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Abstract 
We introduce a simple initial working system in which rela-
tions (such as part-whole) are directly represented via an ar-
chitecture with operating and learning rules fundamentally 
distinct from standard artificial neural network methods. Ar-
bitrary data are straightforwardly encoded as graphs whose 
edges correspond to codes from a small fixed primitive set of 
elemental pairwise relations, such that simple relational en-
coding is not an add-on, but occurs intrinsically within the 
most basic components of the system. A novel graph-Hamil-
tonian operator calculates energies among these encodings, 
with ground states denoting simultaneous satisfaction of all 
relation constraints among graph vertices. The method solely 
uses radically low-precision arithmetic; computational cost is 
correspondingly low, and scales linearly with the number of 
edges in the data. The resulting unconventional architecture 
can process standard ANN examples, but also produces rep-
resentations that exhibit characteristics of symbolic compu-
tation.  Specifically, the method identifies simple logical re-
lational structures in these data (part-of; next-to), building hi-
erarchical representations that enable abductive inferential 
steps generating relational position-based encodings, rather 
than solely statistical representations. Notably, an equivalent 
set of ANN operations are derived, identifying a special case 
of embedded vector encodings that may constitute a useful 
approach to current work in higher-level semantic represen-
tation. The very simple current state of the implemented sys-
tem invites additional tools and improvements.  

 Background and motivation 
Artificial neural networks (ANNs; e.g., (Amari, 1967; 
Grossberg, 1976; McCulloch & Pitts, 1943; Rosenblatt, 
1958; Rumelhart & Zipser, 1986; Werbos, 1974; Widrow & 
Hoff, 1960)) derive from a surprisingly constrained set of 
specific linear-algebra premises, and present-day networks 
cleave remarkably closely to these initial formulations. 
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In ANNs, a cell’s response is assumed to be a straightfor-
ward function of the sum of products of its inputs and syn-
apses (weights), but the precision of cells and synapses is 
rarely considered.  Yet reducing all high-precision scalars 
and vectors in these models to primitive binary relations 
would profoundly change their computations.  

We construct a novel form of network that implements a 
strictly fixed set of primitive binary operations that are in-
terpretable in terms of logic relations. These combine their 
inputs, weights, and biases to compute a polynomial re-
sponse that is directly rendered as a Hamiltonian operation 
on the inputs. The resulting Hamiltonian logic network 
(“HNet”) composes hierarchical representations including 
complex relations such as part-whole.  The resulting learned 
representations lend themselves to higher-level encodings, 
which contain relation information of a kind that is usually 
thought of as more symbolic than statistical.   

Standard neural nets and machine learning systems read-
ily represent the “isa” relation (e.g., input X “isa” car), con-
structing categorization / classification hierarchies com-
posed from “isa” links.  It has proven far more challenging 
to represent other relational types, such as part-of, next-to, 
above, before (let alone more complex relations such as 
“capitol of” or “married to”).   

Much work in AI has been done to try to identify methods 
for representing and manipulating symbolic aspects of data 
such as compositional relations: part-whole, contiguity, con-
tainment, etc. (e.g., (Hinton, 2021; Holyoak, 2000; Mitchell 
& Lapata, 2008)).  The recent prodigious increase in perfor-
mance of machine learning systems is predominantly due to 
the arrival of “transformer” architectures (Vaswani et al., 
2017), especially “large language models” (LLMs; e.g., 
Ramesh, Dhariwal, Nichol, Chu, & Chen, 2022; Ramesh et 
al., 2021; Zhou et al., 2023) which introduce sequential in-
formation supplementing the standard classification-based 

 



“isa” relation, although much of the information is learned 
via regression, and remains difficult to inspect or explain 
(e.g., Mitchell & Krakauer 2023); and the methods are 
hugely expensive (e.g., Jones 2018).    

Much work in AI is focused on hybrid “neuro-symbolic” 
systems, which attempts to combine statistical information 
with symbolic, higher-level inference (e.g., Garcez & Lamb, 
2020; Günther, Rinaldi, & Marelli, 2019; Holyoak, 2000; 
Holyoak, Ichien, & Lu, 2022; Kanerva, 2009; Smolensky, 
McCoy, Fernandez, Goldrick, & Gao, 2022)).  Analyses to 
date suggest shortfalls in current approaches (e.g., (Conwell 
& Ullman, 2022; Marcus, Davis, & Aaronson, 2022)); the 
state of the art is rapidly evolving but it is uncertain whether 
representation of relations and, importantly, the rules of 
compositionality, can be implemented in systems con-
structed predominantly as statistical predictive methods 
(see, e.g., (Thrush et al., 2022)).  

The present HNet system i) encodes information in ele-
ments that are intrinsically relational rather than just statis-
tical; ii) constructs rich relational hierarchies that may be 
substantially more readable than current standard systems; 
and iii) does so by introducing unusual mechanisms that are 
radically less computationally expensive than in current 
AI/ML systems; in particular, all operations use only low-
precision bitwise arithmetic.  

These representations can be submitted to a (supervised) 
back end that is far simpler (and less costly) than typical ex-
tant machine learning and artificial neural network systems. 
Whereas a simple supervised system (such as an SVM) on 
its own may achieve a moderate classification rate, we show 
that HNet representations “boost” the simple supervised 
system to achieve significantly higher classification rates 
(see Fig 5 and corresponding text).  

Thus substantial costs of typical error-correction mecha-
nisms, and of non-local propagation, may be avoided while 
retaining the ability to achieve high classification rates.  No-
tably, all HNet calculations are parallel, local, and require 
only extremely low-precision computation (possibly con-
forming to several potentially salient computational charac-
teristics of brain circuitry.)  

For a standard ANN to capture relations (such as part-
whole structure) in data, it typically must step beyond its in-
itial standard statistical calculations, to incorporate increas-
ingly advanced composites (e.g., via convolutions, recur-
rences, pooling, attention windows); or else the initial steps 
must be combined with separate symbol-based systems to 
produce ‘hybrids’.   

By contrast, the graph-Hamiltonian method presented 
here uses relations, from the lowest level in the network. 
Such an approach might mistakenly be perceived to be ex-
pensive, if all these low-level operations were individually 
costly.  But the approach in fact is inherently low cost, using 
binary data and bitwise arithmetic operations throughout its 
processing steps.  

Bitwise relational graph encoding 
Nodes and edges; simple logic notation 
We introduce the elements of the HNet method first via ex-
amples from the well-studied MNIST dataset (cf. (Fuku-
shima & Miyake, 1982; LeCun et al., 1989; LeCun, Bottou, 
Bengio, & Haffner, 1998)), and then from a standard credit-
card application dataset.  

These are emphatically not intended to be examples going 
head to head against some carefully tailored large system; 
rather, they are here to introduce fundamental concepts of a 
new system, building toward more complex examples.   

Input data (in this simple pedagogical case, black-and-
white MNIST handwritten digits) are encoded in terms of 
the four possible binary relations among edges (pairs of pix-
els) in the grid.  Each pixel is a binary vertex (node), and 
each edge is one of the four binary relations (11,10,01,00) 
(Figure 1; Table 1). (These four binary pairs can be inter-
preted as True/False logic relations: TT, TF, FT, FF.) 

Input data are encoded as simple directed graphs, as in 
Figure 1.  In general, as will be seen, relational binary pairs 
are not adjacent points in the input space, but in just this in-
itial example (MNIST), we use adjacent pixel pairs for in-
troductory simplicity.  In further examples (such as credit 
applications), arbitrary non-adjacent relations will be used. 

 
 

 
 

Figure 1.  Simple binary relational graph encoding.   
a) Sample MNIST images.  b,c) Closeup of pixel encod-
ing: binary (black/white) pixels are connected as per di-

rectional convention (arrows), by four types of edges 
(00;01;10;11), corresponding to the logical operations 
NOR; negative CONVERSE; negative IMPLICATION; 

AND.  d) Sample parts in training images.  e) Sample part 
matches (colors) and mismatches (red surrounds); match-

ing is via Hamiltonian logic nets (HNets; see text). 
 
 



Hamiltonian logic networks (HNets) 
Figure 1a shows two sample MNIST digits that have been 
rasterized and binarized for illustrative simplicity.  Figure 
1b shows a closeup of a sample region of a digit image, in 
which adjacent pixels have been coded as binary pairs as in 
Table 1, either off-off, off-on, on-off, or on-on, as enumer-
ated in Figure 1c.  Figure 1d shows encoding of sets of co-
occurring binary pairs in this simplified case (connected and 
adjacent pairs), which will be termed “parts”; each such part 
can be coded in a proper subspace of the input space, as de-
scribed in supporting material Appendix A (“Initial part 
identification”).   

The general approach is as follows: 
-  an input graph (or any part thereof) is a “state" ψ 
-  a Hamiltonian 𝐻"ψ is produced for each such state;  
-  an energy value Eψ can be calculated for any Hamil-

tonian on any state;  
-  a state is “recognized” when Eψ = 0         

Figure 2 is a simple illustration of the energies of several 
states.   

The first two states ψ1, ψ2 in Figure 2 have zero energy 
values, and thus are successfully “recognized” by the Ham-
iltonian that produced the figure, whereas all other states 
have energies of greater than zero, constituting correspond-
ingly poorer matches.   

As will be seen, inputs (in this case, MNIST digit images) 
will be coded in terms of parts (whose construction is de-
scribed in a later section), and these all are stored as 
“learned" part representations for training images.  When 
presented with a test image, the test image will also be coded 

in terms of parts.  Each such part has a constructed Hamil-
tonian, which can be arbitrarily composited into larger 
HNets.  The logical inclusive OR of all stored (learned) parts 
that match a test image, forms a ‘hypothesis' of the test im-
age; these are matched (via energy calculations) against 
stored train image representations, to identify the best 
matching training image, and thus the classification of the 
test image.    

In sum, testing of novel images is performed via three op-
erations:  

1] Apply HNets for all learned parts to the test image.  
2]  Select lowest-energy results.  
3]  Classify via the OR of those nets' labels (“voting”).  
 
All of these operations will first be briefly introduced 

here, and then elaborated in detail.   
For each of the supervised classes in the data (digits 0-9 

for this MNIST dataset), training data is encoded in the form 
of graphs as described, and HNets are produced for each 
such graph.  All operations are performed on just those two 
data structures: graph encodings, and corresponding Hamil-
tonians.     

A graph encoding of a digit consists of two types of verti-
ces (nodes) and four types of edges.  (Additional node types 
can be envisioned via successive binary subdivisions of such 
nodes.)  In the resulting graph encoding, combinations of 
edges can be identified as candidate “parts” via the 
method(s) described in Appendix A.  

The HNet for each such part is a matrix whose dimension-
ality is the square of that of its inputs, and whose values are 
derived directly from the edges comprising the specific part.  
As will be seen, these data structures tend to be extremely 
sparse (i.e., most values are 0).   

Moreover, the non-zero values are strictly limited: for the 
two distinct examples shown here — MNIST digits, and ap-
plicants for credit cards — all graph values are binary, and 
all Hamiltonians can take on only five values:  -1, -1/2, 0, 
1/2, 1.   (The 2x values -2, -1, 0, 1, 2 can be used to yield 
integer-only arithmetic.)  

We begin with the simplest graph: two nodes and a con-
necting edge.  As in Table 1, these take four possible x,y 
values: 00, 01, 10, 11.  We define energy scalar Er  (for a 
given relation state r) in terms of these x,y values of the 
nodes in the graph plus the associated Hamiltonian 𝐻"r , as 
follows:  

 
 
 
 

 
or in quadratic form:  

 
(and further simplified for binary values of x and y):  
 

      		
  Figure 2.  Relation of states	Ψ	and their 

(Hamiltonian-calculated) energies E.	

(Eq 1) 

(2) 

(3) 

     

 
Table 2.  Energy values E(s) for each 
of four possible states of binary pairs.    



where x and y are binary data, as described; a, b, and c are 
elements of the Hamiltonian (a real Hermitian symmetric 
matrix such that               and kr is the energy constant 
associated with each         such that E ≥ 0.  For the four binary 
pairs, the values of E for each state s are defined (Table 2).   

Thus, for each of the four binary pairs, the energy can be 
simply solved for the three variables a,b,c to yield the 
unique Hamiltonian operator consistent with the specific 
pair.  For instance, for x,y = 0,0 (i.e., the relation NOR):  

Thus   𝑎 = 1; 𝑏 = −1/2; 𝑐 = 1; 𝑘! = 0 .   
Table 3 lists the unit Hamiltonians for each of the four 

binary pairs.  (See also Supplemental Tables 1 and 2).  Each 
HNet is thus formulated to act as a recognizer for the graph 
from which it is constructed.  Applied to a given graph, an 
HNet yields a scalar energy E that has a value of zero when 
it recognizes that graph; for any other graphs, the energy will 
be greater than zero.  The category classification C of a 
given test input can be determined by applying the Hamilto-
nian for the test input to each of the training inputs, to iden-
tify that which produces the lowest energy. 

 
 
It is noteworthy that application of 𝐻" conforms with some 

intuitive and formal logical operations; for instance, nega-
tion (NOT) of a given  𝐻"  operator is achieved via multipli-
cation by -1.  Thus,  

     𝑁𝐴𝑁𝐷 = 𝑁𝑂𝑇(𝐴𝑁𝐷), and 
     	𝐻"	"#"$ = −1	𝐻"	

̂

#"$ 
(Further relations of this kind are discussed in subsequent 

sections).  

 

Composing Hamiltonians 
Starting from Hamiltonians of simple pairs of two pixels 
(one edge), we may construct an n-dimensional composite 
Hamiltonian matrix that corresponds to a graph of arbitrary 
size; thus HNets can be formulated for any input.    

We use a simple four-node graph (Figure 3) to demon-
strate how to compose pairwise edges in a graph (e1, e2, e3, 
and e4 in the figure) into a Hamiltonian for the entire graph, 
incorporating all its edges.  The method immediately ex-
tends to enable construction of Hamiltonians for any arbi-
trarily sized graph (such as MNIST digits).   

Given the HNet values for each edge in a graph, a compo-
site HNet is produced, corresponding to the entire graph, by 
projecting each of the individual unit 𝐻" values (correspond-
ing to single edges) into the 2-dimensional subspace indi-
cated by the variables involved in a given pairwise relation.  
The resulting n-dimensional composite Hamiltonian is ob-
tained by assigning the variables to their appropriate sub-
spaces, and then simply adding the Hamiltonians. 

In Figure 3, the Hamiltonian for each edge en corresponds 
to one of the four primary Hamiltonians of Table 3: 
 
 
 
 
 
 
 
 

 
Intuitively, to compose these individual edges into the 

composite graph from Figure 3, each edge is to be situated 
in its appropriate subset according to the location of its node 
coordinates:    

 
 

 
 

(4) 

(6) 

                     
Figure 3.  A simple graph (𝛼) of four nodes 

(n1-n4) and edges (e1-e4) (see Fig 1b), to illus-
trate composing unit Hamiltonians of the four 
individual pairs into a composite Hamiltonian 

of this entire four-node graph. 
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Table 3:  The Hamiltonians of the four binary 

pairs.  (Note that for 𝐻"NOR, the +k factor is +0; 
and for the other three Hamiltonians the +k factor 

is +1.  See Eqs 1-5 and Supplemental Table 2). 
 



(where “𝛼” denotes the entire four-node graph of Figure 3).  
(Note edges 1 & 4 both are green).  

In general, for an image such as an MNIST digit, the com-
posite HNet will be sparse (corresponding in part to the 
abundance of blank pixels in a typical digit image).   

This resulting Hamiltonian  can be tested for its 
“recognition” of the graph 𝛼 (from Figure 3) by applying the 
Hamiltonian to the graph: 
 
 
 
 
 
 
 
 

The 0 result indicates that the composite Hamiltonian rec-
ognizes or “accepts” the composite graph.   

(The same Hamiltonian, tried on a different graph, �⃑�𝛽, 
would yield a result greater than zero, “rejecting” that 
graph): 
 
 
 

Illustrative applications 
Simple MNIST images example 
The network can be applied to standard well-studied tasks 
of recognition, such as the classic MNIST handwritten-letter 
dataset containing 28 × 28 pixel (784 pixel) images from ten 
classes (digits 0-9). 

For this simple illustration, the data were preprocessed as 
follows: i) for the training set, the 32 most prototypical 
(nearest to the class mean) images per class were selected, 
s.t. n = 320;  ii) for the test set, excess images were removed 
to equalize n = 892 images per class = 8920 total; iii) all 
images were binarized via pixel intensity thresholding (for 
these examples, pixel range 0-255; threshold 127).   

Each input is rendered in the form of a predefined graph 
as in Figure 1, such that each node takes the Boolean value 
of its corresponding element in the input vector, and each 
edge takes one of four values as a function of its incident 
nodes, as in Table 1.  

A sample training algorithm is shown in Table 4; it is ex-
plained as follows (see also Supplemental Tables 4 and 5):  
- A graph is defined as described, and each training input 

is stored. From these two data structures, a composite 
Hamiltonian is generated.  The storage is performed by 
the function MEMORIZE(∙) (see Table 4).   
(In the present method, two versions of an input are 
stored: one with solely all 1,0 (NIMPL) edges (leading 
edges) and all other edges null (not present); the other 
with solely all 0,1 (NCONV) edges (trailing edges).  The 
NOR and AND (0,0 and 1,1) edges are typically not 
stored because they are found to carry little predictive 
power in typical MNIST images.) 
- In EXTRACT(∙), each such training image is split into 

“parts” which are connected components of a new graph 
capturing the adjacency among edges.  For non-image 
(non topographic) data, the components are defined via 
statistical regularity rather than connectedness, as will be 
seen in the “credit card application” illustrative example 
in the next section.)  
- COMPOSE(∙) transforms a list of edge states into a list 

of unit Hamiltonians, which then are combined into a 
single composite Hamiltonian via the composite equa-
tions from the previous section.  (For topographic data 
such as images, an additional operation, CON-
VOLVE(∙) creates multiple copies of each component, 
each translated by -2 to +2 in the x and y directions; this 
simple discrete convolution is performed via a permuta-
tion matrix, described in Appendix B).   
- Finally, the ENCODE(∙) operation calculates the energy 
E of a given 𝐻" with respect to a give stored represen-
tation.  When the current input would produce a com-
posite Hamiltonian 𝐻" identical to a memorized Ham-
iltonian, or the current input matches the memory, the 
energy will be zero.  Less-good matches will have 
higher (worse) energies.   

 

(8) 

 

 
 

(9) 

 
          

 

      

for	i	∈	{1	..	n_train}		
					S_train[	:,	i]		
													←	MEMORIZE(X_train[	:,	i],	GT1,	mask=NIMPL)	 
		
for	i	∈	{1	..	n_train}		
					S_comp[	:,	j+1],	S_comp[	:,	j+2],	...	,	S_comp[	:,	j+m]		
													←	EXTRACT(S_train[	:,	i],	GT1,	mode=topog)	
					j	=	j	+	m	
	
for	i	∈	{1	..	n_comp}		
								𝐻$	[	:,	:,	i]	←	COMPOSE(S_comp[	:,	i],	GT1)	
	
for	j	∈	{1	..	n_train}		
							for	i	∈	{1	..	n_comp}	
              E i,j ←	ENCODE(		𝐻Q	[	:,	:,	j],	k[i],	X_train[	:,	j])	
 

Table 4.  Pseudocode for an HNet training 
algorithm as applied to MNIST image data. 

 

(8) 



Since each stored representation can be paired with a su-
pervised category training label, test inputs can be classified 
according to the label(s) of the stored representations that 
are matched with the lowest energies.   

Independent of supervised classification, the representa-
tions constructed by this HNet algorithm may be of interest 
in their own right, and they may also be input to various 
other methods such as other classifiers.  For instance, the 
representations can be provided as input to an arbitrary back 
end (such as a support vector machine (SVM)) to associate 
the encoded image with the label. 

     Figure 4 illustrates sample OR’d part-whole matches 
of MNIST digits; shown are both matches (colors) and mis-
matches (colors bordered by red lines) for three digit cate-
gories (9, 4, 2). 

 

 
 
At testing time, a single vector, x_test, is input, corre-

sponding to one (preprocessed) datapoint (image, credit ap-
plication, etc).  The pre-trained model consists of a set of 
n_comp composite Hamiltonians, each of dimensionality 
mxm where n_comp is the number of learned components 
in the trained model, and m is the number of nodes in the 
graph G.   

The operation ENCODE measures the energy of x_test 
against each learned component (see Eq 4) using each com-
posite Hamiltonian; these scalar energies are combined into 
a vector E with n_comp dimensions.  

Finally, the output is passed to the PREDICT(∙) function 
which has been trained (using any standard simple ML 
method, such as SVMs), to associate energy vectors with 
class labels.   

Alternatively, E may be converted from the energy meas-
ure to other similarity measures, which then can be used 
with binary dot product operations. This entails converting 
each Hamiltonian  𝐻"[:, :, i] into a “relation vector” R[:, i] 
whose dimensionality is the number of edges in graph GT1.  
This is accomplished by first decomposing 𝐻" into its con-
stituent unit Hamiltonians, each of which is associated with 
an edge in graph GT1.  (The Hamiltonian decomposition is 
described in Appendix D).  Next, the operator associated 
with the given edge j is inferred via Table 3.  Finally, we 
store an integer identifier for this operator in R[j, i].   

Supervised learning is emphatically not a specific end 
goal of the work, but rather is compatible with it. The in-
tended primary advantages of HNet are (i) hierarchical rela-
tional (such as part-whole) encodings, and (ii) the economy 
of the bitwise operations and representation encodings, 
which may enable rich inferences being accomplished with 
low computational cost.  Though it may be tempting to com-
pare classification outcomes against large, expensive, care-
fully-tuned software, no such attempts are contemplated 
here.  It is useful to note that the performance of straightfor-
ward and well-studied engines such as SVMs can be com-
pared when operating on raw data versus on HNet processed 
data.  Figure 5 shows the results of an SVM trained on raw 
data alone, which achieves a mean classification accuracy 
rate of 0.69, whereas the same SVM, trained on output pro-
duced by the above HNet procedure, has a mean accuracy 
of 0.83; this roughly 14% immediate improvement appar-
ently arises solely due to the additional representational in-
formation constructed by the HNet.  It is important to note 
that this “boosting” effect is achieved at extremely low com-
putational cost.    

 
Consumer credit application example 
Visual image data such as MNIST is organized topograph-
ically, i.e., there are neighbor relations among parts of the 
data, such as the horizontal bar above the slanted vertical 
line in a numeral “7”.  Topographic data lends itself to part-
whole organization (e.g., the “bar” and “line” in this verbal 
description of a 7).   

   
Figure 5.  Comparative classification accuracy of a 
simple SVM back end, with and without HNet pro-
cessing.  SVM achieves 69% accuracy on raw data; 
HNet with SVM back end achieves 83%, a 14% im-

provement, due solely to the additional representational 
richness added by the HNet (see text). 
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Figure 4.  Example OR’d part-whole matches on sam-

ple digits 9,4,2.  (Color scheme as per Fig 1.) 



Much data occurs in non-topographic form, such as states 
and capitols; products and prices; etc; these often connote 
data at a “higher” level of description than pure sensory in-
puts.  These still may have natural hierarchical groupings, 
such as western or midwestern states; home products vs. au-
tomotive vs. industrial products, etc, which may be found to 
covary in the data, (and are often treated with unsupervised 
clustering systems). 

The HNet formalism readily applies to nontopographic 
data as well as the topographic examples that already have 
been discussed; for nontopographic data, inputs are mapped 
to a graph format termed GN1, distinct from the topographic 
graph format (GT1) shown in the MNIST examples.  Figure 
6 illustrates two of the graph formats that the HNet formal-
ism can use (there are additional graph formats for other data 
structures; these are not discussed in the present paper).   

As with topographic examples, the HNet mechanism can 
construct hierarchies of representations for nontopographic 
data.  These will be illustrated here in the form of “tiers”, 
with input training data initially organized into Tier 1 repre-
sentations; and those Tier 1 representations further orga-
nized into higher-level Tier 2 structures, etc., as will be 
shown in this section.     

Classic examples of nontopographic data abound; in this 
section we study a straightforward credit card application 
dataset for simplicity.  The emphasis here is not to simply 
process the discriminative categorization of credit reports, 
but rather to create rich representations, of primary use for 
explaining relations identified in the data.   

The Statlog German Credit Dataset (Hofmann), available 
from the UCI Machine Learning Repository (Dua & Graff, 

2017), contains two simple classes judging whether a credit 
application is to be awarded or rejected.   

The dataset was preprocessed as follows:  
i) Split into training/testing subsets; 
ii) Equalized the number of exemplars per class, yield-

ing n[train] = n[test] = 300 (150 per class per set); 
iii) All binary variables treated as booleans (true/false);  
iv) All categorical variables converted to one-hot codes 

(further described below);  
v) All continuous variables converted into five bins of 

equal range; 
The result is 81 binary features (as listed in Supplemental 
Table 3).  

For this example, the initial input graph GN2 is fully con-
nected, due to the small number of features (input graph 
nodes) in this credit card dataset.  (In general, full connec-
tivity is the natural choice for initial encoding of a nontopo-
graphic dataset, for which there is no a priori hypothesis re-
garding connectivity.) 

First, the edge states are stored, i.e., memorized.  Unlike 
illustrative example 1, which contained topographically or-
ganized information, we here create a single component for 
each data point, and store/memorize edges of type 1-1, 0-1, 
1-0 (AND, NCONV, NIMPL).  Edges of type 0-0 (NOR) 
are not stored. 

An initial candidate Tier-1 model is created by executing 
independent component analysis (ICA) (Amari, Cichocki, & 
Yang, 1995) on the set of edge states for the set of training 
data.  Each edge state is represented as a one-hot four di-
mensional binary vector denoting which of the 4 possible 
pair-states corresponds to this edge (see Appendix C, and 

         
Figure 6.  (a,b) Two graph formats used in HNet processing: graph format GT1 (a) for topographic 
data such as sensory information (e.g., images, sounds); e.g., the MNIST image dataset; graph for-
mat GN1 (b) for nontopographic data such as arbitrary abstract attribute-value pairs; examples in-

clude consumer credit applications, pricing data, etc. (c) Closeup of credit application data structure 
(see Supplemental figures 10-12). 

 

(a)
tier 2

component

no addl installm
plans

(i)

(i)

(i) is foreign

(ii)

(ii)

(ii) no 
guarantors

high 
credit

(iii)

low 
credit

(d)
component 1.48

(c)
component 1.38

(b)
component 1.26

0 0
0 1
1 0
1 1

(NOR)
(NCONV)
(NIMPL)
(AND)

n1 n3

n4n2

e2

e4

e3

e1
...

...

...

... b)a)

Graph formats
a) GT1 (topographic)
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a1_A11: 'salary for at least 1 year = under zero dm'
a1_A12: 'salary for at least 1 year = under 200 dm’
a1_A14: 'no checking acct'
a3_A30: 'no credits taken / all credits paid back duly'
a3_A31: 'all credits at this bank paid back duly'
a3_A32: 'existing credits paid back duly till now'
a3_A33: 'delay in paying off in the past’
a4_A40: 'purpose = car (new)'
a4_A41: 'purpose = car (used)’ ...

c)



Supplemental Tables 1-3).  The resulting edges are stored as 
the columns of a memory or “state” matrix termed S_t1.  
ICA is then run on these state vectors; each of the resulting 
components possesses a weight for each edge, independent 
in the space of the number of training instances. 

Thus dominant sets of edges will be selected for a given 
component, i.e., edges that co-occur.  These are illustrated 
as thick lines in Figure 7b and c.  The weights of the smaller 
50% quartile among all components are then set to zero; i.e., 
the significance of edges is thresholded.  Finally, for each 
edge of each component (among the four possible states), 
the state with the highest weight “wins” and is stored as the 
represented weight for that edge in that component. 
 

These steps produce a large number of edges per compo-
nent; these are further sparsified by iteratively removing any 
given edge that, on average, co-occurs in the training set 
least often with other of the components’ edges. Edges are 
iteratively removed until no more than 50 edges remain.   

Once Tier-1 representations are created, a higher “meta” 
representational tier is produced such that the nodes in Tier 
2 are components of Tier 1, as columns in a matrix S_t2.  For 
a given data point, each Tier 2 node’s activity is the energy 
of its corresponding Tier 1 component.  In the present ex-
ample here, Tier 2 components are produced by performing 
k-means clustering on the S_t2 matrix.  As in Tier 1, each 
Tier 2 edge state (i.e., element in S_t2 is converted into a 
one-hot code such that 16 binary numbers represent the state 
of the edge (see Supplemental Tables 1,2).  Each edge is as-
signed via 1-winner-take-all to one cluster.  As before, for 
each edge of each component amongst the four possible 
edge states, the most frequent state “wins”, and then itera-
tive sparsification is again performed until the number of 
edges per component is less than 50.   

Examples of final Tier 1 and connected Tier 2 representa-
tions are shown in Supplemental Figures 10-12, along with 
brief descriptions of how these may be useful in service of 
“explanatory” accounts of what evaluations may arise from 
this data as well as why given evaluations may arise.   

All examples here and all supplemental sections are pro-
duced by simple runnable code available at:  

https://github.com/DartmouthGrangerLab/hnet  

Identification of equivalences 
Correspondences among systems 
A natural question is that of the relation between an HNet’s 
Hamiltonian computations, and those of standard current 
linear-algebra-based ANN systems.  Tables 5 and 6 describe 
analyses of simple examples both in terms of Hamiltonians 
and of standard ANN vectors.  Shown are the four unit edge 
types, their corresponding Hamiltonians and the a,b,c values 
that comprise them (see Table 3), and the corresponding 
higher-dimensional projection that would be used to operate 
on these edge types via ANN-like weight matrices.  In the 
math of HNets, for a given edge, a Hamiltonian is stored (via 
Table 3), and energy may be calculated per equation 1:  
 

 
For that same edge, we may instead create a projection 

into a four-dimensional space with a specific one-hot vector 
assigned for each given edge type as in the first two columns 
of Table 5.   

We then can consider unsupervised learning of that four-
dimensional one-hot vector.  A straightforward method bor-
rows from standard unsupervised “competitive” networks 
(Rumelhart & Zipser, 1986), by modifying the synapses of 

  

	 	
	

Table 5:  Relationship between Hamiltonians and 
ANN representations for the four unit edge types.  
(abc, H columns; right): For each edge, the values 
of a,b,c are defined for the corresponding Hamil-

tonian.  (projection column; middle): For the same 
edges, the corresponding one-hot vector is shown, 
effectively projecting two-dimensional edge val-
ues into four dimensions, such that each dimen-

sion is dedicated to a specific edge type. 
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Fig 7. a) A fully connected input graph: each node is a credit 
application variable. b) Connections weighted by cross-data-

point correlation among variables. Variables a, b, c form a 
clique of co-varying variables. Edges connecting these varia-
bles are likely to be in the same component, and are not re-

moved.  c)  A resulting sample component.  
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a target “winning” dendrite, changing their weights in a di-
rection defined as the difference between the existing syn-
aptic weight, and the value of the input itself (either a 1 or 0 
in the four-dimensional “projection” vector from Table 5 
here).  I.e.,  
 

 
for a weight on the “winning” target cell in response to input 
vector �⃑� .  (Note that where the “learning rate” parameter k 
is 1, then the weight vector 𝑤;;⃑  becomes equal to the input 
vector �⃑� .)   To “recognize” this stored memory, a standard 
weighted sum would be computed:  
 
 

(For HNet processing of this same edge, a Hamiltonian 
would be produced for the edge via Table 3, and it would be 
recognized via an energy calculation as in Equations 1-3).  

Treatment of composite edges entails further projection to 
higher dimensional spaces.  E.g., for two edges, the compos-
ing of Hamiltonians would proceed as shown in the “Com-
positionality” section above, but for the corresponding lin-
ear-algebra operation, the two edges would be projected into 
a correspondingly higher-dimensional space as per Table 6.  

In that table, two edges 1-0 and 1-1 are composed first 
into a composite Hamiltonian as per the compositionality 

methods described earlier, whereas in the linear-algebra 
treatment, the two edges would first be projected into four-
dimensional space as just described and then the two 4d vec-
tors (for the two edges) would be composed by projection 
into an eight-dimensional space, consisting of the latter four 
dimensions appended to the initial four dimensions, such 
that every four-dimensional subspace is one-hot.   

It is worth emphasizing that the higher-dimensional Bool-
ean weight-based version of these computations are for-
mally equivalent to the Hamiltonian version (see Appendix 
E).  Thus, logical relations that can be captured by compu-
tations on Hamiltonians can be transferred directly to the 
weight-based method as projected to higher dimensions.  
The Hamiltonian formulation thus may have particular 
value for illuminating formal principles that underlie purely 
weight-based methods of this specifically constrained kind.   

In the weight-based architecture introduced here, inputs 
are represented by sparse activity in a relatively high dimen-
sional space, with a specific and unusual set of constraints 
on representational design. Although this design is not typi-
cal of standard backprop or deep-backprop architectures, the 
design nonetheless can be seen to have points of correspond-
ence with a rich literature in which high-dimensional vectors 
are intended to encode symbolic content, such that the re-
sulting “symbols” may nonetheless then be operated on by 
numeric rules of the kinds used in ANNs.  Key examples are 
embeddings, as initially in Word2vec, and then in BERT, 
GloVe, GPT-3, DALL-E, and several additional transformer 
models, which are of intensive current interest in ML and 
ANNs (Brown et al., 2020; Mikolov, Sutskever, Chen, Cor-
rado, & Dean, 2013; Pennington, Socher, & Manning, 
2014). In general, possible links of this kind, between sym-
bolic and sub-symbolic representations, are the subject of 
very active ongoing research (see, e.g., (Garcez & Lamb, 
2020; Günther, Rinaldi, & Marelli, 2019; Holyoak, 2000; 
Holyoak, Ichien, & Lu, 2022; Kanerva, 2009; Smolensky, 
McCoy, Fernandez, Goldrick, & Gao, 2022)) and bear some 
resemblances with other, quite different, logic-based com-
putational designs (e.g., (Parsa et al., 2022)).   

 
From hierarchical statistics to abduced symbols 
It is perhaps useful to envision some of the ongoing devel-
opments that are arising from enlarging and elaborating the 
Hamiltonian logic net architecture.  As yet, no large-scale 
training whatsoever has gone into the present minimal HNet 
model; thus far it is solely implemented at a small, introduc-
tory scale, as an experimental new approach to representa-
tions. It is conjectured that with large-scale training, hierar-
chical constructs would be accreted as in large deep network 
systems, with the key difference that, in HNets, such con-
structs would have relational properties beyond the “isa” 
(category) relation, as discussed earlier.  

Such relational representations lend themselves to abduc-
tive steps (McDermott 1987) (or “retroductive” (Pierce 

 

 

          
Table 6.  Compositionality in HNet and in a corre-
sponding linear-algebra system (see text).  Whereas 
Hamiltonians for multiple edges are composed as de-
scribed earlier in this paper, the higher-dimensional 
one-hot projections of edge vectors are composed by 
appending them, then projecting them into a higher 
dimensional space with unusual properties (see text).   
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1883)); i.e., inferential generalization steps that go beyond 
warranted statistical information.  If John kissed Mary, Bill 
kissed Mary, and Hal kissed Mary, etc., then a novel cate-
gory ¢X can be abduced such that ¢X kissed Mary.   

Importantly, the new entity ¢X is not a category based on 
the features of the members of the category, let alone the 
similarity of such features. I.e., it is not a statistical cluster 
in any usual sense.  Rather, it is a “position-based category,” 
signifying entities that stand in a fixed relation with other 
entities.  John, Bill, Hal may not resemble each other in any 
way, other than being entities that all kissed Mary. Position-
based categories (PBCs) thus fundamentally differ from 
“isa” categories, which can be similarity-based (in unsuper-
vised systems) or outcome-based (in supervised systems). 
PBCs share some characteristics with “embeddings” in 
transformer architectures.   

Abducing a category of this kind often entails overgener-
alization, and subsequent learning may require learned ex-
ceptions to the overgeneralization.  (Verb past tenses typi-
cally are formed by appending “-ed”, and a language learner 
may initially overgeneralize to “runned” and “gived,” neces-
sitating subsequent exception learning of “ran” and “gave”.)   

Simple abductive steps are generated as the HNet con-
structs hierarchies: 

Initial versions of these abductive methods were imple-
mented and applied to the CLEVR image dataset (Sampat et 
al., 2021).  Figure 8 illustrates simple instances of the result-
ing abduced entities, both objects (categories; ¢A) and se-
quential relations ($M), and compositions of these.  

We conjecture that ongoing hierarchical construction of 
such entities can enable increasingly “symbol-like” repre-
sentations, arising from lower-level “statistic-like” repre-
sentations.  Figure 9 illustrates construction of simple “face” 
configuration representations, from exemplars constructed 
within the CLEVR system consisting of very simple eyes, 
nose, mouth features.  Categories (¢) and sequential rela-
tions ($) exhibit full compositionality into sequential rela-
tions of categories of sequential relations, etc.; these define 
formal grammars (Rodriguez & Granger 2016; Granger 
2020).  Exemplars (a,b) and near misses (c,d) are presented, 
initially yielding just instances, which are then greatly re-
duced via abductive steps (see Supplemental Figure 13).  

 

 

 

 

 

 

 

 
Discussion 

A system has been described that operates on arbitrary data, 
allowing both unsupervised and supervised capabilities, dif-
fering from standard extant systems by inherently identify-
ing part-whole relations in data, and constructing logical 
(and hence potentially more interpretable) representations, 
all via radically low-precision, intrinsically massively paral-
lel computational operations, in an energy-based architec-
ture.  This Hamiltonian bitwise logic network, or HNet, 
identifies lowest-energy “matching” states, combining sta-
tistical information together with instance-based recognition 
of logical edges in a directed graph formalism.   

The algorithm lends itself to direct implementation in ap-
propriate parallel hardware.  The values of nodes at each 

Successive epochs 
i) Cluster together multiple similar Tier n+1 instances  

e.g., (LEFT x1 y1), (LEFT x2 y2), (LEFT x3,y3), … 
ii) Create Tier n+2 element that ORs the arguments of 

the Tier n+1 instances.    
e.g. (LEFT (OR x1 x2 x3) (OR y1 y2 y3))  

iii) Abduce Tier n+3 (“type”) arguments (¢,$) that 
overgeneralize from the Tier n+2 OR’d (“token”) 
arguments.    
e.g., ($LEFT ¢X ¢Y)  

 
 
       

 

   
Figure 8.  Image features (a; inset) are rendered into 

individual entities (b) with initial individual rela-
tions (c).  After repeatedly occurring as a statistical 
class, they are abduced (d,e) to (possibly overgener-
alized) position-based categories of objects (¢XX, 

¢DD) and sequential relations ($M, $N).  (See text). 

   
Figure 9.  Relations in instances and non-instances of 
“faces” in CLEVR.  As examples (a,b) and near-misses 
(c,d) are presented, a statistical rendering of the class of 
faces comes to contain many individual links (e) which 
are greatly reduced via simple abductive steps to match 

(f) or fail to match (g) new instances (see text). 



time step can be calculated independently.  The algorithm’s 
elapsed processing time depends on the number of edges in 
the data, i.e., O(n_edges = trace of degree matrix). With a 
single processor, processing time is O(average n_edges), 
growing linearly with the number of edges. If each node is 
assigned to a separate parallel processing element, average 
computation is O(n_edges/n_nodes = avg. degree of nodes).  
It is notable that these unusual scalability characteristics dif-
fer drastically from standard methods and from other graph 
methods (e.g., probabilistic graphs and graph NNs), which 
in general do not resemble HNets; some potentially interest-
ing cases entail the use of probabilistic graphical models 
(PGMs) that have been adapted to some potential symbolic 
cases (Koller & Friedman 2009; Rosenbloom 2011).  

Longstanding customary elements of most typical artifi-
cial neural networks are entirely discarded here: there is no 
use of gradient descent / hill climbing; no long-distance 
propagation of information; no assumption of simple synap-
tic summation.  By contrast, the method incorporates some 
characteristics that are highly unusual in machine learning 
or ANNs, but are highly valuable for scaling, especially the 
use of solely low-precision calculations.   

Of particular note are the simple relational elements of the 
graph representations, including possible abstract symbolic 
structures.  Whereas typical ANNs tend largely to impose 
additional structure (e.g., convolutions, pooling, etc.) as 
add-ons to simpler statistically-based components, the graph 

edges of the HNet formalism contain structural information 
all the way down at the lowest level of representation.   

The two initial pedagogical examples presented here are 
standard well-studied machine learning and ANN tasks: 
MNIST digit character recognition, and application for a 
consumer credit card.  The former consists of topographic 
data, as does any sensory input (images, sounds, etc.), 
whereas the latter is nontopographic, as is typical for most 
non-perceptual datasets containing arbitrary attribute-value 
pairs.  In both cases, processing these data can lead to gen-
eration of categories beyond typical “isa” links, to general-
ized position-based categories; as mentioned, these general-
ize to families of formal grammars (Granger 2020); ongoing 
studies are pursuing this generalization.  

The HNet formalism is not presented as an intended sub-
stitute for existing ANN and ML systems; it is a novel 
method for producing representations, by identifying struc-
ture not just among data, but within data (e.g., doors are part 
of cars; handles are part of doors, etc.). The method thus 
builds richer representations than those typically present in 
current systems.   

The aim, throughout the work, is not to compare perfor-
mance against any particular machine learning or neural net 
system (whose performance of course can be substantially 
modified by many extraneous add-on methods; see, e.g., 
(Serre, 2019)). Rather, the goal is to illustrate key atypical 
characteristics of this novel algorithm, especially:  

                     
Figure 10.  HNet architecture, consisting of successive “layers” that do not correspond at all to typical ANN or deep net-
work layers.  Inputs, either topographic (e.g., sensory input, such as MNIST) or nontopographic (abstract value-attribute 
vectors, such as the credit-card application dataset), are rendered as graphs (GT or GN, respectively), as described in the 

text.  The resulting edge representations are ENCODEd as in the text, into “tier 1" components.  All such components can 
then be rendered as new graphs, whose edges can again be ENCODEd as components, now tier 2 in the growing hierarchy 

(which can continue with additional tiers, as indicated by ellipsis at right).  The resulting representations can be input to 
any back end mechanism such as a classifier (SVM, k-nearest neighbor, simple neural network, etc.).  The enriched repre-
sentation can enable higher classification scores than a classifier alone would attain (see Figure 5), and enable computa-

tionally far less costly classifiers, as well as identifying potential symbol-like relations (see text). 
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• graph encoding via four specific types of edges; 
• “part” identification by matched edge types;  
• Hamiltonian HNets for edge recognition; 
• full compositionality of HNets;  
• solely low-precision arithmetic throughout; 
• all local operations; no propagation; 
• interpretable, ‘explainable’ representations.     
Many of these features are unusual in typical ML/ANN 

systems.  Taken together, they are a thoroughgoing depar-
ture from standard approaches, raising the possibility of al-
ternate stratagems for highly scalable, hardware-ready data 
processing algorithms.   

The early system presented here has many characteristics 
that can be substantially improved upon.  For instance, all 
examples still are of small size on modest datasets; no large-
scale constructs have been built or tested.  Moreover, the 
system currently relies on multiple possible component-
identification methods (such as ICA); no methodical exam-
ination has yet been carried out for optimization of such 
methods across various applications domains.   

In addition, the hierarchical characteristics of the system, 
although promising, are as yet largely underexplored: it is 
not known what large-scale structures may be generated 
were the system to be applied to highly structured data in 
which concepts (e.g., shape, color, creditworthiness, socio-
economic class) might be identified, and it is unknown as 
yet what capabilities may emerge that enable more “sym-
bolic” or rule-based inferences, beyond those initially im-
plemented here.   

Even at this early stage, the system presents a demon-
strated method for encoding relations in a way that is cur-
rently elusive and highly expensive in extant systems, and it 
does so straightforwardly and radically inexpensively, via 
tools that are unusually well suited to hardware implemen-
tation.   

It is hoped that the simple intrinsic relational elements of 
HNet graph data structures, and the formulation of Hamilto-
nians that treat these graphs as computable elements, as well 
as the markedly low computational processing costs, may 
offer a possible starting point for further approaches to the 
representation of relations beyond “isa,” incorporating arbi-
trary relations that enable a direct crossover from purely 
low-level (e.g., statistical) systems to symbolic computa-
tion.   

Acknowledgments 
The work reported herein was supported in part by funding 
from the Office of Naval Research.   
   

References 
Amari, S. (1967). A theory of adaptive pattern classifiers. IEEE 
Trans. Electronic Computers 3, 299-307.  

Amari, S., Cichocki, A., & Yang, H. (1995). A new learning algo-
rithm for blind signal separation. Advances in Neur Info Proc Sys  

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhari-
wal, P., …. (2020). Language models are few-shot learners. Neu-
rIPs 2020.   arxiv.org/abs/2005.14165 

Conwell, C., & Ullman, T. (2022). Testing relational understand-
ing in text-guided image generation. arXiv:2208.00005  

Dua, D., & Graff, C. (2017). UCI machine learning repository. Re-
trieved from archive.ics.uci.edu/ml archive.ics.uci.edu/ml  

Fukushima, K., & Miyake, S. (1982). Neocognitron: A self-organ-
izing neural network model for a mechanism of visual pattern 
recognition.  . In Competition and coöperation in neural nets.  (pp. 
267-285). Berlin: Springer. 

Garcez, A., & Lamb, L. (2020). Neurosymbolic AI: The 3rd wave. 
arXiv:2012.05876v2  

Granger R (2020). Toward the quantification of cognition.  
arXiv:2008.05580  

Grossberg, S. (1976). Adaptive pattern classification and universal 
recoding I Biological Cybernetics, 23, 121-134.  

Günther, F., Rinaldi, L., & Marelli, M. (2019). Vector-space mod-
els of semantic representation from a cognitive perspective. Per-
spectives on Psychol Sci, 14, 1006-1033. doi: 
doi.org/10.1177/1745691619861372  

Hinton, G. (2021). How to represent part-whole hierarchies in a 
neural network. arxiv:2102.12627  

Holyoak, K. (2000). The proper treatment of symbols. In Cognitive 
dynamics, MIT Press (p.229) 

Holyoak K, Ichien N, Lu H. (2022). From semantic vectors to an-
alogical mapping. Psych Sci. doi:10.1177/09637214221098054 

Jones N. (2018) How to stop data centres from gobbling up the 
world’s electricity. Nature 561: 163-166, https:// 
doi.org/10.1038/d41586-018-06610-y   

Kanerva, P. (2009). Hyperdimensional computing.  Cogn Comput, 
1, 139-159. doi:10.1007/s12559-009-9009-8  

Koller D, Friedman N (2009).  Probabilistic graphical models.  
Cambridge MA: MIT Press 

LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hub-
bard, W., & Jackel, L. (1989). Handwritten digit recognition with 
a back-propagation network. Paper presented at the Adv. Neural 
Information Proc Sys 2  

LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based 
learning applied to document recognition.  IEEE 86:2278-2342.  



Marcus, G., Davis, E., & Aaronson, S. (2022). A very preliminary 
analysis of DALL-E 2. arXiv:2204.13807. 

McCulloch, W., & Pitts, W. (1943). A logical calculus of the ideas 
immanent in nervous activity.  Bull. Math Biol. 5: 115-133.  

McDermott D (1987) A critique of pure reason.  Comp. Intell 
3:151-160 

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. 
(2013). Distributed representations of words and phrases and their 
compositionality.  Adv. Neural Information Proc Sys (NIPS 2013)  

Mitchell, J., & Lapata, M. (2008). Vector-based models of seman-
tic composition. Paper presented at the ACL-08: HLT.  

Mitchell M, Krakauer D (2023) The debate over understanding in 
AI’s large language models.  arXiv:2210.13966v3  

Molnar, C. (2022). A guide for making black box models explain-
able.  https://christophm.github.io/interpretable-ml-book/ 

Parsa, A., Wang, D., O’Hern, C., Shattuck, M., Kramer-Bottiglio, 
R., & Bongard, J. (2022). Evolving programmable computational 
metamaterials  Paper presented at the GECCO ’22  

Peirce C (1883) A theory of probable inference.  In "Studies in 
Logic"  Little, Brown (Boston) pp.126-181.   

Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global 
vectors for word representation. Conf Empirical Methods in NLP. 

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., & Chen, M. (2022). 
Hierarchical text-conditional image generation with clip latents. 
arXiv:2204.06125. 

Ramesh A, Pavlov M, Goh G, Gray S, Voss C, Radford A, Chen 
M, Sutskever I (2021) Zero-shot text-to-image generation. 
arXiv:2102.12092 

Rodriguez A, Granger R (2016) The grammar of mammalian brain 
capacity. Theoretical Computer Science C (TCS-C): 633:100-111. 
doi: 10.1016/j.tcs.2016.03.021  

Rosenblatt F (1958) The perceptron: A probabilistic model for in-
formation storage and organization in the brain. Psych Rev 65:386-
408  

Rosenbloom P (2011).  Rethinking cognitive architecture via 
graphical models.  Cog Systems Res., 12, 198-209.  

Rumelhart, D., & Zipser, D. (1986). Feature discovery by compet-
itive learning. Cognitive Science, 9, 75-112.  

Sampat S, Kumar A, Yang Y, Baral C (2021) CLEVR_HYP: A 
challenge dataset.  Assoc Comp Ling, pp.3692-3709.  

Serre, T. (2019). Deep learning: The good, the bad, and the ugly. 
Ann Rev Vision Sci, 5, 399-426.  

Smolensky P, McCoy R, Fernandez R, Goldrick M, Gao J. (2022) 
Neurocompositional computing: From the central paradox of cog-
nition to a new generation of AI systems arXiv:2205.01128v1  

Thagard P, Shelley C (1997) Abductive reasoning.  In Logic and 
scientific methods.  Springer.  pp.413-427.  

Thrush, T., Jiang, R., Bartolo, M., Singh, A., Williams, A., Kiela, 
D., & Ross, C. (2022). Winoground: Probing vision and language 
models for visio-linguistic compositionality. arXiv:2204.03162v2  

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A, 
Kaiser L, Polosukhin I. (2017) Attention is all you need.  NIPS 
2017.  arxiv.org/pdf/1706.03762.pdf   

Werbos, P. (1974). Beyond regression. (Ph.D. diss). Harvard Univ 

Widrow, B., & Hoff, M. (1960). Adaptive switching circuits. Stan-
ford Univ Electronics Labs.     

Zhou C, et al., (2023) A comprehensive survey on pretrained foun-
dation models: A history from BERT to ChatGPT.  
arXiv:2302.09419v1  

 


