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Abstract

Extreme Multi-label Text Classification (XMC)001
involves learning a classifier that can assign an002
input with a subset of most relevant labels from003
millions of label choices. Recent works in this004
domain are increasingly focusing on the prob-005
lem setting with (i) short-text input data, and006
(ii) labels endowed with meta-data in the form007
of textual descriptions. Short-text XMC with008
label features has found numerous applications009
in areas such as prediction of Related Searches,010
product recommendation based on titles, and011
bid-phrase suggestion, amongst others.012

In this work, by exploiting the problem charac-013
teristics of short-text XMC, we develop pos-014
tulates stating the desired invariances, and015
propose two data augmentation techniques to016
achieve them. One, LabelMix, which performs017
data augmentation by concatenating an annotat-018
ing label to the data-point; and the other, Gan-019
dalf, which generates additional data-points020
by considering labels as legitimate data-points.021
The efficacy of the proposed augmentation022
methods is demonstrated by showing upto 30%023
relative improvement when applied to a range024
of existing algorithms, and proposing an algo-025
rithmic framework, InceptionXML-LF, which026
furthers state-of-the-art on benchmark datasets.027

1 Introduction028

Related Searches, product recommendation and029

bid-phrase matching tasks require predicting the030

most relevant results that are either highly cor-031

related or frequently co-occur with the given in-032

put query/product. Extreme Multilabel Classifi-033

cation (XMC) has found multiple applications in034

these domains where the problem is modelled as035

a short-text classification task over millions of036

possible searches/products/ad-phrases considered037

as labels. Real world data from these domains,038

when modelled as an XMC problem, is highly039

imbalanced towards some popular or trending ad-040

phrases/products and notoriously exhibits fit to041

Zipf’s law. Here, most labels in the extremely large 042

output space, are tail labels i.e, those which have 043

very few (≤ 5) instances in the training set (Bab- 044

bar and Schölkopf, 2019). Similarly, the words in 045

queries also follow a long-tailed distribution. While 046

there exists insufficient training data for these tail 047

labels/words, the short-text nature of these queries 048

makes it no simpler for the models to learn mean- 049

ingful, non-overfitting embeddings and encoded 050

representations for tail words and labels. 051

Due to the increasing requirement of scalable 052

and low latency models in these domains, there has 053

been a surge in works that model recommendations 054

tasks like related searches, query-to-product and 055

document-to-document recommendation as a short- 056

text XMC problem using only the search query, 057

product name or document title. Hence, most of 058

these works are focused on building lightweight 059

and frugal architectures that can predict in millisec- 060

onds and scale up to millions of labels. Despite 061

being frugal in terms of number of layers/param- 062

eters in the network, these models can learn the 063

training data well enough. Hence, creating deeper 064

models for better representation learning is perhaps 065

not the most optimal solution under this setting. 066

Many of the recent works, thus, make architec- 067

tural improvements to leverage “label features” in 068

order to imbue strong inductive biases in their mod- 069

els. A label feature is the text associated with la- 070

bels, which spans the same vocabulary universe 071

as query text. Label features, when encoded in 072

the same embedding space as query texts, help 073

mitigate the difficulty in learning efficient repre- 074

sentations for tail labels by enabling joint query- 075

label representation learning in common embed- 076

ding space (Dahiya et al., 2021a; Mittal et al., 077

2021a,b); thereby improving the prediction per- 078

formance. However, even after improved repre- 079

sentation learning by leveraging label features, a 080

significant generalization gap is noticeable in these 081

approaches (Figure 4, Appendix B). 082
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Contributions In this work, we take a data-083

centric approach, and aim at answering “Can we084

extend mixup to feature-label extrapolation to guar-085

antee a robust model behavior far away from the086

training data?”, a question posed in Zhang et al.087

(2018). To this end, we (i) propose LabelMix aug-088

mentation and motivate it through the Vicinal Risk089

Minimization (VRM) (Chapelle et al., 2000) prin-090

ciple, which is achieved by explicating the desired091

invariance properties and leveraging them for aug-092

mentation purposes. To the best of our knowledge,093

this is the first work that attempts to further the094

application of vicinal risk minimization to an em-095

bedding space where data instances and their label096

features co-exist in a shared embedding space.097

We further (ii) discuss self and soft-annotation098

properties of label features and propose Gandalf099

- GrAph iNduced Data Augmentation based on100

Label Features - to efficiently leverage label fea-101

tures as valid training instances. (iii) As an al-102

gorithmic contribution, we propose an extension103

to INCEPTIONXML (Kharbanda et al., 2021), to104

accommodate label features, as an efficient alterna-105

tive framework to current short-text XMC pipelines106

(See Appendix A). (iv) We demonstrate the gen-107

erality and effectiveness of the proposed data aug-108

mentations, by showing upto 30% relative improve-109

ments in multiple state-of-the-art extreme classi-110

fiers on public benchmark datasets. Our experi-111

ments reflect that strong inductive biases that are112

currently imbued into models through complicated113

training pipelines and architectural modifications114

can also be induced with simple data augmentation115

techniques as proposed in the paper.116

2 Related Work117

Earlier works in XMC have focused on the prob-118

lem of tagging long text documents consisting of119

hundreds of tokens. These are broadly categorized120

based on their algorithmic characteristics as fol-121

lows: (i) Label-tree methods (Jasinska et al., 2016;122

Prabhu et al., 2018; Khandagale et al., 2020), (ii)123

Decision tree-based methods (Prabhu and Varma,124

2014; Choromanska and Langford, 2015; Agrawal125

et al., 2013) (iii) Label-embedding methods (Bha-126

tia et al., 2015; Yu et al., 2014; Tagami, 2017), (iv)127

One-vs-rest methods (Babbar and Schölkopf, 2017;128

Yen et al., 2017), and (v) Deep learning methods129

(Liu et al., 2017; You et al., 2019). Of late, works130

aimed towards scaling up transformer encoders for131

XMC have dominated the research landscape in132

this domain (Chang et al., 2020; Ye et al., 2020; 133

Zhang et al., 2021). 134

XMC with Label Features: More recent works 135

have shifted their focus to short-text XMC to keep 136

up with the increasing requirements of low-latency 137

models in recommendation tasks. These works can 138

be split into two categories: (i) those which inher- 139

ently do not leverage label features like ASTEC 140

(Dahiya et al., 2021b) and INCEPTIONXML (Khar- 141

banda et al., 2021), and (ii) those which do heavy 142

architectural modifications or employ complicated 143

training strategies in order to leverage label features 144

along with short-text instances to induce strong 145

inductive bias into their models. For example, 146

SIAMESEXML (Dahiya et al., 2021a) employs 147

a siamese constrastive learning stage between in- 148

stance and its label features through a modified 149

negative log-likelihood loss and, DECAF (Mittal 150

et al., 2021a) and ECLARE (Mittal et al., 2021b) ex- 151

tend the DEEPXML (Dahiya et al., 2021b) pipeline 152

by augmenting the ASTEC encoder with one or two 153

extra ASTEC-like encoders for label-text and graph- 154

augmented label text and as a result end up taking 155

~3x the time as compared to ASTEC. 156

Data Augmentation Apart from the architectural 157

design choices, data augmentation methodologies 158

have been successful in providing much needed 159

inductive biases leading to better performance of 160

machine learning models on unseen data. While 161

these have been highly popular for computer vision 162

tasks inspired by recent works (Zhang et al., 2018; 163

Verma et al., 2019; Yun et al., 2019), augmentation 164

techniques remain relatively under-explored in Nat- 165

ural Language Processing. However, recent works 166

have shown their efficacy in NLP tasks such as ma- 167

chine translation (Gao et al., 2019), common-sense 168

reasoning (Yang et al., 2020), semantic parsing 169

(Guo et al., 2020), text classification (Zhao et al., 170

2022; Wei and Zou, 2019), and for achieving adver- 171

sarial robustness (Li et al., 2017). Further details 172

on tasks specific techniques for data augmentation 173

in NLP can be found in Feng et al. (2021). For 174

(short-text) XMC, which is the focus of this paper, 175

there have been no works which have leveraged 176

data augmentation or studied its implications. 177

3 Background & Notation 178

For training, we have available a dataset D = 179

{{xi,yi}Ni=1, {zl}Ll=1} of N pairs of input data- 180

points xi, their corresponding labels yi and a label 181
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Datasets N L APpL ALpP AWpP

LF-AmazonTitles-131K 294,805 131,073 5.15 2.29 6.92
LF-WikiSeeAlsoTitles-320K 693,082 312,330 4.67 2.11 3.01

LF-WikiTitles-500K 1,813,391 501,070 17.15 4.74 3.10

Table 1: Characteristics of short-text benchmark
datasets with label features. Here, APpL stands for
avg. points per label, ALpP stands for avg. labels per
point and AWpP is length i.e. avg. words per point.

feature zl associated with each label. In short-text182

setting, typically the data-points (in the form of183

queries or titles) and label features both comprise184

of very few words on average (Table : 1). Further,185

xi, zl ∈ X for some input space X =
⊕∞

m=1 Vm,186

where V denotes a common vocabulary universe,187

and
⊕

represents the operation for aggregating Vm188

i.e. text sequences of length m, into a set.189

When posed a short-text XMC problem with L190

labels, we are interested in finding a learning func-191

tion f := {Φ,Ψ} which maps xi to a subset of192

labels y ⊂ [L] out of the L available labels identi-193

fied through the integers [L] := {1, . . . , L}. Usu-194

ally, we identify the labels through a binary vector195

y ∈ {0, 1}L, where yl = 1 ⇔ l ∈ y. A common196

strategy for implementing the classifier component197

Ψ in the XMC pipelines is via the one-vs-all (OVA)198

scheme, such that for each xi, a score sl(xi) is199

calculated for each label l ∈ [L]. In practice, the200

sum over all labels is very expensive, and is there-201

fore often approximated e.g. by a label shortlisting202

procedure (Jain et al., 2019; Jiang et al., 2021).203

In the OVA paradigm, scores are typically cal-204

culated by projecting both the instances and the205

labels to some common Euclidean space E = Rd,206

and then taking their inner product. The mapping207

of instances to embeddings is realized through a208

feature extractor Φ : X −→ E . All labels are de-209

coded through Ψ
def
= {wl}Ll=1, where wl ∈ E is the210

label’s decoding representation. In this notation,211

we have sl(x) = ⟨Φ(x),Ψ(l)⟩.212

The short-text XMC problem is characterized by213

two random variables X ∈ X and Y ∈ {0, 1}L214

jointly distributed according to P. Here, the labels215

are sparse, E[∥Y ∥1] = ȳ ≪ L, and follow a long-216

tailed distribution. Also, the instances are short-text217

i.e. E[len(X)] = m̄, with m̄ in the range of about218

3 to 8 tokens1 as shown in Table 1.219

1We do not place a strict upper-bound on the number of
tokens, because this complicates the concatenation arguments

4 Invariances in Short-text XMC & 220

Vicinal Risk Minimization 221

The extreme scarcity of training data for tail labels 222

in XMC implies that a good classifier for these la- 223

bels can only be learned if, in addition to the few 224

training examples, strong inductive biases are em- 225

ployed during training. Even though there exist 226

problem-agnostic regularizations such as limiting 227

the magnitude of the parameters (via L1 or L2 reg- 228

ularization), implicit regularization through SGD 229

dynamics, or dropout, it is beneficial to use domain 230

knowledge for more efficient inductive biases. 231

As discussed in section 2, many recent XMC 232

baselines leverage label features in order to im- 233

bue strong inductive biases in their models either 234

through computationally expensive architectural 235

additions or complicated training procedures. If 236

similar inductive biases could be achieved through 237

data augmentation, then these would not be re- 238

stricted to a single architecture, but benefit most 239

current and future short-text XMC methods. Thus, 240

our goal is to identify underlying properties of the 241

short-text XMC problem, and use these to derive 242

new data augmentation techniques. 243

Data augmentation can be seen as a form of vici- 244

nal risk minimization, the idea that one minimizes 245

risk over the empirical distribution 246

dPD(x,y) =
1

n

n∑
i=1

δxi(x) δyi(y), (1) 247

but instead over a smoothed out version Pv. That 248

means that each data point x in the input, corre- 249

sponding to a peak δx in the empirical distribution, 250

instead is turned into a smooth distribution that has 251

nonzero density in the vicinity of x. The key task 252

is then to determine what constitutes the vicinity of 253

a data point in this setting. 254

Symmetries and transformation laws have long 255

been a fruitful source for inductive biases in ma- 256

chine learning. For example, in computer vision 257

the underlying symmetries are, for example, trans- 258

lation, rotation, and flips. Invariance under small 259

translations is typically achieved through the net- 260

work architecture, by using convolution layers 261

which are covariant2 and pooling layers which are 262

invariant to small shifts. For more complex trans- 263

2A note on terminology: We categorize possible transfor-
mation behaviour into three groups: Covariant (sometimes
called equivariant), where the output transforms in the same
manner as the input, contravariant, where the output trans-
forms in the opposite way as the input, and invariant, where
the transformation in the input leaves the output unchanged.
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Figure 1: A pictorial representation of the proposed data augmentation strategies. The title of each plot denotes the
data point, the y-axis its labels and the x-axis their soft targets. We demonstrate our augmentations on the data point
"Of the Rings of Power and the Third Age", which is the final book in the Lord of the Rings(LOTR) series along with
labels "The Hobbit" and "The Lord of the Rings". The augmentations are formed as per 1 and 2. Notably, the labels
found through soft targets through the LCG are all related to the LOTR universe - "J. R. R. Tolkien" is the author of
the LOTR books, "The Quest of Erebor" is a central plotline and "Celebrimbor" and "Gandalf" (not to be confused
with our data augmentation strategy) are major characters. Beyond this, the soft targets also cover generic labels
like "1954 in Literature" and "1955 in Literature", which is the correct timeline for when the books were released.

formations, such as the rotations and flips, how-264

ever, data augmentation is required. For continuous265

transformations, like rotations, translations, or scal-266

ing, one can easily postulate that the classification267

should remain invariant if the change is very small.268

Due to the discrete nature of text input in lan-269

guage tasks, however, there are no continuous trans-270

formations available. It has been shown in recent271

works that simple discrete transformations of input272

data such as replacement with synonym, introduc-273

tion of typos, and swapping of neighboring texts274

can improve the performance to a certain extent275

(Xie et al., 2017; Coulombe, 2018; Wei and Zou,276

2019; Niu and Bansal, 2018), however, and such277

transformations can lead to semantic inconsistency278

and illegibility. Therefore, we have to look deeper279

into the actual properties of the short-text data to280

find transformations with predictable behaviour.281

Considerations for input concatenations in282

short-text XMC For textual data, combining283

data-points via direct concatenation of input texts284

of other data-points, can lead to significant changes285

in their intended meaning. In such a setting, one286

might assume that if two inputs are joined together, 287

the resulting labels would be the union of the labels 288

of the two data points. Especially for longer text, 289

this could be seen as a sensible approach, e.g. if a 290

Wikipedia article consists of two sections, then the 291

tags for that article could be the union of the tags 292

for each section. This can be encoded as follows : 293

Hypothesis 1 (Concatenation Covariance). For 294

two (long-text) inputs (xi, yi) and (xj , yj), where 295

yi, yj ⊂ [L] are represented as sets, concatenation 296

of inputs corresponds to union of sets 297

Φ(xi ⊕ xj) = yi ∪ yj . (2) 298

However, for short text, one could argue that the 299

opposite is true. If a user adds additional words to a 300

search query, a Wikipedia page, or a product name, 301

then these words are often meant to filter the results 302

further. For example, changing the search query 303

from “Boat Wireless headphones” to “Boat Wire- 304

less headphones with microphone” would lead to a 305

filtered result. This leads to the opposite hypothesis 306

Hypothesis 2 (Concatenation Contravariance). 307

For two input queries (xi, yi) and (xj , yj), where 308
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yi, yj ⊂ [L] are represented as sets, concatenation309

of inputs corresponds to intersection of sets310

Φ(xi ⊕ xj) = yi ∩ yj . (3)311

Further, we have to concede that for two arbitrary312

short-text queries/product names, it is very difficult313

to predict the exact meaning of their concatenation.314

One could argue to use combine the queries in315

the manifold space (Verma et al., 2019), but as316

shown in Figure 4, while Manifold Mixup does317

help reduce the overfitting, it still does not imbue318

enough inductive bias into the model.319

In the case where label features are also short-320

text data, we can at least identify a subset of con-321

catenations that should leave the classification un-322

changed. That is, if the second input text can be323

known beforehand to only reaffirm the content of324

the first text. Therefore, choosing the second text325

to be one of the relevant label’s text should result in326

an invariance. From examples in section 5 and Fig-327

ure 5, one can observe that concatenating a query328

with one of its label feature only reaffirms the con-329

tent of the query. This brings us to330

Postulate 1 (Label-Affirming Concatenations).331

Let (x, y) be a training data point in D, and j ∈ y332

be a label relevant to x. Then the classifier should333

be invariant under concatenation with zj334

Φ(x⊕ zj) = Φ(x). (4)335

This is corroborated by Figure 2, where queries336

concatenated with label features in the input space337

Φ(x ⊕ zl) have their encoded representations in338

the vicinity (indicated by high cosine similarity) of339

the encoded representation of only queries as input340

Φ(x). Thus, this postulate enables us to specify the341

vicinal distribution. Given a datapoint (x, y) ∈ D,342

its vicinity is given by V (x) := {x⊕ zj : j ∈ y}.343

The straightforward way to define the vicinal dis-344

tribution would be to sample uniformly on V (x).345

However, as the main goal of the augmentation is to346

improve the generalization on tail labels, it can be347

beneficial to allow for weighted distributions. Us-348

ing an instance-independent weight vector r ∈ RL,349

the probability of choosing x⊕zj as the augmented350

label is given by yjrj/⟨y, r⟩, where the first term351

ensures that j is actually a relevant label, the sec-352

ond term is the weighting factor, and the third the353

normalization. Averaging over the entire dataset354

thus leads to the vicinal distribution:355

dPv(x,y) =
1

n

n∑
i=1

δyi(y)

⟨yi, r⟩

L∑
j=1

yijrjδxi⊕zj (x).356

Figure 2: To obtain this distribution, we take 50,000
input queries from LF-AmazonTitles-131K dataset and
evaluate their cosine similarity with other queries which
are either sampled randomly (Random Documents), or
those which have one common label (Codocuments),
and also with label features of one of it’s labels which
belong to either Head Labels or Tail Labels. To demon-
strate the efficacy of LabelMix, we also evaluate cosine
similarity between input queries obtained with the said
augmentation and LabelMix documents - denoted by
"Trained LabelMix Documents".

5 Label Features in Short-text XMC 357

5.1 What exactly are Label Features? 358

To explain label features, we show examples 359

from our datasets (i) LF-WikiTitles-500K, where 360

given the title of wikipedia page, the model needs 361

to predict the relevant categories, and (ii) LF- 362

AmazonTitles-131K, where given a product’s title, 363

one need to recommend related products. 364

Example 1: Similarly, for the wikipedia page 365

“2022 French presidential election”, we have the 366

available categories April 2022 events in France | 367

2022 French presidential election | 2022 elections 368

in France | Presidential elections in France. Fur- 369

ther, a google search of the same query, leads to 370

the following related searches - French election 371

2022 - The Economist | French presidential elec- 372

tion coverage on FRANCE 24 | Presidential Elec- 373

tion 2022: A Euroclash Between a “Liberal... | 374

French polls, trends and election news for France - 375

POLITICO.eu, amongst others. 376

Example 2: For a product on Amazon, 377

“Mario Kart: Double Dash!! with Bonus Disc”, 378

we have available Super Smash Bros Melee | Super 379

Mario Sunshine | Mario Party 7 | Super Mario 380
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Strikers as the recommended products.381

Observations In view of these examples, one can382

affirm two important observations: (i) the problem383

indeed requires recommending similar items which384

are either highly correlated or co-occur frequently385

with the queried item, and (ii) the data instance and386

the corresponding label-features (approximately)387

form an equivalence class. For example, a valid388

news headline search on a search engine should389

result in a page mentioning the same headline and390

similar re-phrased headlines from other news me-391

dia outlets (see Example 1). As a result, we can392

conclude that data instances are exchangable with393

their labels features.394

The above observations are unique to the short-395

text XMC problem setting dealt in this paper. This396

is in contrast to a conventional text-classification397

problem such as Amazon Reviews for Sentiment398

Analysis3 or 20 Newsgroups dataset4, where the399

model needs to classify news articles, consisting of400

hundreds of tokens, into 20 categories like politics,401

sports, electronics etc. Here, the role of the data402

instances and labels is significantly asymmetric and403

hence non-exchangeable.404

5.2 Label Features as Input Queries405

The key insight that we leverage from previous406

observations is that label features are, in fact, valid407

related searches or products and hence legitimate408

data instances themselves. Further, we observe409

that in the XMC settings, where the label space410

is formed by assigning numeric integers to these411

related items i.e. label features, every valid query412

should, ideally, have itself as a label as it is relevant413

to itself (see example 1). However, this might not414

be possible for most training instances as not all415

training instances may exist as a label in a limited416

training dataset D. However, every label feature zl417

when posed as an input search query (data instance)418

should fulfill the following postulate:419

Postulate 2 (Self-Annotation). If the features zl420

of a label are interpreted as a data instance, then421

this instance will be annotated with the correspond-422

ing label l. This means that we assume the under-423

lying probability distribution to fulfill424

P[Yl = 1 | X = zl] = 1 (5)425

426

3https://jmcauley.ucsd.edu/data/amazon/
4http://qwone.com/ jason/20Newsgroups/

The above postulate suggests a methodology to 427

use label features as data instances with the self- 428

annotation property. One natural question arises 429

regarding the labels for the thus created data in- 430

stances (i.e., via self-annotation) : In a label space 431

[L] comprising of hundreds of thousands or mil- 432

lions of labels, what are the suitable labels l′ ̸= l 433

for zl, when posed an a data instance? According 434

to the observation (i) in Section 5, the labels that 435

are highly correlated to or the ones that frequently 436

co-occur with a label l should, ideally, also make 437

up as the label-set for the label feature zl, when 438

searched as a query or posed as a data instance. 439

One way to approximate label correlations or 440

co-occurrences is to use the Label Correlation 441

Graph, as proposed in ECLARE, which gives a 442

smooth approximation of label-occurrences pur- 443

posely skewed in favor of tail labels. Since 444

the entries in LCG are normalized, these can be 445

interpreted regularized variants of the label co- 446

occurrence matrix. As argued in ECLARE, for each 447

label, the LCG finds a set of semantically similar 448

labels that either share tokens with the label, or 449

are used in the same context. This can be further 450

seen in Figure 5 where the degree of correlation of 451

a label with its first order neighbours in the LCG 452

has been plotted. While ECLARE uses the LCG 453

efficiently to either re-weight logits as a post pro- 454

cessing step, or to augment labels’ decoding rep- 455

resentations wl, we propose to leverage the graph 456

weights (with an additional row-wise normaliza- 457

tion to get values in range [0, 1]) as probabilistic 458

soft labels for zl as input data instance. We thereby 459

propose to use the following postulate: 460

Postulate 3 (Soft-annotations via LCG). If the 461

features zl of a label are interpreted as a data 462

instance; then beyond self-annotation, zl can be 463

soft-annotated with the other labels l′ ̸= l either 464

highly correlated to or that frequently co-occur 465

with l. Therefore, we require the following : 466

P[Yl′ = 1 | X = zl] = LCG[l, l′] (6) 467

4686 Proposed Augmentations in Practice 469

LabelMix Augmentation Through LabelMix, 470

we propose a way of performing label-affirming 471

concatenations where, a data point is chosen with 472

a uniform probability of 0.4 and is concatenated 473

with one of it’s label features and the corresponding 474

label space is formed by the concatenation of the 475
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label set of the data point and the soft annotations476

of the label feature (Postulate 2). To efficiently477

learn representations for tail labels, when sampling478

a label feature from the label set of the data point,479

we assign the labels weights according to a skewed480

label distribution as also found to be suitable in481

Dahiya et al. (2021a); Mikolov et al. (2013). Fur-482

ther, to restrict the impact of noisy correlations, we483

empirically find it beneficial to threshold the soft484

labels obtained from LCG at 0.1.485

Algorithm 1: LabelMix Augmentation

1 # x - input instance tokens486
2 # y - ground truth label vector487
3 # Z - label feature token matrix488
4 # r - label wise sampling weight vector489
5 def LabelMix(x, y, r, Z, LCG):490
6 aug_prob = numpy.random.uniform()491
7 if aug_prob > 0.4:492
8 return (x, y)493
9 p_a = numpy.multipy(y, r)494

10 j = numpy.random.choice(y, p=(p_a/sum(p_a)))495
11 y_lm = LCG[j, :] / LCG[j, j]496
12 y_a = numpy.minimum(y + y_lm, 1.0)497
13 y_a = numpy.where(y_a > 0.1, y_a, 0)498
14 x_a = numpy.append(x, Z[j])499
15 return (x_a, y_a)500

501

Gandalf Augmentation Through Gandalf, we502

propose a methodology to add label features as503

data points in the training set. We annotate the504

label feature (as a data point) with its self and soft505

annotations (derived from LCG), as described in506

postulates 2 and 3 in the previous section. The Gan-507

dalf data augmentation as an algorithmic procedure508

is shown in Algorithm 1 below :509

Algorithm 2: Gandalf Augmentation

1 # j - sampling index510
2 # Z - label feature token matrix511
3 def Gandalf(j, Z, LCG):512
4 x = Z[j]513
5 y = LCG[j, :] / LCG[j, j]514
6 y = numpy.where(y > 0.1, y, 0)515
7 return (x, y)516

517

7 Experiments & Discussion518

Benchmarks, Baselines & Metrics : We bench-519

mark our experiments on 3 standard public datasets520

LF-AmazonTitles-131K, LF-WikiSeeAlsoTitles-521

350K, and LF-WikiTitles-500K. We test the gener-522

ality and effectiveness of our proposed LabelMix5523

5Effectively applying LabelMix on DEEPXML-based
methods like ASTEC, DECAF and ECLARE is challenging
given their multi-stage pipelines where, in some stages, the
word embeddings are frozen.

and Gandalf augmentations across multiple state- 524

of-the-art short-text extreme classifiers, the de- 525

tails of which have been discussed in section 2. 526

Similarly, to test the effectiveness of the INCEP- 527

TIONXML encoder on these datasets, we extend 528

the model to leverage label features and call it 529

INCEPTIONXML-LF. For this, we augment it with 530

additional label-text and graph-augmented label 531

text classifiers as done in Mittal et al. (2021b). We 532

further create a 2-stage training strategy as com- 533

pared to a single one in INCEPTIONXML. The 534

implementation details and training strategy can 535

be found in Appendix A. We measure the models’ 536

performance using standard metrics precision@k, 537

denoted P@k, and its propensity-scored version 538

PSP@k (Jain et al., 2016). 539

7.1 Results 540

We can make some key observations and develop 541

strong insights not only about the short-text XMC 542

problem with label features but also about specific 543

dataset properties from Table 2. For example, while 544

the effect of data augmentations can be observed 545

strongly in the first two datasets, only limited im- 546

provement are noticeable in LF-WikiTitles-500K 547

dataset. This can be attributed to LF-WikiTitles- 548

500K having three times as many data points, on 549

average, per label (Table 1), and thus not requiring 550

as much inductive bias as the other two datasets. 551

LabelMix LabelMix produces synthetic data 552

points in the vicinity of training data and hence, 553

while being effective in capturing correlations be- 554

tween data instances and tail labels, can only imbue 555

limited additional inductive bias into the model. 556

ECLARE, on the other hand, is able to better cap- 557

ture these correlations through its LCG-augmented 558

classifier and only gains trivially from LabelMix. 559

DECAF, though, gains non-trivially as it only en- 560

codes label text in its classifier which leaves out 561

the scope to capture query-tail label correlations 562

further. Similarly, INCEPTIONXML stands to gain 563

significantly more from LabelMix as compared to 564

it’s LF-counterpart which, similar to ECLARE, also 565

employs a LCG-augmented classifier. Notably, La- 566

belMix works much better on INCEPTIONXML(- 567

LF) because of their dynamic negative mining 568

pipeline, which enables the augmentation to work 569

more effectively. 570

Gandalf We witness exceptional increase in pre- 571

diction performance over multiple state-of-the-art 572

extreme classifiers with the Gandalf augmentation, 573
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Method P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

LF-AmazonTitles-131K

AttentionXML 32.25 21.70 15.61 23.97 28.60 32.57
GALAXC 39.17 26.85 19.49 32.50 38.79 43.95

SIAMESEXML++ 41.42 30.19 21.21 35.80 40.96 46.19

ASTEC 37.12 25.20 18.24 29.22 34.64 39.49
+ LabelMix 37.95 25.65 18.59 29.91 35.58 40.63
+ Gandalf 43.95 29.66 21.39 37.40 43.03 48.31

DECAF 38.4 25.84 18.65 30.85 36.44 41.42
+ LabelMix 39.30 26.60 19.23 31.81 37.67 42.83
+ Gandalf 42.43 28.96 20.90 35.22 42.12 47.61

ECLARE 40.46 27.54 19.63 33.18 39.55 44.10
+ LabelMix 40.34 27.54 19.96 33.48 39.74 45.11
+ Gandalf 42.51 28.89 20.81 35.72 42.19 47.46

INCEPTIONXML 36.79 24.94 17.95 28.50 34.15 38.79
+ LabelMix 40.41 27.45 19.82 32.12 38.54 43.81
+ Gandalf 44.67 30.00 21.50 37.98 43.83 48.93

INCEPTIONXML-LF 40.74 27.24 19.57 34.52 39.40 44.13
+ LabelMix 41.90 28.20 20.35 35.60 41.07 46.20
+ Gandalf 43.84 29.59 21.30 38.22 43.90 49.03

LF-WikiSeeAlsoTitles-320K

AttentionXML 17.56 11.34 8.52 9.45. 10.63 11.73
GALAXC 27.87 18.75 14.30 19.77 22.25 24.47

SIAMESEXML++ 31.97 21.43 16.24 26.82 28.42 30.36

ASTEC 22.72 15.12 11.43 13.69 15.81 17.50
+ LabelMix 22.91 15.79 12.02 13.99 16.57 18.04
+ Gandalf 31.10 21.54 16.53 23.60 26.48 28.80

DECAF 25.14 16.90 12.86 16.73 18.99 21.01
+ LabelMix 26.55 18.04 13.75 17.86 20.46 22.61
+ Gandalf 31.10 21.60 16.53 23.81 26.69 29.09

ECLARE 29.35 19.83 15.05 22.01 24.23 26.27
+ LabelMix 29.42 19.94 15.17 22.05 24.36 26.46
+ Gandalf 31.33 21.40 16.31 24.83 27.18 29.29

INCEPTIONXML 23.10 15.54 11.52 14.15 16.71 17.39
+ LabelMix 25.16 17.03 12.97 16.11 18.72 20.76
+ Gandalf 32.54 22.15 16.86 25.27 27.76 30.03

INCEPTIONXML-LF 28.99 19.53 14.79 21.45 23.65 25.65
+ LabelMix 29.68 20.16 15.32 22.24 24.69 26.80
+ Gandalf 33.12 22.70 17.29 26.68 29.03 31.27

LF-WikiTitles-500K

AttentionXML 40.90 21.55 15.05 14.80 13.97 13.88
SIAMESEXML++ 42.08 22.80 16.01 23.53 21.64 21.41

ASTEC 44.40 24.69 17.49 18.31 18.25 18.56
+ LabelMix 44.63 24.91 18.35 19.21 19.53 19.32
+ Gandalf 45.24 25.45 18.57 21.72 20.99 21.16

DECAF 44.21 24.64 17.36 19.29 19.82 19.96
+ LabelMix 45.33 25.44 18.51 23.01 21.66 21.93
+ Gandalf 45.76 25.76 18.90 24.08 22.14 22.78

ECLARE 44.36 24.29 16.91 21.58 20.39 19.84
+ LabelMix 44.55 24.42 17.22 21.70 20.54 19.98
+ Gandalf 44.82 24.52 17.48 22.11 20.44 20.10

INCEPTIONXML 44.61 24.79 19.52 18.65 18.70 18.94
+ LabelMix 44.85 24.91 19.73 19.37 18.98 19.56
+ Gandalf 45.93 25.81 20.36 21.89 21.54 22.56

INCEPTIONXML-LF 44.89 25.71 18.23 23.88 22.58 22.50
+ LabelMix 45.64 26.35 18.78 24.09 22.98 23.00
+ Gandalf 47.13 26.87 19.03 24.12 23.92 23.82

Table 2: Effect of adding LabelMix and Gandalf data
augmentations on state-of-the-art extreme classifiers in
terms of P@k and PSP@k public benchmark datasets.
The best-performing approach is in bold.

Method P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

LF-AmazonTitles-131K

InceptionXML 35.62 24.13 17.35 27.53 33.06 37.50

+LabelMix w/o SA 37.25 25.02 17.98 29.25 34.58 39.09
+LabelMix w SA 39.05 26.52 19.15 30.98 37.20 42.26

+Gandalf w/o SA 37.59 25.25 18.18 30.75 35.54 40.06
+Gandalf w SA 43.52 29.23 20.92 36.96 42.71 47.64

LF-WikiSeeAlsoTitles-320K

InceptionXML 21.53 14.19 10.66 13.06 14.87 16.33

+LabelMix w/o SA 22.61 14.98 11.30 14.02 15.95 17.55
+LabelMix w SA 23.90 16.10 12.28 15.20 17.60 19.56

+Gandalf w/o SA 24.43 16.16 12.15 16.89 18.45 20.02
+Gandalf w SA 31.31 21.38 16.22 24.31 26.79 28.83

Table 3: Ablation results demonstrating the effective-
ness of using soft-annotations (denoted SA) obtained
from the LCG on a single InceptionXML model. No-
tably, soft annotations play an a very important role in
learning label-label correlations.

with gains up to 30% being observed in case of 574

ASTEC and INCEPTIONXML, which inherently do 575

not leverage label features. We believe the mod- 576

els benefit from Gandalf in two ways: (i) from 577

Figure 2 it is evident that Φ(zl) does not exist 578

in the vicinity of Φ(xi), where l ∈ yi, for either 579

head or tail labels. Thus, Gandalf essentially ex- 580

pands the dataset by adding label features as data 581

points which are far from training instances in D 582

and, (ii) as shown in the ablation Table 3, the soft- 583

annotations play an important role in enabling the 584

encoder to inherently learn the label-label corre- 585

lations. Notably, Gandalf -augmented baselines 586

do not need to make any architectural modifica- 587

tions or employ complicated training pipelines to 588

learn strong inductive biases. For instance, ASTEC 589

and INCEPTIONXML beat their LF-counterparts 590

DECAF and ECLARE, and INCEPTIONXML-LF 591

respectively on LF-AmazonTitles-131K, while per- 592

forming at par with them on other two datasets. 593

Further visualizations depicting differences in pre- 594

dictions obtained by our proposed augmentations 595

can be found in Table 4(Appendix B). 596

8 Conclusion 597

In this paper, we proposed two data augmentation 598

methods which are particularly suited for short- 599

text extreme classification. These augmentations 600

not only eliminate the need for complicated train- 601

ing procedures in order to imbue inductive biases, 602

but dramatic increase in prediction performance 603

of state-of-the-art methods in this domain. It is 604

expected that our treatment towards studying in- 605

variances in this domain will spur further research. 606
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A INCEPTIONXML-LF777

Model Outlook: Short-text queries are encoded778

by a modified InceptionXML encoder, which en-779

codes an input query xi using an encoder Φq :=780

(E, θ) parameterised by E and θ, where E denotes781

a D-dimensional embedding layer of RV×D for vo-782

cabulary tokens V = [t1, t2, . . . , tV ] and θ denotes783

the parameters of the embedding enhancement and784

the inception module respectively. Alongside Φq,785

INCEPTIONXML-LF learns two frugal ASTEC-786

like (Dahiya et al., 2021b) encoders, one each as787

a label-text encoder Φl := {E,R} and a graph788

augmented encoder Φg := {E,R}. Here, R de-789

notes the parameters of a fully connected layer790

bounded by a spectral norm and the embedding791

layer E is shared between all Φq,Φl and Φg for792

joint query-label word embedding learning. Fur-793

ther, an attention module A, meta-classifier Wm794

and an extreme classifier We are also learnt to-795

gether with the encoders. Next, we specify the796

details of all components of INCEPTIONXML-LF.797

A.1 Instance-Attention in Query Encoder798

We make two improvements to the inception mod-799

ule INCEPTIONXML for better efficiency. Firstly,800

in the inception module, the activation maps from801

the first convolution layer are concatenated before802

passing them onto the second convolution layer. To803

make this more computationally efficient, we re-804

place this “inception-like” setting with a “mixture805

of expert” setting (Yang et al., 2019). Specifically,806

a route function is added that produces dynamic807

weights for each instance to perform a dynamic808

element-wise weighted sum of activation maps of809

each filter. Along with the three convolutional ex-810

perts, we also add an average pool as a down sam-811

pling residual connection to ensure better gradient812

flow across the encoder.813

Second, we decouple the second convolution layer814

to have one each for the meta and extreme classifi-815

cation tasks.816

A.2 Dynamic Hard Negative Mining817

Training one-vs-all (OvA) label classifiers becomes818

infeasible in the XMC setting where we have hun-819

dreds of thousands or even millions of labels. To820

mitigate this problem, the final prediction or loss821

calculation is done on a shortlist of size
√
L com-822

prising of only hard-negatives label. This mech-823

anism helps reduce complexity of XMC from an824

intractable O(NDL) to a computationally feasible825

O(ND
√
L) problem. INCEPTIONXML-LF inher- 826

its the synchronized hard negative mining frame- 827

work as used in the INCEPTIONXML. Specifically, 828

the encoded meta representation is passed through 829

the meta-classifier which predicts the top-K rel- 830

evant label clusters per input query. All labels 831

present in the top-K shortlisted label clusters then 832

form the hard negative label shortlist for the ex- 833

treme task. This allows for progressively harder 834

labels to get shortlisted per short-text query as the 835

training proceeds and the encoder learns better rep- 836

resentations. 837

A.3 Label-text and LCG Augmented 838

Classifiers 839

INCEPTIONXML-LF’s extreme classifier weight 840

vectors We comprise of 3 weights, as in Mittal 841

et al. (2021b). Specifically, the weight vectors are 842

a result of an attention-based sum of (i) label-text 843

embeddings, created through Φl, (ii) graph aug- 844

mented label embeddings, created through graph 845

encoder Φg and, (iii) randomly initialized per-label 846

independent weights wl. 847

As shown in Figure 3, we first obtain label-text
embeddings as z1l = E · z0l , where z0l are the TF-
IDF weights of label feature corresponding to label
l. Next, we use the label correlation graph G to
create the graph-weighted label-text embeddings
z2l =

∑
m∈[L]Glm · z0l to capture higher order

query-tail label correlations. z1l and z2l are then
passed into the frugal encoders Φl and Φg respec-
tively. These encoders comprise only of a resid-
ual connection across a fully connected layer as
α · R · G(z̃l) + β · z̃l, where z̃l = {z1l , z2l }, G rep-
resents GELU activation and α and β are learned
weights. Finally, the per-label weight vectors for
the extreme task are obtained as

We,l = A(z1l , z
2
l ,wl) = α1 ·z1l +α2 ·z2l +α3 ·wl

where A is the attention block and α{1,2,3} are the 848

dynamic attention weights produced by the atten- 849

tion block. 850

A.4 Two-phased Training 851

Motivation: We find there to be a mismatch 852

in the training objectives in DeepXML-based ap- 853

proaches like ASTEC, DECAF and ECLARE which 854

first train their word embeddings on meta-labels 855

in Phase I and then transfer these learnt embed- 856

dings for classification over extreme fine-grained 857

labels in Phase III (Dahiya et al., 2021b). Thus, 858
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Figure 3: INCEPTIONXML-LF. The improved Inception Module along with instance attention is shown in detail.
Changes to the INCEPTIONXML framework using the ECLARE classifier are also shown.

in our two-phased training for INCEPTIONXML-859

LF, we keep our training objective same for both860

phases. Note that, in INCEPTIONXML-LF the861

word embeddings are always learnt on labels in-862

stead of meta-labels or label clusters and we only863

augment our extreme classifier weight vectors We864

with label-text embeddings and LCG weighted la-865

bel embeddings. We keep the meta-classifier Wm866

as a standard randomly initialized classification867

layer.868

Phase I: In the first phase, we initialize the em-
bedding layer E with pre-trained GloVe embed-
dings (Pennington et al., 2014), the residual layer
R in Φl and Φg is initialized to identity and the
rest of the model comprising of Φq,Wm and A is
randomly initialized. The model is then trained
end-to-end but without using free weight vectors
wl in the extreme classifier We. This set up im-
plies that We only consists of weights tied to E
through Φl and Φg which allows for efficient joint
learning of query-label word embeddings (Mittal
et al., 2021a) in the absence of free weight vectors.
Model training in this phase follows the INCEP-
TIONXML+ pipeline as described in Kharbanda
et al. (2021) without detaching any gradients to the
extreme classifier for the first few epochs. In this
phase, the final per-label score is given by:

Pl = A(Φl(z
1
l ), Φg(z

2
l )) · Φq(x)

Phase II: In this phase, we first refine our clus-
ters based on the jointly learnt word embeddings.
Specifically, we recluster the labels using the dense
z1l representations instead of using their sparse

PIFA representations (Chang et al., 2020) and con-
sequently reinitialize Wm. We repeat the Phase I
training, but this time the formulation of We also
includes wl which are initialised with the updated
z1l as well. Here, the final per-label score is given
by:

Pl = A(Φl(z
1
l ), Φg(z

2
l ), wl) · Φq(x)

B Visualizations and Extra Results 869

Additional visualizations capturing the label cor- 870

relations and their first order-neighbors are shown 871

in Figure 5. The relative comparison of outputs 872

generated by vanilla model, and those as a result of 873

the proposed augmentations is shown in Table 3. 874

C Limitations 875

Our work is limited to the extreme classification 876

problem setting in which the labels are endowed 877

with textual descriptions, and the input data-points 878

are short-text instances as those encountered in 879

Search and recommendation problems based on 880

product titles. 881
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Figure 4: Effect of different data augmentations on INCEPTIONXML-LF. Remarkable improvements can be noted
as a result of using the proposed data augmentations LabelMix and Gandalf. However, from (a) and (b), a significant
generalization can be observed between Train and Test P@1. While manifold mixup is effective in reducing
overfitting, it only makes trivial improvements to the prediction performance.

Figure 5: Correlations between labels and their first-order neighbours, as found by the LCG on the LF-WikiTitles-
500K dataset. The legend shows the label in question, the bar chart shows the degree of correlation with its
neighbouring labels. Correlated labels often share tokens with each other and/or may be used in the same context.
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Method Datapoint Vanilla Predictions LabelMix Predictions Gandalf Predictions

INCEPTIONXML-LF

Topological group

Pontryagin duality, Topological order,
Topological quantum field theory, Topo-
logical quantum number, Quantum topol-
ogy

Topological order, Algebraic group, Topo-
logical ring, Topological quantum field
theory, Topological quantum number

Compact group, Haar measure, Lie group,
Algebraic group, Topological ring

DECAF

Topological quantum computer, Topolog-
ical order, Topological quantum field the-
ory, Topological quantum number, Quan-
tum topology

Topological order, Algebraic group, Topo-
logical ring, Topological quantum field
theory, Topological quantum number

Compact group, Haar measure, Lie group,
Algebraic group, Topological ring

ECLARE

Topological quantum computer, Topolog-
ical order, Topological quantum field the-
ory, Topological quantum number, Quan-
tum topology

Topological order, Topological ring,
Topological quantum field theory, Topo-
logical quantum number, Quantum topol-
ogy

Compact group, Topological order, Lie
group, Algebraic group, Topological ring

INCEPTIONXML-LF

Oat

List of lighthouses in Scotland, List of
Northern Lighthouse Board lighthouses,
Oatcake, Communes of the Finistere
department, Communes of the Cotes-
d’Armor department

Oatcake, Oat milk, Rolled oats, List of
oat diseases, Goboat

Oatcake, Oatmeal, Oat milk, Porridge,
Rolled oats

DECAF

Oatcake, Oatmeal, Design for All (in
ICT), Oatley Point Reserve, Oatley Plea-
sure Grounds

Oatcake, Oatmeal, Oat milk, Oatley Point
Reserve, Oatley Pleasure Grounds

Oatcake, Oatmeal, Oat milk, Porridge,
Rolled oats

ECLARE

Oatmeal, Oat milk, Parks in Sydney,
Oatley Point Reserve, Oatley Pleasure
Grounds

Oatmeal, Rolled oats, McCann’s Steel
Cut Irish Oatmeal, Oatley Point Reserve,
Oatley Pleasure Grounds

Oatcake, Porridge, Rolled oats, Oatley
Point Reserve, Oatley Pleasure Grounds

INCEPTIONXML-LF

Grand Lake,
Colorado

Colorado metropolitan areas, Front Range
Urban Corridor, Outline of Colorado, In-
dex of Colorado-related articles, State of
Colorado

Colorado metropolitan areas, Outline of
Colorado, Index of Colorado-related arti-
cles, State of Colorado, Colorado counties

Colorado metropolitan areas, Outline of
Colorado, Index of Colorado-related arti-
cles, Colorado cities and towns, Colorado
counties

DECAF

Colorado metropolitan areas, Front Range
Urban Corridor, State of Colorado, Col-
orado municipalities, National Register of
Historic Places listings in Grand County,
Colorado

Front Range Urban Corridor, Index of
Colorado-related articles, National Regis-
ter of Historic Places listings in Grand
County, Colorado, Grand County, Col-
orado, List of lakes in Colorado

Outline of Colorado, State of Colorado,
Colorado cities and towns, Colorado mu-
nicipalities, Colorado counties

ECLARE

State of Colorado, Colorado cities and
towns, Colorado counties, National Regis-
ter of Historic Places listings in Grand
County, Colorado, Grand County, Col-
orado

Colorado metropolitan areas, State of Col-
orado, Colorado cities and towns, Col-
orado counties, Colorado census desig-
nated places

Outline of Colorado, Index of Colorado-
related articles, State of Colorado, Col-
orado cities and towns, Colorado counties

INCEPTIONXML-LF

Lunar Orbiter
program

Lunar Orbiter Image Recovery Project,
Lunar Orbiter 3, Lunar Orbiter 5, Chinese
Lunar Exploration Program, List of future
lunar missions

Exploration of the Moon, List of missions
to the Moon, Lunar Orbiter Image Re-
covery Project, Lunar Orbiter 3, Lunar
Orbiter 5

Surveyor program, Luna programme, Lu-
nar Orbiter Image Recovery Project, Lu-
nar Orbiter 3, Lunar Orbiter 5

DECAF

Exploration of the Moon, List of man-
made objects on the Moon, Lunar Orbiter
Image Recovery Project, Lunar Orbiter 3,
Lunar Orbiter 5

Exploration of the Moon, Lunar Orbiter
program, Lunar Orbiter Image Recovery
Project, Lunar Orbiter 3, Lunar Orbiter 5

Exploration of the Moon, Apollo program,
Surveyor program, Luna programme, Lu-
nar Orbiter program

ECLARE

Exploration of the Moon, Lunar Orbiter
program, Lunar Orbiter Image Recovery
Project, Lunar Orbiter 3, Lunar Orbiter 5

Exploration of the Moon, Lunar Orbiter
program, Lunar Orbiter Image Recovery
Project, Lunar Orbiter 3, Lunar Orbiter 5

Exploration of the Moon, Pioneer pro-
gram, Surveyor program, Luna pro-
gramme, Lunar Orbiter program

INCEPTIONXML-LF

Armed Forces of
Saudi Arabia

Royal Saudi Air Defense, Royal Saudi
Strategic Missile Force, Saudi Royal
Guard Regiment, Terrorism in Saudi Ara-
bia, Capital punishment in Saudi Arabia

Saudi-led intervention in Bahrain, Royal
Saudi Navy, Royal Saudi Air Defense,
Royal Saudi Strategic Missile Force,
Saudi Royal Guard Regiment

Military of Saudi Arabia, Royal Saudi
Air Force, Royal Saudi Air Defense,
Royal Saudi Strategic Missile Force, King
Khalid Military City

DECAF

Saudi Arabian-led intervention in Yemen,
Saudi-led intervention in Bahrain, Human
rights in Saudi Arabia, Legal system of
Saudi Arabia, Joint Chiefs of Staff (Saudi
Arabia)

Saudi-led intervention in Bahrain, Saudi
Arabia, Military of Saudi Arabia, Royal
Saudi Strategic Missile Force, Saudi Ara-
bian National Guard

Royal Saudi Air Force, Royal Saudi Navy,
Royal Saudi Air Defense, Royal Saudi
Strategic Missile Force, Saudi Arabian
National Guard

ECLARE

List of armed groups in the Syrian
Civil War, Military of Saudi Arabia,
Royal Saudi Strategic Missile Force, King
Khalid Military City, Joint Chiefs of Staff
(Saudi Arabia)

Military of Saudi Arabia, Royal Saudi
Air Defense, King Khalid Military City,
Saudi Royal Guard Regiment, List of
rulers of Saudi Arabia

Military of Saudi Arabia, Royal Saudi Air
Defense, Royal Saudi Strategic Missile
Force, King Khalid Military City, Saudi
Royal Guard Regiment

Table 4: Prediction examples of different datapoints from the LF-WikiSeeAlsoTitles-320K dataset. Labels indicate
mispredictions. It may be noted that queries with even just a single word, like "Oat", which has random labels in the
case of a Vanilla Prediction, gets all the labels right with the addition of Gandalf. Furthermore, even mispredictions
get closer when our data augmentation strategy is introduced.
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