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ABSTRACT

Autoformulation is an emerging field that uses large language models (LLMs) to
translate natural-language descriptions of decision-making problems into formal
mathematical formulations. Existing works have focused on autoformulating math-
ematical optimization problems for one-shot decision-making. However, many
real-world decision-making problems are sequential, best modeled as Markov
decision processes (MDPs). MDPs introduce unique challenges for autoformula-
tion, including a significantly larger formulation search space, and for computing
and interpreting the optimal policy. In this work, we address these challenges
in the context of queueing problems—central to domains such as healthcare and
logistics—which often require substantial technical expertise to formulate cor-
rectly. We propose a novel operator-theoretic autoformulation framework using
LLMs. Our approach captures the underlying decision structure of queueing prob-
lems through constructing the Bellman equation as a graph of operators, where
each operator is an interpretable transformation of the value function correspond-
ing to certain event (e.g., arrival, departure, routing). Theoretically, we prove a
universal three-level operator-graph topology covering a broad class of MDPs,
significantly shrinking the formulation search space. Algorithmically, we propose
customized Monte Carlo tree search to build operator graphs while incorporat-
ing self-evaluation, solver feedback, and intermediate syntax checking for early
assessment, and present a provably low-complexity algorithm that automatically
identifies structures of the optimal policy (e.g., threshold-based), accelerating down-
stream solving. Numerical results demonstrate the effectiveness of our approach in
formulating queueing problems and identifying structural results.

1 INTRODUCTION

Autoformulation with large language models (LLMs) aims to translate natural-language descriptions
of decision-making problems into formal optimization models with minimal human intervention
(Zhang et al., 2025b). It democratizes the access to advanced operations research (OR) modeling
tools for non-OR domain experts and facilitates rapid prototyping and adaptation for OR practitioners
(Gurobi Optimization, 2023; Wasserkrug et al., 2025).

Existing works on autoformulation have been focusing on mathematical optimization, which models
one-shot decision-making (Ramamonjison et al., 2023; Xiao et al., 2023; AhmadiTeshnizi et al.,
2024; Astorga et al., 2025; Bertsimas & Margaritis, 2024; Liang et al., 2025; Yang et al., 2025; Lu
et al., 2025; Zhang et al., 2025a; Huang et al., 2025). However, many real-world scenarios evolve
dynamically and stochastically, thus requiring sequential decision-making over time. These problems
are naturally modeled as Markov decision processes (MDPs) (Puterman, 2014). Autoformulating
MDPs presents unique challenges that cannot be addressed by current works on autoformulating
optimization problems (see Table 4 and the examples in Appendix A for a more detailed breakdown).

Formulation Challenges. Similar to autoformulating optimization, autoformulating MDPs requires
searching the vast space of possible formulations. Moreover, MDPs have additional components
(e.g., states, transition probabilities) and implicit constraints (e.g., nonnegative states, state-dependent
action sets) that are not present in optimization and often omitted in the problem description. To
ensure the accuracy, autoformulation must identify and infer these hidden structures (e.g., figuring
out state transition probabilities of a queue from arrival and service rates).
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Figure 1: Challenges in formulation, solution, and interpretation, and our contributions in addressing
them. » Text-to-operator mappings improve accuracy and the interpretability of problem formulation.
» The operator-based Bellman equation reveals the structures of the optimal policy (e.g., monotone
or threshold) and the value function (e.g., convex), enhancing both interpretability and computational
tractability (by informing the choice of an appropriate solver).

Computational Challenges. Many optimization problems (e.g., convex optimization) are considered
solved once formulated (Boyd & Vandenberghe, 2004). In contrast, MDPs are notorious for the curse
of dimensionality (Puterman, 1994). Although formulating and solving are two distinct phases, we
advocate for autoformulation that is amenable to discovering structural properties of the optimal
policy (e.g., optimal action is monotone in state value) prior to the solving phase and therefore
mitigating computational challenges (e.g., search among monotone policies instead of all policies).

Interpretability Challenges. Optimization models tend to be more readable, because variables
and constraints in the problem formulation often have semantic meanings, and the optimal decision
variables are easier to understand. In comparison, the optimal policy of an MDP is a mapping over
multi-dimensional state-action pairs, which can be hard to interpret. Therefore, identifying structures
of the optimal policy (e.g. monotonicity of action in state) makes the solution interpretable, which is
important for decision-support systems (Hajek, 1984; Koole, 1995; Zhou et al., 2015).

Our Solution. Fig. 1 illustrates how our framework addresses the above challenges. Our work builds
on the operator theory (Koole, 1998; 2007), which views the Bellman equation as a concatenation of
operators. Each operator is an interpretable transformation of the value function that corresponds to
certain event (e.g., arrival, departure) in the context of controlling queue systems. The operator-based
Bellman equation provides an interpretable problem formulation, as well as theoretical foundations
for identifying structures of the optimal policy, which can potentially reduce the complexity of
solving MDPs and enhance the interpretability of the solution. We make significant contributions
to fulfill the potential of operator theory-driven autoformulation of MDPs. » Operator graph and
universal topology: We are the first to represent Bellman equations as directed acyclic graphs (DAGs)
of operators, namely the operator graph, and prove the existence of a universal topology for a
large class of MDPs (Theorem 4.1). This greatly reduces the autoformualtion search space from all
possible operator graphs to graphs with the fixed universal topology (formulation challenge). »
Tailored Monte Carlo tree search (MCTS): We propose a customized MCTS with LLMs to generate
and evaluate operator graphs (Sec. 4.2), while incorporating LLM self-evaluation, solver feedback,
and intermediate syntax checking to improve the accuracy and efficiency of autoformulation without
expensive fine-tuning of LLMs (formulation challenge). » Automatic identification of structures:
We propose a low-complexity algorithm (Algorithms 1-3) that is guaranteed to identify theoretically
known structures of the optimal policy (Theorem 4.2), thus mitigating the curse of dimensionality
(computation challenge) and enhancing solution interpretability (interpretability challenge).

Contributions. (1) Conceptually, we propose an operator theory-driven framework that for the
first time, jointly automates the formulation of sequential decision-making problems from natural
language and the discovery of the structures of the optimal policies (Sec. 4). Our novel view of
Bellman equations as operator graphs addresses not only formulation challenges but also computation
and interpretability challenges in the formulation phase. (2) Theoretically, we rigorously prove the
existence of a universal operator graph topology for a large class of MDPs, greatly reducing the search
space of operator graphs (Theorem 4.1). (3) Algorithmically, we tailor MCTS for autoformulation
of event-based MDPs by incorporating dense rewards and integrating the feedback from the solver
for improved accuracy and efficiency (Sec. 4.2), and propose a provably low-complexity algorithm
to automatically uncover structural results from the operator graph (Theorem 4.2). @ Empirically,



we create the first dataset on autoformulation of queueing problems, containing natural-language
problem descriptions labeled with the optimal policies and their structures, and demonstrate the
accuracy and efficiency of our framework.

2 RELATED WORKS

Autoformulation of mathematical optimization. There have been considerable efforts in creating
datasets containing natural-language description of optimization problems (Ramamonjison et al.,
2023; Yang et al., 2025) and developing LLMs and agents fine-tuned for optimization autoformulation
(Xiao et al., 2023; AhmadiTeshnizi et al., 2024; Liang et al., 2025; Lu et al., 2025; Zhang et al.,
2025a; Huang et al., 2025). Recent works have shown that through prompting and efficient MCTS,
open-source LL.Ms can achieve comparable or better performance without the cost of fine-tuning
(Bertsimas & Margaritis, 2024; Astorga et al., 2025). Our framework also uses MCTS without
fine-tuning. However, we make significant contributions in addressing the formulation challenges
specific to MDPs, and computation and interpretability challenges that these works do not face.

Autoformulation of dynamic programming. The most related is the recent work on autoformulating
dynamic programming problems (Zhou et al., 2025). It focuses on synthetic dataset generation and
LLM fine-tuning, but did not consider computation challenges and interpretability challenges.

Addressing computation challenges in MDPs. A large body of research addresses efficient solving
of MDPs, notably through approximate dynamic programming (Bertsekas, 2012), reinforcement
learning (Sutton, 2018), and exploiting structural properties of the solution (Yang, 2020; Koutas et al.,
2025). These approaches are complementary to ours, and can be used in conjunction with our work
after structural properties are identified in the formulation phase.

Operator-based Bellman equations for control of queueing systems. Significant OR research is
devoted to uncovering structural properties of the optimal solution (Zhuang & Li, 2010; Hsu et al.,
2015; Cil et al., 2011). Despite the unifying operator theory framework Koole (1998; 2007), such
practices are still on a manual, case-by-case basis. In our attempt to autoformulate MDPs, we are the
first to view the operator-based Bellman equation as an operator graph, and prove the novel result on
the existence of a universal graph topology. In addition, we propose a low-complexity algorithm to
automate the process of identifying structural results.

Table 1: Comparison with existing works on autoformulation.

Representative work Problem Formulated Method Fg]ma::t;n Computation Challenge Inté:‘];ﬁ:‘l;ellty
ORLM (Huang et al., 2025) optimization fine-tuning O;I:iel'zligzlil(o)n N/A N/A
Autoformulator (Astorga et al., 2025)  optimization prompting 0;?5;;2;}2“ N/A N/A
DPLM (Zhou et al., 2025) (discrete-time) dynamic fine-tuning v x x
programming
Our Work discrete-time and prompting v v v

continuous-time MDP

3  PROBLEM FORMULATION

Our framework autoformulates and solves discrete-time MDPs and continuous-time MDPs (through
their equivalent discrete-time embedded MDPs). Throughout the paper, we illustrate our framework
using examples from healthcare (Chan et al., 2025; Bekker et al., 2017). But our framework can
be applied to a variety of applications such as inventory management (Schwarz & Daduna, 2006),
logistics (Adelman, 2007), transportation (Stidham, 1985; Ebben et al., 2004), and telecommunication
(Koole & Mandelbaum, 2002; Bhulai & Koole, 2003). As shown in Appendix M, our prompts include
no contextual information on application domains or even queuing systems in general.

3.1 PRELIMINARIES

Since the results here are established, we provide detailed derivations in Appendix D.1 and a walk-
through example in Appendix D.2.



Control of Queuing Systems as Continuous-Time MDPs. We consider a continuous-time MDP
specified by six elements (Lippman, 1975; Serfozo, 1979): (1) a countable state space S, (2) a finite
set of eligible actions A4 at each state s € S, (3) a cost &(s, a) incurred at state s when taking action

a, (4) the state transition probability p (s'|s, a), (5) the random transition time 7 from state-action
pair (s, a) to a different state, which follows an exponential distribution with rate A(s, a), and (6) a
discount rate v > 0 that discounts the cost at time ¢ by e ¢,

Optimization Criteria. For a stationary policy 7 : S — Aj, the a-discounted cost is (Serfozo, 1979)

Vam(s) L E.[Dioge te(si,ai) | so =3, (1)

where t; is the time of the i-th state transition. The average cost is (Sennott, 2009; Serfozo, 1979)

Jr(s) 2 limsup E th:o é(si,a:)/t| s = s] ) 2)

t—o0
where I; = max{i : ¢; <t} is the number of state transitions that occur in time ¢.
Discrete-Time Embedded MDPs and Standard Bellman Equations. For an arbitrary upper bound

of state transition rates A > sup, , A(s,a), we define a discrete-time MDP with discount factor
v = ALM, and state transition probabilities and the cost function as

, . P(s if ¢ As,a) +a
P(s'ls,a) = { i‘(f’;LgS’f)(;A"f’a)/A’ g z, ii and c¢(s,a) = % <é(s,a).  (3)

The discrete-time embedded MDP is obtained by setting a Poisson clock with rate A and sampling
the continuous-time process when the clock ticks. So the state may remain the same (s’ = s).

Given a stationary policy 7, the y-discounted cost is V;, - (s) = Ex [>_70 ;7" c(si, ai) | so = ], and
I—

the average costis J(s) = limsup;_,  Ex {Zi:ol c(siy,a:)/I]so =s|.
The discrete-time MDP (S, A, ¢, P, ) is equivalent to the continuous-time MDP (S, A, &, 7, P, o),

in the sense that V,, (s) = V, »(s) and Jx(s) = Jx(s)/A for any stationary policy 7 (Serfozo,
1979). We solve the discrete-time MDP by solving the standard Bellman equation:

Vn+17’Y(5) = ;Ielglé {C(Sv a’) + Zs/es P(S/‘S, a)Vn,'y(Sl)} ’ 4

where V,, ., (s) is the minimum discounted cost during the last n state transitions when starting from s.

Under mild conditions (Puterman, 2014), the minimum discounted cost V, (s) = inf, V,, (s) is the
limit of V/, (s) when n — oo (Sennott, 2009, Proposition 4.3.1), and the minimum average cost
J(s) = infr Jr(s) is the limit of (1 — )V, (s) when v — 1 (Sennott, 2009, Proposition 6.2.3).
Therefore, it suffices to focus on the n-transition discounted cost V;, ., in the Bellman equation (4).
For the remainder of the paper, we omit the discount factor in the subscript of V;, ., and use V/,.

3.2 EVENT-BASED MDP AND OPERATOR-BASED BELLMAN EQUATION

Definition 3.1. Event-based MDPs are MDPs whose state s = (z,¢e) has two components: a
controllable component x (e.g., number of patients in the system) and an exogenous, uncontrollable
component e (e.g., arrivals), with transition probabilities decomposed as:

Pl(x',e¢)|(x,e), a]l = P [2' | (x,¢), a] - P.(¢' | 2'). 5)

Event-based MDPs are general enough to model decision-making problems in various applications
(see Appendix B for a comprehensive list). Many problems in control of queuing systems are special
cases of event-based MDPs, where transitions of the queuing state x are deterministic.

Definition 3.2. (Koole, 2007, Definition 3.1) Let X" be the set of controllable state components x and
V be the set of all functions from X to R. An operator is a mapping

T:V'=V, (>1. (6)
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Figure 2: State transition dynamics of event-based MDPs, where dashed arrows indicate dependency.

The definition of an operator is general, giving us flexibility to express the Bellman equation as
concatenation of operators. Given the context, the operators also have physical meaning. For our
example introduced in Fig 1, we can define operators related to optimal responses to events, namely
the controlled arrivals (CA) and uncontrolled departures (D) for Critical (C) and General (G) patients.
The details can be found in Appendix D.2 and Appendix E. In short, we have:

Ten,c Vi (x)] =Vagi(z,Ae), Tea,clV, (%)) = Vo (z,20), @)
TD,C [V;:(:E)] = n+1(vaC)v TD,G [Vrj(x)] = Vn+1(x7DG)v (3)
with A¢ /¢ and D¢/ corresponding to arrival and departure events for Critical and General patients.
We also define a uniformization operator (with A = A¢ + Ag + pc + pa)
Tonie[Ur(x),Us(x), Us(z), Us(x)] = ’\TC ~Ur(z) + ’\TG “Us(x) + B2 - Us(x) + B2 - Uy(x),
and a cost operator
Teost [U(2)] = pn - (xc + 26) /(A + @) +7- U(z). ©

Then the Bellman equation (38) can be rewritten as V. going through an operator graph to get V7', ;.
m41(®) = Teost {Tunse (Tea, c [V (@), Tea, 6 [V (@)], To, ¢ [V ()], T, 6 [V (@)])} . (10)

Note that for event-based MDPs, we often study the value function V,*(x) defined on the controllable
state component x, in addition to the standard value function V/,(s) defined on the state s.

4 METHOD

Our framework has two steps: autoformulation of operator-based Bellman equations and identification
of structural results (see Fig. 1 for overview).

4.1 THEORETICAL FOUNDATION: UNIVERSAL TOPOLOGY OF OPERATOR GRAPHS

We can view the Bellman equation (10) as an operator graph with input V" and output V7, ;. If we
view the process of problem formulation as searching in the space of all operator graphs, the search
space is vast due to the variety of operators (Koole, 2007) and the many ways they can be connected
(i.e., graph topology). Specifically, the number of possible DAGs with /N nodes (operators) and 1
out-point (the operator that outputs V,;', ;) grows in the order of oN* (Robinson, 1973). To have a

sense of how fast this number grows with N, the numbers of possible DAGs for N = 2,...,9 are
1, 2, 15, 316, 16885, 2174586, 654313415, 450179768312.

We prove the existence of a universal graph topology for all event-based MDPs. This allows us to fix
the graph topology, thus significantly reducing the search space.

Theorem 4.1. For any event-based MDP with event set {ey, ..., ey}, its Bellman equation can be
constructed by the following operator graph (the universal topology in Fig. 1):
Vii1(®) = Teose {Tunir (Te, [V ()] Te, [V (@)D} (1D

where Toost [U(z)] = c(x) + v - U(2), Tonir [Ur(), ..., Ulzx)] = Zle P(ej|z) - Uj(x), and
Te, [Vi(x)] = Vaga(z, ).

Proof. See Appendix F. O
Theorem 4.1 reduces the search space to three-level trees with .oy as the root, T, as the single child

of the root, and event operators as leaves. Hence, in addition to specifying the universal topology, it
also reduces the search space by specifying the types of operators at each level of the tree.



Takeaway: Theorem 4.1 is crucial for reducing the search space.

The original search space includes all the operator graphs with any topology and any operators as
nodes, which is huge. Theorem 4.1 proves that there exists a universal topology: a three-level tree
with certain types of operators at each level. This significantly reduces the search space.

4.2 MCTS FOR AUTOFORMULATING EVENT-BASED MDPs.

Now that we know the universal graph topology, we aim to identify the correct nodes of the
operator graph. Due to dependencies among components, MCTS is well-suited for this hierar-
chical search (see Appendix M for prompts). We decompose the search into four layers: m;
(problem parameters, e.g., queue sizes), mo (state variables and constraints), mg (events, actions,
costs, and their probabilities), and my4 (operators). This structure reflects the dependency hierarchy
and guides exploration. Our MCTS follows the standard loop—selection, expansion, evaluation,
and backpropagation—with two key modifications during backpropagation: (1) terminal nodes
receive rewards from a combination of LLM preference and solver feedback, and (2) intermediate
nodes are evaluated for syntax validity to provide dense supervision and penalize early errors.

Terminal Rewards. Every full rollout is scored relative Back-propagation step in MCTS

to a baseline defined as the initial rollout. The LLM pro- Eauly termination of Reward from
. bad rollouts terminal nodes

vides a preference score scorepm € [0,1]. To reduce

bias from LLM self-evaluation, we incorporate solver con- m’ m°

VErgence Scoreconversed € 10, 1}, and compute the final A/Lw\ ]

reward as scorefp, = scoreprm X SCOX€converged- m'  m! I:'ml l,’l

Intermediate Rewards. Inspired by AlphaZero (Silver A 5 .

et al., 2018), we assign rewards to intermediate nodes x™) ) ™ m*

based on syntactic correctness. If a partial formulation +

violates syntax constraints, the rollout is terminated early
with a zero reward. This enables faster pruning of invalid

branches and accelerates convergence. Figure 3: MCTS for constructing op-

erator graphs. (1) Syntax check at
Iterative Prompting. Syntax errors are often local and jntermediate nodes detects errors ear]y’
should not always be penalized with a zero reward. We preventing failed full rollouts. 2)
allow the LLM up to five attempts to fix syntax issues, Solver feedback complements LLM self-
using the error message as context. If correction fails, the evaluation for more objective rewards.
error is attributed to earlier steps, and a zero reward is
backpropagated. The backpropagation mechanism is illustrated in Figure 9, with further details about
our MCTS provided in Appendix J.1.

4.3  AUTOMATIC IDENTIFICATION OF STRUCTURES OF OPTIMAL POLICIES USING DYNAMIC
PROGRAMMING

Given the formulation of operator-based Bellman equations, we aim to identify the structures of
optimal policies. This is usually done by identifying the properties of the value function V*(x). For
example, if V*(z) is convex in z, the optimal policy 7* is decreasing in . For any operator T, we
say that it propagates a property if, whenever V,, satisfies the property, then T'[V},] also satisfies it. For
example, the linear cost operator T, [U(x)] = Bz +~U (x) propagates monotonicity and convexity,
because Tt.os: [U(x)] is monotone (convex) if U(x) is monotone (convex). In the following and in
the Appendix, we also say that an operator propagates A, where A is the space of functions having a
certain property (for instance, all convex functions), and we may refer to A as a “property” by abuse
of language. There is some common wisdom regarding which properties certain typical operators
propagate. However, since V,*(z) needs to go through the operator graph, the challenge is to find the
properties that are propagated by all operators in the graph. A bruteforce approach would require
checking an exponentially growing number of possibilities.

To illustrate, consider two operators T} and T and six spaces of functions A—F' with certain properties.
For example, A can be the space of convex functions, B the space of increasing functions, and A N B
the space of convex increasing functions. Operator 77 propagates A N B, E N C, and D, while
operator T5 propagates C N A, D N F', and B. In addition, we have BN C C F.



By computing the closure under intersection, 77 is found to propagate, for example, AN BN D
and £ N C N D. Identifying the smallest common space propagated by both 77 and 75 requires
leveraging the inclusion relationship; in this case, the minimal shared space is A N B N C, which is
not immediately evident from the original lists of properties that each operator propagates. A more
detailed explanation of this example can be found in Appendix G.1.

We introduce a general dynamic programming algorithm to address this problem, providing a detailed
explanation in Appendix G.

Theorem 4.2 (Identification of Structural Results). Given an operator graph G, execution of Algo-
rithms 1-3 gives us the set of properties propagated by all operators, with memory and time complexity
of O(N|G|) and O(N|G|?), where |G| is the number of operators in the graph, N = maxreg nr,
and nr is the number of properties propagated by operator T'.

Proof. See Appendix G.3. O

A direct bruteforce approach would construct, for each operator, the full family of spaces
obtained by closing its propagated properties under intersection, but this closure grows exponen-
tially. A key observation in our algorithm is that any common propagated space can be written
as the intersection of a subset of the properties that each operator initially propagates. Thus,
instead of generating the full closure, we focus on identifying the properties that may appear in
the intersection defining the smallest common propagated space. This is achieved by iteratively
removing any property that cannot belong to this intersection. In the example above, F' never
appears in any space propagated by 73 and is not implied by any inclusion relationship, so no
valid common space can involve F' in its intersection representation. Consequently, properties
such as D N F' propagated by T can be discarded. Repeating this pruning step yields a stable
family of properties whose intersection is guaranteed to be both a common propagated space
and the smallest such space. Proof and details on the treatment of inclusion relationships are
provided in Appendix G.3.

Takeaway: Theorem 4.2 guarantees that, given an operator graph, Algorithm 1 can identify all
structural properties detectable within our framework. Thus, our ability to recover structure from
a problem description depends entirely on the operator graph generated by the LLM.

5 EXPERIMENTS

Dataset. We constructed a dataset of 36 natural language descriptions of queueing control problems,
varying in difficulty by size and shape of state spaces and number of event types. To assess perfor-
mance in structure identification and support future research, the dataset includes three categories: (1)
problems with provable structural results (e.g., Example 1); (2) problems with empirically observed,
but unprovable, structures (e.g., Example 2); and (3) problems with no structural results. All problems
are adapted from papers addressing realistic issues from domains such as hospital management
(Bekker et al., 2017), telecommunications (Koole & Mandelbaum, 2002; Bhulai & Koole, 2003;
Bekker et al., 2011; Zhang et al., 2025c¢), freight dispatching (Schwarz & Daduna, 2006; Amjath
et al., 2023), assembly lines (Adeyinka & Kareem, 2018), and traffic control (Boon et al., 2023).

Experimental Setup. For each problem, we perform multiple MCTS roll-outs and select the best
candidate by greedily following the highest-scoring path. Each formulation is evaluated by running
a dynamic programming solver; if it fails to converge, it is deemed incorrect. The resulting value
function is compared to the ground truth and accepted if within a predefined tolerance. We apply
our structure analysis algorithm to each roll-out. Results are summarized in the following tables and
interpreted with respect to the challenges in Appendix K, focusing on correctness, tractability, and
interpretability. The code and dataset are available here.


https://anonymous.4open.science/r/Autoformalisation-of-EMDP-02B8/run_experiments.py

5.1 ACCURACY OF AUTOFORMALIZATION AND ERROR ANALYSIS

Table 2 shows that our autoformulation framework outperforms baseline methods. Single-prompt
methods fail entirely to solve the task, even with CoT prompting. CoT is both more computationally
demanding and less effective than MCTS as a test-time scaling strategy. In contrast, MCTS achieves
better performance with the same level of feedback (LLM, solver feedback, or syntax check).
Although the first rollout is relatively costly, MCTS becomes increasingly efficient by reusing prior
computations. Notably, it achieves comparable or better performance using fewer computational
resources than baseline methods.

Ablation study—comparing with MCTS without SF and/or SC—shows that the incorporation of
syntax checks significantly enhances performance, as all formulations proposed by MCTS are
executable by the solver—effectively addressing the challenge of Syntactic Validity.

Table 2: Comparison with baselines and ablation study. Values in parentheses denote the number of
completion tokens. Targeted prompts split the task into successive prompts, mirroring the steps of
MCTS that can be found in Appendix M. SF: solver feedback, SC: syntax check.

Method 1 Rollout 5 Rollouts 12 Rollouts
GPT-4o (single prompt w. SF) 0% (2k) 0% (14k) 0% (38k)
CoT (single prompt w. SF) 0% (4k) 2.7% (20k) 2.7% (50k)
GPT-4o (targeted prompts w. SF) 5.5% (2k) 8.3% (16k) 8.3% (42k)
CoT (targeted prompts w. SF) 8.3% (6k) 11.0% (36k) 11.0% (85k)
MCTS (w/o. SF & SC) 11.0% (10k)  13.0% (43k) 16.0% (85k)
MCTS (w. SF, w/o. SC) 8.3% (10k) 36.1% (44k)  41.6% (86k)
GPT-4o (targeted prompts w. SF & SC)  44.4% (6k) 63.8% (30k)  72.0% (80k)
CoT (targeted prompts w. SF & SC) 52.7% (14k)  72.2% (74k)  75.2% (180k)
MCTS (w. SF & SC) 63.8% (11k) 77.7% (47k)  83.3% (96k)

The majority of remaining errors arise from Semantic Misunderstanding, including issues with
variable definitions, missing constraints, incorrect uniformizations, and misused operators.

Figure 4: Accuracy against number of rollouts.
Our method improves formulations continuously

during search Table 3: Error types in failed roll-outs.

: Type of error Occurrence
% » Parameter identification (m!) 5%
z . Variable definitions (m?) 26%
g Missing constraints (m?) , 24%
Z Incorrect events dynamics (m?) 12%
> Incorrect uniformization (m?) 33%

0 1 2 3 4 5 6 7 8 9 10 1 12

Rollout index

» Variable definition errors often occur when the LLM introduces unnecessary queues. In hospital
scenarios, for example, beds represent the queue, but the LLM may incorrectly distinguish between
patients in beds and those waiting, effectively modeling two queues instead of one. » Missing
constraints arise from implicit assumptions in the problem description—e.g., ensuring patient counts
remain non-negative. Solver feedback helps detect such issues by identifying unbounded state spaces.
» Incorrect uniformizations stem from deeper semantic misunderstandings. For instance, treatment
probabilities differ when teams work in parallel vs. sequentially. These subtleties are primarily caught
by the LLM signal. » Incorrect event dynamics is another issue. While most events are identified, the
LLM may omit actions in large action spaces or invent spurious events (e.g., to model per-time-unit
costs). These are typically detected via a combination of solver and LLM signals. » Parameter
Identification accounts for few errors and generally fails when the problem description includes
irrelevant or distracting information that misleads the LLM. These cases are caught exclusively via
the LLM signal.



5.2 COMPUTATIONAL TRACTABILITY AND INTERPRETABILITY

Structure Identification. When the operators identified by MCTS share a known propagated space,
the second phase of our algorithm (Sec. 4.3) consistently recovers it, demonstrating that the Structural
Inference challenge can be effectively addressed within our framework. Structural properties were
identified in 74% of cases, also indicating strong performance on the second challenge: Expressiveness
of the Formulation. Examples of successful structure extraction, along with a discussion of their
interpretability, are provided in Appendix I. All failure cases fall into four categories: (i) Incorrect
problem translation by MCTS, due to formalization errors discussed in Section 5.1, and not revisited
here. (ii) Operator mislabeling, where the LLM correctly models state dynamics but misnames
operators. This is the only remaining bottleneck for Structural Inference in our framework. (iii)
Limited structural expressiveness, where the formulation is valid but does not expose the structure.
This reveals that some correct formulations are less amenable to structural analysis. We illustrate this
in Example 1. (iv) Structural results beyond Koole’s framework, where certain properties cannot be
captured regardless of the operator graph. These cases expose fundamental limitations of the current
framework and suggest directions for future extensions. See Example 2.

Takeaway: Quantitative evaluation across the dataset shows that our method correctly identifies
74% of the structural properties, prior to solving the problem. Therefore, we can reduce the
computational complexity by calling specialized solvers for a large portion of the problems.

Example 1 (Equivalent problem formulations with different structural expressiveness). Our hospital
has 1 ward that manages 2 types of patients with shared healthcare teams. There are Ny, beds in
total. The average arrival rates of the patients are \1/hour and \o/hour respectively. The teams take
care of patients in parallel with an average rate that depends on their type : pi/hour and ps/hour
respectively. When a patient arrive we can refuse it, it occurs a cost of c1 for the first type of patients
and co of the others.

Key challenges: We cannot obtain structural results from the straightforward problem formulation.
How to find an equivalent combination of operators that allow us to obtain structural results?

Straightforward problem formulation. The natural events of this problem are controlled arrivals
and departures of the two types of patients, leading to the operator graph (found by MCTS):

7:<+1 = Toost {Tunif [TCA(I) (V;)a TCA(2) (V:)a TD(l)(V;)z TD(2) (V:)a Vn] }
In this formulation, the probabilities in T, depend on the state. For instance,
Po(1) = (pan1)/(A 4 A2 + pNp) - with g = max (1, po).
Due to state dependent probabilities in Ty, We cannot obtain any structural result.
O =X+ A+ Ny)

Equivalent problem formulation. We define a new departure operator 7p,

'modifie

- 2p1n1 - B 2pim;
T ) = s (e = ) + (1= 5 ) £lo)

With the new departure operator, the probabilities in 7},;r are independent of the state:
1
PcaG) = )‘i/F’ PDuoditiea (i) = 5 [1 - ()‘1 + >‘2) /F] .

Structural results. From the equivalent problem formulation, we can identify the monotonicity
property of the optimal policy.

Takeaway: Finding equivalent problem formulation with higher structural expressiveness is
critical to identify structural results.

Example 2 (Problem with intractable structural results). Our hospital has 3 wards arranged sequen-
tially, with capacities of 5, 15, and 15 beds, respectively. Each ward has its own healthcare team
and manages its own patients. On average, new patients arrive at rates of 3, 20, and 5 patients/day
in the respective wards. The wards serve patients one at a time at rates of 10, 5, and 3 patients/day,



respectively. After being served in the first or second ward, we can transfer to the next ward at a
cost of 2 per transfer or keep them in the current ward. Patients served in the third ward leave the
hospital. Additionally, patients can be moved back from ward 2 to ward 1 at a rate of 3 patients/day
or from ward 3 to ward 2 at a rate of 1 patient/day, each transfer incurring a cost of 2. Incoming
patients can also be refused, incurring costs of 5, 10, and 15 for wards 1, 2, and 3, respectively.

Key challenges: The solution to the problem exhibits structural properties, but these cannot be
anticipated regardless of the choice of operator graph.

Problem formulation. Our autoformulator correctly output the operator graph:

Vn+1 - Rost {Tunif [TCA,l(Vn)» TCA,Q(Vn)a TCA,S(Vn)v
Terp,(1,2)(Va), Tt 2,3) (Va), Terp,2,1) (Vo) Terp,3,2) (V) Tons (Va) | -

Structural results. We can observe the structures (e.g., monotone switching curve) of the optimal
policy empirically (see Figure 6 in App. I). However, we have yet to find an equivalent problem
formulation that would express these structural results.

Takeaway: The current method for identifying structural results fails on certain problems, as it
depends on limited theoretical results.

6 DISCUSSION

We propose the first-ever autoformulator of event-based MDPs, a class of sequential decision-making
problems encountered in various domains. Key to our framework is representation of the Bellman
equation as an operator graph, which ensures interpretability and improves accuracy. By proving
a universal operator graph topology for event-based MDPs, we significantly reduce the search
space of autoformulation. We also propose a low-complexity algorithm to identify structural results
based on the operator graph. To construct the operator graph, we make significant modifications
to MCTS by evaluating intermediate nodes for denser rewards and utilizing solver feedback for
more objective evaluations. Experimental results demonstrate the effectiveness of our approach in
accurately formulating problems and uncovering key structural insights. We also create the first
dataset on autoformulating queueuing control problems, with a wide variety of labeled problems.

Autoformalising broader classes of operator graphs. A natural direction for future work
is to extend autoformulation beyond event-based queueing models. The most immediate
step is to consider broader families of MDPs that can be represented as graphs of operators,
typically discrete-state MDPs with richer dynamics than those found in event-based systems,
such as models with continuously available actions or deterministic events occurring at fixed
frequencies. While the universal topology of Theorem 4.1 may no longer hold in these settings,
the operator-graph viewpoint remains applicable, and the structural-identification component of
our framework applies to any operator graph without modification. The main challenge lies in
designing a construction algorithm capable of generating arbitrary operator-graph topologies.

Beyond analytic properties of the value function. This paper focuses on analytic structural
properties, such as convexity of the value function, that can be propagated through the operator
graph. Many MDPs, however, do not admit such low-level analysis due to complex dynamics
or irregular state spaces. We argue that the broader philosophy of designing autoformulators
that are both computation-aware and interpretability-aware naturally extends to higher-level
structural patterns beyond the analytical properties considered here. For example, hierarchical
RL exploits the hierarchical structure inherent in certain tasks, illustrating how higher-level
structure can guide algorithmic design even when low-level analytic results are unavailable.
Incorporating such perspectives would enable autoformulation in domains with substantially
more complex dynamics.
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A AUTOFORMULATING OPTIMIZATION PROBLEMS VERSUS MDPS

Here is an example natural-language description of two parallel M/M/1 queues with controlled arrival
and uncontrolled departure. It is adapted from problems in hospital admission control (Bekker et al.,
2017; Naor, 1969). Some representative formulation challenges are annotated.

We consider a hospital with two wards: one for Critical patients and one for General patients,
each staffed by a dedicated team. Both wards share Np beds. On average, A¢ Critical and \g
General patients arrive per day [State-dependent action sets: admission decision only at an arrival,
readmission decision only at a departure.]. Treatment rates are uc and pg patients per day for
Critical and General wards, respectively, with each team serving one patient at a time [Transition
probabilities need to be inferred from the arrival and departure rates.]. Treated patients leave the
system, releasing their beds. Upon arrival, a patient may be admitted if a bed is available; otherwise,
the patient is rejected, incurring a penalty cost cc (Critical) or c (General). Each admitted patient
generates a holding cost py, per unit time. The objective is to minimize the long-run average operating
cost, with discount factor o. [Throughout the description, the implicit constraint of queue length
being nonnegative was not mentioned. |

Computation challenges. The optimal policy maps queue lengths to admission decisions: aca,c €
{0, 1} for Critical patients and aca,c € {0, 1} for General patients. Standard dynamic programming
enumerates all queue lengths to determine the optimal decisions, repeating this process until con-
vergence. However, if the optimal admission policy can be shown to follow a threshold structure,
the search reduces to identifying the threshold values. Likewise, if the value function is convex,
specialized dynamic programming solvers converges faster. Thus, uncovering structural properties of
optimal policies and value functions before solving significantly reduces computational complexity.

Interpretability challenges. It is also desirable if the policy is interpretable: “admit only when the
queue length is smaller than this threshold”.

Next, we inspect a hospital logistics problem in the NL4Opt dataset (Ramamonjison et al., 2023).

A hospital can transport their patients either using a type Il ambulance or hospital van. The hospital
needs to transport 320 patients every day. A type Il ambulance is mounted on a truck-style chassis and
can move 20 patients every shift and costs the hospital (including gas and salary) $820. A hospital
van can move 15 patients and costs the hospital $550 every shift. The hospital can have at most 60%
of shifts be hospital vans due to union limitations of the type Il ambulance drivers. How many of shift
using each type of vehicle should be scheduled to minimize the total cost to the hospital?

In terms of formulation challenges, there is no notion of states or transition probabilities, and the
decision variables are two scalars. In terms of computation challenges, this is a linear program that
can scale with tens of thousands of decision variables. In terms of interpretability challenges, the
optimal decisions are the numbers of vehicles of each type, which is easy to understand.

Table 4 provides a side-by-side comparison of optimization and MDP autoformulation.

Table 4: Autoformulating mathematical optimization versus MDPs.

Challenge Aspect Optimization MDP

Formulation Variables Often explicitly defined Need to der1v§Oer?§i/acnons from

Formulation Constraints Often explicitly defined Sometimes implicit and omitted

Formulation Stochastic dynamics Usually non-existent Important to model

Computation Scalability Scales well for convex problems “Curse of dimensionality”

. . Easy to inspect variable, High-dimensional components (e.g.,

Interpretability Problem formulation objectives, constraints transition probabilities) hard to inspect
Interpretability Solution Values of decision variables Policy mapping hard to interpret

directly understandable
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B EVENT-BASED MDPS IN VARIOUS APPLICATIONS

Table 5 provides a non-exhaustive list of event-based MDPs in a variety of applications domains. We
focus on problems that can be modeled as control of queueing systems.

Table 5: Event-based MDPs in diverse application domains.

Domain | Problem | Representative Works

diabetes management Bertsimas et al. (2017)
Healthcare organ transplant Berrevoets et al. (2021)

hospital admission control Bekker et al. (2017)
inventory management, logistics Schwarz & Daduna (2006); Adelman (2007)

Business assembly lines Adeyinka & Kareem (2018)

freight dispatching Schwarz & Daduna (2006); Amjath et al. (2023)

Telecommunications call center management Koole & Mandelbaum (2002); Bhulai & Koole (2003);
g Bekker et al. (2011); Zhang et al. (2025c¢)
‘ Stidham (1985); Ebben et al. (2004)

Transportation ‘ intersection management

traffic control Boon et al. (2023)
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C EXTENDED RELATED WORK

In Section 2, we mostly discussed work on autoformulation. We now provide additional
background on two technical dimensions central to our approach: operator-based formulations
of Bellman equations and DAG-based structures for the study of MDPs. Our goal is to situate
our operator-graph perspective within these broader lines of research.

C.1 OPERATOR-BASED FORMULATIONS OF BELLMAN EQUATIONS

A substantial body of work has examined Bellman equations through the lens of operators
acting on value functions. Classical dynamic programming texts already present the Bellman
update as a contraction operator Freedman (1974); Blackwell (1965). However, the formal
meaning of “operator” varies significantly across the literature and is used in conceptually
different ways.

The operators employed in the present work are representative of one such interpretation. Koole
introduced a collection of elementary or event-based operators Koole (1998; 2007) from which
the Bellman update can be constructed by composition. These atomic operators are not Bellman
updates themselves; rather, they model primitive system events (arrivals, departures, etc.). The
key insight is that one can establish structural or monotonicity properties at the level of these
elementary operators, and then deduce analogous results for broad classes of Bellman equations
without repeating the full analysis. This philosophy has been adopted in subsequent work,
which introduces additional operators to establish monotonicity or dominance properties in
diverse stochastic control problems Helm et al. (2011); Xiong et al. (2014); van Wijk et al.
(2019); Benjaafar et al. (2010b;a). Once such properties are proved at the operator level, they
can be reused whenever those operators appear as components of a Bellman equation.

Other definitions of operators focus on variants or generalizations of the canonical Bellman
update. One example is the generalized Bellman equation Yu et al. (2018), which defines
an operator not only on value functions but on the parameter space of the learning algorithm
itself (here, temporal-difference learning). Another example is the distributional Bellman
equation Bellemare et al. (2017), where the operator acts on the distribution of returns rather
than the value function (i.e., the expected return). Finally, in parts of the literature the term
operator is used more informally for individual pieces of the Bellman update, without the
systematic decomposition seen in Koole’s framework. For instance, in one of Bellman’s original
formulations Bellman (1952) the operator is essentially the full update except for the max
or min optimization step, whereas in Yin et al. (2024) it is essentially the opposite, with the
operator reduced to that optimization step alone.

C.2 DAG-BASED STRUCTURES FOR THE STUDY OF MDPs

One classical use of DAGs in MDPs that is closely related to our operator DAGs is the AND/OR
search graph, where nodes are time-indexed states and edges represent possible transitions,
often weighted by their probabilities Bonet & Geffner (2019). In DP or RL this structure is
typically implicit, as it is algebraically collapsed into the Bellman equation. In contrast, several
algorithms—especially for finite-horizon problems—operate directly on this graph, such as
THTS Keller & Helmert (2013) and the MCTS algorithm used in this paper. Our operator DAG
can be viewed as an intermediate representation between the full AND/OR search graph and its
complete collapse into the Bellman equation. It factorizes the large AND/OR graph using the
analytical structure of the Bellman update, retaining enough of the original graph topology to
decompose the Bellman update into more atomic analytical transformations, the operators.

Another use of DAGs in MDPs, less related but potentially confusable with ours, arises in
hierarchical reinforcement learning (HRL), where a decision problem is decomposed into
higher-level tasks and lower-level subtasks. Each node in this hierarchy is itself a sequential
decision problem, and the structure reshapes both the control problem and the learning dynamics
of the optimal policy Dietterich (1999); Gopalan et al. (2017). The DAGs we consider in this
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paper are fundamentally different. Our operator DAG is an analytic hierarchy that specifies
the order in which operations are applied to the value function within a single Bellman update.
Although some nodes may involve a choice, they correspond to a one-shot evaluation of the
policy, not to sub-MDPs with their own temporal evolution or repeated policy execution. HRL
thus defines a hierarchy of behaviors unfolding over many transitions, whereas our operator
DAG defines a hierarchy of operations applied within one transition.

Beyond these settings, DAGs appear in many other parts of the MDP and RL literature, reflecting
the general versatility of graph-based abstractions. These uses, however, are conceptually quite
different from our operator DAGs. For example, factored MDPs represent the transition model
as a dynamic Bayesian network Guestrin et al. (2011), exploiting conditional-independence
structure to obtain compact transition models and more efficient computations. Other work
employs graphs as high-level planning abstractions Eysenbach et al. (2019); Zhang et al. (2021),
for instance by performing Dijkstra-style shortest-path computations on an abstract task graph
while delegating low-level control to an RL policy, as in Jothimurugan et al. (2021).
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D DETAILED DERIVATIONS OF RESULTS IN SECTION 3

In this section, we provide detailed proofs and derivations of the results in Sec. 3. In the first part,
we provide some key results on continuous-time and discrete-time MDPs to make the paper self-
contained. In the second part, we go through the entire process of solving the example of parallel
M/M/1 queues with controlled arrivals and shared beds.

D.1 KEY RESULTS ON CONTINUOUS-TIME AND DISCRETE-TIME MDPs
D.1.1 BELLMAN EQUATIONS FOR CONTINUOUS-TIME MDPs

To solve for the minimum cost, we define Vna(s) as the minimum «-discounted cost during the last

n state transitions when starting from state s. Defining Vo7a(s) = 0, we have the following Bellman
equation (Lippman, 1975; Serfozo, 1979)

. . A(s,a R .
Virna(s) = mip {260) + 55 Ses P10V} (12)
A(s,a)

Noata = Erexpa(s,a) [677] is the expected discounting of the next state value Vnya (s").

where

The Bellman equation in (12) is not standard due to the (s, a)-dependent discounting /\(’\S(Z")‘fia. We

can remedy this issue by studying the discrete-time embedded MDP (Serfozo, 1979; Sennott, 2009;
Lippman, 1975).

We first derive the Bellman equation of the continuous-time MDP in equation 12.

instantaneous cost flowing cost value from state s’
. N
g(s, 97 s,) fo € atp(s’ a, S,) dt Vn,q(s’)

\7 ------------------ IRCECECERELEERTEERS . ; n transitions to go
|

transition time 7 |

State transition dynamics and costs during a sample path of a continuous-time MDP.

The figure above shows the state dynamics and the costs incurred during the transition from state
s to state s’. The expected total cost starting from state s consists of two parts: the expected cost
accumulated until the transition and the expected total cost starting from the next state. The cost
during the transition can be calculated as

&(s,0) = E__ciinsal s~P(lsa) |9(505) +/ e_atﬂ(sva,S’)dt] (13)
L 0
= ETNEXP[A(S,G)LS’NP('\S,a) g(S,a,s/)—i-p(s,a,s’)-/ e_atdt] (14)
L 0
= E - / nlze™ 15
- r~Exp[A(s,a)], s'~P(|s,a) _g(S’ a,s ) + p(87 a,s ) : T (15)
Es’wp(-|s,a) g(S, a, s ) + P(Sa a,Ss ) . ETNExp[A(s,a)] T (16)
1
. . / n .
- ES’NP(~|S,(1) |:g(57aa5 ) +p(57aa3 ) )\(s,a) + Oé:| (17)
_ ’ p(s,a,s") Y
- Z [Q(S’G,S )+ )\(s,a)—i—a} P(s']s,a) (18)
s'eS
p(s,a,s/)

Note that without discounting (o = 0), the term G is the cost rate p(s, a, ) times the expected
.. . 1 . . . 1
transition time 3. With discounting, o) Ta

the expectation of “discounted” transition time.

=Ernxp[r(s,a)] Jo € " dt can be interpreted as
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The second part is the cost starting from the next state s, discounted based on the transition time 7:

—ar & —ar & A(s,a) -
Ermxor(s,a) [€ 'ana(é")} =E;umpir(s,a)] [6 V7] Vaals) = Ms.a)+a Vaa(s')- (19)

Note that this is the cost if the next state is s’. So we need to take the expectation over s’ to get the
expected cost starting from state s and action a:

Qn’a(s, a) = ¢é(s,a) + m .S/ZES ]5(3/‘3, a)Vn,a(s/)_ (20)

Therefore, starting from state s, the minimum «-discounted cost during the last n + 1 transitions is

Vit1.a(s) = min Q. a(s,a), 21)

acAs

which is the Bellman equation in equation 12.

D.1.2 EQUIVALENT DISCRETE-TIME MDPS AND VARIOUS PERFORMANCE CRITERIA

In Sec. 3, we introduced several notions of value functions for continuous-time MDPs:

. Va,wi discounted cost of a continuous-time MDP with discount rate o and under policy 7;
. Va: minimum discounted cost of a continuous-time MDP with discount rate «;

. Vna minimum a-discounted cost of a continuous-time MDP during the last n transitions;
o Jo average cost of a continuous-time MDP under policy 7;

* J: minimum average cost of a continuous-time MDP.

The counterparts in discrete-time MDPs are V, ., V., V,, , J, J, where we use regular letters and
use the discount factor  in the subscript.

The relationship between these value functions are

>

3
2

n—oo
(_

inf .

continuous-time: Vam V. J A
¢ ¢ ¢ ¢ (22)
discrete-time: V’Y,TI’ inf V’y limy 1 (1—)Vy J inf J.

n—oo
N

<

n,y

In equation 22, the equivalence “<” between the continuous-time MDP and its discrete-time em-
bedded MDP defined in equation 23 is due to the result in Serfozo (1979), which we restated
here.

Theorem D.1 (Theorem in Serfozo (1979)). Let (S, As, ¢, T, P, «) be a continuous-time MDP with
bounded state transition rates (i.e., sups , A(s,a) < A). Let (S, As, ¢, P,7) be the discrete-time

MDP with discount factor v = A—j\_a, and state transition probabilities and the cost function defined
as

D ! A s ~
P(s'|s,a) = { i‘(_s’;()s’f)(/i\'f’a)/jx’ Zii, i z and c(s,a) = % < ¢(s,a). (23)

For any stationary policy ©, we have V., = Vo and J; = jW/A.
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This transformation, often referred to as the uniformization technique, allows us to reduce a
continuous-time MDP with exponential transition times into an equivalent discrete-time MDP with
adjusted transition probabilities and costs.

The relationship “—” between other value functions are well-established results. The minimum dis-
counted cost V/,(s) as the limit of V;, - (s) when n — oo is due to (Sennott, 2009, Proposition 4.3.1),
and the minimum average cost J(s) = inf; J:(s) as the limit of (1 — )V, (s) wheny — 11is due to
(Sennott, 2009, Proposition 6.2.3). Since these are not the focus of our paper, we omit the formal
statements of these results and the conditions under which they hold (usually satisfied in practice).

As we can see from equation 22, solving any value function can be done by solving the value function
Vi, for the discrete-time n-period discounted cost case. Suppose, for example, that we want to solve

the value function J for the continuous-time average cost case. Due to the equivalence established
by uniformization, we can instead solve for the discrete-time average cost .J, which is obtained by
solving V,, , under a sufficiently large discount factor « and then taking the limit as n — oo.

D.2 DETAILED WALK-THROUGH OF AN EXAMPLE : PARALLEL M/M/1 QUEUES WITH
CONTROLLED ARRIVALS AND SHARED BEDS

D.2.1 UNIFORMIZATION OF THE CONTINUOUS-TIME MDP

We illustrate the model components using a simple example of two parallel M/M/1 queues with
controlled arrivals (C2) and uncontrolled departures (D). This constitutes a generalization of the
problem introduced in Fig. 10.

We consider a hospital with two wards: one for Critical patients and one for General patients, each
staffed by a dedicated team. Both wards share Ng beds. On average, Ao Critical and g General
patients arrive per day. Treatment rates are uc and g patients per day for Critical and General
wards, respectively, with each team serving one patient at a time. Treated patients leave the system,
releasing their beds. Upon arrival, a patient may be admitted if a bed is available; otherwise, the
patient is rejected, incurring a penalty cost cc (Critical) or cg (General). Each admitted patient
generates a holding cost py, per unit time. The objective is to minimize the long-run average operating
cost, with discount factor o.

Let = (¢, z¢) denote the current queue lengths and let e € {A¢, Ag, D¢, D} denote the most
recent event: arrival of a Critical patient, arrival of a General patient, departure of a Critical patient, or
departure of a General patient. We define the post-event state as s = (z, ). The action set is empty
for departure events, but for arrivals the decision is to accept (1) or reject (0). Hence

A(m,e) = {071}7 ec {AC7AG}7 ifxc +xg < N37
and
.A(m’e) = {0}, ifzc+zc > Np.
Interarrival and service times are naturally modeled as exponential (Poisson processes), even if not
explicitly stated. Thus, the state transition time is exponentially distributed with rate
A= Ao+ Ag + e + pa-

When the system is empty, “departure” events may still occur but do not alter the state (see 27, 28),
allowing the same transition formulation to apply.

The state transition probability decomposes as
P [('T/v e/) ‘ (l‘,e), a] = PX[‘T/ | (l‘, e)? a] ) Pe<e/ I CL'/), (24)

with transition probabilities for the queue lengths (with the notation y™ = max(y, 0)):

P2 | (z,a¢),a] = | (25)
P2 | (z,Aa¢),a] = 1o —octas (26)
P2’ | (2,00),0] = 1o —(wo—1)+ (27)
P2 | (2,D6), 0] = 1o —(ag—1)+ (28)



The event probabilities are (this discretization step corresponds to uniformization, as introduced in
Theorem D.1):
A /7/\0 F /7>‘G > n_ HC > n _ MG
P.(a¢|2") ===, P.(rgl|2’)=—, P.(D¢|2')==, P.(Dgla')==—". (29)
A A A A
The cost structure consists of one-time rejection penalties cc, cg and a holding cost p;, per patient
per unit time. The cost is given by

1
el(wBeose), 1] = coyq + 2TEE TR D, (0)
¢[(z,8¢/6),0] = coyq + %, 3D
fltw,pc)) = BT =L T 26) )
él(z,pa)] = 2 (max(mfii’ O +20) (33)

D.2.2 DERIVATION OF THE BELLMAN EQUATION

Using the discrete-time embedded MDP of the original continuous-time problem we can write the
following optimal Bellman equations (we recall that z = (¢, x¢)).

(2, Ac) =min{V,) ((zc + 1,2¢), cc +V, (x)}, (34)
Vig(z,ag) =min{V, ((zc,z¢ +1), ca +V, (x)}, (35)
Visi(@,00) = Vi(((zc — 1), 26)), (36)
Vini(@,0e) =Vi((zc, (v —1)7)). 37)

where V,* () is the value function defined on the queuing state x:
() 2 pn - (xo +2g)
Ao

A A
|5 Vil (@, 2c) + Vi (2, 20)

+ 52 V(. po) + EE Vi, 06) | (38)

It is worth noting the similarity between the post-event value functions V,*(, ) and the )-functions
commonly used in reinforcement learning, which represent post-action value functions.

E DETAILS ON OPERATOR THEORY

We provide an overview of the operator theory in constructing the operator-based Bellman equations.
We focus on the results used in this paper. We refer the readers to Koole (2007) for a comprehensive
discussion of this topic.

The central idea is to decompose the Bellman equation of an MDP into a sequence of operators Koole
(2007). Each operator intuitively captures a distinct type of dynamic that arises as time progresses,
such as randomness, decision-making, state transitions, or incurred costs.

E.1 AN ILLUSTRATIVE EXAMPLE

We recall the example presented in Appendix D.2:
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We consider a hospital with two wards: one for Critical patients and one for General patients, each
staffed by a dedicated team. Both wards share Np beds. On average, A¢c Critical and A\g General
patients arrive per day. Treatment rates are ¢ and g patients per day for Critical and General
wards, respectively, with each team serving one patient at a time. Treated patients leave the system,
releasing their beds. Upon arrival, a patient may be admitted if a bed is available; otherwise, the
patient is rejected, incurring a penalty cost cc (Critical) or cg (General). Each admitted patient
generates a holding cost py, per unit time. The objective is to minimize the long-run average operating
cost, with discount factor o.

This model involves several distinct dynamics:
* Randomness: Patient arrivals and departures occur at rates A\c/p and jic/p, respectively.

* Decision-making: The system must decide whether to accept or reject a patient upon arrival.

* State transitions: The queue length may increase, stay the same, or decrease depending on
the decisions made and event type.

* Costs: Rejection incurs a penalty, and holding patients generates a time-dependent cost.

These elements are all incorporated into the full Bellman equation. In operator theoery, we view the
Bellman equation as a combination of operators, each capturing a specific aspect of the dynamics.

For the example above, the Bellman equation reads:

s P (T0 +26)

Vi) & B0

A A

+y | ZE Vi, a0) + ZE Vi (2, Ag)

A A

+ 52 V(. pe) + EE Vi, 06) | (39)
with

7:‘+1(‘T7AC) = min {‘/:((IC + 1’xG)v cc + V:(I)}, (40)
Via(z,Ag) =min{V;((zc,z¢ +1), ca +V, ()}, (41)
Vi(x,0e) =Vi(((ze — 1), za)), (42)
v (z,Da) =V ((ze, (za —1)T)). (43)

We can identify and separate the stochastic dynamics into the uniformization operator 7, ¢, the
decision-making upon arrival with its corresponding impact and cost into 7c», and the patient
departure mechanism into 7. The holding cost and discount factor are captured by the cost operator
T.ost- These are formally defined as follows:

TCA,C [Vn* (gj)} = Vn+1(I7AC)a TCA,G [Vn* (gj)} = Vn+1(I7AG)a 44)
Tr,c [V (2)] = Vara(2,Dc), T, 6 [V (@)] = Vata(z, Da), (45)

Tynie[Ur(2), Uz (), Us(), Us(x)] = 22 - U (x) + A2 - Us(2)
Teose [U(x)] = pn - (wc +26)/(A+a) +v-U(x). (47)

Then the Bellman equation equation 39 can be rewritten as V,* going through an operator graph to
get Vo g

n41(#) = Teost {Tunis (Tea, ¢ [V (@) Ten, ¢ [V (0)], To, [V (2)], To, o [V ()])} - (48)

The motivation for introducing operators as a tool for autoformalism is twofold. First, it offers
a structured framework wherein identifying the Bellman equation reduces to two subtasks: (i)
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identifying the relevant operators, and (ii) specifying the operator graph. In this work, we focus on
a class of problems for which the second task—the structure of the graph—is solved in advance
(Theorem 4.1). Thus, the only remaining task is to identify the appropriate operators in this graph.
Second, the operator-based framework enables the automatic derivation of structural properties of the
value function, by analyzing the propagation behavior of the operators within the graph.

For instance, consider the space of convex value functions Conv, defined by the property that
2V (x+1) < VF(z) + Vi (x +2) forall x > 0. We can show that under any parameter values—
provided the refusal cost is positive and the holding cost py, () is convex—the previously defined
operators preserve convexity:

Ve Conv = Tea(V*), To(V*), Tonis(V*), Toose (V*) € Conw.

Consequently, we have the propagation result:

V: € Conv = ;-;—1 = Tcost{Tunif(Tlcz.\,g[‘/;;k}7 TCA,C[V:],
TCD,G[V;L TCD,C[V:])} € Conv. 49)

From this, it follows that V* € C'onwv, which in turn implies that the optimal policy 7* is threshold.
Specifically, there exist two thresholds nt ¢ and nr g such that an arriving Critical (resp. General)
patient is accepted if and only if xc + 2 < nr ¢ (resp. nt,q)

This approach is generalizable: whenever the Bellman equation can be decomposed into known
operators for which we have propagation results, structural properties of the value function—and
hence of the optimal policy—can be deduced, provided these operators share a common invariant
function space. In the following sections, we list the operators considered and detail their respective
propagation properties.

E.2 OPERATORS (USED IN THIS WORK)

We introduce the operators used in this work; additional operators can be found in Koole (2007). In
the following, &; denotes the canonical basis of R¥, where & represents the number of queues.

— Teose [V*(2)] = C(z) + 4V (2)
J J
= Tonae [V (@), Vi@ = D_p()Vi(e)  with 3 p(j) =1

—Teay V(@) = min {(V*(2) + c1, V* (x + &;) + ¢2)}
— Ty V(@) =V*((z —e)h)
—To iy [V(@)] = (@) V(2 =€) ) + (1 = p(:))V* ()
. min{(c; + V*(z),co + V*[(z — &;)T]} ifz; >0
v - { B ) e
T V@ = { Vo ke T
—Terp (4, 9) [V*(JC)] = { I{;lir(ligl —;t‘}{;rgi);ec.Q Ve Ej)} o0

The operator T+ represents the cost operator, while T,,;¢ corresponds to the uniformization
operator.

The operator Tca ; represents controlled arrivals to queue ¢, whereas Tp; ; models a standard departure.
The operator Tp ; represents departures in a multi-server queue and is specifically used in Example 1.
Controlled departures from queue ¢ are denoted by Tcp ;.

To model tandem queues, we use the operator Ttp;, which describes the transition of a customer
from queue ¢ to queue j. Similarly, Tcp represents controlled tandem departures.
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E.3 SET OF SPECIAL FUNCTIONS

We introduce the set of functions used in the propagation results.

—Vel(@)if
Vi) <V(z+e)
forallz e N¥ 1 <i <k,
—I=I1(1)n---NI(m),
-V eUl@) if
Viz+eip) <V(z+e)
forall xand 1 <1 < k,
—Ul=UuI1(1)n---NUIk — 1),
—V e Cx(i) if
2V(z +e;) < V(z) +V(x+ 2e;)
forall xand 1 < < k,
—Czx=Cz(1)N---NCx(k),
— V € Super(s, j) if
Vie+e)+Vie+e) <V(z)+V(z+e +ej)
forallzand 1 <1< j <k,
— Super = Ni<i<j<iSuper(s, j),
—V € Sub(i, j) if
V) +V(z+e +e) <V(z+e)+V(r+ej)
forallzand 1 <i < j <k,
— Sub = ﬂngjngub(i,j),
— V € SuperC(i, j) if
Vie+e)+V(e+ej+e) <V(z+e)+ Vie+2e)
forallzand 1 <i,j < k,i#j
— SuperC = Ni<; j<k:izjSuperC(i, j),
—V € SubC(4, 5) if
Viz+e)+V(z+e +e) <V(z)+V(r+2e+e;)
forallzand 1 < i, 5 < k,i#j
— SubC = NMi<; j<k:iz;SUbC(3, j),
—V € MM(i, ) if
V(z)+V(z+di +dj) <V(z+d;) +V(x+d;)
forallzand1 <i < j < ksuchthatz 4 d;,z +d; € N,
with dy = e1,dy, = —ep + epy11,k =2,...,k —1,and d, = —eg,
— MM = Ni<icj<kMM(G, j).

Further explanations for each can be found in Koole (2007). The following inequalities hold for these
sets:

Super(i, j) N SuperC(i, j) C Cx(7)
Sub(i, j) N SubC(i, ) C Cx(i)
MM C Super N SuperC C Super N Cx

We construct a non-trivial inclusion basis that satisfies the rules introduced in Appendix G.3 and
corresponds to the given inequalities. We define B as the union of all the spaces introduced above,
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excluding superspaces such as SuperC. Instead, we retain only the sets of the form SuperC(i, ) to
prevent non-trivial equalities that cannot be derived solely through intersection or augmentation.

Next, we decompose inequalities to ensure they follow the standard form A C {i}. For example, an
inclusion such as

MM C Super N SuperC (50)

is rewritten as multiple separate inequalities, such as MM C Super(3, j) for specific indices ¢, j. The
resulting set of inequalities constitutes the non-trivial inclusion basis, which satisfies the necessary
constraints.

E.4 PROPAGATION RESULTS

We present some of the propagation results for the operators used in this work:

—Teagy : I = I, Ul = Ul, Cx(i) — Cx(i),Super(i, j) — Super(4,j), Sub — Sub,
Super(i, j) N SuperC(i, j) — SuperC(i, j), Super(i, j) N SuperC(j,4) — SuperC(j, ),

Sub(4, j) N SubC(i, j) — SubC(i, j), Sub(i, j) N SubC(j, ) — SubC(j, i), MM — MM for i = 1;
—Tpigy : I — I, INUl = Ulfori=m, I(i)NCx(i) = Cx(i), Cz(j) — Cz(j)

for j # i, Super — Super, Sub — Sub, SuperC(j, k) — SuperC(j, k) (j, k # 1),

1(i) N SuperC(4,j) — SuperC(s,j) (i # j), Cxz(j) N SuperC(j,i) — SuperC(j,i) (j # i),

SubC(j, k) — SubC(j,k) (j,k #14), I(i) N SubC(s,5) — SubC(4,5)(j # 1),

Cz(j) N SubC(j, ) — SubC(j,4), ULN MM — MM for i = m;

—Trpigy : L = I, Ul = Ulfori < m,UINMM — for: < m,UIN Cz N Super —

Cx for i < m,ULN Cx N Super — Super for i < m;

For the rest of the operators, again refer to Koole (2007).
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F PROOF OF THEOREM 4.1

cost independent of action: cost dependent of action:
e(z) cl(z,¢), al

Vn*ﬂ( z) Vot (z,e) Vi(z') n transitions to go

P.(elz) 6 Py[a'|(z,e), a]
J

State transition dynamics and costs during a sample path of the discrete-time embedded MDP.

For any MDP (S, As, ¢, P,7), the standard Bellman equation for the value function V,, 1 (s)
on the full state s can be written as:

Vat1(s) = min { s,a) 4y Z s’ | s,a) (5’)} (51)

€A,
“ s'eS

Separating the controllable state and the event s = (x, e) and using the definition of event-based
MDPs equation 5 we have

Vis1(z,e) = aelﬁi(n ) cl(z,e),a]l +~ Z Pz, e)|(x,e), a] - V(2 €) (52)
z,e (z’,e’)
— : Pe !/ / Vn /7 /
Zin @ e)al+y Z) (@ | (w,€), a] - Po(e' | 2) - Viu(a' €)
(53)
= i P P ot
2, A+ DA 5.0 o T DR 1) i)
2V (@)
(54
_ . P, [z o), al - Vi) S, 55
aéﬂi&){c[(‘”’e)ﬂH; [ | (x,€), a] n(x)} (55)

where we define the value function V,*(z) on the controllable state :

(z) :'yZPe(e|x)Vn(x,e). (56)

V*(x) is the value of the state immediately after an action is taken but before the waiting time
until the next event. Because there is a temporal gap between V* and V/,, the discount factor
must be applied at this stage to account for that delay.

We can always decompose the cost c[(z, €), a] into two parts: (1) a cost ¢(z) that depends only
on the controllable state (e.g., the holding cost in the M/M/1 example), and (2) a cost ¢[(x, ), a]
that depends on the full state-action pair, namely

C[(xv e)v a] = c(x) + &[(.T, 6), a]'
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Note that if the component ¢(z) does not exist, we can always set ¢(x) = 0 and ¢[(z, ), a] =
cl(z,e),al.

Then the Bellman equation in equation 55 can be rewritten as

Vati(z,e) =c(z) + min {5[(x,e),a]+ZPx[x’|<m,e),a]~V:(x’)}, (57)

UIEA(I,C)

and the value function V7, () can be rewritten as
Vi (@)
v Z Po(e|2)Vpi1(z,e) (58)

- e { Hé%t?e){5“%6)7@}+;Px[w’l(:v,e)7a]-v,:u’)H
= plaa) Rl Lé"ﬁ%i{e) {5[@* bl + 3B (@) al- v:@c’)H .

2¢/(x)

Therefore, we can go from V,*(z) to V7, | () through the following three operators:

T., [Vi(@)] = Vagi(z, e5) = minaeA<z o tel(z,e),al + >0, P2’ | (x,e), a] - Vi (')}
Tonie [U1(2),. .., Un()] = X5, Plej|2) - Us(w)
Teost [U(2)] = ( )+7-Ulz)

The operator-based Bellman equation on the value function V,¥(z) can be written as

Vi1 (@) = Teose {Tunis (Te, Va(@)], ..., Te, [V (2)])} - (59)
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G ALGORITHMS FOR IDENTIFYING STRUCTURAL RESULTS (SECTION 4.3)

In this section, we provide a detailed discussion of the algorithm used to identify structural properties
of the solution from the operator graph ( Section 4.3).

G.1 WHY IT Is CHALLENGING TO IDENTIFY STRUCTURAL RESULTS?

Given the operator graph, our goal is to deduce structural properties of the optimal policy and the
value function V*(z). Consider the example from Section 3, further detailed in Appendix E.1.
In that case, one can show that V*(x) is convex, which implies that the optimal acceptance
policy is threshold. This follows from the fact that convexity is propagated through each
operator in the graph. Consequently, convexity is preserved by the entire Bellman equation.
Since convexity is a fixed property under this composition of operators, it must also be a
property of the fixed point of the Bellman equation—namely, the optimal value function.

More generally, consider a problem where the operator graph consists of operators (77, . .., Tj).
For each operator, we are given a list of functional spaces (or properties) that it propagates. Our
objective is to identify a common functional space propagated by all operators; the optimal
value function must then belong to this space.

In practice, we do not have explicit lists of all propagated spaces, but only a set of primitive
spaces from which additional spaces can be generated. New propagated spaces may be obtained
by applying the two fundamental set operations, intersection and union. Indeed, if 7" propagates
A and B, then it propagates both AN B and AU B.

In principle, one could therefore consider the closure of the initial families under both inter-
section and union. However, because the initial spaces are only intersections of basis spaces,
and because we are ultimately interested in the smallest common propagated space across all
operators, it suffices to consider closure under intersection only.

A brief intuitive justification is as follows. Suppose a space of the form A U B (with A # B)
appears in the propagated closure for the operators. Writing this set in its Disjunctive Normal
Form (a union of intersections), we obtain a union of terms, each of which must be propagated
individually by all operators, since unions do not appear in the primitive families. If we
now replace every union in this representation by an intersection, we obtain a new space
that is propagated by all operators and is contained in the original set. Consequently, any
common propagated space built using unions admits a smaller counterpart formed purely
through intersections. As a result, the smallest common propagated space is built entirely from
intersections, and closure under intersections is therefore sufficient.

Our problem is therefore to find the smallest element (under C) among all intersection-closures
of the propagated spaces associated with each operator. This task is made more difficult by the
presence of non-trivial inclusion relationships between these spaces, which may cause distinct
expressions to represent the same underlying space.

To illustrate these challenges, consider the example discussed in Section 4.3, involving two
operators 77 and 7% and six properties A through F:

T propagates AN B, ENC, D,

Ts propagates CN A, DN F, B,

BNCCE.
Taking the closure under intersection, we obtain for 7} the family of propagated spaces
Pr={ANB, ENnC, D, AnNBND, ENCNE, ANBNENC, ANBNENCND}.
Similarly, for 75 we obtain

Py={CnNA, DNF, B,CNANB, DNFNB,CNANDNF,CNANDNFNB}.

31



At first glance, the intersection P; NP2 appears empty. However, using the inclusion BNC C E,
we see that
ANBNC=ANBNCNE,

which shows that A N B N C belongs to both families. Hence,
PiNPy={ANBNC}.

In general, for a typical operator, the number of primitive propagated spaces may grow quadratically
with the size of the state space, while the intersection-closure of these spaces can grow exponentially
in the number of primitives. Consequently, a naive approach that explicitly computes every propagated
space for each operator and then intersects them is computationally infeasible.

To address this, we introduce a dynamic programming algorithm that reduces both the time and
memory complexity of the procedure. The following sections present a detailed discussion of this
algorithm, including a proof of convergence, an analysis of its computational complexity and a
running example.
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G.2 ALGORITHM DESCRIPTION IN PSEUDO-CODE

Algorithm 1 Find smallest common propagated space

Require: O : A set of operators for which we know propagation results.
Require: B : A set of basis function spaces.

Require: P : The propagation results for all the operators in O.
Require: (74,...,7T}) list of operators in the graph.

Require: R the non-trivial inclusion basis.

Ensure: F the smallest common propagated space.

el e e

A

: Create a mapping m between {1 , K} and B, with K = #B.

Create the sets P; € P({1,..., K }) for each j based on P and m.
Create a dictionary R based on R and m such that if {i} C* U then U € R[i].
P < P; forall j
n<+0
while {P}> , does not converge do

(pz)kSJ A ( UpGPJTL p)kSJ

for jin (1,...,J) do

P;LH «Refine_propagated_space(P}', (p} k<7, R)
end for
n<n+1
: end while

D p> Upepr,_l D
: Create F by mapping back p*° to B using m
: Return F

Algorithm 2 Refine Propagated Spaces

Require: P} Set of elements of P({1,..., K})
Require: (p})i<,: List of sets of integers in {1,..., N}, B} is the set of elements that appear in

Pr.

Require: R: Dictionary corresponding to the non-trivial inclusion basis. If U C* {i} then U € R[]
Ensure: P "!: Refined list of spaces consistent across all operators. (77]7“ with the notation of the

1:
2:

3:

A A

9:
10:
11:
12:
13:
14:
15:

subsection G.3.3)
Pt « P!
for each a in 7?; do
for each 7 in a do
if Do,i,covers,P]"I (¢, R, p?) then
break
end if
for each p} in (p}} )i+, do
if i ¢ p}! then
Remove a from S;LH
break
end if
end for
end for
end for
return S}”l
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Algorithm 3 Do i covers P}’

Require: i: An integer
Require: R: Non-trivial inclusion basis.
Require: p}: Set of elements of P({1,..., K'}), itis the set of elements that appear in P}
Ensure: covers: Boolean indicating whether ¢ covers P}’
1: covers < False
2: if 7 is a key of R then

3:  for Cin R[i] do

4: if C' C pj then

5: covers < True
6 Break

7 end if

8: end for

9: end if

10: return covers

G.3 PROOF OF THEOREM 4.2
G.3.1 MATHEMATICAL DEFINITION OF THE PROBLEM

In the framework introduced by Koole (2007), structural properties of the optimal value function
and policy can be derived from the propagation behavior of the operators forming the operator graph
representation of the Bellman equation.

Formally, consider a graph of operators 71, ...,T), where n is the dimension of the state space,
and value functions belong to RY". Define a base family of K subspaces of RY", denoted as
B = {Bi,...,Bxk}. In this framework, these base subspaces are generated systematically, with
details provided in ??.

From these base subspaces, we define the set of function spaces for which propagation results can be

derived as:
S =span B = { n B;|QeP({l,....K})},
i€Q
where P({1,..., K}) is the power set of {1,..., K'}. We equip S with a non-trivial C relationship.
We discuss more precisely what it means bellow.

For each operator T, we can identify a set of propagated spaces S;, which is a subset of S. The
objective is to determine the smallest common space under C across all S;:

N
F = min ﬂ span S;.
j=1
F is indeed the smallest element of S that is propagated through all the operators and therefore

through the overall graph. From Theorem 4.1, we can conclude that V* € F and derive structural
results for the optimal policies.

Definition of the non-trivial C relationship.

The ordering relationship C must be defined according to the following rules:

* Base (trivial relationships): The relationship starts from a set of trivial inclusion relation-
ships, suchas AN B C B.

* Generation rule for non-trivial relationships: We add a finite family of non-trivial
inclusions of the form A C {¢}. From these, all other needed inclusions must be generated
by the following rule alone (without invoking the general transitivity rule to create new
ones):

IfACBandC C D, then ANC C BND.

This rule should be sufficient to produce a consistent ordering. We refer to this finite set
of non-trivial inclusions as the non-trivial inclusion basis. A similar constraint hold for
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equalities, in particular we should not have to use therule (A C B)A(BC A) = A=1B
and only the following ones :

1. Intersection If A= B and C = D, then (ANC) = (BN D).
2. Augmentation: If A = Band A C C, then (ANC) = B.

C is fully defined by the non-trivial inclusion basis.

The idea behind this constraint is that we can check if any inequality is verified in a constant time if
we have the non-trivial inclusion basis and non-trivial equalities have a common form. It is used in
lemma G.2 and in lemma G.3. We show that these rules are verified in our framework in section E.3.

G.3.2 REFORMULATION OF THE PROBLEM

We reformulate the problem to better align it with an algorithmic approach:

* Replace BwithZ = {1, ..., K}. In other words, each space is identified by an index.
* Replace S with P(Z) = P({1,...,K}).

* Replace C with an ordering relationship C* over P(Z). This extends the canonical inclusion
relationship on P(Z). For example, (), c;; By C (),cy By becomes V . C* U.

* The non canonical C* implies a non canonical equality relationship =* defined as : if
UcC*VandV C* U then U =* V. Notably we can now have equalities that are non
trivial, such as (1,2,3) =* (2, 3).

* For each relationship in the non-trivial inclusion basis {i} C* U, we introduce a tuple
representation r = (i, U). Denote R as the set of all such inclusion relationships.

* Replace S; with the corresponding P; C P(Z), such that S; = {(,co Bi | @ € P}
The closure under intersection, span Sj, is equivalent to span P;, which is defined as the closure
under two operations: union and the generation of new sets using the extended ordering relationship

C*. In other words if U UW € span P; and V' C* U, then the set VU U U W is also included in
span P;.

The problem now becomes finding the biggest common element for C* across all span P; :

N
Zr =" max < ﬂ span Pj.)
j=1
Here, the intersection is taken with respect to the =" relationship.

This reformulation is advantageous for algorithmic purposes because the implicit relationships among
functional spaces, captured by C* and =* in P(Z), are made explicit through the set R.

G.3.3 SOME NOTATIONS

Below we introduce several pieces of notation that will be used in our construction. Throughout, let
Ay, ..., Ay CP(Z), and let i be any index in Z.

» We say that ¢ appears in each family (A, ..., Ay) if, for every j € {1,..., N}, there
exists at least one set @ € A; such that i € a. This notion naturally extends to a subset
I C 7: we say that I appears in each family if all ¢ € I appear in each family according to
the above definition. If we only consider one family .4, we say that ¢ appears in A.

* For a particular A;, we say i covers Aj; if there exists (¢, U) € R such that U appears in

A;.

* We write i < (j, (Ai,...,Ay)) if either i appears in each family (Ay,..., Ay), or i
covers A;.
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Finally, given A, ..., Ay C P(Z), foreach j € {1,...,J} define

Al = {aEAj‘Viea: i (j, (Al,...,AJ))}.

J
‘We then define the function
F(An.. Ay) = (AL, ... A).

G.3.4 THE ALGORITHM

A straightforward yet naive method would be to construct the set span P; for each j by exhaustively
applying every closure rule, then intersect these sets at the end. However, due to the non-trivial
inclusion relationships, this expansion can be both difficult to implement and prohibitively large in
memory usage—scaling exponentially with the size of each P;.

Instead, we propose a more efficient procedure that avoids this blowup. We form a sequence of tuples
(P}, with P°=(Py,...,P;) and P""!=F(P").
It will be shown below that this sequence converges to a stationary limit

P> = (P°,....,PY).

= v

pEP®

‘We then define

and prove that for each j,

N
p>* =" U p, and p>* ="Tr =" max(ﬂspanpj).

pEP® j=1

In other words, the family of subspaces {Bjy | k € p>} constitutes the smallest space that is
propagated through the entire operator graph.

G.3.5 PROOF OF CONVERGENCE

Fixed points correspond to common propagated spaces.

Lemma G.1. Let P = (Py,..., Py) be a tuple of subsets in P(Z) such that the corresponding
Sfunction spaces of each P; are propagated by operators T);. Define p; = Upe PP foreach j. If P is

a fixed point of F, then p; =* p; for all i, j, and the set F = {B; | i € p1} is a common propagated
space across the operators.
Proof. Since P is a fixed point of F', every index ¢ € p; must satisfy
i< (1, (Pr,...,Py)).
There are two ways this can happen:
1. 7 appears in each family (P;, ..., Py). In this case, i belongs to p; for every j.

2. i covers P;. Here, there exists (i,U) € R such that U C p;. By definition, {i} C* U.
Consequently, p1 \ {i} =* p1.

Combining these observations, define
py = {i € p1 | i appears in each family (P, ..., Py)}.

From the cases above, we see p; =" p1, and in fact p; =" p’; for all j. Hence,

*

pr="p2="---="pj.

Finally, let 7; = {B; | ¢ € p;}. Since each F; is propagated by T; and F; =* F; for all 4, j,
we conclude that F = {B; | ¢ € p;} is indeed a single common propagated space for all the
operators. [
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Equalities under =* share a useful structure.

Lemma G.2. I[fU =* V, then Uand V can be decomposed as U = Uy UUy and V = V1 U Vs,
where Uy = Vi, U =* Uy, and V =* V;.

Proof. In our setting, and due to the specialized nature of the C* relation, every non-trivial equality
under =* can be derived from a collection of trivial equalities by repeatedly applying two fundamental
rules:

1. UnionIf A =* B and C' =* D, then (A U C) =* (B U D).

2. Augmentation: If A =* Band A C* C, then (AUC) =* B.

If the equalities used in these steps already satisfy the decomposition property of the lemma, then the
newly derived equality also satisfies it. Since all trivial equalities fulfill this property at the outset, an
induction argument ensures that every equality produced in this manner will do so as well. O

Common propagated spaces have a corresponding fixed point.

Lemma G.3. Let’s consider a common propagated space F across the operators T;. There exists a
Sixed point P = (Py, ..., Py) of F which corresponding propagated space (lemma G.1) is F and
such that P; C P;.

Proof. Let’s consider a common propagated space F and a corresponding representation p €
ﬂ;vzl span P;.. Lets p; the representation of p in each span P;. Thanks to the previous lemma G.2

we can write p; = p} Up? for all j such that p} = pi = .- = le. Now let j, and take ¢ € p;. There
are 2 possibilities :

* 1€ pjl- and therefore 7 appears in each family (Py,...,PJ).

* i € p; and therefore {i} C* pj. And with arguments similar as in the lemma G.2 (relying
on the specialized nature of C*) we can say that ¢ covers P;.

In other words i < {j, (P1,...,Ps)}. We write each p; as an union of elements of P; and define
P; the set of these elements. From the previous result we can conclude that P’ = (Pf,...,P7)is a
fixed point of F'. This conclude the proof.

Theorem G.4. Let {P"}3°, be the sequence defined in the algorithm, where each P™ =
(P, ..., P}). This sequence converges to a fixed point, and the corresponding function space
is the smallest common space propagated by all operators.

Proof. We note P" = (Pf',...,PY). For each j {P}'}72 is a decreasing sequence of subsets of

the finite set P(Z). Each one of them is then stationary after a certain point, therefore { P™}22  is
itself stationary after a certain point.

We can now let P°° be the limit of this sequence. By the previous lemma G.1 we can define po, and
Foo = {DB; | i € po} to be the corresponding common propagated space.

Suppose there is another common propagated space . By Lemma G.3, there exists a fixed point
P = (P,...,Py) corresponding to F. A routine induction shows that any set a removed from P}

at some step of the algorithm can not appear in P;. Therefore Upe p, C p;° and Foc C F. Hence,
Foo 1s the smallest among all common propagated spaces. ' O

G.3.6 COMPLEXITY

Applying F to each P; requires O(N.J?) time per iteration, where N = max; Do ep, #p denotes
the maximum total number of spaces across all propagated sets for any operator. In practice, the
sequence { P"} typically converges in only a few iterations, ensuring that the overall runtime remains
tractable. Additionally, the memory complexity is O(NJ), representing a significant improvement
over the naive approach, which is exponential in both time and space.
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This gain is already meaningful for small-scale problems. For instance, in a state space of dimension
n, the size of the base set B3, and hence the quantity N, typically scales as n2. When n = 4, the base
set already contains #5 = 53 elements.

G.3.7 A RUNNING EXAMPLE

In this section, we illustrate the algorithm using a running example. Consider the following setting:

Ty propagates FN A, ENA, C, DNF, H,
T, propagates HNC, DNF, AN B,

T5 propagates FNG, CNBNI, AND, H,
DNC CE,

FcCB,

AcCG.

Using the notation from the formal proof, we start with the initiation (n = 0):

PO={FNA ENA, C, DNF, H},
732 :{HQO, DﬂF? AOB},
PY={FNG, CNnBNI, AnD, H},

p?: {A7O7D7E3FuH}7
pgz {A7B707D7F7H}7
p}={A,B,C,D,F,G,H,I}.

First Iteration (n = 1). 'We now evaluate which propagated sets are preserved across all operators.

For T7:

« FNA: F, A€ p3npl = keep.

s C: C € pYnpd = keep.

s ENA:Cepdnpl. D,C €pland DNC C E = keep.
e DNF: D,F € pdnp)= keep.

Thus,
Pl ={FNnA EnA, C,DNF, H}.

For T5:

« HNC: H,C € p{ N pY = keep.
« DNF: D,F € pYnNpd = keep.
s ANB: Aep{npl, F C Band F € pJ = keep.

Hence,
Pl={HNC, DNF, AN B}.

For T5:

e FNG: Fep!npy, AC Gand A € p§ = keep.

« CNBNI: I ¢p)nps andnotinvolved in any relation = discard.
e AND: A, D € p9 NpY = keep.

e H: H € pY N pY = keep.

38



Therefore,
Py ={FNG, AnD, H}.

‘We now have :
p% :{A707D7E7F>H}7
p% :{AaBaC7D7F7H}7
p},, ={A,D,F,G,H}.

Second Iteration (n = 2). We now report only the spaces that are discarded in this iteration.
For 17:
s C: C ¢ p} = discard.
P2={FNA ENA DNF, H}.
For 15:
s HNC: C ¢ p} = discard.

PZ={DNF, AnB}.
For T5: We keep all the spaces, therefore :

P:={FNG, AnD, H}.

Update:
p? ={A,D,E,F, H},
pg = {A7BvD7F}a
p§ ={A,D,F,G,H}.

Third Iteration (n = 3). For T;:

s E N A: Previously kept due to D N C' C E, but now C' ¢ p? = discard.
« H: H ¢ p} = discard.

PP={FNA DNF}.
For T5: We keep all the spaces, hence :
Ps ={DNF, AnB}.
For T5:
e H: H ¢ p3 = discard.
P ={FNG, AnD}.

Update:

pi)’ {AaDaF}a
pg {A’ B7 D7 F}7
pg ={A,D,F,G}.

Fourth Iteration (n = 4). At this stage, the propagated sets remain unchanged, indicating conver-
gence. Thus, the largest common propagated space is:

ANBNDNFNG=ANnDNF.
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H WHY THEOREM 4.1 IS NOT TRIVIAL? — ILLUSTRATIVE EXAMPLES

Tusn 4—{ Teose ]«—{TmmHTw

topology for non-event-based MDPs

universal topology alternative topology

Universal topology for event-based MDPs, an alternative topology for an event-based MDP, and the
topology for a non-event-based MDP.

In this section, we explain why the existence of a universal operator graph topology for event-based
MDPs is not trivial. First, for an event-based MDP, it is possible to have operator graphs with
alternative topologies. Second, for a non-event-based MDP, it may be impossible to construct an
operator graph using the universal topology. We illustrate these two points through two examples.
The summary of the results is illustrated in the figure above.

H.1 THE M/M/1 EXAMPLE WITH AN ALTERNATIVE OPERATOR GRAPH TOPOLOGY

For easy reference, we restate the Bellman equations for the M/M/1 example with controlled arrival
and departure here:

. At pu+a N A4 p+a .
Vn+1(l‘7A):mln{—TM+Vn($+1), CM—FVTL(J?)}, (60)
. A p+a . .
Vo (@,0) = iy [a(ac) - 20 o Vi) + (- aeo) Vilo - 1] o)

where V,* () is the value function defined on the queuing state x:

N x A
Vit & R 40§

Talew)+ K o)+ (1- 25 ) we)] . e

Instead of the value function V,*(x) on the queue length, we can decompose the Bellman equation on
the standard value function V,,(z, €) on the full state (x, €).

For example, the value function V,, 11 (x, A) can be rewritten as
Vag1(2, ) = Thin {Tcost, L (Toni e AT [V ()], Tor [V ()], Tor [Viy (2)]3) 5 (63)

Teost, 0 (Tunser {Tow [Viy (2)], Tor [V, (2)], Toor [Viy (2)]}) } (64)

with the modified event operators

T Vi (0)] = Vo(z,8),  Tor [V, (2)] = Va(2,D), Tor [V (2)] = Va(z, 9), (65)
a modified uniformization operator
Tonise [U(z,n),U(x,D),U(x,2)] = (66)
jp\"f; + % U, n)+ 5 U,0)+ (1 = AX“) Uz, @)} , (67)
an action-dependent cost operator
Teost,a {Ul(x,€),a]} = c[(x,e),a] + Ul(z, e),al, (68)
and a minimization operator
Thin {Ul(z,€),a]} = min Ul(z,e),al. (69)

GGA(IYe)
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H.2 AN EXAMPLE OF NON-EVENT-BASED MDP WITH A DIFFERENT OPERATOR GRAPH
TOPOLOGY

An example of a non-event-based MDP is the M/M/1 queue with controlled arrival and service rate
optimization.

Patients arrive according to a Poisson process with rate A and wait to be served. The state s = (z, €)
has two components: the number of patients in the queue x € N, and the event e € {A, D}, where
A denotes arrival and D denotes departure. The action a = (aca, aro) consists of admission control
(CA) aca € {0,1} when a new patient arrives, where 0 denotes rejection and 1 denotes acceptance,

and service rate optimization (RO) agp € {i1, . - ., ptx }- The actions space is
A, = {071}’><{/'617~-~7,UK} sE{(x,e)|e:A} . (70)
S & x{un..opx} se{(@e)|e=D}

When the system is not empty (z > 0), the state transition time is exponentially distributed with rate
A(s,a) = A + ago, and the state transition probability is

1{x’:w+acA} ’ %am’ e=A¢e =2

P(s/]s,a) = 1y —etae—1} ,\ii;m, e=A, e: =D o
Y=z} " 3far €= D€ =2
1{$’:w71} . %R;Ro’ €:D,€/ =D

The cost includes a one-time reward r for accepting a patient or a one-time penalty p of rejecting a
patient, a holding cost per unit time py, (x) that depends on the number of patients in the system, and
a service cost per unit time p; (aro) that depends on the service rate. So the cost can be calculated as

—r + ph(m"l‘l)"l‘ps(aRO) e = A, Qca = 1

& plase)
N ¥
é(s,a) = c+ %, e=2A,acs =0 . (72)
pn(®)+ps(aro) e—=D
Aarot+oa 7 -

We can see from equation 71 that while the state transition probability can be decomposed, the
probability of the event P, (e | z, a) actually depends on the action. This is because the service rate
affects the probability of the next event being an arrival or a departure.

In this case, we cannot use the universal topology for non-event-based MDPs.
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I DETAILED DESCRIPTIONS OF EXAMPLES IN SECTION 5

In this sections we give more details on the examples discussed in section 5.

Example 3 (The MCTS succeeds to generate formulation with high structural expressiveness in
complex problems). Let us consider the following problem :

We aim to minimize the long-run average cost of operating our hospital. The hospital has 3 wards
arranged sequentially, sharing a total capacity of 20 beds. Each ward has its own healthcare
team and manages its own patients. On average, 7 patients arrive at the first ward per hour. The
wards serve patients at average rates of 10, 5, and 2 patients/hour, respectively. Patients progress
sequentially: from the first ward to the second, and then from the second to the third. After treatment
in the third ward, patients leave the hospital. Incoming patients can be rejected, incurring a cost of
20. Additionally, patients can be directly transferred from one ward to the next before being served at
an average rate of 3 patients/hour for each ward, with each transfer costing 5.

Key challenges: There are various types of events (controlled arrivals, departures, transfers) and
implicit constraints (nonnegativity) on the state space.

The first level of the tree consists of defining the parameters of the problem, while the second level
identifies the state space. This gives:

Tpeds = 20,

Tarrivals = 77

T'service = (107 9, 2)» T1 + T2 + w3 < 20,
T'transfer opportunity — 3, x1, T2, 723 > 0.

Crefusal = 2 ;

Cransfer = O,

Here, © = (1, x2, x3) represents the number of patients in the respective wards. Notably the positive
constraints were implicit.

The next step defines the events, their probabilities, and the available actions with their corresponding
costs and effects on the state. Let I' = Tarrivals T'service,1 + Tservice,2 + T'service,3 + 3rtransfer opportunity
and (¢;)1<;<3 the canonical base of IR. The events are as follows:

 Patient arrival :
Parrival = Tarrivals/ra
Aamval — {aacceph arefuse}
amval(m | x aaccept) = ]]-(51j =r+ E1)
amval(x | z arefuse) = ]1('77 = :L‘)
Cdmval(x y Ly (l) - Crefuml]]-(a - arefuse)-

e Patient served ward 1 :

Dservice,1 = Tservice,l/l—‘7

-Aseerce 1 — @
x—x—al—i—ag) if x4 > 0,
f)serwce 1 .
(' =x) otherwise,
Cservice, 1 ( O

¢ Patient transferred ward 1 to ward 2:
Ptransfer,1 = Ttransfer opportunity / F7

»Atransfer,l = {atransfery akeep}a

Ptransfer 1(93 ‘ T atrangfer) = ]].(ZL' =xr—e;+ 62)
Ptransfer 1( ‘ xz, akeep) = ]l(ac = LL')
Ctransfer, l(x x, a) = Ctransfer]l(a = atransfer)~

We do not detail the system dynamics for the remaining events: Patient served in ward 2”, “’Patient
served in ward 3”, and “Patient transferred from ward 2 to ward 3,” as they are similar to the examples
illustrated above.
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The next step is to identify the operational cost, which in this problem is equal to 0 (Maybe I should
add one).

Using the dynamics of the system for each event, we can already derive the corresponding operators.
In the last layer of the tree the LLM identifies the operators for which propagation results apply. For
this problem, the identified operators are:

e Patient arrival :
Tea f(z) = min{crefusa + f(@); f(z + €1)}

* Patient served ward 1 :
r—e; +ey), ifxy >0,
TTDl,lf(x): {f( 1 2) 1

f(z), otherwise.

¢ Patient transferred ward 1 to ward 2 :

TCTD,(I,Q)f(I) = min{ctransfer + f($ —e1+ 62)7 f(I)}

¢ Patient served ward 3 :

Torsf(z) = f((z —e3)T)

Similar operators can be derived for "Patient served in ward 2” and “Patient transferred from ward 2
to ward 3.”

For each of these operators we can automatically list the functional spaces they propagate, for instance
Tca,1 propagate all the following spaces (see Appendix for the details of each one of them) :

I, UI, Cxz(1), Super(1,2), Super(1,3), Sub,

Super(1, 2) N SuperC(1, 2), Super(1,3) N SuperC(1, 3),

Super(1, 3) N SuperC(3, 1), Super(1,2) N SuperC(2, 1),

Sub(1,2) N SubC(1,2) Sub(1,3) N SubC(1,3),

Sub(1,2) N SubC(2, 1), Sub(1,3) N SubC(3,1), MM

We also do this for Ty and Tios. Also, depending on the shape of the state space certain spaces
must be dropped. Finally, we can run our second algorithm introduced in the subsection 4.3. For this
problem we end up with the following propagated space :

INUI NMM

From which we can extract automatically the following structural results :

1. Controlled arrival in ward 1 : let 7, NOE S — {0, 1} be the optimal acceptance policy in
the first ward such that O is refusal and 1 acceptance.

e A1) is decreasing in the number of patients in the hospital.

* Téaq) s decreasing in the directions (1, —1,0) and (1,0, -1).

2. Controlled departure from ward 1 to ward 2 :, let m¢pp g 5y © S — {0, 1} be the optimal

departure policy such that O correspond to keeping the patient in the ward 1 and 1 is moving
them to ward 2.

. ﬂéTD(Lz) is decreasing in the number of patient in the ward 2, ie in the direction
(0,1,0).

. WéTD(M) is increasing in the number of patient in the ward 1, ie in the direction
(1,0,0).

3. Controlled departure from ward 2 to ward 3 : let 7y 5 5y : S — {0, 1} be the optimal

departure policy such that O correspond to keeping the patient in the ward 2 and 1 is moving
them to ward 3.
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‘ Vn+1 = Tcost(Vunif) =0+ 095Vumf

f

Vu.nif = Tunif (VCOUtroled arrival ward 15 VService completion 1, 2, 35 VControled departure 1, 2, 3) =

ﬁ 7VControled arrival ward 1 10VService completion 1 + 5VService completion 2 +

2VService completion 3 + 3VC()ntroled departure 1 + 3VControled departure 2 + 3VControled departure 3

VContmled arrival ward 1 VService completion 1 VService completion 2 VService completion 3
= Tca(1,cost—20) (V) = Trp(1,2)(Va) = Trp(2,3)(Va) = Tpy3)(Va)
/ AN

VControled departure 1 VControled departure 2 VControled departure 3

= Terp,2,cost=5)(Va) | | = Torp(2,3,cost=5) (V) = Tcp(3,cost=5) (Vn)

Figure 5: Operator graph of Example 3

. ﬂ'éTD(ZB) is decreasing in the number of patient in the ward 3, ie in the direction
(0,0,1).

. WéTD(Q,S) is increasing in the number of patient in the ward 2, ie in the direction
(0,1,0).

In other words, the optimal policy of the problem is threshold along many different directions. These
structural results and the optimal policy obtained by running a solver on the formulation are then
communicated back to the user.

Key takeaways: Autoformulating an event-based MDP involves multiple steps, and our proposed
algorithm effectively navigates these challenges in complex problems. Most of the time the resulting
formulation has high structural expressiveness

Example 4. » Two correct graphs of operators with different structural complexity
Let us consider the following problem :

We aim to minimize the long-run average cost of operating our hospital. The hospital has 1 ward that
manages 2 types of patients with shared healthcare teams. There are Ny, beds in total. The average
arrival rates of the patients are A\1/hour and Ao/hour respectively. A team take care of a patient with
an average rate that depends on their type : p1/hour and po/hour respectively. When a patient arrive
we can refuse it, it occurs a cost of c1 for the first type of patients and cs of the others.

Key challenges: We cannot obtain structural results from the straightforward problem formulation.
How to find an equivalent combination of operators that allow us to obtain structural results?

Straightforward problem formulation. The natural events of this problem are Arrival of a patient
of type 1, Arrival of a patient of type 2, Departure of a patient of type 1 and Departure of a patient of

type 2.
This approach lead to the following operator graph :

1 = Teost { (Tt [Teaqy (Vi) Tea) (Vi) Tory (Vi) Toneay (Vi) Vil
With probabilities in T+ that depends on the state, you get for instance :

Hm1my

——————— with g = max R .
M+ o + 1, M (Ml Mz)

Ppa1) =

Koole’s results don’t extend to probabilities that depend on the state in Ty,;;. We can’t get any
structural result from this formulation, even if it is a right one.

However, this formulation is actually equivalent to the following one:
i1 = Teost { Tunit [Teany (V))s Teao) (V) Tooy (Vi) Toy (Vi) -
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This time the probabilities in Ty are (With I' = Ay + Ao + uNp) :

L. peag) = Ai/T

2. o) = Po) = 3 (1= 2422)
which don’t depend on the state. The dependence in the state has been absorbed by the new T
operators for which we have structural results :

o) = T8 f((e—e)) + (1 - = s

Indeed, with this formulation we can show that the following space is propagated through the Bellman
equation :
I NCx N Super

And we can deduce structural results from there.

Key Takeaways : Problem formulation and structural analysis are inherently connected, as certain
valid formulations may not permit structural analysis.

Example 5. » We don’t have any formulation that reveals the structural results.
Let us consider the following problem :

We aim to minimize the long-run average cost of operating our hospital. The hospital has 3 wards
arranged sequentially, with capacities of 5, 15, and 15 beds, respectively. Each ward has its own
healthcare team and manages its own patients. On average, new patients arrive at rates of 3, 20, and
5 patients/day in the respective wards. The wards serve patients at rates of 10, 5, and 3 patients/day,
respectively. After being served in the first or second ward, we can transfer to the next ward at a
cost of 2 per transfer or keep them in the current ward. Patients served in the third ward leave the
hospital. Additionally, patients can be moved back from ward 2 to ward 1 at a rate of 3 patients/day
or from ward 3 to ward 2 at a rate of 1 patient/day, each transfer incurring a cost of 2. Incoming
patients can also be refused, incurring costs of 5, 10, and 15 for wards 1, 2, and 3, respectively.

Key challenges: The solution to the problem exhibits structural properties, but these cannot be
anticipated regardless of the choice of operator graph.

The autoformulation part of the algorithm managed to find a correct operator graph :

Vi1 = Teost (Tunit (Tea s (Vi) Tea,2 (Vi) Teas(Viy),
Te,1,2) (Vi) Tem,2,3) (Vi) Terp, 2, (Vi )
Tem,3.2) (Vi) Toi (Vi)

The structural results observed experimentally (see Figure 6) cannot be predicted from the operator
graph. Unlike Example 2, this issue cannot be resolved with a better formulation, as the structural
results have not yet been theoretically established.

Key takeaways: The current method for identifying structural results fails on certain problems, as it
depends on limited theoretical results.

Example 6 (Two wards with controlled jockeying). Natural language description :

We aim to minimize the long-run average cost of operating our hospital. The hospital has two wards
running in parallel, each managing its own patients with a dedicated healthcare team. The first
ward can hold up to 5 patients, while the second can accommodate up to 10. Patients complete their
treatment in the second ward before leaving the hospital. Each patient in the hospital cost 2/hour
to the hospital. On average, 3 patients arrive at the first ward per hour, and 5 arrive at the second.
New patients can be rejected, incurring a cost of 5 for the first ward and 10 for the second. The
first ward operates at a frequency of 10 patients/hour, while the second operates at 5 patients/hour.
Patients treated in the first ward can either remain there at no cost (but will require further care by the
same team before leaving the ward) or be transferred to the second ward at a cost of 2. Additionally,
patients can be transferred back from the second ward to the first at a frequency of 3 patients/hour,
with each transfer costing 2. Refusing a transfer incurs no cost.
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Number of Patients in Ward 2

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of Patients in Ward 3

Figure 6: Optimal policy for a controlled jockeying problem across three wards with controlled arrival
and unControlled departures in the last ward. One of the event is the opportunity to move a patient
from ward 2 to ward 3, the possible actions are : move (in red) or keep (in blue). The graph shows the
switching curve the optimal policy depending on the number of patients in the wards. The optimal
policy is structured but we can not anticipate it with the results from Koole (2007) and therefore it’s
beyond the capacities of our algorithm.

The operator graph of the problem is illustrated 5. The Bellman equation propagate the following
function space :
I N Super N SuperC

Let x = (n1, n2) be the number of patients in the two wards. We have the following structural results
for the optimal policy:

1. Controlled arrival in ward 1 : let 7. NOX S — {0, 1} be the optimal acceptance policy in
the first ward such that O is refusal and 1 acceptance.
e A1) is decreasing in the number of patients in the hospital.
* Téaq) 18 decreasing in the direction (1, —1).
2. Controlled arrival in ward 2 : let ¢, ) : S — {0, 1} be the optimal acceptance policy in
the first ward such that O is refusal and 1 acceptance.

e T A(2) is decreasing in the number of patients in the hospital.

* Téa(g) I8 decreasing in the direction (—1,1).

3. Controlled departure from ward 1 to ward 2 :, let 7épy ; 5) ¢ S — {0, 1} be the optimal

departure policy such that O correspond to keeping the patient in the ward 1 and 1 is moving
them to ward 2.

. WéTD(M) is decreasing in the number of patient in the ward 2, ie in the direction (0, 1).

* Tém 1,2) is increasing in the number of patient in the ward 1, ie in the direction (1, 0).

4. Controlled departure from ward 2 to ward 1:, let 7éppy 5 ;) : S — {0, 1} be the optimal

departure policy such that O correspond to keeping the patient in the ward 2 and 1 is moving
them to ward 1.

. WéTD(Zl) is decreasing in the number of patient in the ward 1, ie in the direction (1, 0).

* Tém @1 is increasing in the number of patient in the ward 2, ie in the direction (0, 1).
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Vi1 = Teost (Vanis) = 2T + 0.95Viuis
unif = Tunif(VControled arrival ward 1,25 VService completion ward 1,25 VControled change of ward 2 to 1) =
Vit = Tunit (Ve 7 ! 1% . )=

1
% 3VControled arrival ward 1 + 5VControled arrival ward 2 + 10Vservice completion ward 1+

5VService completion ward 2 + 3VControled change of ward 2 to 1

1 N

Veontroled arrival ward 1 | | Vontroled arrival ward 2 | | VService completion ward 1| | Vservice completion ward 2| | VControled change of ward 2 to 1

= Toa@eost=5)(Va) | | = Teagecost=10)(Va) | |= Terp2,cost=2)(Va) = Tpii2) (V) = Torp,1,cost=2) (V)

Figure 7: Operator graph of Example 5

J DETAILS ON THE METHOD

J.1 LLM ENHANCED MCTS

The Monte Carlo Tree Search (MCTS) formulates the problem in four steps, which correspond to
four levels of the tree. A node in the first layer, denoted m, represents the parameters of the problem,
such as the number and size of queues. A second-layer node mo represents the state variables
and the constraints defining the state space. A third-layer node mg represents the possible events,
their probabilities, the corresponding actions and operational costs. Finally, a fourth-layer node m4
represents the operators associated with each event.

For a given problem description, each m; is identified through the standard MCTS steps: selection,
expansion, evaluation, and backpropagation, omitting the simulation step in this context. Details are
given bellow. For a give node m; we denote Child(m;) the children of the node in the tree.

Back-propagation step in MCTS

Early termination of Reward from
bad rollouts terminal nodes
mo 0

~)§

’
m! m! ,m1 ’
4 ,’
[/ ’
m 1
2 2 2 !
xm m m m4

Syntax LLM + Solver
consistency evaluation convergence

Figure 8: MCTS for constructing operator graph of event-based MDPs. (1) Solver feedback
complements LLM self-evaluation for more objective rewards. (2) Syntax checks at intermediate
nodes detect errors early, preventing failed full rollouts.

J.1.1 SELECTION

The selection step guides the search towards promising regions of
the tree. Starting from the root, the algorithm recursively selects
child nodes using the Upper Confidence Bound for Trees (UCT):

x In N(m;)
My, = arg MaXp,,,  Child(m;) (V(mi+1) +tw m)
Kocsis & Szepesvari (2006). This process continues until reaching an unexpanded node. Here,
mj, is the selected child node, V'(m; 1) is its estimated value, N(m;) and N (m;41) are visit
counts for the parent and child nodes respectively, and w is an exploration constant. This formula
balances exploitation (first term, favoring high-value nodes) with exploration (second term, favoring
less-visited nodes).
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J.1.2 EXPANSION

Upon reaching an unexpanded node m; of depth ¢, we generate its
child nodes through an expansion process. Unlike traditional MCTS,
which operates within a predefined search space, our approach ex-
plores an open-ended hypothesis space of component formulations.
To facilitate this expansion, we employ LLMs as adaptive hypothesis
generators. These models, conditioned on the partial formulation
constructed up to node m;, propose potential formulations for the
next component in the search process.

At each node m;, the LLM generates potential child nodes m; corresponding to next-step component
formulations. This process follows the probability distribution:

pe(mir1lm<i, d) (73)

where d represents the problem description and m<; represents the partial formulation constructed
up to that depth.

The LLM is queried using a structured prompt consisting of three components: (1) the original
problem description d, provided in natural language; (2) the partial formulation m<;, represented in
JSON format; and (3) level-specific instructions that define the expected output format and relevant
constraints. Additionally, we instruct the LLM to return candidate formulations using the same
structured dictionary format to ensure consistency across iterations.

For each node expansion, we sample H candidate formulations from the LLM’s output distribution:

Child(my) = {ml; | mly ~ ps(-lm<i,d), Vh € [H]} (74)

where m/', | represents the h-th candidate formulation.

When generating new candidate formulations, we systematically verify their syntax consistency
with the existing partial formulation by evaluating the mathematical expressions as the constraints
or the probabilities of the events. This step allows us to immediately discard invalid options,
ensuring coherence throughout the expansion process. If a candidate fails to meet syntax consistency
requirements, we re-query the LLM for a revised formulation.

If the maximum number of retries is reached, we assume that the inconsistency is not solely due to the
stochastic nature of the LLM but rather stems from an issue in the existing partial formulation—such
as a missing variable definition in earlier steps. In such cases, we terminate the rollout and immediately
backpropagate a score of 0 along the current branch.

J.1.3 EVALUATION

After expanding a node, each newly created child node undergoes an initial evaluation to estimate
its value, guiding subsequent selection in the search process. Assessing the correctness of a partial
formulation relative to the original problem description is non-trivial, to address this challenge, we
employ an LLM-based ranking evaluation for each set of child nodes, providing a more informed
initial assessment.

Specifically we give the LLM the partial formulation till the current node m<; and let it rank the
child nodes Child(m;). The resulting ranks are then center-normalized to the interval [0, 1], with the
middle rank positioned at 0.5. We define the normalized score as s(m?H), which is used to initialize
the value of each child node:

Vbrior(miﬁrl) — s(m?_ﬂ). (75)

This approach deviates from traditional Monte Carlo Tree Search (MCTS), which typically assigns
uniform priors to newly expanded nodes. Instead, the LLM evaluates the formulations by incorpo-
rating optimization principles and problem-specific context, potentially capturing aspects such as
formulation correctness, constraint feasibility, and alignment with the overall problem structure.
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J.1.4 BACKPROPAGATION

Unlike conventional Monte Carlo Tree Search (MCTS), which typically simulates the problem to
a terminal state after expanding a child node, our approach continues expansion until a terminal
node m; is reached. The resulting formalization m<; is evaluated against a baseline, typically the
formalization obtained after one rollout. The LLM assigns a score between 0 and 1 based on its
preference for the new formalization over the baseline. To mitigate bias in the LLM signal sy, we
also check whether the solver successfully converges on the formalization, setting Sconvergea = 1 if it
converges and 0 otherwise. The final backpropagated score is then given by s 1m X Sconverged-

The backpropagation process consists of updating the value of each node m; along the current branch
using the following update rule:

‘/back(mi) ‘ N(mL) + SLim X Sconverged
N(mz) +1

Voack (m;) <= (76)

where N (m;) denotes the number of times the value of m; has been updated. After applying this
update, we increment the count:

N(m;) < N(m;) + 1. (77)

K DESIDERATA OF AUTOFORMULATION

K.1 DESIDERATA AND CORRESPONDING CHALLENGES

The overarching objective of autoformulation is to autonomously solve problems expressed in natural
language. This objective can be decomposed into three essential desiderata: (see Fig. 1 for how our
framework fulfill them)

Accuracy. The ability to translate the natural language description into a suitable formal framework
while preserving semantic accuracy. Autoformulation should correctly formulate the problem. (in
the context of this paper output a MDP formulation that correctly reflects the problem description in
natural language).

Computational Tractability: The resulting formalization must support efficient computation of
a solution. For instance, autoformulation should identify structures of the optimal policy (e.g., the
action is monotone in the state). The structures should be identified based on the formulation only,
before the problem is solved. This facilitates in selecting low-complexity algorithms tailored for
finding policies with certain structures (e.g., solvers for threshold policies).

Interpretability: Autoformulation should also be interpretable in two aspects. » Interpretability of
formulation: We should be able to trace each components of problem formulation back to the natural
language problem description. » Interpretability of policies: By identifying structural properties
of the optimal policy, the autoformulator can explain the policy, making it easier for non-technical
domain experts to understand and adopt the policy.

These desiderata come with corresponding challenges that must be addressed. We discuss them
below, and use them in Section 5 to evaluate the performance of our proposed algorithm against these
criteria.

Challenges in Accuracy
Achieving correct formalization is a non-trivial task, as it amounts to searching within a vast space of
possible formulations. The main challenges include:

* Semantic Understanding: The system must correctly capture the underlying dynamics of
the problem described in natural language. For example, understanding that admitting a
new patient to a hospital reduces the number of available beds

* Parameter Identification: Relevant variables, constraints, and objective components must
be identified and instantiated correctly. For instance, the system should infer the arrival
frequency of different types of patients to the hospital.
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* Syntactic Validity: The generated formulation must conform to the syntactic requirements
of the chosen formal framework while preserving the original problem’s intent. For example,
state updates should be expressed using syntactically valid expressions, such as correct
Python formulas.

Challenges in Computational Tractability

Fulfilling the second desideratum goes beyond achieving a correct formalization: the chosen repre-
sentation must also support efficient solving. In this work, we particularly emphasize the extraction
of structural properties, which gives rise to two key challenges:

* Expressiveness of the Formulation: The formal representation must be sufficiently expres-
sive to enable extraction of meaningful structural results.

o Structural Inference: Given a formalization, the system should be able to automatically
identify structural properties that can guide or accelerate the solution process.

These two challenges are interconnected: the expressiveness of a formulation determines which
structures can be extracted, while the usefulness of the formulation itself depends on the system’s
capacity to exploit these structures.

Challenges in Interpretability

For safety, usability, and insight, both the formulation and the solution should be interpretable. This is
important for expert auditing and for practical deployment by non-expert users. The main challenges
are:

e Formulation Traceability: Each element of the formalization should be traceable to a
corresponding concept or statement in the original natural language problem description.

* Policy Understanding: The optimal policy for high-dimensional problems often behaves as
a black box. Making its properties explicit enhances human understanding and trust.

("We consider a hospital with two wards: one for Critical
patients and one for General patients, each staffed by | Formulation challenges
dedicated teams. Both wards share Nybeds. Daily
arrivals average A¢ Critical and A¢ General patients.
Treatment rates are p¢ Critical and 46 General patients

Formalisation :
- State space : "'x > 0"
(We can not have a
negative ber of

Computation challenges

Comp ional !

/.
Tractability | Solver for
»| convex value

Parameter Identification
y
>

; " . . Semantic Understandin patients in the hospital) -
per day, with each team handling one patient at a time. |~ HCCESTMANE |7 Operators  [rommmmmeee- function
Treated patients leave, freeing their beds. Upon arrival, Syntax validity - Actions

a patient may be admitted if a bed is available or mmsmmsommso s sn o NGOG Y - - - - - - - -
rejected, incurring a cost of ¢¢ for Critical and c¢ for
General patients. Each admitted patient
generates a holding cost of py, per unit time. The
objective is to minimize the long-run average operating

cost, with discount factor set to . challenges

1 Formulation
Traceability

Policy
Understanding

Interpretability .

Figure 10: The challenges of autoformulation illustrated with an hospital example.

K.2 TyPICAL ERRORS WITH RESPECT TO THESE CHALLENGES

In Section 5, we evaluate the extent to which our algorithm addresses the aforementioned challenges.
Further details are provided below.

K.2.1 ERRORS IN ACCURACY.

While our method largely resolves the Syntactic Validity challenge and exhibits strong performance
in Parameter Identification, our primary focus is on Semantic Understanding, where most errors tend
to arise. Semantic errors can occurs in several ways :

* Missing Constraints: The algorithm may overlook implicit constraints in the problem
description, such as the non-negativity of the number of patients in a hospital.

* Incorrect Event Modeling: It may introduce artificial events that do not exist in the actual
problem. A common example is inventing an event to account for a holding cost, modeled
as an event with frequency 1 per time unit in which the state remains unchanged but a cost
is incurred.
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* Failure in Uniformization: The algorithm may miscompute event probabilities when uni-
formizing the process. For instance, it sometimes fails to distinguish between sequential and
parallel service models. If f denotes the service frequency per server:

— In the single-server case (sequential), the probability of service is f/T.

— In the multi-server case (parallel), the correct probability is = f /T, where x is the
number of customers.

K.2.2 ERRORS IN COMPUTATIONAL TRACTABILITY AND INTERPRETABILITY.

Our algorithm exhibits limitations in both Structural Expressiveness and Structural Inference.

* Limited Structural Expressiveness: In some cases, the generated formalization lacks the
expressive power needed to enable structural inference. It is illustrated and discussed with
Example 1.

* Structural Inference: Given the proven performance guarantees of our dynamic programming
algorithm (see Appendix G.3), the primary remaining bottleneck in structural inference lies
in the incorrect labeling of operators. For example, consider an assembly line where two
elements from two queues are combined to produce an item in a third queue. The correct
operator is:

TV(z) =V =[r1 -1, 23— 1, 23+ 1])

The algorithm may erroneously interpret this as a tandem departure operator:
Trpa,3)V(z) = V(@' = [z1 — 1, 22, 23 +1])

which neglects the role of x5 and leads to incorrect structural predictions.

Limitations of the Current Framework.

Example 2 highlights intrinsic limitations of the current framework for structural result extraction.
Our approach relies on known theoretical propagation results for a fixed set of operators. In that
example, we identify three possible reasons why structural results cannot be inferred:

1. The correct common propagated space has not yet been identified.

2. The appropriate operators to model the problem are missing from the current library and
would need to be introduced along with corresponding propagation rules.

3. It is theoretically possible that the Bellman equation propagates a functional space even
though none of the individual operators does—our current framework relies on a sufficient
but not necessary condition, namely that each operator propagates the space.

To overcome these limitations, future work could involve extending the family of operators and
enriching the library of propagation results. This can be done manually, following the methodology
of Koole, or through automated discovery using machine learning techniques.

L DATASET

We constructed a dataset of 36 natural language descriptions of queueing control problems, varying
in difficulty by state space size, state constraints, and number of event types. To assess performance
in structure identification and support future research, the dataset includes three categories: (1)
problems with provable structural results (e.g., Example 1); (2) problems with empirically observed,
but unprovable, structures (e.g., Example 2); and (3) problems with no structural results. All
problems address realistic issues from domains such as hospital management Bekker et al. (2017),
telecommunications Koole & Mandelbaum (2002); Bhulai & Koole (2003); Bekker et al. (2011);
Zhang et al. (2025c¢), freight dispatching Schwarz & Daduna (2006); Amjath et al. (2023), assembly
lines Adeyinka & Kareem (2018), and traffic control Boon et al. (2023).

The problems are inspired by the literature and have each been manually designed and solved by an
expert in OR. The ground truth consists of five randomly chosen states together with their optimal
values. These optimal values were computed from the OR formulation using a general-purpose value
iteration solver, with convergence assumed once the value changed by less than 0.05 between two
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2773 Table 6: Overview of the dataset by domain.
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2775 Domain # Problems With Structural

- Properties Avg. # States Avg. Dim. Avg. # Events

2777 Hospital management 15 12 1017 33 6.7
2778 Freight dispatching 9 6 335 2.2 59
2779 Assembly lines 6 0 217 2.8 4.5
2780 Traffic control 4 0 93 2.0 5.25
2781 Telecommunications 2 2 726 2.5 5.0

2782 Total 36 20 (56 %) 594 2.8 59
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M PROMPTS

We aim to elicit the LLM to give the final output as a Python dictionary of the following format:

formalization dict template

"parameters": {
"values": {1},
"descriptions": {}

by

"state_space": {
"variables": {},
"constraints": {}

by

"objective_function": {
"operational_cost_per_unit_time": null,
"discount_factor": null,

"description": null

b

"events": {},

"events_probabilities": {
"uniformization_factor": null,
"probabilities": {}

}I

"operators": {}

In the following, we describe the prompts that ask the LLM to generate nodes in the Monte Carlo
tree. As we will see, the prompts are completely application-agnostic and can be directly applied to
problems in different domains.
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We give the LLM a general context prompt at the beginning.

General context prompt

I have a sequential decision problem:
<<<PROBLEM DESCRIPTION>>>

I want to analyze this problem using the Event-based Optimization Framework introduced
by Koole (2007). This framework models systems where actions are taken in response to
random, uncontrollable events that occur over time. The framework’s core components are
event operators, which serve as the building blocks for defining the system’s value function.

Framework Description

1. Event Operators: Event operators represent the dynamic transformations of the
value function in response to specific system events. Formally:

T,: V=V, fort=0,...,k—1,
where T; maps a value function V' from the state space to a new value function over
the same space.

2. Recursive Value Function: The system’s value function, V/,, is defined recursively
to capture the sequential nature of decision-making:

k—1
Vo= piTi(Va-1),
=0

where:
* V,_1 is the value function from the previous step.
* p; is the probability of event ¢ occurring at each step, satisfying Zi:ol p; = 1.
* T; represents the impact of event ¢ on the system.
* ('is the operational cost.
* « is the discounting factor.
This formalization captures the stochastic nature of the problem, where random events

dictate the evolution of the system, and the value function reflects the accumulated system
performance over time.

Objective Given this theoretical foundation, we need to formalize the problem by defining
the following components:

<<<FORMALIZATION DICT>>>
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The following prompt generates the first-level nodes m; of the Monte Carlo tree.

Parameters completion prompt

Task: Complete formalization_dict based on the problem description, you should
complete the "parameters™" field which consists of assigning constants to descriptive
variable names. Only complete "parameters" and nothing else.

Guidelines:

1. Your primary responsibility is to define all the parameters from the problem descrip-
tion that will later be used to define the state space, objective function, events and
operators.

2. You may include additional parameters in a format suitable for facilitating the
subsequent tasks of defining the state space, objective function, events and operators.

3. For parameters that involve multiple indices (e.g. x [1] or x [1, J]), use the most
appropriate data structure, such as lists, dictionaries, or dictionaries with tuple keys,
to represent them.

4. For each parameter, include a clear, descriptive comment explaining its meaning.
5. Ensure that the parameter names (keys) are descriptive and intuitive.
6. The dictionary should contain two keys: "values" and "descriptions".

* "values" should contain the actual parameter values.
* "descriptions" should contain the descriptions of the parameters.

Format: Return only the Python dictionary update G.e.,
formalization dict ["parameters"] = ...) following the described re-
quirements.
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The following prompt generates the second-level nodes ms of the Monte Carlo tree.

State space completion prompt

Task: Complete the "state space" field in the formalization_dict based on the
problem description. Specifically, define:

1. Variables: Populate the "variables" field to represent the system’s state. Each
key-value pair must adhere to the following structure:

<key>: |
"description": <description>,
"type": <type>,
"iteration_space": <space>,
"default_value": <default_value>

}

Guidelines:

* Essential Variables Only: Include only the strictly necessary variables to describe
the system’s state. Exclude costs, events, or redundant variables.

* Less is better: Due to the curse of dimensionality, keep the number of state variables
minimal. If a variable can be derived from others, do not include it.

* Symbolic Name: Use unique, descriptive names that reflect the variable’s role.
* Description: Clearly explain each variable’s role in the system.
* Type: Either "int" or "float".

* Parameter Variables: Use parameter-defined values directly (without using
parameters([...])

* Iteration Space: Use Python-style list comprehension syntax (e.g., range (n)).
Use None for scalar variables.

* Default Value: Must be a single int or f1oat to initialize the variable across its
iteration space.

* Consolidation: Merge similar variables under a single key with an appropriate
iteration space.

2. Constraints: Populate the "constraints™" field to define boundaries of the state space.
Each key-value pair must adhere to the following structure:

<constraint_key>: {
"equation": <mathematical_equation>,
"description": <description>

}

Guidelines:
* Descriptive Constraints: Use meaningful names.

* Mathematical Description: Use Python-like math expressions. Use list compre-
hensions when appropriate.

* Equality and Inequality: Capture valid bounds and implicit problem constraints.

» Parameter Variables: Refer directly to them, no nested parameters|...]
syntax.

* Indexed Variables: Use bracket notation (e.g., x [1]).
* Comments: Each constraint should be preceded by a comment explaining its
purpose.
Important Notes:
* If the problem has no explicit constraints, consider implicit ones.

* If no constraints apply, return: formalization_dict["state
space"] ["constraints"] = {None: None}
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Return: Only the Python dictionary update (i.e., formalization_dict["state
space"] = ...) following the described requirements.
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The following prompt generates the third-level nodes m3 of the Monte Carlo tree.

Objective function completion prompt

Task: Complete formalization_dict based on the problem description, you should
complete the "objective function" field. Follow these requirements:

Define the operational cost and discount factor such that it adheres to the following structure:

"objective function" = {
"operational cost": <cost>,
"discount factor": <factor>,
"description": <description>

}

1. Operational Cost:

* Replace <cost> with the operational cost of the system. This represents the
cost incurred between events, such as maintaining the system or executing ongoing
operations.

* Important: Do not include costs triggered by events or actions — those go in the
"events" field.

» Use parameter-defined variables, not hard-coded values. Express the cost as a string
formula.

e Default: If not provided, use "0".

2. Discount Factor:

* Replace <factor> with the system’s discount factor, which determines the
relative importance of future rewards.

» Use parameter-defined variables if mentioned. Otherwise, use the default value
0.95.
3. Description:
* Replace <description> with a short explanation justifying the chosen opera-
tional cost and discount factor.

Return: Only the Python dictionary update (i.e., formalization_dict ["objective
function"] = ...) following these requirements.
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The next few prompts generate the fourth-level nodes my4 of the Monte Carlo tree.

Events completion prompt

Task: Complete formalization_dict based on the problem description, you should
complete the "events" field. Follow these requirements:

Each key-value pair in the dictionary must adhere to the following structure:

<key>: |
"description": <description>,
"actions": {
<action_key>: {
"description": <action description>,
"cost": <cost>,
"state_change": <state_change>

}
}
}

Guidelines:

1. Events: Define the events that can occur in the system. An event is a random
occurrence that changes the state, the cost, or triggers a need for action.

2. Each <key> must be a symbolic name representing a distinct event and will be
used in the Python implementation of operators.

3. Descriptive Events: Use unique, symbolic names for each event.

4. Event Description: Replace <description> with a string describing the event’s
impact on the system.

5. Actions: Define the actions that can be taken in response to each event. If there is
no decision involved, define only one action named "default".

6. Action Description: Replace <action description> with a description of
the action’s role.

7. Cost: Replace <cost> with a string representing the formula for the cost of the
event-action pair. Use parameter-defined variables.

8. State Change: Replace <state_change> with a list of equations (as strings)
describing how state variables change due to the event and action.

9. Constraints: Do not repeat feasibility constraints — infeasible states automatically
resultin V' = +oo0.

10. Parameter Variables: Use parameter-defined variables directly; do not reference
them via parameters([...].

11. Indexed Variables: Use bracket notation for indices (e.g., x [0]).
12. One Event per Entry: Do not merge events. Each event must have its own
dictionary entry. Avoid undefined parameters (e.g., no generic i in event keys).

Return: Only the Python dictionary update (i.e., formalization_dict ["events"]
= ...) following these requirements.
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Events probabilities completion prompt

Task: Complete formalization_dict based on the problem description, you should
complete the "events_probabilities™" field.

Requirements: Each key-value pair in the dictionary must adhere to the following structure:
<key>: <probability>
1. Events Probabilities: Define the probabilities of each event that can occur in the
system. If needed, consider a uniformization framework.
2. Each <key> links to the corresponding event defined in the "events" section.

3. Replace <probability> by the probability of the event. Use parameter-defined
variables instead of hard-coded values. Put the formula in a string format.

4. Parameter Variables: Use parameter-defined variables directly (do not reference
them via parameters([...]).

5. Indexed Variables: For indexed state variables or parameters, use standard bracket
notation (e.g., x [1]).

Return: Only the Python dictionary update (i.e., formalization_dict ["events
probabilities™] = ...) following these requirements.

Operators completion prompt

Task: Complete formalization_dict based on the problem description, you should
complete the "operator" field.

Each operator is a ’sub Bellman’ equation linking the optimal value function after the
occurrence of the corresponding event (and the optimal action) to the value function before
that.

List of Available Operators:

T {a}
— Description: Arrival operator
— Definition: T4 (state_variable) f(z) = f(z + €statevariable)
— Parameters: [’ state_variable’]

» T_{CA}
— Description: Controlled arrival operator
- Definition: Tc4(state_variable, ¢y, ca) f(z) = min(f(x) + ¢, f(z +

estate,variable) + C2)
— Parameters: [’ state_variable’, 'c.1’, 'c.2’]

« T{D}
— Description: Departure operator
— Definition: Tp(state_variable) f(z) = f((% — €statevariabie) ™)
— Parameters: [’ state_variable’]

» T7{cD}
— Description: Controlled departure operator
— Definition:
min(f(x) + c1, .
Tep(statevariable,cy,co) f(z) = f(z — estatevariabie) + C2), if Zotatevariaby;

c1 + f(z), otherwise

— Parameters: [’ state_variable’, 'c.1’, 'c.2']
» T_{TD}
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— Description: Tandem departure operator
— Definition:

Trp(statevariable_l,state_variable.2) f(z) =

f(l' — €state_variable_l
+ estate,variablel)a
f(=), otherwise

if Tstatevariable.l - 0

— Parameters: [’ state_variable_1’, ’state_variable_2’]
» T_{CTD}

— Description: Controlled tandem departure operator

— Definition:

Terp(statevariable_l,state_variable.2,¢1,c0) f(x) =

mln(f(x) + C1, f(.’L' + €state_variable_l + estate,variable,Z) + 02)3 if Tstate_variable.1 >
e+ f(x), otherwise

— Parameters: [/state_variable_1’, ’state_variable_ 2’,
14 Cfl’ p 4 C72, ]

Field Format: Each key-value pair in the dictionary must follow this structure:

<key>: |
"description": <description>,
"operator": <operator>

}

Guidelines:
1. Replace <key> with the name of the event the operator corresponds to.
2. Replace <description> with a string that explains the operator’s impact.

3. Replace <operator> with the selected operator and its parameters in string format
(e.g,"T{CA} (i=x[1], c.1=1, c2=2)").

4. If no operator fits, use None.
5. Use parameter-defined variables directly (not via parameters([...]).
6. Use bracket notation for indexed variables (e.g., x [1]).
7. For repeating patterns, use Python for-loops or list comprehensions where applicable.
8. Do not include event probabilities — they are handled elsewhere.
Return: Only the Python dictionary update (.e.,
formalization_dict ["operators"] = ...) following these requirements.
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