eqβf

)3 − 2Eqβ
[
f − Eqβf

]︸ ︷︷ ︸
=0

d

dβ
Eqβf

= Eqβ
(
f − Eqβf

)3
(21)

Lemmas 1 and 2 likewise yield the first and second derivatives of DKL(qβ‖p):
Lemma 4. The first and second derivatives of Eqβf wrt β read:

d

dβ
DKL(qβ‖p) = βV arqβf and

d2

dβ2
DKL(qβ‖p) = V arqβf + βEqβ

(
f − Eqβf

)3
(22)

Proof. By definition:

DKL(qβ‖p) = Eqβ log
qβ
p

= Eqβ [βf − logZ(β)]

= βEqβ [f ]− logZ(β)

(23)

Lemmas 1 and 2 thus yield:

d

dβ
DKL(qβ‖p) = Eqβ [f ] + β

d

dβ
Eqβ [f ]−

d

dβ
logZ(β)

= Eqβ [f ] + βV arqβ [f ]− Eqβ [f ]
= βV arqβf

(24)

and:
d

dβ
DKL(qβ‖p) = V arqβf + β

d

dβ
V arqβf

= V arqβf + βEqβ
(
f − Eqβf

)3 (25)

which concludes the proof.
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B BOUNDING KL(q‖p) ON LATENT SPACE

Lemma 5. Let p(x, z) be a generative model built on a sampling of a latent space (p(x, z) =
p(z)p(x|z), with p(x|z) the decoder mapping the latent onto the instance space). Let generative
model q(x, z) be defined as q(x, z) = q(z)p(x|z) (freezing the decoder and modifying the latent
distribution). Then:

DKL(q(x)‖p(x)) ≤ DKL(q(z)‖p(z)) (26)

Proof. It is seen that, for any two distributions q and p of two variables, the Kullback-Leibler
divergence between their marginals is always smaller than the Kullback-Leibler divergence between
the full distributions:

DKL(q(a, b)‖p(a, b)) = Eq log
q(a, b)

p(a, b)

= Eq log
q(a)q(b|a)
p(a)p(b|a)

= DKL(q(a)‖p(a)) + EqDKL(q(b|a)‖p(b|a))
≥ DKL(q(a)‖p(a))

(27)

Replacing p(a, b) with p(x, z) = p(z)p(x|z) (respectively, q(a, b) with q(x, z) = q(z)p(x|z)) yields:

DKL(q(x)‖p(x)) ≤ DKL(q(x, z)‖p(x, z))
≤ DKL(q(z)‖p(z)) + EqDKL(p(x|z)‖p(x|z))︸ ︷︷ ︸

=0

≤ DKL(q(z)‖p(z))

(28)

C COMPARING TWO CRITERIA: DETAILED ANALYSIS

As the intended bias can be expressed using different criteria, the question of comparing these (based
on the distribution of their gradient norms) was discussed in section 4.2. Complementary experiments
are conducted as follows, along the same setting aimed to conditionalize generative model p using a
classifier p(`|x).
A first remark is that the closed form values of Eqβf and DKL(qβ‖p) can be estimated using samples
from p. Specifically, expectations under qβ can be reframed as expectations under p:

Z(β) =

∫
X
p(x)eβf(x)dx = Ep

[
eβf
]

(29)

Eqβf =

∫
X
f(x)

p(x)eβf(x)

Z(β)
dx =

Ep
[
feβf

]
Ep [eβf ]

(30)

DKL(qβ‖p) = βEqβ [f ]− logZ(β) =
Ep
[
feβf

]
Ep [eβf ]

− logEp
[
eβf
]

(31)

Eqs. 30-31 enable to estimate the closed form values of Eqβf and DKL(qβ‖p) vs β, using samples
drawn after p. The comparison of these estimates with the actual Eq̂βf and DKL(q̂β‖p) indicates
how well BTGM is dealing with the considered criterion.

In the considered example, one wants to compare both criteria fh and flog h, respectively defined as
fh(x) = p(`|x) and flog h(x) = logp(`|x). The discrepancy between the theoretical estimate and the
actual estimate is displayed on Fig. 3 for fh (respectively Fig. 4 for flog h). The same optimization
procedure was used in both cases, targeting the class ` = 4.
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(a) Eqβ fh (y axis) vs β (x axis). (b) DKL(qβ‖p) (y axis) vs β (x
axis).

(c) Eqβ fh (y axis) vs
DKL(qβ‖p) (x axis).

Figure 3: Theoretical (plain line) and experimental (dashed line) estimates of Eqβ fh and DKL(qβ‖p)
vs β for f(x) = h(` = 4|x).

(a) Eqβ flog h (y axis) vs β (x
axis).

(b) DKL(qβ‖p) (y axis) vs β (x
axis).

(c) Eqβ flog h (y axis) vs
DKL(qβ‖p) (x axis).

Figure 4: Theoretical (plain line) and experimental (dashed line) estimates of Eqβ flog h and
DKL(qβ‖p) vs β for f(x) = log h(` = 4|x).

For small values of β, with criterion fh, Fig. 3 shows that the empirical Eqβ fh does not much increase,
while qβ remains close to p (DKL(qβ‖p) stays close to 0). In other words, the bias seems ineffective.
Quite the contrary, for large values of β, the empirical DKL(qβ‖p) increases significantly faster than
the theoretical estimate; BTGM overshoots and focuses too much the support of distribution qβ . In
comparison, a much smaller gap between the theoretical and empirical estimates is observed with
criterion flog.h (Fig. 4).

These observations are in agreement with the analysis proposed in section 4.2: fh only provides
useful gradients in the boundary of the targeted class. Accordingly, the process finds itself in one out
of two stable states: doing nothing (qβ = p); or restricting the support of qβ to that of the targeted
class. BTGM abruptly switches from the first to the second stable state (Fig. 3.b), offering little
control through β. When setting f(x) = log p(`|x)) instead, f(x) is less and less often saturated,
enabling its gradient to provide smooth information. This information enables the user to finely
control the bias through β, making the support of qβ to gracefully tend toward the support of the
targeted class.

D GENERALITY OF THE APPROACH: A PROOF OF CONCEPT ON MNIST

The claim is that BTGM can be applied using any differentiable criterion (with exploitable gradient,
see Appendix C. above). Three criteria are illustrated on Figs. 5, 6 and 7, respectively biasing the
generative process toward a certain class, figures with more white pixels, or less white pixels.

The fine-grained control of the bias is illustrated on Fig. 5 on MNIST, with target class ` = 4, using a
GAN model p. The Pareto front depicting the bi-criteria optimization trade-off (Eqβf vs DKL(qβ‖ p)
for β ranging from 0 to 2.5) is displayed on Fig. 5a, and the biased generated samples, where each
row from top to bottom displays the samples generated with increasing values of β, are displayed on
Fig. 5b. Indeed, class 4 is more prevalent as β increases; class 9 is the last one to disappear, as being
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the most similar to the 4 one; for the highest values of β, only digits in class 4 are generated, yielding
the same result as a conditional generative model, as expected.

A similar interpretation can be made for the two other examples on Figs. 6 and 7.

(a) Eqβ f (y axis) vs DKL(qβ‖p) (x axis). (b) Generated samples, with the strength β of
the bias increasing from top to bottom rows.

Figure 5: Using BTGM to condition a generative model in the latent space, with p a GAN trained
on MNIST and f = log ĥ(class 4 | z), and h an independently trained classifier on the instance
space. Left: Pareto front of both criteria. Right: generated samples, with top to bottom rows
respectively corresponding to β in {0.0, 0.25, 0.5, 0.75, 1.0, 1.25}, and corresponding DKL values
0.0, 0.4, 1.3, 2.2, 2.5, 2.7.

As seen on Fig. 6, biasing the generative model toward figures with more white pixels is achieved
through controlling both the class of the generated figures (class 0 and 8) and the style of the generated
numbers (with thick strokes). Quite the contrary, biasing the generative model toward figures with
less white pixels results in generating very thin 1s.

E REJECTION SAMPLING WITH BTGM IN A REAL-WORLD APPLICATION

As said, the application domain concerns smart grid management and dimensioning. The latter
requires key indicators (consumption peak) to be estimated from consumption curves generated
under diverse scenarii. A versatile generative model is trained with a VAE, exploiting real weekly
consumption curves aggregated over 10 households (thus with a higher variance compared to the
curves aggregated over 100 households, considered in the main paper).

The flexibility of the approach is demonstrated using several criteria.

The first criterion aims to maximize the consumption over a particular day (here Wednesday, Fig. 8a).
The goal is achieved by maximizing the weekly consumption, with the consumption on Wednesday
being only slightly higher than the average one. The second criterion aims to maximize the difference
between the Wednesday consumption and the average weekly consumption (intuitively, this criterion
corresponds to a worst-case analysis scenario). Using this criterion and allowing the DKL to take
large values (corresponding to a rejection sampling with probability 10−4) yields the curves illustrated
on Fig. 8b. Despite the strength of the bias, BTGM still manages to generate diverse samples;
furthermore, the sample variance is comparable to that of the original data.

The third criterion is related to the variability of the demand, with a high impact on the required
flexibility of electricity production. A relevant indicator, referred to as MAE by abuse of the definition,
is the amount of consumption that would need to be moved in order to make the consumption
constant along time (with same overall consumption), i.e. the L1 distance between the actual
consumption curve and the flat curve with same overall consumption. Fig. 9 displays average
generated consumption curves when applying BTGM to maximize or minimize the MAE.

The curves obtained when minimizing the MAE (Fig. 9b) can be interpreted intuitively as: a good
way to get a flat consumption curve is when the house is empty (e.g. during holidays), since inhabited
houses typically present strong cyclical patterns across the day.
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(a) Eqβ f (y axis) vs DKL(qβ‖p) (x axis). (b) Generated samples, with the strength β of
the bias increasing from top to bottom rows.

Figure 6: Using BTGM to condition a generative model in the latent space, with p a GAN trained on
MNIST and f(x) =

∑
i∈pixels xi. Left: Pareto front of both criteria. Right: generated samples, with

top to bottom rows respectively corresponding to β in {0.0, 0.025, 0.05, 0.075, 0.1, 0.125, 0.150},
and corresponding DKL values 0.0, 0.3, 2.1, 3.9, 5.4, 7.4, 8.7.

(a) Eqβ f (y axis) vs DKL(qβ‖p) (x axis). (b) Generated samples, with the strength β of
the bias increasing from top to bottom rows.

Figure 7: Using BTGM to condition a generative model in the latent space, with p a GAN trained on
MNIST and f(x) =

∑
i∈pixels xi. Left: Pareto front of both criteria. Right: generated samples, with

top to bottom rows respectively corresponding to β in {0.0, 0.025, 0.05, 0.075, 0.1, 0.125, 0.150},
and corresponding DKL values 0.0, 0.2, 0.6, 1.1, 1.4, 1.8, 2.1.

(a) Maximizing the consumption of Wednesday. (b) Maximizing the difference between the consump-
tion of Wednesday and the average weekly consump-
tion.

Figure 8: Application of BTGM in the context of energy management: generating consumption
curves biased according to: Average Wednesday consumption (8a); Average Wednesday consumption
and difference between Wednesday consumption and average weekly consumption (8b). Blue curves
represent the mean and standard deviation of samples from the original model, and red curves that of
samples from the biased model (best seen in color).
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(a) Maximizing the L1 distance to mean consumption. (b) Minimizing the L1 distance to mean consumption.

Figure 9: Application of BTGM in the context of energy management: generating consumption
curves biased to maximize (9a) and minimize (9b) the L1 distance between the consumption and its
average. Blue curves represent the mean and standard deviation of samples from the original model,
and red curves that of samples from the biased model (best seen in color).

When maximizing the MAE (Fig. 9a), the interpretation of the obtained curves is equally straightfor-
ward: BTGM takes advantage of the natural variability of the data to significantly increase the height
of the consumption peaks, while only slightly increasing the average consumption, thereby yielding a
high variance of the daily consumption.

F ADVERSARIALLY REFINING A GENERATIVE MODEL USING BTGM:
DISCUSSION

A possible usage of BTGM is to focus an overly general generative model (with support covering the
data support) along an adversarial scheme, using a discriminator trained to distinguish between the
actual and the generated samples as criterion f .

Experiments are conducted to examine the feasibility of this 2-step generative modelling approach,
with p a VAE trained on MNIST and g a classifier trained to discriminate the actual and the generated
data (with accuracy 0.99), using its pre-activation output as f . BTGM is applied on the VAE’s latent
space, and results are displayed on Fig. 10.

With same methodology as in Appendix C, the optimization process is assessed by comparing the
theoretical and the empirical estimates of Eqβ f and DKL(qβ‖p).
The optimization fails: for β ≥ 0.5, the DKL stagnates, that is, BTGM cannot push qβ farther away
from p. For β < 0.5, BTGM does not manage to increase Eqβ f as expected from the theoretical
estimate.

This change of behavior around β = .5 is analyzed in relation with the distribution of f gradients wrt
to p (Fig. 11), involving most gradient norms in a reasonable range ([0; 10]), while some gradients do
explode with a norm as large as 230. This suggests that the optimization landscape includes large
smooth regions with some very sharp regions (cliffs).

It is noted that at the change point (β ≈ .5), DKL ≈ 4, that is, qβ is focused on approximately 2% of
the support of p. Our interpretation is that, at this point the process meets the high gradient norm
region and remains stuck.

The fact that BTGM cannot thus refine p using the adversarial criterion is eventually blamed on two
factors. Firstly, the discriminator seems sufficiently powerful to characterize the support of the true
data as a set of isolated regions separated by high cliffs. Secondly, the generative model search space
(based on Normalizing Flows; specifically, 6 Inverse AutoRegressive flows layers, each consisting
of 4 fully-connected layers) seems not flexible enough to comply with the discriminator, and to
approximate a mixture. Eventually, BTGM is unable to modify the structure of p as desired in the
small β region (with Eqβ f about twice smaller than the theoretical estimate); and totally unable to
modify it for β > .5). How to remedy both limitations is left for future work.
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(a) Eqβ f (y axis) vs β (x axis). (b) DKL(qβ‖p) (y axis) vs β (x axis).

(c) Eqβ f (y axis) vs DKL(qβ‖p) (x axis). (d) Generated samples, with the strength β of
the bias increasing from top to bottom rows.

Figure 10: BTGM: adversarial refinement of p (VAE trained on MNIST) along criterion f , with
f a discriminator. As in Appendix C, Blue line are the theoretical curves, and orange dots are the
empirical values. 10a, 10b: Evolution of Eqβ f and DKL(qβ‖p) with β . 10c: Pareto front of both
criteria. 10d: generated samples with a clear mode dropping phenomenon, with top to bottom rows
respectively corresponding to β in {0.0, 0.125, 0.250, 0.375, 0.5, 0.625, 0.750} and corresponding
DKL values 0.0, 0.6, 1.4, 2.4, 2.9, 3.6, 3.7.

Figure 11: Distribution of the norm of the gradient of the objective f (pre-activation output of the
discriminator) wrt to the latent variable. The histogram is truncated at a norm of 20 for legibility, but
around 1% of the gradients have a higher norm, going up to 230.
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