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Abstract

Acquiring high-quality instruction-code pairs is essential for training Large Lan-
guage Models for code generation. Manually curated data is expensive and limited
in scale, motivating the development of code-centric synthesis methods. Yet, cur-
rent approaches often rely on predefined heuristics, resulting in synthetic data that is
ungrounded, repetitive, or simplistic. We propose CodeEvo , a framework inspired
by collaborative programming that employs two interacting LLM agents. A Coder
generates and refines solutions, while a Reviewer directs the synthesis process.
To overcome the limitations of simple heuristics, the Reviewer first constructs
a Schema, a structured blueprint that explicitly plans the logic, constraints, and
complexity of a new instruction prior to its generation. This planning process is
complemented by a hybrid feedback mechanism that combines compiler deter-
minism with the agent’s semantic evaluation, ensuring rigorous quality control.
Extensive experiments demonstrate that models fine-tuned on CodeEvo data sig-
nificantly outperform established baselines across code generation benchmarks.
In-depth analyses further provide insights into effective code-centric data synthesis.

1 Introduction
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Figure 1: Comparison of synthesized code data
quality across human examples and code pro-
duced by Qwen2.5-Coder-32B, DeepSeek-V3,
and Llama-3.1-8B.

The rapid development of Large Language Mod-
els (LLMs) has significantly advanced code intel-
ligence [1], powering applications ranging from
line-level code completion to competition-level
problem solving. To further enhance their perfor-
mance on code generation, it is essential to train
these models with complex, diverse, and grounded
instruction-code pairs [2]. While manually cu-
rated data serve as ideal resources, their collection
is labor-intensive, difficult to scale, and gradu-
ally exhausted [3]. These limitations have stimu-
lated growing interest in constructing code-centric
synthetic data with minimal human intervention.
After early attempts that leverage symbolic aug-
mentation over existing code references [4, 5],
recent research has shifted toward using LLMs
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to automatically generate instruction-code pairs. These methods, such as Evol-Instruct [6], aim to
bootstrap data using powerful models and predefined heuristics. While these approaches enable data
construction, they often fall short in ensuring semantic correctness and executability [7].

As shown in Figure 1, we sample instruction-code pairs synthesized by various (Code)LLMs using
Evol-Instruct heuristics [8]. Many of these samples fail to execute or do not pass the provided
unit tests, indicating substantial quality gaps. These shortcomings can be attributed to two main
factors: (1) instructions are often poorly grounded, leading to vague or inconsistent objectives; and
(2) generated codes lack proper validation, due to the absence of robust mechanisms to enforce
correctness during synthesis. This motivates a key question: Can we design a fully automated and
reference-free synthesis pipeline that produces well-grounded and executable instruction-code pairs?

Recently emerging LLM agents have demonstrated strong interactive capabilities [9], enabling
them to perform tasks through multi-turn interactions and feedback-driven decision making (e.g.,
collaborative programming; 10, 11). These make them promising candidates for moving beyond
vanilla data generation toward verifiable and adaptive synthesis pipelines. Inspired by this potential,
we propose CodeEvo, an interaction-driven synthesis framework that orchestrates LLM agents to
generate high-quality code-centric data. Specifically, a Coder agent produces candidate code and
tests based on given instructions, while a Reviewer agent provides tailored feedback and dynamically
constructs new instructions iteratively.

To address the two core challenges in instruction-code synthesis, CodeEvo incorporates two key
mechanisms: (1) To lift instruction quality, we introduce a schema-driven synthesis process. Guided
by task-specific keywords, a Reviewer agent first constructs a Schema, a structured and adaptable
blueprint that plans a new problem’s logic and complexity before generating instructions. This
transforms instruction evolution from a heuristic-based task into a principled design process. (2) To
boost functional correctness, we introduce a hybrid feedback loop that iteratively refines solutions by
fusing the deterministic verification of a compiler with fine-grained semantic judgment of an LLM
agent . The entire pipeline operates with only a small set of seed instructions as input, and requires
no human annotation or gold references, all while being driven by accessible, medium-sized models.

Experiments across multiple backbones and benchmarks demonstrate that CodeEvo significantly
outperforms established data synthesis methods. Remarkably, CodeEvo achieves better performance
than competing approaches using several times more data, indicating the superiority of our targeted,
feedback-driven synthesis over sheer data volume. Our primary contributions are as follows:

• We propose CodeEvo , an interaction-driven synthesis framework that systematically lifts
the quality of code-centric synthetic data from both the instruction and code perspectives.

• We introduce an innovative hybrid feedback mechanism that effectively combines the
determinism of compiler verification with the generative flexibility of LLM agents.

• Through extensive experiments and analysis, we share insights into the key attributes,
including quality, diversity, scalability, and difficulty of synthetic code data.

2 Related Works

LLM-based Agents Interaction. The interactive capabilities of language agents [12], whether
with other agents or the environment, have garnered significant attention [13]. These interactions
allow for complex problem-solving approaches such as collaboration [9, 14] or role-playing [15, 16],
which have proven effective in diverse applications like software engineering [10, 17]. Recently,
researchers have begun to explore using such interaction for various data generation, including
instructions [18], reasoning chains [19], and environment-aware trajectories [20, 21]. Leveraging
interaction for flexible and scalable data construction is emerging as a promising direction [22, 23].
This work takes an initial step toward applying interaction to instruction-code synthesis.

Code-centric Data Synthesis. The synthesis of instruction-code data traces back to early symbolic
augmentation methods [4, 5], which augment existing code using program transformations. Recent
efforts move beyond static heuristics and leverage LLMs to generate instruction-code pairs at scale
with prompting [24, 25, 26], as well as through human-in-the-loop interactions [27]. Typically, Wiz-
ardCoder [6] extends Evol-Instruct [8] into code data synthesis, Magicoder [28] and WaveCoder [29]
derive pairs from open-source code snippets. Further, researchers lay emphasis on executable synthe-
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sis [30, 31, 32, 33], using code syntax relationships [34] and unit tests [35, 36] to curate code-centric
data. However, existing synthesis methods often rely on pre-defined and limited prompting heuristics,
require existing code references, and largely overlook functional correctness.

Compiler Feedback in Code Generation. A key differentiator between symbolic language and
natural language is executability [37], with compilers serving as a fundamental verifier [38]. In the
context of LLM-based code generation, leveraging compiler feedback to improve output quality
has become an active area of research. Early approaches primarily focused on post-hoc error
correction using compiler signals [39], later evolving to incorporate immediate compiler feedback
during generation to improve first-pass correctness [38]. Static analysis has also been explored
to enrich the semantic understanding of code [40]. More recent efforts have begun decomposing
complex generation tasks into subtasks, using compiler feedback for fine-grained optimization [41],
debugging [42], or repo-level learning [43]. In addition, compiler feedback has also been leveraged
to model preferences [44]. While compilers are widely used in the generation stage, their role in the
data synthesis pipeline is underexplored. In our synthesis loop, an LLM agent interprets compiler
feedback to ensure data quality and guide refinement.

3 CodeEvo

We detail the framework of CodeEvo in this section, emphasizing its core components and systematic
workflow, as illustrated in Figure 2.
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Figure 2: Overview of the CodeEvo framework. The synthesis process begins with seed instructions
from different sources. Through continuous interaction, the Coder and Reviewer agents collabora-
tively construct trajectories of instruction, solution, validation, and refinement. The loop marked
with → illustrates the flow of data synthesis, where new instructions are derived and paired with
validated code. The loop marked with → captures the validation cycle, incorporating natural language
and compiler feedback to guide refinement. Instruction-code pairs are extracted from the validated
trajectories and used for downstream model training.

3.1 Preliminary

Problem Definition. Given a seed dataset S, containing initial instructions s, each with an associ-
ated set of keywords T . The goal is to synthesize an expanded dataset Q. CodeEvo consists of two
LLM-powered agents:

• Coder: Generate candidate solutions and test cases for a given instruction, and refine its
solution based on external feedback.

• Reviewer: Generate new instructions and evaluate candidate solutions, providing feedback
for refinement or data selection.

Seed Instructions. In contrast to prior work that relies on golden code solutions or ready-made
test cases, CodeEvo requires only a lightweight set of natural language instructions, which can
originate from any domain where the problem descriptions admit symbolic solutions, such as
algorithmic problems from programming platforms, NL2Code training sets, or mathematically
structured problems.
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3.2 Schema-Guided Instruction Generation

A central challenge in instruction synthesis is maintaining semantic control during evolution. Prior
methods often rely on abstract commands (e.g., “make it harder”), which can lead to vague or
ungrounded content. To move beyond such abstract heuristics, we introduce Schema-guided in-
struction generation. This approach transforms synthesis into a principled design process. Guided
by task-specific keywords, our Reviewer agent first generates a Schema—a structured blueprint
that outlines the logic for combining concepts, the desired complexity, and the overall goal for a
new instruction. By first formulating this design plan before generating the final text, we ensure
that new instructions are not only more challenging but also logically coherent and well-grounded.

Compute the n-th term of a generalized 
Fibonacci sequence using fast matrix 
exponentiation and recurrence parameters.

Print the first n numbers in the Fibonacci 
sequence

Calculate the n-th Fibonacci number using 
standard recursion or iteration.

+ Big Integer

def fibonacci(n:) -> int:

def print_fib_seq(n: int) -> None:

def fibonacci_matrix(n: int) -> int:

def generalized_fibonacci(n: int, 
a: int, b: int, c: int) -> int:

Schema 3

Use matrix exponentiation to compute the 
n-th Fibonacci number

Schema 1 + Matrix

Schema 2 - Loop

Figure 3: Illustration of transforming a seed into
relevant instructions by leveraging schema and
keywords.

Specifically, for each seed instruction s and a se-
lected keyword subset t ⊆ T , the generation pro-
cess unfolds in two stages. First, the Reviewer
agent formulates a Schema that serves as a de-
tailed plan for the new instruction:

Schema = GenerateSchema(s, t) (1)

Subsequently, it generates the new instruction s
′

by executing the plan laid out in the Schema:

s
′
= GenInstruction(s,Schema) (2)

Crucially, this Schema-driven mechanism is inher-
ently bidirectional. The Schema can strategically
plan to either integrate keywords for added com-
plexity or selectively omit them to construct a
simplified variant, particularly when a task proves
intractable for the Coder agent. This structured ap-
proach marks a significant shift from rigid prompt-
ing heuristics: enabling the generation of novel,
diverse instructions while reducing the likelihood
of producing unanswerable ones (statistics in Ap-
pendix H). An adaptive keyword sampling strat-
egy is detailed in Appendix F.

3.3 Hybrid
Feedback for Validation and Refinement

A key novelty of CodeEvo is our hybrid feedback
mechanism, which combines deterministic com-
piler evaluations with generative natural language
assessments to ensure the robustness and correct-
ness of synthesized solutions. Given a transformed instruction s

′, the Coder first generates a candidate
solution c along with initial test cases g :

(c, g, fcomp) = Coder (s′) (3)

While fcomp provides deterministic pass/fail signals, its utility is limited. The raw compiler output
can be misleading due to insufficient test coverage and is often verbose. To overcome this, our key
advantage lies in empowering the Reviewer agent to act as an intelligent judge, It moves beyond
the raw signal to produce a rich, NL-based evaluation fNL which scrutinizes the solution’s logical
alignment with the instruction, the correct implementation of specified keywords, and subtle flaws
suggested by runtime behavior (e.g., warnings). These two signals are then fused into a single hybrid
feedback:

fhybrid = Reviewer (fcomp, fNL) (4)
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The hybrid feedback fhybrid serves a dual role in CodeEvo: (1) Determining whether the current
instruction-code pair should be retained or discarded. (2) Providing a rich supervisory signal that is
returned to the Coder, guiding further refinement of the solution. fhybrid enables iterative improvement
of synthesized data without relying on external labels or human-crafted references.

Algorithm 1 Single-Seed Lifecycle in CodeEvo .

Require: Seed instruction s, keyword set T , maximum iterations N
Ensure: Validated instruction-code pairs Qs

1: Initialize Qs ← ∅, q ← s, k ← 0
2: while k < N do
3: (c, g, fcomp) ← Coder(q)
4: fNL ← Reviewer(q, c, g, fcomp)
5: fhybrid ← Reviewer(fcomp, fNL)
6: if fhybrid is valid then
7: Add (q, c) to Qs

8: Sample keywords t ⊆ T
9: Schema ← Reviewer.Plan(q, t); q

+
← Reviewer.Write(q,Schema)

10: q ← q
+

11: k ← k + 1
12: else
13: Sample keywords t′ ⊆ T

14: Schema ← Reviewer.Plan(q, t′); q
−
← Reviewer.Write(q,Schema) ▷ Plan a simpler

variant
15: (c, g, fcomp) ← Coder(q−)
16: fNL ← Reviewer(q−, c, g, fcomp)
17: fhybrid ← Reviewer(fcomp, fNL)
18: if fhybrid is valid then
19: Add (q−, c) to Qs

20: end if
21: break
22: end if
23: end while
24: return Qs

3.4 Interaction-Driven Synthesis

With these mechanisms, CodeEvo orchestrates a collaborative refinement loop between the Coder
and Reviewer. This transforms data synthesis from a static, one-shot pipeline into an adaptive
process where tasks are proposed, attempted, and rigorously assessed . Crucially, the framework can
dynamically adjust difficulty: if a task proves too challenging, the Reviewer can formulate a simpler
Schema to generate a more tractable problem (as shown in Algorithm 1). This self-correcting loop of
validation and refinement provides intrinsic quality control, which is key to maintaining a high yield
of valid data. This generates a rich interaction trajectory capturing the full cycle of problem-solving,
feedback, and correction, from which high-quality instruction-code pairs can be extracted.

4 Experiments

4.1 Experimental Settings

Model Settings. We evaluate our approach under two backbone agent scales: a medium-scale
setting with moderately sized coder and reviewer agents, and a large-scale setting with substantially
larger agent pairs. In the medium-scale configuration, we employ Qwen2.5-Coder-32B-Instruct [45]
as the coder agent and Qwen2.5-32B-Instruct [46] as the reviewer agent within the data synthesis
pipelines of CodeEvo. For the large-scale configuration, we adopt gpt-oss-120B [47] as both the
coder and reviewer agents.
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To assess the performance improvements introduced by CodeEvo in code generation, we conduct
experiments primarily on Qwen3-8B [48], representing general-purpose LLMs, and Qwen2.5-7B-
Instruct [45], representing specialized CodeLLMs. Results on additional model backbones are
provided in Appendix D. All inference and training is performed as full fine-tuning on interconnected
clusters of 8 × A100 80GB GPUs, with more implementations details provided in Appendix A.

Evaluation Benchmarks. We evaluate the Python code generation capability of models trained
on CodeEvo data using HumanEval [49], MBPP [50], and their plus versions from EvalPlus [7]. To
further assess generalization under realistic difficulty levels, we also use BigCodeBench [51] and
LiveCodeBench [52] which include more complex instructions, algorithmic logic, and function calls.
Further experimental details can be found in Appendix B.

4.2 Baseline Construction

Baselines. As a pioneering study in synthesizing code-centric data, we leverage the following
baselines to demonstrate the superiority of CodeEvo .

• Zero-Shot: The original evaluation setting using zero-shot prompting.
• Code Evol-Instruct: Proposed by WizardCoder [6], Code Evol-Instruct first evolves task

complexity and then generates the code solutions via prompting. As the original dataset is
not publicly available, we reproduce this baseline under the same setting as CodeEvo . The
same seed data as CodeEvo is used to ensure a fair comparison.2

• OSS-Instruct: Released alongside Magicoder [28], OSS-Instruct derives related instructions
from open-source code snippets written by humans and includes 75K samples.

Details of the baseline construction are provided in Appendix C. All these data and resources will be
made public to accelerate future research.

4.3 Seed Instructions

We curate a set of ≈ 5K seed instructions from diverse sources, including programming platforms
such as LeetCode and Codeforces, as well as existing math and code training sets [53, 50]. A subset
of these instructions is collected alongside their corresponding reference solutions; following Luo
et al. [6], we include them during training with appropriate ablation.

Each seed instruction is paired with a set of keyword tags (averaging 3 per instruction), which are
either inherited from the original sources (e.g., LeetCode tags, MBPP annotations) or assigned auto-
matically when unavailable. Figure 4 provides an overview of the seed data used in our experiments.
Additional statistics, balanced sampling strategy, and implementation details are in Appendix F.
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Figure 4: An overview of seed instructions.

2We refer to this setting as Evol-Instruct in the following experiments for brevity.
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4.4 Main Results

Performance Gains across Benchmarks. As shown in Table 1, models fine-tuned on CodeEvo
data consistently outperform all baselines. This strong performance is evident across data synthesized
from both our medium-scale (32B) and large-scale (120B) agent configurations, highlighting the
framework’s robustness and scalability.

Remarkably, our schema-driven method empowers even medium-sized models to produce superior
data. The 17K samples generated by our 32B agents provide a greater performance boost to Qwen3-
8B than the 75K OSS-Instruct dataset, further raising the LiveCodeBench score. This demonstrates
that a superior synthesis algorithm can be more critical than the sheer volume of data.

Method Data Scale HumanEval MBPP BigCodeBench-Full BigCodeBench-Hard LiveCodeBench
HE HE+ MBPP MBPP+ Instruct Complete Instruct Complete v6

Qwen2.5-Coder-7B-Instruct - 84.1 79.9 79.1 66.7 40.4 48.8 18.2 21.6 17.1
OSS-Instruct 75K 83.5 78.0 78.0 64.8 41.4 48.6 20.3 20.3 18.9

Coder: Qwen2.5-Coder-32B-Instruct | Reviewer: Qwen2.5-32B-Instruct

Evol-Instruct 25K 83.5 78.0 79.1 66.9 40.6 51.4 15.5 22.3 14.5
CodeEvo 17K 85.3 79.9 81.2 68.5 41.9 52.2 17.6 26.4 22.3

Coder: GPT-OSS 120B | Reviewer: GPT-OSS 120B

Evol-Instruct 25K 85.1 80.5 81.2 69.7 42.0 50.3 19.7 23.6 22.5
CodeEvo 17K 86.4 80.9 83.0 73.2 43.4 50.1 21.5 22.9 24.3

Qwen3-8B - 82.9 77.4 80.7 70.9 42.7 49.2 14.9 22.3 39.1
OSS-Instruct 75K 84.1 78.5 79.8 67.5 42.9 50.3 15.7 24.1 36.3

Coder: Qwen2.5-Coder-32B-Instruct | Reviewer: Qwen2.5-32B-Instruct

Evol-Instruct 25K 79.2 74.6 77.5 67.2 41.5 47.7 12.3 20.9 36.1
CodeEvo 17K 83.7 76.4 81.7 72.9 42.9 50.3 14.7 21.1 39.8

Coder: GPT-OSS-120B | Reviewer: GPT-OSS-120B

Evol-Instruct 25K 84.5 78.2 82.4 72.5 44.1 53.3 16.5 25.2 40.9
CodeEvo 17K 86.7 79.8 85.5 74.1 44.9 52.5 18.3 24.1 42.7

Table 1: Results of pass@1(%) performance on various models on HumanEval(+), MBPP(+),
BigCodeBench-Full, BigCodeBench-Hard, and LiveCodeBench.

Interestingly, larger gains can be observed on HE+ and MBPP+, which feature extra test cases,
suggesting that our “compiler-in-the-loop” design in the hybrid feedback plays a critical role in
validating functional correctness. Notably, ablation results show that removing all solutions in seeds
does not lead to a notable performance drop, indicating that our grounded synthesis pipeline is robust
even when fully automated.

Superior Data Efficiency. Despite using fewer training examples, CodeEvo outperforms other
approaches, which rely on 4–5× more synthetic data and code references. It further underscores the
importance of quality-aware code data construction.

The efficiency stems from innovations on both sides of the pipeline: instruction synthesis is grounded
through keyword-driven refinement, while code synthesis is constrained by hybrid feedback. CodeEvo
inherently reduces the production of invalid or redundant samples, paving the way for more data-
efficient enhancement of code generation capabilities. Further discussions on the impact of data scale
are presented in Section 5.4.

Method HE+ MBPP+ BigCodeBench-Full
Instruct Complete

Qwen2.5-Coder-7B-Instruct
CodeEvo w/o Seed 80.7 71.9 42.7 51.3
CodeEvo 80.9 73.2 43.4 50.1

Qwen3-8B
CodeEvo w/o Seed 80.1 73.9 44.1 52.9
CodeEvo 79.8 74.1 44.9 52.5

Table 2: Ablation study. Use gpt-oss-120B for both coder and re-
viewer.

Ablation Studies. We per-
form an ablation study to
isolate the effect of seed
data. The results in Table 2
demonstrate that its exclu-
sion does not lead to a sig-
nificant performance degra-
dation. In certain scenarios,
models trained exclusively
on CodeEvo-synthesized data
achieve even superior perfor-
mance. This further suggests
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that the varied and high-quality data synthesized by CodeEvo provides a more effective training
signal than the original seed set, which is inherently more limited in its diversity and scope.

5 Analysis

Beyond performance gains, we conduct a series of analyses to provide insights into the quality,
diversity, scalability, and utility of synthetic code data.

5.1 Impact of Model Scale on Synthesis Quality

Underscoring the framework’s accessibility and resource efficiency, our main experiments employ
agents backed by two 32B, medium-sized models. This choice stands in contrast to methods reliant
on massive-scale or proprietary LLMs [28, 30]. To analyze the framework’s sensitivity to agent
capability, we then conduct a set of controlled experiments using smaller (Qwen2.5-7B-Instruct) and
larger (DeepSeek-V3, 671B) backbones for the Reviewer in CodeEvo .
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training with data synthesized through agents with
different backbones.
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(b) Comparison of instruction diversity and
instruction-code pairs diversity among different
synthetic methods.

Figure 5: A comparison of model performance and data diversity from different synthesis methods.

As shown in Figure 5a, data synthesized by agents of varying scales consistently boosts downstream
models. Notably, even data from the 7B agent provides good performance gain, proving the efficacy
of our core mechanisms—keyword-guided evolution and hybrid feedback. This result confirms that
CodeEvo is an effective synthesis engine in its own right, enabling high-quality data synthesis without
huge / proprietary models.

5.2 Synthetic Data Diversity

A core feature of CodeEvo is the generation of diverse instructions and preventing overfitting to
narrow problem types. To assess this, we perform a comparative diversity analysis of instruction
samples and instruction-code pairs (N=1000). We compute the average pairwise cosine similarity
over code embeddings3 to assess diversity.

As shown in Figure 5b, CodeEvo achieves the lowest average similarity among instruction samples,
demonstrating the effectiveness of our keyword-guided strategy in constructing semantically diverse
prompts. For instruction-code pairs, the diversity of CodeEvo is also comparable to OSS-Instruct,
which derives data directly from human-written code. This indicates that, despite undergoing a rigid
filtering process, our synthesized data retains a high level of overall diversity.

5.3 Instructions Difficulty

To evaluate whether CodeEvo really generates more challenging instructions, we conducted a human
study comparing three variants derived from the same seed: the original seed instruction, an “evolved”

3We leverage text-embedding-3-small to obtain embeddings.
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version from Evol-Instruct, and the instruction synthesized by CodeEvo. Five participants with
programming experience are invited to rate the perceived difficulty of each instruction on a scale
from 1 (very easy) to 5 (very difficult).
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(a) Human-rated difficulty of instructions.
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and dashed lines indicate training with and without
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Figure 6: Analysis of instruction difficulty and the impact of data scale.

As shown in Figure 6a, CodeEvo instructions received the highest difficulty scores (mean ≈ 3.5),
followed by Evol-Instruct and Seed. In addition, CodeEvo exhibits a higher lower bound, indicating
that the generated instructions are not only more difficult on average, but also more consistently fall
within a higher difficulty range, which further validates the edge of using keyword guidance as an
signal. In contrast, Evol-Instruct fails to consistently increase instruction difficulty.

5.4 Impact of Synthetic Data Scale

We investigate the scaling properties of CodeEvo-synthesized data. Two backbones are fine-tuned
with incrementally larger subsets of our synthesized dataset (along with seed data), with the perfor-
mance trend demonstrated in Figure 6b.

It can be observed that model performance improves steadily as more synthetic code is added.
Importantly, this trend holds regardless of whether the training includes only syntactic data or a
mixture of original and synthetic code. The results suggest that the CodeEvo-generated data does not
introduce distributional shifts or performance degradation during scaling.

5.5 Data Survival Rate

0 20 40 60 80 100
Percentage of Synthesized Samples (%)

Round 1

Round 2

Round 3

Compiler Failure Judge Failure Success

Figure 7: Synthetic data survival analysis.

We analyze the data survival rate, defined as the
proportion of newly synthesized samples that pass
both compiler checks and LLM-based evaluation.
As shown in Figure 7, only a small fraction of
the data is finally retained, and the survival rate
steadily decreases across synthesis rounds.

This decline is both expected and desirable. First,
the generated instructions become progressively
more challenging, reaching the limits of the
agent’s capability. Second, unlike prior work that
accepts instruction-code pairs after a single pass,
we selectively retain high-quality, grounded data.

6 Conclusion

In this work, we introduce CodeEvo, a novel framework that leverages LLM agent interactions to
synthesize high-quality instruction-code pairs. To address the shortcomings of ungrounded synthetic
data, CodeEvo employs two key mechanisms: (1) a schema-driven synthesis, where a Reviewer
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agent constructs a keyword-guided Schema to serve as a blueprint for a new problem’s logic and
complexity, and (2) a hybrid feedback loop that integrates compiler determinism with agent-based
evaluation for quality control. Extensive evaluations demonstrate that models trained on CodeEvo
data notably outperform established baselines. We find the synthesis framework’s design is a critical
factor, enabling even medium-sized models to generate data that surpasses larger-scale baselines. This
work offers valuable insights into effective data synthesis, moving us a step closer to democratizing
advanced code intelligence.
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A Model and Training Details

To validate that our method can generalize to different LLM architectures and paradigms, we
experimented with four widely used base models.

InternLM3-8B-Instruct InternLM3-8B-Instruct is a typical general-purpose large language model.
It follows the architecture of its predecessor models [54] and is trained on 4 trillion high-quality tokens
to support superior capabilities in multiple domains. It also supports long context understanding and
CoT reasoning. In our experiment, we use this model to validate that our pipeline can improve the
coding performance of general-purpose instruction-tuned models.

Qwen2.5-Coder-7B-Instruct Qwen2.5-Coder-7B-Instruct [45] is an instruction-tuned language
model specifically enhanced for coding tasks. It builds upon the architecture of its general-purpose
base model, Qwen2.5 [46], inheriting its computational efficiency and versatile vocabulary. To ensure
the integrity of code understanding and generation, the model also incorporates several special tokens
explicitly designed for code block generation. The model is trained on over 18 trillion tokens and
incorporated extensive post-training technique, making it an ideal test bed for us to evaluate our
method on coding LLMs that is transformed from general LLMs.

DeepSeek-Coder-6.7B-Instruct DeepSeek-Coder-6.7B-Instruct [55] is an instruction-tuned
codeLLM based on the architecture of the Deepseek model [56]. It is trained on a corpus of 2
trillion tokens, extracted through a meticulously designed pipeline tailored for coding data. Com-
pared to general-purpose LLMs, it employs a relatively small vocabulary specifically optimized for
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code-related tasks. In our experiments, we adopot this model as a representative domain-specific
LLM to evaluate the effectiveness of our method on coding-oriented models.

StarCoder2-7B StarCoder2-7B [57] is a representative base model from the early era of codeLLMs.
It is pretrained on 3.5 trillion tokens without any additional post-training. Similar to DeepSeek-Coder,
StarCoder2 employs a customized vocabulary for code-related task. We evaluate our method on this
model to assess whether our trajectory data remains effective in the absence of human alignment.

For instruction-tuned models, we adopt XTuner framework [58] to streamline training. For
StarCoder2-7B, we employ LLaMA-Factory [59] to conduct supervised fine-tuning. Following
previous practice and our observations, we use a learning rate of 2 × 10

−6 for more stable training.
For the rest of models, we used a learning rate of 5 × 10

−6.

All of our models are trained on 8 × NVIDIA H800 GPUs, with a batch size of 4 per device, and a
gradient accumulation of 2 steps.

B Evaluation Details

HumanEval & MBPP. HumanEval [49] and MBPP [50] are two common code completion
benchmarks for evaluating the coding capability of LLMs. To further extend these two datasets,
EvalPlus [7] introduced HumanEval+ and MBPP+ by adding more challenging test cases and
correcting inaccurate solutions. In this study, we used both the original benchmarks (HumanEval and
MBPP) and their augmented versions (HumanEval+ and MBPP+) to evaluate models trained on our
data as well as baseline models. We employed the official EvalPlus implementation to evaluation
both benchmarks and reported 0-shot results for all variants. Release under MIT License.

BigCodeBench. BigCodeBench [51] is a challenging benchmark for code generation, aimed at
evaluating models’ ability to interpret complex instructions and invoke diverse external libraries
correctly. Under the completion setting, each task provides a function signature and docstrings,
requiring the model to generate the full function implementation. Under the instruction setting,
models are required to generate corresponding code according to a given instruction. A unit test is
also provided to verify functional correctness. Spanning a broad range of practical programming
scenarios, BigCodeBench assesses models on real-world tasks that demand precise understanding of
task-specific APIs and library usage. It is released under the Apache License 2.0.

LiveCodeBench. LiveCodeBench [60] is a comprehensive coding benchmark curated from main-
stream competition programming platforms. It aims to provide an up-to-date, contamination-free
evaluating testbed, and is continuously updated with new versions that aggregate additional problems
over time. In our experiments, we use the release_v6 version of the dataset, which comprises 1055
problems collected between May 2023 and Apr 2025.

C Details of Baselines

C.1 Evol Instruct

We follow the Evol-Instruct baseline implementation used in WizardCoder [6]. To ensure a fair
comparison with CodeEvo , we reproduce this baseline under the same experimental setup: Qwen2.5-
32B-Instruct is used to generate instructions, and Qwen2.5-Coder-32B-Instruct is used to synthesize
the corresponding code solutions. We adopt the same prompt heuristics as in the original implementa-
tion, where each seed is expected to produce five instruction–code pairs. The same set of seed data as
used in CodeEvo is employed, and the seed instructions are included in the fine-tuning process.

C.2 OSS-Instruct

We leverage OSS-Instruct [28] from Magicoder as another strong baseline. Specifically, we di-
rectly use the full 75K dataset released by the authors and perform fine-tuning under the same
hyperparameter settings as used for CodeEvo .
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D Results on Additional Backbones

To further validate the effectiveness of our method, we conduct the main experiment on 3 addi-
tional backbones: InternLM3-8B-Instruct [54], StarCoder2-7B [57] and DeepSeek-Coder-6.7B-
Instruct [55]. We used the medium-scale agent configuration (Qwen2.5-Coder-32B-Instruct +
Qwen2.5-32B-Instruct) in this additional experiment. The results are shown in Table 3. We can easily
see that our method outperforms most of the baselines on all backbones.

Method Data Scale HumanEval MBPP BigCodeBench-Full BigCodeBench-Hard LiveCodeBench
HE HE+ MBPP MBPP+ Instruct Complete Instruct Complete v6

InternLM3-8B-Instruct - 64.0 61.6 64.8 54.5 26.4 41.3 10.14 12.20 16.0
Evol-Instruct 25K 68.3 64.6 72.4 62.7 31.5 39.5 12.84 14.90 14.9
OSS-Instruct 75K 80.5 71.4 80.4 70.4 30.1 40.2 14.19 14.90 15.4
CodeEvo 17K 82.3 78.0 81.2 71.4 34.9 43.2 15.54 15.50 17.1

StarCoder2-7B - 35.4 29.9 54.4 45.6 8.8 10.7 0.6 4.1 0.6
Evol-Instruct 25K 45.7 42.7 60.6 51.3 29.2 33.2 8.1 6.1 10.9
OSS-Instruct 75K 50.6 43.9 60.3 49.7 29.7 31.4 7.4 6.8 12.6
CodeEvo 17K 50.0 44.5 66.4 55.6 30.3 34.6 8.8 10.8 12.6

DeepSeek-Coder-6.7B-Instruct - 74.4 68.9 74.3 65.6 34.6 43.4 9.5 16.9 14.3
Evol-Instruct 25K 75.0 68.3 74.9 64.6 35.8 44.6 12.8 16.9 13.1
OSS-Instruct 75K 76.8 70.7 77.2 64.6 36.4 43.8 12.2 11.5 14.9
CodeEvo 17K 77.4 71.3 77.2 65.9 37.5 43.8 12.8 18.2 17.7

Table 3: Extended results on additional backbone models (directly using keywords). All results are
reported with pass@1(%) performance.

E Code Synthesis Details

The prompts we used for agent collaboration are in Prompt 8.

F Seed Instructions and Keywords

We collect instruction data from a variety of public coding platforms, including

• LeetCode: https://leetcode.com/
• Codeforces: https://codeforces.com/
• Codewars: https://www.codewars.com/
• GeeksforGeeks: https://www.geeksforgeeks.org/
• CodeChef: https://www.codechef.com/

We conduct a thorough similarity check and confirm that there is no contamination with the evaluation
benchmarks. No personally identifiable information is present in the dataset.

The prompt used for keyword generation is provided in Prompt 9, and the keyword sampling algorithm
is detailed in Algorithm 2.

G Details of Ablation Studies

In addition to Table 2, we provide the complete results of ablation studies in Table 4 that covers more
benchmarks.

H Extended Analysis

H.1 Impact of Model Scale

Beyond the MBPP+ experiments covered in Section 5.1, we further demonstrate the scale of agent
backbones’ influence on downstream results, as shown in Figure 10.
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Prompt for Generating CodeEvo Trajectory

Coder:
Write python code to solve the following problem:
{Problem description}.
Include test case execution in your code.

Reviewer:
Next I will give you a coding problem, a piece of code, and the execution result of this code. Please determine if
the code given correctly solves the problem given.
The problem is described as:
{Problem description}
The code to be assessed is:
{Code from Coder}
The output of this code during execution is:
{Outputs from execution}
The error message generated during execution is:
{Errors from execution}
First output S̈uccessör F̈ailureäs your judgement. Then explain the reasons and possible improvements. Do not
give out improved codes.

Coder:
The following is an evaluation and feedback on whether the code you generated successfully answered the given
question:
{Feedbacks from Reviewer}
Please use this feedback to improve your code so that it answers the question correctly. Still, output the refined
code block only.

Reviewer:
Below I will give you a programming problem and its keywords, design a programming problem based on this
programming problem that is knowledge related but more difficult.
You can increase the difficulty by using, but not limited to, the following methods:
{Approaches to increase problem difficulty}
Please use the following output format:
###New
New programming problem you designed
This original programming problem is described as:
{Problem description}
The keywords of the original problem are:
{Keywords of the problem}

Prompt 8: Prompts for generating CodeEvo Trajectory.

Algorithm 2 Stratified Keyword Sampling Algorithm

Require: Label set T , m = ∣T ∣; sampling range [rmin, rmax]; maximum sampling steps tmax

1: if m ≤ rmax then
2: for t = 1 to tmax do
3: Randomly sample r ∼ U[rmin,min(m, rmax)]
4: Sample a subset St ⊆ T , where ∣St∣ = r
5: end for
6: else
7: Initialize Tremaining ← T
8: for t = 1 to tmax do
9: if Tremaining = ∅ then

10: break
11: end if
12: Let r ∼ U[rmin,min(∣Tremaining∣, rmax)]
13: Sample St ⊆ Tremaining, ∣St∣ = r
14: Tremaining ← Tremaining \ St

15: end for
16: end if
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Prompt for Generating Keywords for Seed Instructions
You are given a text that includes a programming problem description and
explanations of its solutions. Your task is to identify and list the key
programming concepts, data structures, or algorithms that are central to solving the
problem. Provide your answer as a list of keywords or tags (e.g., "Array", "Hash
Table", "Sorting", "Recursion", "Loop", "String", "Stack") that best capture the
main ideas or techniques involved.
For example, if the problem involves finding two numbers in an array that add up to
a target sum, appropriate tags might be "Array" and "Hash Table".
Now, here is the text:
{text}
Please provide the keywords for this problem as a comma-separated list (e.g.,
"Array, Hash Table").

Prompt 9: Prompts for generating keywords for instructions.

Method Data Scale HumanEval MBPP BigCodeBench-Full BigCodeBench-Hard
HE HE+ MBPP MBPP+ Instruct Complete Instruct Complete

InternLM3-8B-Instruct
CodeEvo w/o Seed 12K 80.5 76.8 81.5 71.4 34.9 41.3 14.86 16.20
CodeEvo 17K 82.3 76.8 81.2 71.4 34.9 43.2 15.54 15.50

StarCoder2-7B
CodeEvo w/o Seed 12K 51.2 46.3 64.0 52.9 29.7 33.8 8.8 6.8
CodeEvo 17K 50.0 44.5 66.4 55.6 30.3 34.6 8.8 10.8

DeepSeek-Coder-6.7B-Instruct
CodeEvo w/o Seed 12K 76.2 68.9 77.2 65.9 36.0 43.4 12.8 18.6
CodeEvo 17K 77.4 71.3 77.2 65.9 37.5 43.4 12.8 16.9

Qwen2.5-Coder-7B-Instruct
CodeEvo w/o Seed 12K 84.8 79.3 78.0 64.8 42.0 52.1 17.6 23.6
CodeEvo 17K 85.3 79.9 81.2 68.5 41.9 52.2 17.6 26.4

Table 4: Ablation study comparing CodeEvo with and without Seed Initialization across multiple
backbones and benchmarks, while maintaining consistent data scale annotation.

H.2 Solvable Rate of Synthetic Instructions

As discussed, a key pitfall of synthetic code data is that newly generated instructions may be
ungrounded, i.e., cannot find valid solutions. We investigate this issue by conducting a manual
analysis of instructions synthesized by CodeEvo and Evol-Instruct.

The results shown in Figure 11 reveal clear differences in solvability across the two approaches.
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Figure 10: Success rates of InternLM3 and StarCoder2 after training with data synthesized through
agents with different backbones.
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Figure 11: Comparing the solvability of instructions synthesized by CodeEvo and Evol-Instruct.

I Human Participants

We recruit college-level participants with a background in computer science to conduct experiments
in Section 5.3 and Appendix H.2. For instructions, participants are asked to follow the synthesized
instructions directly as part of the evaluation process.

All participants are compensated at a rate of $10 per hour for their time and effort. We do not record
any personal information, and all participants provide informed consent. The experiment does not
involve surveys, interviews, or behavioral tracking.

J Case Studies

We provide two case studies of CodeEvo generating new instructions, as shown in Prompt 12 and
Prompt 13.
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Case of building programming problems
Seed Problem:
A permutation of an array of integers is an arrangement of its members into a
sequence or linear order.
For example, for arr = [1,2,3], the following are all the permutations of arr:
[1,2,3], [1,3,2], [2, 1, 3], [2, 3, 1], [3,1,2], [3,2,1].
The next permutation of an array of integers is the next lexicographically greater
permutation of its integer. More formally, if all the permutations of the array
are sorted in one container according to their lexicographical order, then the
next permutation of that array is the permutation that follows it in the sorted
container. If such arrangement is not possible, the array must be rearranged as the
lowest possible order (i.e., sorted in ascending order).
For example, the next permutation of arr = [1,2,3] is [1,3,2].
Similarly, the next permutation of arr = [2,3,1] is [3,1,2].
While the next permutation of arr = [3,2,1] is [1,2,3] because [3,2,1] does not have
a lexicographical larger rearrangement.
Given an array of integers nums, find the next permutation of nums.
The replacement must be in place and use only constant extra memory.
Generated Problem 1:
Given an array of integers ‘nums‘, find the next lexicographically greater
permutation of its integers. If such an arrangement is not possible, rearrange
the array in ascending order. Additionally, ensure that the solution handles arrays
with duplicate elements efficiently and outputs the result in a circular format,
where the last element points back to the first element.
Generated Problem 2:
Given a doubly linked list of integers ‘nums‘, find the next lexicographically
greater permutation of its integers. If such an arrangement is not possible,
rearrange the list in ascending order. The solution must handle lists with
duplicate elements efficiently and output the result in a circular format, where the
last node points back to the first node and vice versa. Additionally, the solution
should be able to handle lists with up to 1000 nodes, where each node’s value is
between 0 and 1000.

Prompt 12: Case Study.
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Case of building programming problems
Seed Problem:
You are given a string S of length 6. It is guaranteed that the first three
characters of S are ABC and the last three characters are digits.
Determine if S is the abbreviation of a contest held and concluded on AtCoder before
the start of this contest.
Here, a string T is ẗhe abbreviation of a contest held and concluded on AtCoder
before the start of this contestïf and only if it equals one of the following 348
strings:
ABC001, ABC002, ..., ABC314, ABC315, ABC317, ABC318, ..., ABC348, ABC349.
Note that ABC316 is not included.
Input
The input is given from Standard Input in the following format:
S
Output
If S is the abbreviation of a contest held and concluded on AtCoder before the start
of this contest, print Yes; otherwise, print No.
Constraints
- S is a string of length 6 where the first three characters are ABC and the last
three characters are digits.
Generated Problem 1:
You are given a string S of length 6. It is guaranteed that the first three
characters of S are ABC and the last three characters are digits. Determine if S
is the abbreviation of a contest held and concluded on AtCoder before the start
of this contest, considering that some contest numbers were skipped due to special
events. Specifically, the valid contest numbers are ABC001 through ABC314, ABC315,
ABC317 through ABC348, and ABC349. Note that ABC316 is not included. Additionally,
validate the input to ensure it strictly follows the format and handle any invalid
inputs gracefully.
Generated Problem 2:
You are given a string S of length 6. It is guaranteed that the first three
characters of S are ABC and the last three characters are digits. Determine if S
is the abbreviation of a contest held and concluded on AtCoder before the start
of this contest, considering that some contest numbers were skipped due to special
events. Specifically, the valid contest numbers are ABC001 through ABC314, ABC315,
ABC317 through ABC348, and ABC349. Note that ABC316 is not included. Additionally,
validate the input to ensure it strictly follows the format and handle any invalid
inputs gracefully. Furthermore, if the input is valid but the contest number is a
multiple of 7, print S̈pecial Caseïnstead of Ÿes.̈
Generated Problem 3:
You are given a string S of length 6. It is guaranteed that the first three
characters of S are ABC and the last three characters are digits. Determine if S
is the abbreviation of a contest held and concluded on AtCoder before the start
of this contest, considering that some contest numbers are missing due to special
events. Specifically, the valid contest numbers are all integers from 001 to 349
except for 316. Additionally, validate the input to ensure it strictly follows the
format and handle any invalid inputs gracefully by printing Ïnvalid Input.̈

Prompt 13: Case Study.
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