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ABSTRACT

Understanding user intentions is crucial for enhancing product recommendations,
navigation suggestions, and query reformulations. However, user intentions can
be complex, involving multiple sessions and attribute requirements connected by
logical operators such as And, Or, and Not. For example, a user may search for
Nike or Adidas running shoes across various sessions, with a preference for the
color purple. In another case, a user may have purchased a mattress in a previ-
ous session and is now seeking a corresponding bed frame without intending to
buy another mattress. Prior research on session understanding has not sufficiently
addressed how to make product or attribute recommendations for such complex
intentions. In this paper, we introduce the task of logical session complex query
answering, where sessions are treated as hyperedges of items, and we formulate
the problem of complex intention understanding as a task of logical session com-
plex queries answering (LS-CQA) on an aggregated hypergraph of sessions, items,
and attributes. The proposed task is a special type of complex query answering
task with sessions as ordered hyperedges. We also propose a new model, the Logi-
cal Session Graph Transformer (LSGT), which captures interactions among items
across different sessions and their logical connections using a transformer struc-
ture. We analyze the expressiveness of LSGT and prove the permutation invari-
ance of the inputs for the logical operators. We evaluate LSGT on three datasets
and demonstrate that it achieves state-of-the-art results.

1 INTRODUCTION

Understanding user intention is a critical challenge in product search. During the product search
process, a user’s intention can be captured in many ways. Some intentions can be explicitly given
through search keywords. For example, a user may use keywords like “Red Nike Shoes” to indicate
the desired product type, brand, and color. However, search keywords may not always accurately
reflect the user’s intention, especially when they are unsure of what they want initially. To address
this issue, session-based recommendation methods have been proposed to leverage user behavior
information to make more accurate recommendations (Hidasi et al., 2015; Li et al., 2017).

User intentions are usually complex. On one hand, users often have explicit requirements for desired
items, such as brand names, colors, sizes, and materials. For example, in Figure 1, query q1 shows
a user desiring Nike or Adidas products in the current session. On the other hand, users may spend
multiple sessions before making a purchasing decision. For query q2, the user spends two sessions
searching for a desired product with an explicit requirement of purple color. Moreover, these re-
quirements can involve logical structures. For instance, a user explicitly states that they do not want
products similar to a previous session. In query q3, a user has purchased a mattress in a previous
session and is now looking for a wooden bed frame, without any intention of buying another mat-
tress. With the help of logical operators like AND ∧, OR ∨, and NOT ¬, we can describe the complex
intentions by using a complex logical session query, like q1, q2, and q3 in Figure 1.

Furthermore, there are scenarios we also want to know the product attributes based on sessions. For
instance, in query q4 in Figure 1, we want to identify the material types of the products desired in the
current session. Similarly, in query q5, given two sessions, we want to determine the brand names
of the products desired in both sessions. To deal with them, we can also describe these queries by
logic expressions with the help of variables. For example, we can use the variable V1 to represent the
products and V? to represent the attribute associated with the product V1. Consequently, the attribute
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Complex Queries Interpretations
𝑞! = 𝑉? ∶ 𝑆𝑒𝑠𝑠𝑖𝑜𝑛(𝐼𝑡𝑒𝑚!, 𝐼𝑡𝑒𝑚#, … , 𝐼𝑡𝑒𝑚$, 𝑉?) 
∧ (𝐵𝑟𝑎𝑛𝑑 𝑉?, 𝑁𝑖𝑘𝑒 	∨ 	𝐵𝑟𝑎𝑛𝑑 𝑉?, 𝐴𝑑𝑖𝑑𝑎𝑠 )

Find the desired next item of a session with the 
brand Nike or Adidas. 

𝑞# = 𝑉? ∶ 𝑆𝑒𝑠𝑠𝑖𝑜𝑛(𝐼𝑡𝑒𝑚!,!, 𝐼𝑡𝑒𝑚!,#, … , 𝐼𝑡𝑒𝑚!,&, 𝑉?) ∧ 
𝑆𝑒𝑠𝑠𝑖𝑜𝑛(𝐼𝑡𝑒𝑚#,!, 𝐼𝑡𝑒𝑚#,#, … , 𝐼𝑡𝑒𝑚#,', 𝑉?) ∧ 𝐶𝑜𝑙𝑜𝑟 𝑉?, 𝑃𝑢𝑟𝑝𝑙𝑒

Find the desired next item of both session1 and 
session2 with purple color.  

𝑞( = 𝑉? ∶ 𝑆𝑒𝑠𝑠𝑖𝑜𝑛(𝐼𝑡𝑒𝑚!,!, 𝐼𝑡𝑒𝑚!,#, … , 𝐼𝑡𝑒𝑚!,&, 𝑉?) ∧ 
¬𝑆𝑒𝑠𝑠𝑖𝑜𝑛(𝐼𝑡𝑒𝑚#,!, 𝐼𝑡𝑒𝑚#,#, … , 𝐼𝑡𝑒𝑚#,', 𝑉?) ∧ Material 𝑉?,𝑊𝑜𝑜𝑑

Find the item with wooden material that is desired 
by the session1 but is not desired by session2.

𝑞) = 𝑉?	, ∃𝑉!: 	𝑆𝑒𝑠𝑠𝑖𝑜𝑛(𝐼𝑡𝑒𝑚!, 𝐼𝑡𝑒𝑚#, … , 𝐼𝑡𝑒𝑚$, 𝑉!) 
∧ Material 𝑉!, 𝑉?

Find the material type of the product that a 
session desires. 

𝑞* = 𝑉?	, ∃𝑉!: 𝑆𝑒𝑠𝑠𝑖𝑜𝑛(𝐼𝑡𝑒𝑚!,!, 𝐼𝑡𝑒𝑚!,#, … , 𝐼𝑡𝑒𝑚!,&, 𝑉!) ∧ 
𝑆𝑒𝑠𝑠𝑖𝑜𝑛(𝐼𝑡𝑒𝑚#,!, 𝐼𝑡𝑒𝑚#,#, … , 𝐼𝑡𝑒𝑚#,', 𝑉!) ∧ B𝑟𝑎𝑛𝑑 𝑉!, 𝑉?

Find the brand name the product that is desired 
by both the session1 and by the session2.

Figure 1: Example complex queries involving multiple sessions and various product attributes.
recommendation task with complex user intention can be formulated as a multi-hop logical query
answering task, where we inquire about what V? would be such that there exists a certain product V1

with the product attribute V? that is desired in the given sessions.

To systematically answer queries with complex user intentions, we formally propose the task of log-
ical session complex query answering (LS-CQA). This can be seen as an extension of the Complex
Query Answering (CQA) problem to multi-relational hypergraph data, where sessions are treated as
ordered hyperedges of items. The task of product or attribute recommendation under complex inten-
tion is reformulated as a task of answering logical queries on an aggregated hypergraph of sessions,
items, and attributes. Figure 2 (C) provides an example of such an aggregated hypergraph, where
each session is represented as a hyperedge connecting the corresponding items.

In addition to utilizing CQA methods with N-ary facts, such as NQE proposed by Luo et al. (2023),
another more reasonable approach to LS-CQA is to employ a session encoder. Recent studies (Li
et al., 2021; Huang et al., 2022; Zhang et al., 2023) ave shown the effectiveness of session encoders
in encoding sessions and generating session representations. However, the neural session encoders
tend to conduct implicit abstraction of products during the session encoding process (Zhang et al.,
2023). The logical query encoder can only access the abstracted session representations, resulting in
a lack of capturing the interactions between items in different sessions during the query encoding.

Motivated by this, we introduce the Logical Session Graph Transformer (LSGT) as an approach for
encoding complex queries sessions as hypergraphs. Building upon the work by Kim et al. (2022),
we transform items, sessions, relation features, session structures, and logical structures into tokens,
which are then encoded using a standard transformer model. This transformation enables us to
effectively capture interactions among items in different sessions through the any-to-any attention
mechanisms in transformer models. By analyzing the Relational Weisfeiler-Lehman by Barceló
et al. (2022); Huang et al. (2023), we provide theoretical justification for LSGT, demonstrating that
it possesses the expressiveness of at least 1-RWL, and has at least same expressiveness as existing
logical query encoders that employ message-passing mechanisms for logical query encoding in WL
test. Meanwhile, LSGT maintains the property of operation-wise permutation invariance, similar to
other logical query encoders. To evaluate LSGT, we have conducted experiments on three evaluation
datasets: Amazon, Diginetica, and Dressipi. Experiment results show that the transformer-based
query encoding models have similar performances. SQE with Transformer (Bai et al., 2023) and
LSGT perform comparably on the EPFO queries, and they perform better than the graph-based query
encoders with session encoders. While the linearization strategy of LSGT is better on the queries
involving negations, achieving an improvement from 1.92 to 2.93 in MRR. We also discovered
that the linearization strategy used in LSGT has better compositional generalization capability. In
general, the contribution of this paper can be summarized as follows:

• We extend complex query answering (CQA) to hypergraphs with sessions as ordered hy-
peredges (LS-CQA) for describing and solving the product and attribute recommendations
with complex user intentions. We also constructed three corresponding scaled datasets with
the full support of first-order logical operators (intersection, union, negation) for evaluating
CQA models on hypergraphs with ordered hyperedges and varied arity.

• We propose a new method, logical session graph transformer (LSGT). We use a new lin-
earization strategy of hypergraph queries, which uses tokens and identifiers to uniformly
represent the items, sessions, logical operators, and their relations, and then uses a standard
transformer structure to encode them.
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Figure 2: This figure shows the connections and differences between general hypergraphs, hyper-
relational knowledge graphs, and the hyper-session graph in our problem.

• We conducted experiments on Amazon, Digintica, and Dressipi to show that existing
Transformer-based models show similar results on 3 benchmarks despite different lin-
earization strategies. Meanwhile, We also find the linearization of LSGT leads to an im-
provement in queries with negations and unseen query types. Meanwhile, We theoretically
justify the expressiveness in the Weisfeiler-Lehman (WL) test and Relational Weisfeiler-
Lehman (RWL) test, and we also prove the operator-wise permutation invariance of LSGT.

2 PROBLEM FORMULATION

2.1 LOGICAL SESSION COMPLEX QUERY ANSWERING

In previous work, complex query answering is usually conducted on a knowledge graph G = (V,R).
However, in our aggregated hypergraph, there are not only items but also sessions and attribute
values. Because of this, the graph definition is G = (V,R,S). The V is the set of vertices v, and
the R is the set of relation r. The S is the set of sessions that can be regarded as a set of directed
hyperedges. To describe the relations in logical expressions, the relations are defined in functional
forms. Each relation r is defined as a function, and it has two arguments, which represent two
items or attributes v and v′. The value of function r(v, v′) = 1 if and only if there is a relation
between the items or attributes v and v′. Each session s ∈ S is the sequence of vertices where
s(v1, v2, ..., vn) = 1 if and only if v1, v2, ..., vn appeared in the same session.

The queries are defined in the first-order logical (FOL) forms. In a first-order logical expression,
there are logical operations such as existential quantifiers ∃, conjunctions ∧, disjunctions ∨, and
negations ¬. In such a logical query, there are anchor items or attribute Va ∈ V , existential quantified
variables V1, V2, ...Vk ∈ V , and a target variable V? ∈ V . The knowledge graph query is written
to find the answer V? ∈ V , such that there exist V1, V2, ...Vk ∈ V satisfying the logical expression
in the query. For each query, it can be converted to a disjunctive normal form, where the query is
expressed as a disjunction of several conjunctive expressions:

q[V?] = V?.∃V1, ..., Vk : c1 ∨ c2 ∨ ... ∨ cn, (1)
ci = ei1 ∧ ei2 ∧ ... ∧ eim. (2)

Each ci represents a conjunctive expression of literals eij , and each eij is an atomic or the negation
of an atomic expression in any of the following forms: eij = r(va, V ), eij = ¬r(va, V ), eij =
r(V, V ′), or eij = ¬r(V, V ′). The atomics eij can be also hyper N-ary relations between vertices
indicating that there exists a session among them. In this case, the eij = s(v1, v2, ..., vn, V ) or
its negations eij = ¬s(v1, v2, ..., vn, V ). Here va and vi ∈ Va is one of the anchor nodes, and
V, V ′ ∈ {V1, V2, ..., Vk, V?} are distinct variables satisfying V ̸= V ′. When a query is an existential
positive first-order (EPFO) query, there are only conjunctions ∧ and disjunctions ∨ in the expression
(no negations ¬). When the query is a conjunctive query, there are only conjunctions ∧ in the
expressions (no disjunctions ∨ and negations ¬).

3 RELATED WORK

3.1 HYPER-RELATIONAL GRAPH REASONING

The reasoning over hyper-relational KG proposed by Alivanistos et al. (2022), they extend the multi-
hop reasoning problem to hyper-relational KGs and propose a method, StarQE, to embed and answer
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𝑞! = 𝑉?	, ∃𝑉!: 𝑆𝑒𝑠𝑠𝑖𝑜𝑛(𝐼𝑡𝑒𝑚!,!, … , 𝐼𝑡𝑒𝑚!,$, 𝑉!) ∧ 𝑆𝑒𝑠𝑠𝑖𝑜𝑛(𝐼𝑡𝑒𝑚%,!, … , 𝐼𝑡𝑒𝑚%,&, 𝑉!) ∧ B𝑟𝑎𝑛𝑑 𝑉!, 𝑉?
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Find the brand name the product that is desired by both the session1 and by the session2.(B)

Figure 3: The illustration of different query embedding methods. (A) The logical session complex
query expressed in the first-order logic form. (B) The interpretations on the logical session complex
query. (C) The computational graph of the complex query proposed by Hamilton et al. (2018); (D)
The linearization of the computational graph to token proposed by Bai et al. (2022a)

hyper-relational conjunctive queries using Graph Neural Networks and query embedding techniques.
The StarQE conducts message-passing over the quantifier of the hyper-relations in KG, which can-
not be directly used for encoding the hyper-relations of the session. Luo et al. (2023) propose a novel
Nary Query Embedding (NQE) model for complex query answering over hyper-relational knowl-
edge graphs, which can handle more general n-ary FOL queries including existential quantifiers,
conjunction, disjunction, and negation. The encoder design of NQE is more general to N-ary facts,
thus it can be directly used for encoding the sessions as hyper-edges.

3.2 COMPLEX QUERY ANSWERING

Previous literature on logical query answering mainly focuses on knowledge graphs (Hamilton et al.,
2018; Ren et al., 2020; Arakelyan et al., 2021). Various methods are proposed to deal with the in-
completeness issue of knowledge graphs by using the existing facts in the KG to generalize to the
facts that are not in the KG but highly likely to be true. Recent advances in query embedding
(Hamilton et al., 2018; Ren et al., 2020; Ren & Leskovec, 2020) methods have shown promise in
answering logical queries on large-scaled graph-structured data effectively and efficiently. However,
they cannot be directly used for answering queries with hyperedges, or in other words N-ary facts.
Meanwhile, there are also methods (Alivanistos et al., 2022; Luo et al., 2023) that can perform ro-
bust reasoning on hyper-relational knowledge graphs, which is illustrated in Figure 2 (B). Because
of the fundamental differences between the hyper-relational knowledge graphs and the hypergraphs
of sessions, not all of them can be directly adopted for this task. Recently, there is also new progress
on query encoding that is orthogonal to this paper, which puts a focus on the neural encoders for
complex queries. Xu et al. (2022) propose a neural-symbolic entangled method, ENeSy, for query
encoding. Yang et al. (2022) propose to use Gamma Embeddings to encode complex logical queries.
Liu et al. (2022) propose to use pre-training on the knowledge graph with kg-transformer and then
conduct fine-tuning on the complex query answering. Meanwhile, query decomposition (Arakelyan
et al., 2021) is another way to deal with the problem of complex query answering. In this method, the
probabilities of atomic queries are first computed by a link predictor, and then continuous optimiza-
tion or beam search is used to conduct inference time optimization. Moreover, Wang et al. (2023)
propose an alternative to query encoding and query decomposition, in which they conduct mes-
sage passing on the one-hop atomics to conduct complex query answering. Recently a novel neural
search-based method QTO (Bai et al., 2022b) is proposed. QTO demonstrates impressive perfor-
mance CQA. There are also neural-symbolic query encoding methods proposed (Xu et al., 2022;
Zhu et al., 2022). In this line of research, their query encoders refer back to the training knowledge
graph to obtain symbolic information from the graph. LogicRec (Tang et al., 2023) discusses the
problem of recommending highly personalized items based on complex logical requirements, which
current recommendation systems struggle to handle.

3.3 SESSION ENCODERS

In recent literature, various methods have been proposed to reflect user intentions and build better
recommendation systems using session history. Because of the nature of sequence modeling, var-
ious methods utilize recurrent neural networks (RNNs) and convolutions neural networks (CNNs)
to model session data (Hidasi et al., 2015; Li et al., 2017; Liu et al., 2018; Tang & Wang, 2018).
Recent developments in session-based recommendation have focused on using Graph Neural Net-
works (GNNs) to extract relationships and better model transitions within sessions (Li et al., 2021;
Guo et al., 2022; Huang et al., 2022). Wu et al. (2019) were the first to propose using GNNs to cap-
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Figure 4: This figure shows the method of LSGT.

ture complex transitions with graph structures, and subsequent research has incorporated position
and target information, global context, and highway networks to further improve performance (Pan
et al., 2020; Xia et al., 2021). However, previous efforts have focused more on the message-passing
part and less on designing effective readout operations to aggregate embeddings to the session-level
embedding. According to Zhang et al. (2023), current readout operations have limited capacity in
reasoning over sessions, and the performance improvement of GNN models is not significant enough
to justify the time and memory consumption of sophisticated models. So Zhang et al. (2023) pro-
posed a pure attention-based method Atten-Mixer to conduct session recommendations.

4 LOGICAL SESSION GRAPH TRANSFORMER

In this session, we describe the logical session graph transformer (LSGT) that is specialized for
encoding logical queries involving sessions. In LSGT, the node and edge features, session structures,
and logical structures are all converted into tokens and identifiers. Subsequently, these tokens and
identifiers serve as input to a standard transformer encoder model.

4.1 ITEMS, SESSIONS, AND OPERATORS TOKENS

The first step in LSGT involves assigning node identifiers to every item, session, and operator. For
instance, in Figure 4, there are two sessions, S1 and S2, with items [v1, v2, v3] and [v2, v3, v4],
respectively. The computational graph then uses relational projection operators P1 and P2 to find
the two sets of next items desired by S1 and S2, respectively. Once all items, sessions, and operators
have been identified, each is assigned a unique node identifier. For example, v1 to v4 are assigned
identifiers from 0 to 3, S1 and S2 are assigned identifiers 4 and 5, projections from P1 to P3 are
assigned identifiers from 6 to 8, and intersection operation I1 is assigned identifier 9.

In general, when there are n nodes denoted by their identifiers as {p0, p1, ..., pn}, their node features
are assigned as follows: if pi is an item, its features are assigned to its item embedding. If pi is a
session Sj , it is assigned an embedding of [S]. If pi is a neural operator, it is assigned the operator
embedding from [P], [I], [N], or [U] based on its operation type. The feature matrix for these n
nodes is then denoted as Xp ∈ Rn×d1 . Additionally, each node identifier is associated with random
orthonormal vectors (Kim et al., 2022), denoted as Pp ∈ Rn×d2 . All nodes are assigned the type
identifier of [node], which means that they are the nodes in the computational graph. The token
type embedding for vertices is denoted as T[node] ∈ Rd3 . The input vectors for the transformer
are concatenations of node features, the random orthonormal vectors, and token type embeddings,
where node identifiers vectors are repeated twice: Xv

u = [Xp,Pp,Pp,T[node]] ∈ Rn×(d1+2d2+d3).

4.2 SESSION STRUCTURE TOKENS

In this part, we describe the process of constructing the input tokens to indicate the session structure,
namely which items are in which session in which position. Suppose the item p is from session q and
at the position of r, and there are m item-session correspondences in total. First, we use positional
encoding Pos(r) ∈ Rd1 to describe the positional information. Meanwhile, as the item and sessions
are associated with their node identifiers p and q, we use the node identifier vectors Pp ∈ Rd2 and
Pq ∈ Rd2 to represent them. Meanwhile, this token represents a correspondence between two nodes,
so we use the [edge] token type embedding to describe this T[edge] ∈ Rd3 . As there are in total m
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Table 1: The detailed statistics of the constructed hypergraph on sessions, items, and their attribute
values are shown in the table.

Dataset # Edges # Vertices # Sessions # Items # Attributes # Relations

Amazon 8,004,984 2,431,747 720,816 431,036 1,279,895 10
Diginetica 1,387,861 266,897 12,047 134,904 125,204 3
Dressipi 2,698,692 674,853 668,650 23,618 903 74

of item-session correspondences, we concatenate them together to obtain the input vectors for the
tokens representing session structures: Xs

(p,q,r) = [Pos(r),Pp,Pq,T
[edge]] ∈ Rm×(d1+2d2+d3).

4.3 LOGICAL STRUCTURE TOKENS

In this part, we describe the process of constructing the input for tokens to indicate the logical
structures. As shown in Figure 4, in an edge representing a logical operation, there are two nodes
p and q respectively. If the logical operation is projection, then the edge feature is assigned with
relation embedding [Rel]. Otherwise, the edge feature is assigned with the operation embedding
from [P], [I], [N], and [U] accordingly. The edge feature is denoted as Rr ∈ Rd1 . Similarly,
we use the node identifier vectors Pp ∈ Rd2 and Pq ∈ Rd2 to represent involved nodes p and
q. Meanwhile, this token represents an edge in the computational graph, so we also associate it
with token type embedding T[edge] ∈ Rd3 to describe it. Suppose there are in total w such logical
edges, we concatenate them together to obtain the input vectors for the tokens representing logical
structure: X l

(p,q,r) = [Rr,Pp,Pq,T[edge]] ∈ Rw×(d1+2d2+d3).

4.4 TRAINING LSGT

After obtaining the three parts describing the items, session structures, and logical structures, we
concatenate them together X = [X[graph],X

v,Xs,X l] ∈ R(m+n+w+1)×(d1+2d2+d3), and use
this matrix as the input for a standard transformer encoder for compute the query encoding of
this complex logical session query. Then we append a special token [graph] with embed-
ding X[graph] ∈ Rd1+2d2+d3 at the beginning of the transformer and use the token output of the
[graph] token as the embedding of the complex logical session query. To train the LSGT model,
we compute the normalized probability of the vertice a being the correct answer of query q by using
the softmax function on all similarity scores,

p(q, a) =
e<eq,ea>∑

a′∈V e<eq,ea′>
. (3)

Then we construct a cross-entropy loss to maximize the log probabilities of all correct pairs:

L = − 1

N

∑
i

log p(q(i), a(i)). (4)

Each (q(i), a(i)) denotes one of the positive query-answer pairs, and there are N pairs.

4.5 THEORETICAL PROPERTIES OF LSGT

In this part, we analyze the theoretical properties of LSGT, focusing on two perspectives. First, we
analyze the expressiveness of LSGT compared to baseline methods in Theorem 1 and 2. Second, we
analyze whether LSGT has operator-wise permutation invariant, and this property is important in
query encoding as operators like Intersection and Union are permutation invariant to inputs
in Theorem 3. We prove the following theorems in the Appendix A of LSGT:
Theorem 1. When without considering the relation types in the query graph, the expressiveness
of the LSGT encoder is at least the same as that of the encoder that combines a session encoder
followed by a logical query encoder under Weisfeiler-Lehman tests (Maron et al., 2019).
Theorem 2. When considering the query graphs are multi-relational graphs with edge relation
types, the expressiveness of the LSGT encoder is also at least as powerful as 1-RWL, namely the
expressiveness of R-GCN and CompGCN. (Barceló et al., 2022; Huang et al., 2023).
Theorem 3. LSGT can approximate a logical query encoding model that is operator-wise input
permutation invariant.
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Figure 5: The query structures are used for training and evaluation. For brevity, the p, i, n, and u
represent the projection, intersection, negation, and union operations. The query types are trained
and evaluated under supervised settings.

5 EXPERIMENT

We use three public datasets from KDD-Cup 1 (Jin et al., 2023), Diginetica 2, and Dressipi 3 for
evaluation. The number of items, sessions, and relations are reported in Table 1. Following previous
work Ren & Leskovec (2020); Wang et al. (2021); Bai et al. (2023), we use eighty percent of the
edges for training, ten percent of edges for validation, and the rest of the edges as testing edges. As
shown in Figure 5, we conduct sampling of fourteen types of logical session queries by using the
sampling algorithm described by (Bai et al., 2023). The number of queries is shown in Table 5. Each
of the queries has a concrete meaning. For example, the 1p queries are vanilla session-based product
recommendations, and the 2p queries aim to recommend product attributes based on a single session
history. A detailed explanation of the query types is shown in Appendix B.

5.1 BASELINE MODELS

We briefly introduce the baseline query encoding models that use various neural networks to encode
the query into embedding structures. Here are the baseline models for the complex query-answering
models: (1) NQE Luo et al. (2023) is a method that can be used to encode N-ary facts from the KG;
(2) SQE (Bai et al., 2023) use sequence encoder to encode linearized complex queries.

In the hyper-relational session-product-attribute graph, each session can be formulated as a directed
hyper-relation among various entities. Because of this, we construct the relation of NEXT connecting
the items that are browsed in the session following the corresponding order. We employed a state-
of-the-art session encoder to model the item history within a session. The session encoder takes
into account the temporal dependencies and context of products, effectively creating a contextual
representation of the entire session: (1) Q2P (Bai et al., 2022a) uses multiple vectors to encode the
queries; (2) FuzzQE (Chen et al., 2022) use fuzzy logic to represent logical operators. Meanwhile,
the previous query encoder cannot be directly used for encoding session history as hyper-relations,
so we incorporate them with session encoders. For the session encoders, we leverage sequence-
based encoder GRURec (Tan et al., 2016), GNN-based session encoder SR-GNN (Wu et al., 2019),
and the state-of-the-art attention-based session encoder Attention-Mixer (Zhang et al., 2023).

1https://www.aicrowd.com/challenges/amazon-kdd-cup-23-multilingual-recommendation-challenge
2https://competitions.codalab.org/competitions/11161
3https://dressipi.com/downloads/recsys-datasets
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Table 2: The performance in the mean reciprocal ranking of LSGT compared with the baseline
models of SQE and NQE with different backbone modules.

Dataset Query Encoder Session Encoder 1p 2p 2ia 2is 3i pi ip 2u up Ave. EPFO

Amazon

FuzzQE
GRURec 11.99 6.96 54.79 88.47 68.13 16.73 14.49 10.02 6.87 30.94
SRGNN 13.52 7.93 54.12 85.45 67.56 18.62 20.46 10.82 7.24 31.75
Attn-Mixer 16.79 7.96 55.76 89.64 69.16 14.87 9.93 13.83 7.20 31.68

Q2P
GRURec 11.60 6.83 34.73 67.64 42.18 16.66 13.82 8.54 5.82 23.09
SRGNN 13.94 7.69 35.89 69.90 44.61 16.19 16.44 10.20 6.46 24.59
Attn-Mixer 15.93 8.53 46.67 68.62 61.13 16.95 15.78 12.43 7.41 28.16

NQE - 5.60 2.50 48.40 77.98 63.06 2.20 1.80 4.20 3.00 23.19
SQE-Transformer - 16.09 8.30 53.90 72.26 64.48 17.54 16.80 13.86 7.35 30.07
SQE-LSTM - 16.59 7.45 55.60 86.81 69.11 17.86 19.04 13.46 6.87 32.53

LSGT (Ours) 17.73 9.10 56.73 84.62 69.39 19.39 19.47 15.40 7.86 33.26 (+0.73)

Diginetica

FuzzQE
GRURec 24.10 12.29 82.48 89.19 86.26 11.64 23.34 18.19 11.18 39.85
SRGNN 22.53 12.33 83.19 88.35 86.26 12.55 29.56 19.76 11.48 40.67
Attn-Mixer 33.87 11.89 82.94 88.94 86.36 12.28 28.21 24.78 10.81 42.23

Q2P
GRURec 26.02 23.73 62.46 83.95 76.25 21.77 32.04 17.00 21.62 40.54
SRGNN 18.76 22.29 52.94 84.67 58.72 21.93 30.34 13.04 20.86 35.95
Attn-Mixer 34.87 24.36 55.00 87.09 58.46 22.81 31.26 25.76 21.60 40.13

NQE - 15.82 11.24 76.79 87.16 79.52 11.07 30.76 11.12 10.14 37.07
SQE-Transformer - 30.60 14.93 83.72 90.87 80.58 15.18 32.72 25.61 13.98 43.13
SQE-LSTM - 31.50 14.10 83.67 86.70 84.76 14.46 30.08 21.92 12.53 42.19

LSGT (Ours) 32.00 15.27 83.34 90.61 86.05 15.62 33.80 26.34 14.45 44.16 (+1.03)

Dressipi

FuzzQE
GRURec 27.62 94.28 56.15 77.21 75.40 94.81 98.43 23.46 95.52 71.43
SRGNN 30.18 94.90 52.41 74.63 73.38 95.37 98.32 25.09 95.69 71.11
Attn-Mixer 30.60 94.80 57.17 78.14 75.94 94.83 98.57 24.39 95.69 72.24

Q2P
GRURec 35.93 95.20 45.22 66.62 51.20 96.27 92.58 25.46 95.45 67.10
SRGNN 35.48 95.95 46.05 64.01 52.58 95.75 92.81 25.28 95.68 67.07
Attn-Mixer 37.92 96.04 47.06 66.47 50.91 96.22 94.88 26.16 95.75 67.93

NQE - 11.52 95.62 21.19 52.79 48.28 96.08 98.04 13.39 95.80 59.19
SQE-Transformer - 27.01 95.37 62.38 80.55 79.72 96.02 97.99 24.55 95.95 73.28
SQE-LSTM - 25.84 94.81 62.23 64.19 70.43 95.39 96.91 25.23 95.62 70.07

LSGT (Ours) 31.12 96.16 64.26 76.85 78.66 98.02 96.98 28.83 96.04 74.10 (+0.82)

5.2 EVALUATION

To precisely describe the metrics, we use the q to represent a testing query and Gval, Gtest to rep-
resent the validation and the testing knowledge graph. Here we use [q]val and [q]test to represent
the answers of query q on the validation graph Gval and testing graph Gtest respectively. Equation 5
describes how to compute the Inference metrics. When the evaluation metric is mean reciprocal
ranking (MRR), then the m(r) is defined as m(r) = 1

r .

Inference(q) =

∑
v∈[q]test/[q]val

m(rank(v))

|[q]test/[q]val|
. (5)

5.3 EXPERIMENT DETAILS

We maintain a consistent hidden size of 384 for all models. This hidden size also corresponds to the
size of session representation from session encoders in the baselines, as well as the query embedding
size for the entire logical session query. We use the AdamW to train the models with a batch size of
512. The models are optimized with a learning rate of 0.001, except for the models with transformer
structures, namely NQE, SQE-Transformer, and LSGT. These models are trained with a learning
rate of 0.0001 with a warm-up of 10000 steps. The SQE and LSGT models employ two layers of
encoders. All models can be trained and evaluated on GPU with 24GB memory.

5.4 EXPERIMENT RESULTS

Table 2 compares the performance of different models with various backbones and configurations.
Based on the experimental results, we can draw the following conclusions.

First, we observed that the proposed LSGT method outperforms all other models and is the current
state-of-the-art for the task. Compared to models that utilize only session encoders followed by
query encoders, LSGT can leverage item information across different sessions, which is crucial for
achieving superior performance. Additionally, LSGT is better equipped to encode graph structural
inductive bias due to its operation-wise permutation invariance property, thus it can perform better

8
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Table 3: The performance in the mean reciprocal ranking of LSGT compared with the baseline
models of SQE and NQE with different backbone modules on the queries involving negations.

Dataset Query Encoder Session Encoder 2ina 2ins 3in inp pin Ave. Negative

Amazon

FuzzQE
GRURec 10.11 10.39 50.83 30.11 3.72 21.03
SRGNN 12.02 11.08 51.37 30.79 6.06 22.26
Attn-Mixer 17.28 17.47 53.77 31.96 4.55 25.00

Q2P
GRURec 9.56 10.21 18.59 30.83 3.87 14.61
SRGNN 11.57 11.97 20.08 35.07 4.42 16.62
Attn-Mixer 18.75 20.68 51.52 37.04 6.78 26.95

NQE - 5.00 5.10 48.16 30.26 2.10 18.12
SQE-Transformer - 18.15 18.88 55.83 34.76 8.21 27.16
SQE-LSTM - 18.42 19.10 56.99 33.67 7.45 27.13

LSGT (Ours) 20.98 22.00 60.70 35.95 8.84 29.69 (+2.93)

Diginetica

FuzzQE
GRURec 16.15 9.09 81.65 14.07 10.69 26.33
SRGNN 16.62 15.77 82.30 14.92 10.69 28.06
Attn-Mixer 22.49 23.99 82.33 13.87 9.17 30.37

Q2P
GRURec 11.42 9.92 34.33 10.94 15.58 16.44
SRGNN 9.17 8.90 26.28 11.01 14.84 14.04
Attn-Mixer 19.44 23.84 26.72 11.05 15.12 19.23

NQE - 9.71 11.05 73.10 11.76 8.60 22.84
SQE-Transformer - 23.81 25.07 77.64 18.97 14.57 32.01
SQE-LSTM - 23.05 18.56 81.22 16.77 13.68 30.66

LSGT (Ours) 24.15 28.69 83.04 19.21 15.62 34.14 (+2.13)

Dressipi

FuzzQE
GRURec 20.73 20.97 50.50 97.37 92.69 56.45
SRGNN 23.50 23.68 50.47 97.36 92.89 57.58
Attn-Mixer 22.70 21.75 51.81 97.20 93.69 57.43

Q2P
GRURec 20.75 25.64 24.75 97.97 63.86 46.59
SRGNN 20.04 24.35 26.11 97.70 64.04 46.45
Attn-Mixer 26.74 37.09 49.58 97.98 95.22 61.32

NQE - 8.58 10.60 14.49 97.40 94.56 45.13
SQE-Transformer - 21.15 25.08 63.23 97.59 95.41 60.49
SQE-LSTM - 21.03 24.76 63.14 97.73 94.50 60.23

LSGT (Ours) 25.58 30.66 65.93 97.74 96.30 63.24 (+1.92)

than SQE models. Meanwhile, LSGT demonstrates greater capability in handling queries involving
negations than baseline models. It achieves more significant improvements on negation queries than
EPFO queries, outperforming the best baseline model. Moreover, we observe that neural models
can produce more accurate results when presented with additional information or constraints. For
example, if we know that two sessions are expecting the same item, we can provide better product
recommendations based on these two sessions rather than using a single session. This observa-
tion highlights the importance of modeling complex user intentions and the potential for improving
service quality in real-world usage scenarios.

We further conduct ablation studies and evaluations on compositional generalization, and the results
are shown in Table 6 and 7 respectively. Experiments show that both the logical structures and
item orders are important for the task of LS-CQA, and the LSGT is effective in encoding both
information. Meanwhile, LSGT also demonstrates strong compositional generalization capability
and exceeds other transformer-based methods by 1.28 to 3.22 in MRR on three datasets.

6 CONCLUSION

In this paper, we presented a framework that models user intent as a complex logical query over a
hyper-relational graph that describes sessions, products, and their attributes. Our framework formu-
lates the session understanding problem as a logical session complex query on this graph and trains
complex query-answering models to make recommendations based on the logical queries. We also
introduced a novel method of logical session graph transformer (LSGT) and demonstrated its expres-
siveness and operator-wise permutation invariance. Our evaluation of fourteen intersection logical
reasoning tasks showed that our proposed framework achieves better results on unseen queries and
queries involving negations. Overall, our framework provides a flexible and effective approach for
modeling user intent and making recommendations in e-commerce scenarios. Future work could
extend our approach to other domains and incorporate additional sources of information to further
improve recommendation accuracy.
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A PROOFS

We give the proofs of Theorem 1, 2, and Theorem 3. Before proving these two theorems, we define
the proxy graph of the computational graph we used in this paper that involves N-ary facts.

Defintion (Proxy Graph) For each computational graph utilized by the query encoder, we can
uniquely identify the corresponding proxy graph. This graph comprises binary edges without hyper-
edges and consists of vertices representing items, sessions, and operators. The edges in the proxy
graph can be categorized into three types: session edges, which connect item vertices to session ver-
tices and utilize their position, such as 1, 2, . . . , k as edge types; relational projection edges, which
connect two vertices and employ the relation type as the edge type; and logical edges, which utilize
the corresponding logical operation type as the edge type. It is important to note that the proxy graph
is distinct for different computational graphs with N-ary facts.

Defintion (Non-relational Argumented Proxy Graph) For each proxy graph, we create another
graph called a Non-relational Argumented Proxy Graph. This graph includes all vertices in the
original proxy. Meanwhile, the argument graph an additional node for each edge in the original
graph, and it takes relation type as a node feature.

Lemma 1. Encoding the complex session query by following the computational graph using a ses-
sion encoder followed by query encoding is equivalent to performing message passing on the corre-
sponding proxy graph.

Proof. To prove this, we must analyze each operation in the original N-ary computational graph. For
the session encoder part, the session representation is computed from the items it contains, which
is equivalent to a message passing on the proxy graph with a unique aggregation function, namely
the session encoder. For the intersection and union operations, the computational graph utilizes var-
ious specially designed logical operations to encode them, and they can be considered as messages
passing over the proxy graph. Similarly, for the relational projection, the tail node aggregates infor-
mation from the head node and relation type, which is also a message-passing process on the proxy
graph.

Lemma 2. The encoding process of LSGT is equivalent to using TokenGT to encode the proxy
graph.

Proof. The encoding process of LSGT consists of three parts. First, the node tokens are used to
identify and represent the items, sessions, and operators. Secondly, the logical structure tokens are
employed to represent the logical connections between items and sessions. Finally, LSGT utilizes
positional embedding as the token feature to describe the positional information of an item in a
session. This process is equivalent to building an edge between the item and session and assigning its
edge feature as the corresponding position embedding, which is done in the proxy graph. Therefore,
encoding logical session graphs using LSGT is equivalent to using TokenGT on the proxy graph.

Lemma 3. Suppose the G1 and G2 are two proxy graphs, and G′
1 and G′

2 are two non-relational
argument proxy graphs converted from G1 and G2 respectively. Then G1 = G2 ←→ G′

1 = G′
2.

Proof. The direction G1 = G2 → G′
1 = G′

2 is trivial because according to the definition, the
conversion process is deterministic. We focus on the reverse side: G1 = G2 ← G′

1 = G′
2. We try

to prove it by contradiction. Suppose G1 ̸= G2 but G′
1 = G′

2. Without losing generality, we can
suppose there is an edge (u, v, r) ∈ G1 but (u, v, r) is not in G2 where u, v are vertices and r is the
relation. Because of this, suppose w is a node with feature r connected that is linked to both u, v in
the argument graph for both G′

1 = G′
2. Namely both (u,w) and (w, v) are in G′

1 = G′
2. Because

the (u, v, r) is not in G2, (w, v) is not constructed by the edge (u, v, r), thus it must be constructed
by another edge (u′, v, r). This suggests w is connected with at least three vertices u, v and u′. This
is contradictory to the definition of the non-relational argument proxy graph.
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Proof of Theorem 1

Proof. Based on Lemma 1, as the baseline models perform message passing on the proxy graph,
their expressiveness is as powerful as the 1-WL graph isomorphism test (Xu et al., 2019). Ad-
ditionally, according to Lemma 1, the encoding process of LSGT on the session query graph is
equivalent to using order-2 TokenGT on the proxy graph. Order-2 TokenGT can approximate the
2-IGN network (Kim et al., 2022), and the 2-IGN network is at least as expressive as the 2-WL
graph isomorphism test (Maron et al., 2019). Since the 2-WL test is equivalent to the 1-WL test, we
can conclude that LSGT has at least the same expressiveness as the baseline models.

Proof of Theorem 2

Proof. To prove the expressiveness of LSGT on the multi-relational proxy graph is at least 1-RWL,
we need to show that for two non-isomorphic multi-relational graphs G and H , if they can be
distinguished by 1-RWL or equivalently CompGCN, then it also can be distinguished by LSGT.
According to the CompGCN definition and the definition of the Non-Relational Argument Proxy
Graph of G′ and H ′ which are constructed from G and H respectively, CompGCN computed on G
and H can be regarded as a message passing on the non-relational message passing on G′ and H ′.
Thus, if G and H can be distinguished by CompGCN, then G′ and H ′ can be distinguished by a
certain non-relational message-passing algorithm. Thus G′ and H ′ can be distinguished by the 1-
WL test. As Shown in previous proof LSGT is at least as powerful as the 2-WL test, and 1-WL and
2-WL tests are equivalent. We can conclude that LSGT is able to distinguish G′ and H ′. According
to Lemma 3, if LSGT is able to distinguish G′ and H ′ then it is able to distinguish G and H .

Proof of Theorem 3

Proof. Operation-wise permutation invariance mainly focuses on the Intersection and Union
operations. Suppose the input vertices for such an operator are {p1, p2, . . . , pn}. If an arbitrary
permutation over these vertices is denoted as {p′1, p′2, . . . , p′n}, a global permutation of token identi-
fiers can be constructed, where vertices pi are mapped to p′i and the rest are mapped to themselves.
As per Lemma 2, LSGT can approximate 2-IGN (Maron et al., 2019), which is permutation invari-
ant. Therefore, LSGT can approximate a query encoder that achieves operation-wise permutation
invariance.

B THE CONCRETE MEANINGS OF VARIOUS QUERY TYPES

In this session, we describe concrete meanings of the query types shown in Figure 5. The meanings
are listed in the Table 4.

C ABLATION STUDY

The ablation study is given in Table 6. In the first ablation study, we removed the tokens represent-
ing the logical structures. In the second ablation study, we removed the order information in the
hypergraph by removing the positional encoding features of item tokens in each session.

When we removed the logical structure information, the model’s performance drastically dropped,
especially for queries involving negations and multi-hop reasoning, such as ip, pi, inp, and pin.
Without the logical structure, the model could only use co-occurrence information like ”bag of
sessions” and ”bag of items” to rank candidate answers. While this information may be useful for
simple structured queries, it is not very useful for complex structured queries.

Similarly, when we removed the order information within each session, the overall performance also
drastically dropped. This demonstrates two things: First, the item orders in each session are critical
in this task. Second, the LSGT model is effectively able to utilize the order information for this task.
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Table 4: The query types and their corresponding explanations.
Query Types

Explanations

1p Predict the product that is desired by a given session.

2p
Predict the attribute value of the product that is desired by a given session.

2iA Predict the product that is desired by a given session with a certain attribute value.

2iS Predict the product that is desired by both given sessions.

3i Predict the product that is desired by both given sessions with a certain attribute
value.

ip Predict the attribute value of the product that is desired by both of the given
sessions.

pi Predict the attribute value of the product that is desired by a given session, this
attribute value is possessed by another given item.

2u Predict the product that is desired by either one of the sessions.

up Predict the attribute value of the product that is desired by either of the sessions.

2inA Predict the product that is desired by a given session, but does not have a certain
attribute.

2inS Predict the product that is desired by a given session, but is not wanted by another
session.

3in Predict the product that is desired by a given session with a certain attribute, but
is not wanted by another session.

inp Predict the attribute value of the product that is desired by a given session, but is
not wanted by another session.

pin Predict the attribute value of the product that is desired by a given session, but is
not possessed by another given item.

Table 5: The query structures are used for training and evaluation. For brevity, the p, i, n, and u
represent the projection, intersection, negation, and union operations. The query types are trained
and evaluated under supervised settings.

Train Queries Validation Queries Test Queries

Dataset Item-Attribute Others All Types All Types
Amazon 2,535,506 720,816 36,041 36,041
Diginetica 249,562 60,235 3,012 3,012
Dressipi 414,083 668,650 33,433 33,433

D FURTHER EVALUATION ON COMPOSITIONAL GENERALIZATION

We further conduct experiments on compositional generalization and the results are shown in Table
7. The newly included query types are 3iA, 3ip, 3inA, and 3inp. We selected these query types
because they are complex, involve three anchors, cover both EPFO queries and queries involving
negations, and have both 1-hop and 2-hop relational projections in the reasoning process. These
query types were not trained during the training process but were evaluated in a zero-shot manner.

We compared their performance against the baselines and found that our proposed method showed
stronger compositional generalization on these unseen query types. It achieved MRR improvement
ranging from 1.28 to 3.22 on three datasets.
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Table 6: The ablation study on the logical structure and item orders in each session.
Dataset Encoder Average 1p 2p 2ia 2is 3i pi ip 2u up 2ina 2ins 3in inp pin

Amazon
LSGT 31.99 17.73 9.10 56.73 84.26 69.39 19.39 19.47 15.40 7.86 20.98 22.00 60.70 35.95 8.84
w/o Logic Structure 15.98 5.41 2.31 30.31 50.21 45.21 3.75 5.49 4.88 2.56 16.32 15.77 38.19 2.13 1.11
w/o Session Order 8.45 6.29 2.59 17.22 13.85 19.34 14.07 3.23 3.49 1.73 5.50 4.75 17.54 4.92 3.73

Diginetica
LSGT 40.59 32.00 15.27 83.34 90.61 86.05 15.62 33.80 26.34 14.45 24.15 28.69 83.04 19.21 15.62
w/o Logic Structure 27.17 18.61 3.84 68.40 62.80 64.87 10.13 20.22 16.08 8.49 17.38 14.17 60.37 9.21 5.74
w/o Session Order 17.07 5.08 9.71 45.49 34.42 43.23 9.69 21.71 3.66 7.92 4.39 2.56 35.80 9.98 5.36

Dressipi
LSGT 70.22 31.12 96.16 64.26 76.85 78.66 98.02 96.98 28.83 96.04 25.58 30.66 65.93 97.74 96.30
w/o Logic Structure 25.13 14.87 2.45 42.03 59.63 67.62 9.27 17.71 18.05 7.64 19.62 24.67 59.01 1.95 7.29
w/o Session Order 39.78 9.21 42.80 21.57 19.57 23.28 88.31 61.47 6.31 68.27 7.41 6.87 15.96 96.53 89.35

Table 7: The out-of-distribution query types evaluation. We further evaluate four types of queries
with types that are unseen during the training process.

Dataset Query Encoder 3iA 3ip 3inA 3inp Average OOD

Amazon

FuzzQE + Attn-Mixer 66.72 29.67 54.33 48.76 49.87
Q2P + Attn-Mixer 33.51 11.42 51.47 41.46 34.47
NQE 61.72 1.98 46.47 34,04 36.72
SQE + Transformers 66.03 28.41 55.61 51.28 50.33
LSGT (Ours) 68.44 34.22 58.50 51.49 53.16

Diginetica

FuzzQE + Attn-Mixer 88.30 32.88 82.75 34.50 59.61
Q2P + Attn-Mixer 40.28 43.93 54.31 48.20 46.68
NQE 86.25 20.79 64.74 20.93 48.18
SQE + Transformers 88.05 31.33 81.77 35.83 59.25
LSGT (Ours) 91.71 35.24 83.30 41.05 62.83

Dressipi

FuzzQE + Attn-Mixer 65.43 95.64 53.36 97.75 78.05
Q2P + Attn-Mixer 60.64 96.78 52.22 97.28 76.73
NQE 31.96 96.18 9.89 97.80 58.96
SQE + Transformers 72.61 97.12 55.20 98.14 80.77
LSGT (Ours) 74.34 97.30 58.30 98.23 82.04
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