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Abstract

Extreme Multi-label Text Classification (XMC)
involves learning a classifier that can assign an
input with a subset of most relevant labels from
millions of label choices. Recent works in this
domain are increasingly focusing on the prob-
lem setting with (i) short-text input data, and
(ii) labels endowed with meta-data in the form
of textual descriptions. Short-text XMC with
label features has found numerous applications
in areas such as prediction of Related Searches,
product recommendation based on titles, and
bid-phrase suggestion, amongst others.

In this work, by exploiting the problem charac-
teristics of short-text XMC, we develop pos-
tulates stating the desired invariances, and
propose two data augmentation techniques to
achieve them. One, LabelMix, which performs
data augmentation by concatenating an annotat-
ing label to the data-point; and the other, Gan-
dalf, which generates additional data-points
by considering labels as legitimate data-points.
The efficacy of the proposed augmentation
methods is demonstrated by showing upto 30%
relative improvement when applied to a range
of existing algorithms, and proposing an algo-
rithmic framework, InceptionXML-LF, which
furthers state-of-the-art on benchmark datasets.

1 Introduction

Related Searches, product recommendation and
bid-phrase matching tasks require predicting the
most relevant results that are either highly cor-
related or frequently co-occur with the given in-
put query/product. Extreme Multilabel Classifi-
cation (XMC) has found multiple applications in
these domains where the problem is modelled as
a short-text classification task over millions of
possible searches/products/ad-phrases considered
as labels. Real world data from these domains,
when modelled as an XMC problem, is highly
imbalanced towards some popular or trending ad-
phrases/products and notoriously exhibits fit to

Zipf’s law. Here, most labels in the extremely large
output space, are tail labels i.e, those which have
very few (< 5) instances in the training set (Bab-
bar and Scholkopf, 2019). Similarly, the words in
queries also follow a long-tailed distribution. While
there exists insufficient training data for these tail
labels/words, the short-text nature of these queries
makes it no simpler for the models to learn mean-
ingful, non-overfitting embeddings and encoded
representations for tail words and labels.

Due to the increasing requirement of scalable
and low latency models in these domains, there has
been a surge in works that model recommendations
tasks like related searches, query-to-product and
document-to-document recommendation as a short-
text XMC problem using only the search query,
product name or document title. Hence, most of
these works are focused on building lightweight
and frugal architectures that can predict in millisec-
onds and scale up to millions of labels. Despite
being frugal in terms of number of layers/param-
eters in the network, these models can learn the
training data well enough. Hence, creating deeper
models for better representation learning is perhaps
not the most optimal solution under this setting.

Many of the recent works, thus, make architec-
tural improvements to leverage “label features” in
order to imbue strong inductive biases in their mod-
els. A label feature is the text associated with la-
bels, which spans the same vocabulary universe
as query text. Label features, when encoded in
the same embedding space as query texts, help
mitigate the difficulty in learning efficient repre-
sentations for tail labels by enabling joint query-
label representation learning in common embed-
ding space (Dahiya et al., 2021a; Mittal et al.,
2021a,b); thereby improving the prediction per-
formance. However, even after improved repre-
sentation learning by leveraging label features, a
significant generalization gap is noticeable in these
approaches (Figure 4, Appendix B).



Contributions In this work, we take a data-
centric approach, and aim at answering “Can we
extend mixup to feature-label extrapolation to guar-
antee a robust model behavior far away from the
training data?”, a question posed in Zhang et al.
(2018). To this end, we (i) propose LabelMix aug-
mentation and motivate it through the Vicinal Risk
Minimization (VRM) (Chapelle et al., 2000) prin-
ciple, which is achieved by explicating the desired
invariance properties and leveraging them for aug-
mentation purposes. To the best of our knowledge,
this is the first work that attempts to further the
application of vicinal risk minimization to an em-
bedding space where data instances and their label
features co-exist in a shared embedding space.

We further (ii) discuss self and soft-annotation
properties of label features and propose Gandalf
- GrAph iNduced Data Augmentation based on
Label Features - to efficiently leverage label fea-
tures as valid training instances. (iii) As an al-
gorithmic contribution, we propose an extension
to INCEPTIONXML (Kharbanda et al., 2021), to
accommodate label features, as an efficient alterna-
tive framework to current short-text XMC pipelines
(See Appendix A). (iv) We demonstrate the gen-
erality and effectiveness of the proposed data aug-
mentations, by showing upto 30% relative improve-
ments in multiple state-of-the-art extreme classi-
fiers on public benchmark datasets. Our experi-
ments reflect that strong inductive biases that are
currently imbued into models through complicated
training pipelines and architectural modifications
can also be induced with simple data augmentation
techniques as proposed in the paper.

2 Related Work

Earlier works in XMC have focused on the prob-
lem of tagging long text documents consisting of
hundreds of tokens. These are broadly categorized
based on their algorithmic characteristics as fol-
lows: (i) Label-tree methods (Jasinska et al., 2016;
Prabhu et al., 2018; Khandagale et al., 2020), (ii)
Decision tree-based methods (Prabhu and Varma,
2014; Choromanska and Langford, 2015; Agrawal
et al., 2013) (iii) Label-embedding methods (Bha-
tia et al., 2015; Yu et al., 2014; Tagami, 2017), (iv)
One-vs-rest methods (Babbar and Scholkopf, 2017;
Yen et al., 2017), and (v) Deep learning methods
(Liu et al., 2017; You et al., 2019). Of late, works
aimed towards scaling up transformer encoders for
XMC have dominated the research landscape in

this domain (Chang et al., 2020; Ye et al., 2020;
Zhang et al., 2021).

XMC with Label Features: More recent works
have shifted their focus to short-text XMC to keep
up with the increasing requirements of low-latency
models in recommendation tasks. These works can
be split into two categories: (i) those which inher-
ently do not leverage label features like ASTEC
(Dahiya et al., 2021b) and INCEPTIONXML (Khar-
banda et al., 2021), and (ii) those which do heavy
architectural modifications or employ complicated
training strategies in order to leverage label features
along with short-text instances to induce strong
inductive bias into their models. For example,
SIAMESEXML (Dahiya et al., 2021a) employs
a siamese constrastive learning stage between in-
stance and its label features through a modified
negative log-likelihood loss and, DECAF (Mittal
etal., 2021a) and ECLARE (Mittal et al., 2021b) ex-
tend the DEEPXML (Dabhiya et al., 2021b) pipeline
by augmenting the ASTEC encoder with one or two
extra ASTEC-like encoders for label-text and graph-
augmented label text and as a result end up taking
~3x the time as compared to ASTEC.

Data Augmentation Apart from the architectural
design choices, data augmentation methodologies
have been successful in providing much needed
inductive biases leading to better performance of
machine learning models on unseen data. While
these have been highly popular for computer vision
tasks inspired by recent works (Zhang et al., 2018;
Verma et al., 2019; Yun et al., 2019), augmentation
techniques remain relatively under-explored in Nat-
ural Language Processing. However, recent works
have shown their efficacy in NLP tasks such as ma-
chine translation (Gao et al., 2019), common-sense
reasoning (Yang et al., 2020), semantic parsing
(Guo et al., 2020), text classification (Zhao et al.,
2022; Wei and Zou, 2019), and for achieving adver-
sarial robustness (Li et al., 2017). Further details
on tasks specific techniques for data augmentation
in NLP can be found in Feng et al. (2021). For
(short-text) XMC, which is the focus of this paper,
there have been no works which have leveraged
data augmentation or studied its implications.

3 Background & Notation

For training, we have available a dataset D =
{{xi,yi}Y,,{z}E,} of N pairs of input data-
points x;, their corresponding labels y; and a label



Datasets N L

LF-AmazonTitles-131K 294,805
LF-WikiSeeAlsoTitles-320K 693,082
LF-WikiTitles-500K 1,813,391

APpL ALpP AWpP

131,073 5.15 2.29 6.92
312,330  4.67 2.11 3.01
501,070 17.15 474 3.10

Table 1: Characteristics of short-text benchmark
datasets with label features. Here, APpL stands for
avg. points per label, ALpP stands for avg. labels per
point and AWpP is length i.e. avg. words per point.

feature z; associated with each label. In short-text
setting, typically the data-points (in the form of
queries or titles) and label features both comprise
of very few words on average (Table : 1). Further,
x;,2z; € X for some input space X = @, V™,
where ) denotes a common vocabulary universe,
and @ represents the operation for aggregating V"™
i.e. text sequences of length m, into a set.

When posed a short-text XMC problem with L
labels, we are interested in finding a learning func-
tion f := {®, ¥} which maps x; to a subset of
labels y C [L] out of the L available labels identi-
fied through the integers [L] :== {1,..., L}. Usu-
ally, we identify the labels through a binary vector
y € {0,1}%, where y; = 1 < [ € y. A common
strategy for implementing the classifier component
W in the XMC pipelines is via the one-vs-all (OVA)
scheme, such that for each x;, a score s;(x;) is
calculated for each label [ € [L]. In practice, the
sum over all labels is very expensive, and is there-
fore often approximated e.g. by a label shortlisting
procedure (Jain et al., 2019; Jiang et al., 2021).

In the OVA paradigm, scores are typically cal-
culated by projecting both the instances and the
labels to some common Euclidean space £ = R,
and then taking their inner product. The mapping
of instances to embeddings is realized through a
feature extractor ® : X — £. All labels are de-
coded through ¥ dof {w}E |, where w; € £ is the
label’s decoding representation. In this notation,
we have s;(x) = (®(x), ¥(I)).

The short-text XMC problem is characterized by
two random variables X € X and Y € {0, l}L
jointly distributed according to IP. Here, the labels
are sparse, 5[||Y||1] = ¥ < L, and follow a long-
tailed distribution. Also, the instances are short-text
i.e. E[len(X)] = m, with m in the range of about
3 to 8 tokens' as shown in Table 1.

"We do not place a strict upper-bound on the number of
tokens, because this complicates the concatenation arguments

4 Invariances in Short-text XMC &
Vicinal Risk Minimization

The extreme scarcity of training data for tail labels
in XMC implies that a good classifier for these la-
bels can only be learned if, in addition to the few
training examples, strong inductive biases are em-
ployed during training. Even though there exist
problem-agnostic regularizations such as limiting
the magnitude of the parameters (via Ly or Lo reg-
ularization), implicit regularization through SGD
dynamics, or dropout, it is beneficial to use domain
knowledge for more efficient inductive biases.

As discussed in section 2, many recent XMC
baselines leverage label features in order to im-
bue strong inductive biases in their models either
through computationally expensive architectural
additions or complicated training procedures. If
similar inductive biases could be achieved through
data augmentation, then these would not be re-
stricted to a single architecture, but benefit most
current and future short-text XMC methods. Thus,
our goal is to identify underlying properties of the
short-text XMC problem, and use these to derive
new data augmentation techniques.

Data augmentation can be seen as a form of vici-
nal risk minimization, the idea that one minimizes
risk over the empirical distribution

1 n
dIPD(Xv y) = E Z 5Xi (X) 5}’«; (Y)7 (D
=1

but instead over a smoothed out version IP,. That
means that each data point x in the input, corre-
sponding to a peak Jy in the empirical distribution,
instead is turned into a smooth distribution that has
nonzero density in the vicinity of x. The key task
is then to determine what constitutes the vicinity of
a data point in this setting.

Symmetries and transformation laws have long
been a fruitful source for inductive biases in ma-
chine learning. For example, in computer vision
the underlying symmetries are, for example, trans-
lation, rotation, and flips. Invariance under small
translations is typically achieved through the net-
work architecture, by using convolution layers
which are covariant’ and pooling layers which are
invariant to small shifts. For more complex trans-

2A note on terminology: We categorize possible transfor-
mation behaviour into three groups: Covariant (sometimes
called equivariant), where the output transforms in the same
manner as the input, contravariant, where the output trans-
forms in the opposite way as the input, and invariant, where
the transformation in the input leaves the output unchanged.
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Figure 1: A pictorial representation of the proposed data augmentation strategies. The title of each plot denotes the
data point, the y-axis its labels and the x-axis their soft targets. We demonstrate our augmentations on the data point
"Of the Rings of Power and the Third Age", which is the final book in the Lord of the Rings(LOTR) series along with
labels "The Hobbit" and "The Lord of the Rings". The augmentations are formed as per 1 and 2. Notably, the labels
found through soft targets through the LCG are all related to the LOTR universe - "J. R. R. Tolkien" is the author of
the LOTR books, "The Quest of Erebor" is a central plotline and "Celebrimbor" and "Gandalf" (not to be confused
with our data augmentation strategy) are major characters. Beyond this, the soft targets also cover generic labels
like "1954 in Literature” and "1955 in Literature”, which is the correct timeline for when the books were released.

formations, such as the rotations and flips, how-
ever, data augmentation is required. For continuous
transformations, like rotations, translations, or scal-
ing, one can easily postulate that the classification
should remain invariant if the change is very small.
Due to the discrete nature of text input in lan-
guage tasks, however, there are no continuous trans-
formations available. It has been shown in recent
works that simple discrete transformations of input
data such as replacement with synonym, introduc-
tion of typos, and swapping of neighboring texts
can improve the performance to a certain extent
(Xie et al., 2017; Coulombe, 2018; Wei and Zou,
2019; Niu and Bansal, 2018), however, and such
transformations can lead to semantic inconsistency
and illegibility. Therefore, we have to look deeper
into the actual properties of the short-text data to
find transformations with predictable behaviour.

Considerations for input concatenations in
short-text XMC For textual data, combining
data-points via direct concatenation of input texts
of other data-points, can lead to significant changes
in their intended meaning. In such a setting, one

might assume that if two inputs are joined together,
the resulting labels would be the union of the labels
of the two data points. Especially for longer text,
this could be seen as a sensible approach, e.g. if a
Wikipedia article consists of two sections, then the
tags for that article could be the union of the tags
for each section. This can be encoded as follows :

Hypothesis 1 (Concatenation Covariance). For
two (long-text) inputs (X;,y;) and (X;,y;), where
yi,Yj C [L] are represented as sets, concatenation
of inputs corresponds to union of sets

2

However, for short text, one could argue that the
opposite is true. If a user adds additional words to a
search query, a Wikipedia page, or a product name,
then these words are often meant to filter the results
further. For example, changing the search query
from “Boat Wireless headphones” to “Boat Wire-
less headphones with microphone” would lead to a
filtered result. This leads to the opposite hypothesis

d(x; & x5) =yiUy;.

Hypothesis 2 (Concatenation Contravariance).
For two input queries (x;,y;) and (x;,y;), where



yi,Yj C [L] are represented as sets, concatenation
of inputs corresponds to intersection of sets

O(x; B x5) =yiNyj. (3)

Further, we have to concede that for two arbitrary
short-text queries/product names, it is very difficult
to predict the exact meaning of their concatenation.
One could argue to use combine the queries in
the manifold space (Verma et al., 2019), but as
shown in Figure 4, while Manifold Mixup does
help reduce the overfitting, it still does not imbue
enough inductive bias into the model.

In the case where label features are also short-
text data, we can at least identify a subset of con-
catenations that should leave the classification un-
changed. That is, if the second input text can be
known beforehand to only reaffirm the content of
the first text. Therefore, choosing the second text
to be one of the relevant label’s text should result in
an invariance. From examples in section 5 and Fig-
ure 5, one can observe that concatenating a query
with one of its label feature only reaffirms the con-
tent of the query. This brings us to

Postulate 1 (Label-Affirming Concatenations).
Let (x,y) be a training data point in D, and j € y
be a label relevant to x. Then the classifier should
be invariant under concatenation with z;

P(x @ z;) = ¢(x). @

This is corroborated by Figure 2, where queries
concatenated with label features in the input space
®(x @ z;) have their encoded representations in
the vicinity (indicated by high cosine similarity) of
the encoded representation of only queries as input
®(x). Thus, this postulate enables us to specify the
vicinal distribution. Given a datapoint (x,y) € D,
its vicinity is given by V(x) == {x @ z; : j € y}.

The straightforward way to define the vicinal dis-
tribution would be to sample uniformly on V'(x).
However, as the main goal of the augmentation is to
improve the generalization on tail labels, it can be
beneficial to allow for weighted distributions. Us-
ing an instance-independent weight vector r € R”,
the probability of choosing x®z; as the augmented
label is given by y;7;/(y,r), where the first term
ensures that j is actually a relevant label, the sec-
ond term is the weighting factor, and the third the
normalization. Averaging over the entire dataset
thus leads to the vicinal distribution:

n

n L
1 o Z(Y)
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Figure 2: To obtain this distribution, we take 50,000
input queries from LF-AmazonTitles-131K dataset and
evaluate their cosine similarity with other queries which
are either sampled randomly (Random Documents), or
those which have one common label (Codocuments),
and also with label features of one of it’s labels which
belong to either Head Labels or Tail Labels. To demon-
strate the efficacy of LabelMix, we also evaluate cosine
similarity between input queries obtained with the said
augmentation and LabelMix documents - denoted by
"Trained LabelMix Documents".

5 Label Features in Short-text XMC

5.1 What exactly are Label Features?

To explain label features, we show examples
from our datasets (i) LF-WikiTitles-500K, where
given the title of wikipedia page, the model needs
to predict the relevant categories, and (ii) LF-
AmazonTitles-131K, where given a product’s title,
one need to recommend related products.

Example 1: Similarly, for the wikipedia page
“2022 French presidential election”, we have the
available categories April 2022 events in France |
2022 French presidential election | 2022 elections
in France | Presidential elections in France. Fur-
ther, a google search of the same query, leads to
the following related searches - French election
2022 - The Economist | French presidential elec-
tion coverage on FRANCE 24 | Presidential Elec-
tion 2022: A Euroclash Between a “Liberal... |
French polls, trends and election news for France -
POLITICO.eu, amongst others.

Example 2: For a product on Amazon,
“Mario Kart: Double Dash!! with Bonus Disc”,

we have available Super Smash Bros Melee | Super
Mario Sunshine | Mario Party 7 | Super Mario




Strikers as the recommended products.

Observations In view of these examples, one can
affirm two important observations: (i) the problem
indeed requires recommending similar items which
are either highly correlated or co-occur frequently
with the queried item, and (ii) the data instance and
the corresponding label-features (approximately)
form an equivalence class. For example, a valid
news headline search on a search engine should
result in a page mentioning the same headline and
similar re-phrased headlines from other news me-
dia outlets (see Example 1). As a result, we can
conclude that data instances are exchangable with
their labels features.

The above observations are unique to the short-
text XMC problem setting dealt in this paper. This
is in contrast to a conventional text-classification
problem such as Amazon Reviews for Sentiment
Analysis® or 20 Newsgroups dataset*, where the
model needs to classify news articles, consisting of
hundreds of tokens, into 20 categories like politics,
sports, electronics etc. Here, the role of the data
instances and labels is significantly asymmetric and
hence non-exchangeable.

5.2 Label Features as Input Queries

The key insight that we leverage from previous
observations is that label features are, in fact, valid
related searches or products and hence legitimate
data instances themselves. Further, we observe
that in the XMC settings, where the label space
is formed by assigning numeric integers to these
related items i.e. label features, every valid query
should, ideally, have itself as a label as it is relevant
to itself (see example 1). However, this might not
be possible for most training instances as not all
training instances may exist as a label in a limited
training dataset D. However, every label feature z;
when posed as an input search query (data instance)
should fulfill the following postulate:

Postulate 2 (Self-Annotation). If the features z;
of a label are interpreted as a data instance, then
this instance will be annotated with the correspond-
ing label . This means that we assume the under-
lying probability distribution to fulfill

PY,=1|X=2]=1 (5)

3https://jmcauley.ucsd.edu/data/amazon/
“http://qwone.com/ jason/20Newsgroups/

The above postulate suggests a methodology to
use label features as data instances with the self-
annotation property. One natural question arises
regarding the labels for the thus created data in-
stances (i.e., via self-annotation) : In a label space
[L] comprising of hundreds of thousands or mil-
lions of labels, what are the suitable labels I' # 1
for z;, when posed an a data instance? According
to the observation (i) in Section 5, the labels that
are highly correlated to or the ones that frequently
co-occur with a label [ should, ideally, also make
up as the label-set for the label feature z;, when
searched as a query or posed as a data instance.

One way to approximate label correlations or
co-occurrences is to use the Label Correlation
Graph, as proposed in ECLARE, which gives a
smooth approximation of label-occurrences pur-
posely skewed in favor of tail labels. Since
the entries in LCG are normalized, these can be
interpreted regularized variants of the label co-
occurrence matrix. As argued in ECLARE, for each
label, the LCG finds a set of semantically similar
labels that either share tokens with the label, or
are used in the same context. This can be further
seen in Figure 5 where the degree of correlation of
a label with its first order neighbours in the LCG
has been plotted. While ECLARE uses the LCG
efficiently to either re-weight logits as a post pro-
cessing step, or to augment labels’ decoding rep-
resentations w;, we propose to leverage the graph
weights (with an additional row-wise normaliza-
tion to get values in range [0, 1]) as probabilistic
soft labels for z; as input data instance. We thereby
propose to use the following postulate:

Postulate 3 (Soft-annotations via LCG). If the
features z; of a label are interpreted as a data
instance, then beyond self-annotation, z; can be
soft-annotated with the other labels I # | either
highly correlated to or that frequently co-occur
with l. Therefore, we require the following :

P[Yy =1|X =z]=LCG[LI]  (6)

6 Proposed Augmentations in Practice

LabelMix Augmentation Through LabelMix,
we propose a way of performing label-affirming
concatenations where, a data point is chosen with
a uniform probability of 0.4 and is concatenated
with one of it’s label features and the corresponding
label space is formed by the concatenation of the



label set of the data point and the soft annotations
of the label feature (Postulate 2). To efficiently
learn representations for tail labels, when sampling
a label feature from the label set of the data point,
we assign the labels weights according to a skewed
label distribution as also found to be suitable in
Dabhiya et al. (2021a); Mikolov et al. (2013). Fur-
ther, to restrict the impact of noisy correlations, we
empirically find it beneficial to threshold the soft
labels obtained from LCG at 0.1.

Algorithm 1: LabelMix Augmentation

4

4 o W
BN X

- input instance tokens
y - ground truth label vector
Z - label feature token matrix
- label wise sampling weight vector
def LabelMix(x, y, r, Z, LCG):
aug_prob = numpy.random.uniform()
if aug_prob > 0.4:
return (x, V)

Nelio JEN No WU, REENNUVE ST

p_a = numpy.multipy(y, r)

10 j = numpy.random.choice (y, p=(p_a/sum(p_a))
11 y_lm = LCG[J, :] / LCG[J, 7]

12 y_a = numpy.minimum(y + y_1lm, 1.0)
13 y_a = numpy.where(y_a > 0.1, y_a, 0)
14 x_a = numpy.append(x, Z[]J])

15 return (x_a, y_a)

Gandalf Augmentation Through Gandalf, we
propose a methodology to add label features as
data points in the training set. We annotate the
label feature (as a data point) with its self and soft
annotations (derived from LCG), as described in
postulates 2 and 3 in the previous section. The Gan-
dalf data augmentation as an algorithmic procedure
is shown in Algorithm 1 below :

Algorithm 2: Gandalf Augmentation

1 # j - sampling index

2 # 7 - label feature token matrix
3 def Gandalf(j, %, LCG):

4 x=2z03]

5 vy =1CGl3, :1 / LCGLI, 3]

6 y = numpy.where(y > 0.1, y, 0)
7  return (x, y)

7 Experiments & Discussion

Benchmarks, Baselines & Metrics :  We bench-
mark our experiments on 3 standard public datasets
LF-AmazonTitles-131K, LF-WikiSeeAlsoTitles-
350K, and LF-WikiTitles-500K. We test the gener-
ality and effectiveness of our proposed LabelMix

SEffectively applying LabelMix on DEEPXML-based
methods like ASTEC, DECAF and ECLARE is challenging
given their multi-stage pipelines where, in some stages, the
word embeddings are frozen.

and Gandalf augmentations across multiple state-
of-the-art short-text extreme classifiers, the de-
tails of which have been discussed in section 2.
Similarly, to test the effectiveness of the INCEP-
TIONXML encoder on these datasets, we extend
the model to leverage label features and call it
INCEPTIONXML-LF. For this, we augment it with
additional label-text and graph-augmented label
text classifiers as done in Mittal et al. (2021b). We
further create a 2-stage training strategy as com-
pared to a single one in INCEPTIONXML. The
implementation details and training strategy can
be found in Appendix A. We measure the models’
performance using standard metrics precision @k,
denoted P@k, and its propensity-scored version
PSP@k (Jain et al., 2016).

7.1 Results

We can make some key observations and develop
strong insights not only about the short-text XMC
problem with label features but also about specific
dataset properties from Table 2. For example, while
the effect of data augmentations can be observed
strongly in the first two datasets, only limited im-
provement are noticeable in LF-WikiTitles-500K
dataset. This can be attributed to LF-WikiTitles-
500K having three times as many data points, on
average, per label (Table 1), and thus not requiring
as much inductive bias as the other two datasets.

LabelMix LabelMix produces synthetic data
points in the vicinity of training data and hence,
while being effective in capturing correlations be-
tween data instances and tail labels, can only imbue
limited additional inductive bias into the model.
ECLARE, on the other hand, is able to better cap-
ture these correlations through its LCG-augmented
classifier and only gains trivially from LabelMix.
DECAF, though, gains non-trivially as it only en-
codes label text in its classifier which leaves out
the scope to capture query-tail label correlations
further. Similarly, INCEPTIONXML stands to gain
significantly more from LabelMix as compared to
it’s LF-counterpart which, similar to ECLARE, also
employs a LCG-augmented classifier. Notably, La-
belMix works much better on INCEPTIONXML(-
LF) because of their dynamic negative mining
pipeline, which enables the augmentation to work
more effectively.

Gandalf We witness exceptional increase in pre-
diction performance over multiple state-of-the-art
extreme classifiers with the Gandalf augmentation,



Method ‘ P@1 P@3 P@S5 ‘PSP@I PSP@3 PSP@5
| LF-AmazonTitles-131K

AttentionXML 3225 21.70 15.61 | 23.97 28.60 32.57

GALAXC 39.17 26.85 19.49 | 32.50 38.79 43.95
SIAMESEXML++ | 4142 30.19 21.21 | 35.80 40.96 46.19
ASTEC 37.12 2520 1824 | 29.22 34.64 39.49

+ LabelMix 3795 25.65 1859 | 29.91 35.58 40.63

+ Gandalf 4395 29.66 2139 | 37.40 43.03 48.31
DECAF 384 2584 18.65| 30.85 36.44 41.42

+ LabelMix 39.30 26.60 19.23 | 31.81 37.67 42.83

+ Gandalf 4243 2896 20.90 | 3522 42.12 47.61
ECLARE 4046 27.54 19.63 | 33.18 39.55 44.10

+ LabelMix 4034 27.54 19.96 | 33.48 39.74 45.11

+ Gandalf 42,51 28.89 20.81 | 3572 42.19 47.46
INCEPTIONXML 36.79 2494 1795 | 28.50 34.15 38.79
+ LabelMix 4041 2745 19.82 | 32.12 38.54 43.81

+ Gandalf 44.67 30.00 21.50 | 37.98 43.83 48.93
INCEPTIONXML-LF | 40.74 27.24 19.57 34.52 39.40 44.13
+ LabelMix 41.90 2820 2035 | 35.60 41.07 46.20

+ Gandalf 4384 29.59 21.30 | 38.22 43.90 49.03

| LF-WikiSeeAlsoTitles-320K
AttentionXML 17.56 1134 852 | 9.45. 10.63 11.73

GALAXC 27.87 18.75 1430 | 19.77 22.25 24.47
SIAMESEXML++ 31.97 2143 1624 | 26.82 28.42 30.36
ASTEC 2272 15.12 1143 | 13.69 15.81 17.50

+ LabelMix 2291 1579 12.02 | 13.99 16.57 18.04

+ Gandalf 31.10 21.54 16.53 | 23.60 26.48 28.80
DECAF 25.14 1690 1286 | 16.73 18.99 21.01

+ LabelMix 26.55 18.04 13.75 | 17.86 20.46 22.61

+ Gandalf 31.10 21.60 16.53 | 23.81 26.69 29.09
ECLARE 29.35 19.83 15.05 | 22.01 24.23 26.27

+ LabelMix 2942 1994 15.17 | 22.05 24.36 26.46

+ Gandalf 31.33 2140 1631 | 24.83 27.18 29.29
INCEPTIONXML 23.10 1554 11.52 14.15 16.71 17.39
+ LabelMix 25.16 17.03 1297 | 16.11 18.72 20.76

+ Gandalf 32.54 22,15 1686 | 25.27 27.76 30.03
INCEPTIONXML-LF | 2899 19.53 14.79 | 21.45 23.65 25.65
+ LabelMix 29.68 20.16 1532 | 22.24 24.69 26.80

+ Gandalf 3312 2270 17.29 | 26.68 29.03 31.27

| LF-WikiTitles-500K

AttentionXML 4090 21.55 15.05 | 14.80 13.97 13.88
SIAMESEXML++ | 42.08 22.80 16.01 | 23.53 21.64 21.41

ASTEC 4440 24.69 1749 | 1831 18.25 18.56

+ LabelMix 44.63 2491 1835 | 19.21 19.53 19.32

+ Gandalf 4524 2545 1857 | 21.72 20.99 21.16
DECAF 4421 24.64 17.36 | 19.29 19.82 19.96

+ LabelMix 4533 2544 1851 | 23.01 21.66 21.93

+ Gandalf 4576 25.76 18.90 | 24.08 22.14 22.78
ECLARE 4436 2429 1691 | 21.58 20.39 19.84

+ LabelMix 4455 2442 1722 | 21.70 20.54 19.98

+ Gandalf 4482 2452 1748 | 22.11 20.44 20.10
INCEPTIONXML 44.61 2479 19.52 18.65 18.70 18.94
+ LabelMix 4485 2491 19.73 | 19.37 18.98 19.56

+ Gandalf 4593 25.81 20.36 | 21.89 21.54 22.56
INCEPTIONXML-LF | 4489 2571 1823 | 23.88 22.58 22.50
+ LabelMix 45.64 2635 18.78 | 24.09 22.98 23.00

+ Gandalf 47.13 26.87 19.03 | 24.12 23.92 23.82

Table 2: Effect of adding LabelMix and Gandalf data
augmentations on state-of-the-art extreme classifiers in
terms of P@k and PSP@k public benchmark datasets.
The best-performing approach is in bold.

Method ‘P@l P@3 P@5 ‘PSP@I PSP@3 PSP@5

| LF-AmazonTitles-131K

InceptionXML | 35.62 24.13 17.35 | 27.53 33.06 37.50
+LabelMix w/o SA | 37.25 2502 17.98 | 2925 3458  39.09
+LabelMixw SA | 39.05 2652 19.15| 3098 3720 4226
+Gandalfw/o SA | 37.59 2525 18.18 | 30.75 3554  40.06
+Gandalfw SA | 4352 29.23 2092 | 3696  42.71 47.64

LF-WikiSeeAlsoTitles-320K
14.19 1066‘ 13.06 14.87 16.33

\
InceptionXML ‘ 21.53

+LabelMix w/o SA | 22.61 1498 11.30 | 14.02 15.95 17.55
+LabelMixw SA | 23.90 16.10 1228 | 15.20 17.60 19.56
+Gandalf w/o SA | 2443 16.16 12.15 | 16.89 18.45 20.02

+Gandalf w SA 31.31 21.38 1622 | 2431 26.79 28.83

Table 3: Ablation results demonstrating the effective-
ness of using soft-annotations (denoted SA) obtained
from the LCG on a single InceptionXML model. No-
tably, soft annotations play an a very important role in
learning label-label correlations.

with gains up to 30% being observed in case of
ASTEC and INCEPTIONXML, which inherently do
not leverage label features. We believe the mod-
els benefit from Gandalf in two ways: (i) from
Figure 2 it is evident that ®(z;) does not exist
in the vicinity of ®(x;), where [ € vy;, for either
head or tail labels. Thus, Gandalf essentially ex-
pands the dataset by adding label features as data
points which are far from training instances in D
and, (ii) as shown in the ablation Table 3, the soft-
annotations play an important role in enabling the
encoder to inherently learn the label-label corre-
lations. Notably, Gandalf-augmented baselines
do not need to make any architectural modifica-
tions or employ complicated training pipelines to
learn strong inductive biases. For instance, ASTEC
and INCEPTIONXML beat their LF-counterparts
DECAF and ECLARE, and INCEPTIONXML-LF
respectively on LF-AmazonTitles-131K, while per-
forming at par with them on other two datasets.
Further visualizations depicting differences in pre-
dictions obtained by our proposed augmentations
can be found in Table 4(Appendix B).

8 Conclusion

In this paper, we proposed two data augmentation
methods which are particularly suited for short-
text extreme classification. These augmentations
not only eliminate the need for complicated train-
ing procedures in order to imbue inductive biases,
but dramatic increase in prediction performance
of state-of-the-art methods in this domain. It is
expected that our treatment towards studying in-
variances in this domain will spur further research.
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A INCEPTIONXML-LF

Model Outlook: Short-text queries are encoded
by a modified InceptionXML encoder, which en-
codes an input query X; using an encoder @, :=
(E, 0) parameterised by E and 6, where E denotes
a D-dimensional embedding layer of RV*? for vo-
cabulary tokens V = [t1, o, ..., ty] and 6 denotes
the parameters of the embedding enhancement and
the inception module respectively. Alongside @,
INCEPTIONXML-LF learns two frugal ASTEC-
like (Dahiya et al., 2021b) encoders, one each as
a label-text encoder ®; := {E, R} and a graph
augmented encoder ®, := {F,R}. Here, R de-
notes the parameters of a fully connected layer
bounded by a spectral norm and the embedding
layer £ is shared between all ®,, ®; and ®, for
joint query-label word embedding learning. Fur-
ther, an attention module A, meta-classifier W,,
and an extreme classifier W, are also learnt to-
gether with the encoders. Next, we specify the
details of all components of INCEPTIONXML-LF.

A.1 Instance-Attention in Query Encoder

We make two improvements to the inception mod-
ule INCEPTIONXML for better efficiency. Firstly,
in the inception module, the activation maps from
the first convolution layer are concatenated before
passing them onto the second convolution layer. To
make this more computationally efficient, we re-
place this “inception-like” setting with a “mixture
of expert” setting (Yang et al., 2019). Specifically,
a route function is added that produces dynamic
weights for each instance to perform a dynamic
element-wise weighted sum of activation maps of
each filter. Along with the three convolutional ex-
perts, we also add an average pool as a down sam-
pling residual connection to ensure better gradient
flow across the encoder.

Second, we decouple the second convolution layer
to have one each for the meta and extreme classifi-
cation tasks.

A.2 Dynamic Hard Negative Mining

Training one-vs-all (OvA) label classifiers becomes
infeasible in the XMC setting where we have hun-
dreds of thousands or even millions of labels. To
mitigate this problem, the final prediction or loss
calculation is done on a shortlist of size /L com-
prising of only hard-negatives label. This mech-
anism helps reduce complexity of XMC from an
intractable O(NN.DL) to a computationally feasible
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O(N D+/L) problem. INCEPTIONXML-LF inher-
its the synchronized hard negative mining frame-
work as used in the INCEPTIONXML. Specifically,
the encoded meta representation is passed through
the meta-classifier which predicts the top-K rel-
evant label clusters per input query. All labels
present in the top-K shortlisted label clusters then
form the hard negative label shortlist for the ex-
treme task. This allows for progressively harder
labels to get shortlisted per short-text query as the
training proceeds and the encoder learns better rep-
resentations.

A.3 Label-text and LCG Augmented
Classifiers

INCEPTIONXML-LF’s extreme classifier weight
vectors W, comprise of 3 weights, as in Mittal
et al. (2021b). Specifically, the weight vectors are
a result of an attention-based sum of (i) label-text
embeddings, created through ®;, (ii) graph aug-
mented label embeddings, created through graph
encoder @4 and, (iii) randomly initialized per-label
independent weights wy.

As shown in Figure 3, we first obtain label-text
embeddings as z; = E - z), where z{ are the TF-
IDF weights of label feature corresponding to label
[. Next, we use the label correlation graph G to
create the graph-weighted label-text embeddings
zi = 3 ,.cir) Gim - 2] to capture higher order
query-tail label correlations. Zzl and Z12 are then
passed into the frugal encoders ®; and ®, respec-
tively. These encoders comprise only of a resid-
ual connection across a fully connected layer as
a-R-G(%)+ Bz, where z; = {z{,2}}, G rep-
resents GELU activation and « and 5 are learned
weights. Finally, the per-label weight vectors for
the extreme task are obtained as

We,l :A(zll,Z%,Wl) :al'zll+a2'zl2+a3‘Wl

where A is the attention block and o123} are the
dynamic attention weights produced by the atten-
tion block.

A.4 Two-phased Training

Motivation: We find there to be a mismatch
in the training objectives in DeepXML-based ap-
proaches like ASTEC, DECAF and ECLARE which
first train their word embeddings on meta-labels
in Phase I and then transfer these learnt embed-
dings for classification over extreme fine-grained
labels in Phase III (Dahiya et al., 2021b). Thus,
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Figure 3: INCEPTIONXML-LF. The improved Inception Module along with instance attention is shown in detail.
Changes to the INCEPTIONXML framework using the ECLARE classifier are also shown.

in our two-phased training for INCEPTIONXML-
LF, we keep our training objective same for both
phases. Note that, in INCEPTIONXML-LF the
word embeddings are always learnt on labels in-
stead of meta-labels or label clusters and we only
augment our extreme classifier weight vectors WV,
with label-text embeddings and LCG weighted la-
bel embeddings. We keep the meta-classifier W,,
as a standard randomly initialized classification
layer.

Phase I: In the first phase, we initialize the em-
bedding layer E with pre-trained GloVe embed-
dings (Pennington et al., 2014), the residual layer
R in ®; and ®, is initialized to identity and the
rest of the model comprising of ®,, W,, and A is
randomly initialized. The model is then trained
end-to-end but without using free weight vectors
w; in the extreme classifier WW,. This set up im-
plies that W, only consists of weights tied to £
through ®; and ®, which allows for efficient joint
learning of query-label word embeddings (Mittal
et al., 2021a) in the absence of free weight vectors.
Model training in this phase follows the INCEP-
TIONXML+ pipeline as described in Kharbanda
et al. (2021) without detaching any gradients to the
extreme classifier for the first few epochs. In this
phase, the final per-label score is given by:

)) - ®4(2)

Phase II: In this phase, we first refine our clus-
ters based on the jointly learnt word embeddings.
Specifically, we recluster the labels using the dense
zl1 representations instead of using their sparse

P = A((I)l(zll), q)g(ZIQ
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PIFA representations (Chang et al., 2020) and con-
sequently reinitialize W,,,. We repeat the Phase I
training, but this time the formulation of W, also
includes w; which are initialised with the updated
zl1 as well. Here, the final per-label score is given
by:

P = A(‘I)l(zll)’ <I>g(z12), wy) - Dy(z)

B Visualizations and Extra Results

Additional visualizations capturing the label cor-
relations and their first order-neighbors are shown
in Figure 5. The relative comparison of outputs
generated by vanilla model, and those as a result of
the proposed augmentations is shown in Table 3.

C Limitations

Our work is limited to the extreme classification
problem setting in which the labels are endowed
with textual descriptions, and the input data-points
are short-text instances as those encountered in
Search and recommendation problems based on
product titles.
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INCEPTIONXML-LF

DECAF

ECLARE

Topological group

, Algebraic group, Topo-
logical ring,

Compact group, , Lie group,
Algebraic group, Topological ring

, Algebraic group, Topo-
logical ring,

Compact group, , Lie group,
Algebraic group, Topological ring

, Topological ring,

Compact group, , Lie
group, Algebraic group, Topological ring

INCEPTIONXML-LF

Oatcake,

Oatcake, Oat milk, Rolled oats,

Oatcake, Oatmeal, Oat milk, Porridge,
Rolled oats

Oat Oatcake, Oatmeal, Oatcake, Oatmeal, Oat milk, Oatcake, Oatmeal, Oat milk, Porridge,
DECAF s s s Rolled oats
Oatmeal, Oat milk, , Oatmeal, Rolled oats, Oatcake, Porridge, Rolled oats,
ECLARE 5 s , ,
s , Outline of , Outline of
, Outline of Colorado, In- Colorado, Index of Colorado-related arti- Colorado, Index of Colorado-related arti-
INCEPTIONXML-LF . . .
dex of Colorado-related articles, cles, , Colorado counties  cles, Colorado cities and towns, Colorado
counties
s , Index of Outline of Colorado, s
) ) s s Colorado-related articles, Colorado cities and towns,
DECAF Grand Lake, s , Colorado counties
Colorado
, Colorado cities and . Outline of Colorado, Index of Colorado-
towns, Colorado counties, , Colorado cities and towns, Col- related articles, , Col-
ECLARE orado counties, orado cities and towns, Colorado counties

INCEPTIONXML-LF

DECAF

ECLARE

Lunar Orbiter
program

Lunar Orbiter Image Recovery Project,

Exploration of the Moon,
, Lunar Orbiter Image Re-
covery Project, s

Surveyor program, Luna programme, Lu-
nar Orbiter Image Recovery Project,

Exploration of the Moon,
, Lunar Orbiter
Image Recovery Project, s

Exploration of the Moon,
, Lunar Orbiter Image Recovery
Project, s

Exploration of the Moon, Apollo program,
Surveyor program, Luna programme,

Exploration of the Moon,
, Lunar Orbiter Image Recovery
Project, s

Exploration of the Moon,
, Lunar Orbiter Image Recovery
Project, s

Exploration of the Moon,
, Surveyor program, Luna pro-
gramme,

INCEPTIONXML-LF

DECAF

ECLARE

Armed Forces of
Saudi Arabia

Royal Saudi Air Defense, Royal Saudi
Strategic Missile Force,

, Royal
Saudi Navy, Royal Saudi Air Defense,
Royal Saudi Strategic Missile Force,

Military of Saudi Arabia, Royal Saudi
Air Force, Royal Saudi Air Defense,
Royal Saudi Strategic Missile Force, King
Khalid Military City

, Military of Saudi Arabia, Royal
Saudi Strategic Missile Force, Saudi Ara-
bian National Guard

Royal Saudi Air Force, Royal Saudi Navy,
Royal Saudi Air Defense, Royal Saudi
Strategic Missile Force, Saudi Arabian
National Guard

, Military of Saudi Arabia,
Royal Saudi Strategic Missile Force, King
Khalid Military City,

Military of Saudi Arabia, Royal Saudi
Air Defense, King Khalid Military City,

Military of Saudi Arabia, Royal Saudi Air
Defense, Royal Saudi Strategic Missile
Force, King Khalid Military City,

Table 4: Prediction examples of different datapoints from the LF-WikiSeeAlsoTitles-320K dataset.

indicate

mispredictions. It may be noted that queries with even just a single word, like "Oat", which has random labels in the
case of a Vanilla Prediction, gets all the labels right with the addition of Gandalf. Furthermore, even mispredictions
get closer when our data augmentation strategy is introduced.
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