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ABSTRACT

Photo-realistic image restoration algorithms are typically evaluated by distortion
measures (e.g., PSNR, SSIM) and by perceptual quality measures (e.g., FID,
NIQE), where the desire is to attain the lowest possible distortion without com-
promising on perceptual quality. To achieve this goal, current methods commonly
attempt to sample from the posterior distribution, or to optimize a weighted sum
of a distortion loss (e.g., MSE) and a perceptual quality loss (e.g., GAN). Un-
like previous works, this paper is concerned specifically with the optimal esti-
mator that minimizes the MSE under a constraint of perfect perceptual index,
namely where the distribution of the reconstructed images is equal to that of the
ground-truth ones. A recent theoretical result shows that such an estimator can
be constructed by optimally transporting the posterior mean prediction (MMSE
estimate) to the distribution of the ground-truth images. Inspired by this result,
we introduce Posterior-Mean Rectified Flow (PMRF), a simple yet highly effec-
tive algorithm that approximates this optimal estimator. In particular, PMRF first
predicts the posterior mean, and then transports the result to a high-quality image
using a rectified flow model that approximates the desired optimal transport map.
We investigate the theoretical utility of PMRF and demonstrate that it consistently
outperforms previous methods on a variety of image restoration tasks.

1 INTRODUCTION
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Figure 1: Illustration of the distortion-
perception tradeoff, where distortion is mea-
sured by MSE. Many photo-realistic image
restoration methods aim for posterior sam-
pling. Theoretically, this approach achieves
a perfect perceptual index (pX̂ = pX ) but
its MSE is twice the MMSE. In contrast, we
aim for the estimator X̂0 that minimizes the
MSE under a perfect perceptual index con-
straint (Eq. (3)), which typically achieves a
smaller MSE than posterior sampling.

Photo-realistic image restoration (PIR) is the task of
reconstructing visually appealing images from de-
graded measurements (e.g., noisy, blurry). This is
a long-standing research problem with diverse ap-
plications in mobile photography, surveillance, re-
mote sensing, medical imaging, and more. PIR
algorithms are commonly evaluated by distortion
measures (e.g., PSNR, SSIM (Wang et al., 2004),
LPIPS (Zhang et al., 2018)), which quantify some
type of discrepancy between the reconstructed im-
ages and the ground-truth ones, and by perceptual
quality measures (e.g., FID (Heusel et al., 2017),
KID (Bińkowski et al., 2018), NIQE (Mittal et al.,
2013), NIMA (Talebi & Milanfar, 2018)), which are
intended to predict the extent to which the recon-
structions would look natural to human observers.
Since distortion and perceptual quality are typically
at odds with each other (Blau & Michaeli, 2018), the
core challenge in PIR is to achieve minimal distor-
tion without sacrificing perceptual quality.

A common way to approach this task is through pos-
terior sampling (Bendel et al., 2023; Chung et al.,
2023; Daras et al., 2024; Kawar et al., 2021a;b;
2022; Man et al., 2023; Murata et al., 2023; Ohayon et al., 2021; Saharia et al., 2022; 2023; Song
et al., 2023; Wang et al., 2023a; Zhu et al., 2023). Specifically, letting X and Y denote the ran-
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Figure 2: Visual results of PMRF (our method) on the CelebA-Test blind face image restoration
data set. Our algorithm produces sharp and visually appealing details while maintaining incredibly
low distortion according to a variety of measures simultaneously. See Table 1.

Table 1: Quantitative evaluation of state-of-the-art blind face image restoration algorithms on the
CelebA-Test benchmark. Red, blue and green indicate the best, the second best, and the third best
scores, respectively. Our method achieves the best FID, KID, PSNR and SSIM, and the second or
third best scores in the rest of the perceptual quality and distortion measures. A visual comparison
is provided in Figure 2 and Figure 6 in the appendix.

Perceptual Quality Distortion
Method FID↓ KID↓ NIQE↓ Precision↑ PSNR↑ SSIM↑ LPIPS↓ Deg↓ LMD↓

DOT 100.2 0.0914 6.462 0.1600 21.32 0.6636 0.4756 43.87 2.876

RestoreFormer++ 41.15 0.0290 4.187 0.6877 25.31 0.6703 0.3441 29.63 2.043
RestoreFormer 42.30 0.0301 4.405 0.7010 24.62 0.6460 0.3655 32.13 2.299
CodeFormer 53.16 0.0425 4.649 0.6940 25.15 0.6700 0.3432 37.28 2.470

VQFRv1 41.79 0.0297 3.693 0.6593 24.07 0.6446 0.3515 35.75 2.429
VQFRv2 46.77 0.0346 4.169 0.6590 23.23 0.6412 0.3624 44.38 3.053
GFPGAN 46.72 0.0350 4.415 0.6970 24.99 0.6774 0.3643 36.05 2.443

DiffBIR 59.06 0.0509 6.084 0.5643 25.39 0.6536 0.3878 32.94 2.006
DifFace 38.43 0.0258 4.288 0.7413 24.80 0.6726 0.3999 45.79 2.965

BFRffusion 41.53 0.0301 4.966 0.6623 26.21 0.6917 0.3619 30.98 1.992

PMRF (Ours) 37.46 0.0257 4.118 0.7073 26.37 0.7073 0.3470 30.67 2.030

dom vectors corresponding to the ground-truth image and its degraded measurement, respectively,
posterior sampling generates a reconstruction X̂ by sampling from pX|Y (such that pX̂|Y = pX|Y ).
This solution is appealing as it theoretically guarantees a perfect perceptual index1 (pX̂ = pX ). In-
terestingly, however, the Mean Squared Error (MSE) that this solution achieves is not the minimal
possible under the perfect perceptual index constraint. Indeed, the MSE achieved by posterior sam-
pling is precisely twice the Minimum MSE (MMSE) that can be achieved without a constraint on
the perceptual index (Blau & Michaeli, 2018). This is while the minimal MSE achievable under
a perfect perceptual index constraint is typically strictly smaller (Blau & Michaeli, 2018; Freirich
et al., 2021), as illustrated in Figure 1. We denote by X̂0 the estimator that minimizes the MSE
under a perfect perceptual index constraint. Its formal definition is provided in Section 2.2.

Another common way to solve PIR tasks is to train a model by minimizing a weighted sum of
a distortion loss (e.g., MSE) and a GAN loss (Goodfellow et al., 2014; Gu et al., 2022; Ledig
et al., 2017; Wang et al.; 2018; 2021; 2022; 2023b; Yang et al., 2021; Zhang et al., 2021; Zhou
et al., 2022). As explained by Blau & Michaeli (2018), this is a principled way to traverse the

1Formally, the perceptual index of X̂ is defined as the statistical divergence between pX̂ and pX .
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distortion-perception tradeoff, where the GAN loss coefficient acts as a Lagrange multiplier that
controls the desired perceptual index. Thus, in principle, one can approximate X̂0 by selecting a
sufficiently large such coefficient. Despite the elegance of this approach, diffusion methods that aim
for posterior sampling tend to perform better in practice, both in terms of distortion and perceptual
quality (see Table 1), implying that current GAN-based methods fail to approximate X̂0. Such a
shortcoming can be partially attributed to the fact that GANs are extremely difficult to optimize,
especially when the GAN loss coefficient is significantly larger than that of the distortion loss.

In this paper, we propose Posterior-Mean Rectified Flow (PMRF), a straightforward framework to
directly approximate X̂0. Interestingly, Freirich et al. (2021) proved that X̂0 can be constructed by
first predicting the posterior mean X̂∗ := E[X|Y ], and then optimally transporting the result to the
ground-truth image distribution (see Section 2.2 for a formal explanation). Motivated by this result,
PMRF first approximates the posterior mean by using a model that minimizes the MSE between the
reconstructed outputs and the ground-truth images. Then, we train a rectified flow model (Liu et al.,
2023) to predict the direction of the straight path between corresponding pairs of posterior mean
predictions and ground-truth images. Given a degraded measurement at test time, PMRF solves an
ODE using such a flow model, with the posterior mean prediction set as the initial condition. As
we explain in Section 3, PMRF approximates the desired estimator X̂0, aiming for a solution that
minimizes the MSE under a perfect perceptual index constraint.

Our paper is organized as follows. In Section 2 we provide the necessary background and set math-
ematical notations. In Section 3 we describe our proposed method, and provide intuition via theo-
retical results and a toy example with closed-form solutions. In Section 4 we discuss related work.
In Section 5 we demonstrate the utility of PMRF on a variety of image restoration tasks, including
denoising, super-resolution, inpainting, colorization, and blind restoration. We show that PMRF sets
a new state-of-the-art on several benchmarks in the challenging blind face image restoration task,
and is either on-par or outperforms previous frameworks in the rest of the tasks. Finally, in Section 6
we conclude our work and discuss its limitations.

2 BACKGROUND

We adopt the Bayesian perspective for solving inverse problems (Davison, 2003; Kaipio & Som-
ersalo, 2005), where a natural image x is regarded as a realization of a random vector X with
probability density function pX . The degraded measurement y (e.g., a noisy or low-resolution im-
age) is a realization of a random vector Y , which is related to X via the conditional probability
density function pY |X . Given a degraded measurement y, an image restoration algorithm generates
a prediction x̂ by sampling from pX̂|Y (·|y), such that X̂ adheres to the Markov chain X → Y → X̂
(i.e. X and X̂ are statistically independent given Y ).

2.1 DISTORTION AND PERCEPTUAL INDEX

Image restoration algorithms are typically evaluated by their average distortion E[∆(X, X̂)], where
∆(x, x̂) is some distortion measure that quantifies the discrepancy between x and x̂, and the ex-
pectation is taken over the joint distribution pX,X̂ . Common examples for ∆(x, x̂) are the absolute
error ∥x− x̂∥1, the squared error ∥x− x̂∥2, and LPIPS (Zhang et al., 2018). Moreover, as the goal
in PIR is to produce reconstructions that would look natural to humans, PIR algorithms are also
evaluated by perceptual quality measures. The ideal way to evaluate perceptual quality is to assess
the ability of humans to distinguish between samples of ground-truth images and samples of recon-
structed ones. This is typically done by conducting experiments where human observers vote on
whether the generated images are real or fake (Dahl et al., 2017; Denton et al., 2015; Guadarrama
et al., 2017; Iizuka et al., 2016; Isola et al., 2017; Salimans et al., 2016; Zhang et al., 2016; 2017).
However, such experiments are too costly and impractical for optimizing models. A practical and
sensible alternative to quantify the perceptual quality is via some perceptual index d(pX , pX̂), where
d(·, ·) is a statistical divergence between probability distributions (e.g., Kullback–Leibler, Wasser-
stein) (Blau & Michaeli, 2018). Quantifying the perceptual index for high-dimensional distributions
is both statistically and computationally intractable, so it is common to resort to approximations.
Popular examples include the Fréchet Inception Distance (FID) (Heusel et al., 2017) and the Kernel
Inception Distance (KID) (Bińkowski et al., 2018).
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2.2 OPTIMAL ESTIMATORS FOR THE SQUARED ERROR DISTORTION

Due to the distortion-perception tradeoff (Blau & Michaeli, 2018), it has become common practice
to compare image restoration algorithms on the distortion-perception plane, where the goal is to
obtain optimal estimators with the lowest possible distortion given a prescribed level of perceptual
index. This goal can be formalized by the distortion-perception function (Blau & Michaeli, 2018),

D(P ) = min
pX̂|Y

E[∆(X, X̂)] s.t. d(pX , pX̂) ≤ P. (1)

Perhaps the most common points of interest on D(P ) are D(∞) and D(0), where the first point cor-
responds to the estimator achieving minimal average distortion under no constraint, and the second
corresponds to the estimator achieving minimal average distortion under a perfect perceptual index
constraint. Considering the squared error distortion, these points are defined by

min
pX̂|Y

E[∥X − X̂∥2] and (2)

min
pX̂|Y

E[∥X − X̂∥2] s.t. pX̂ = pX , (3)

respectively. It is well-known that the unique solution to Problem (2) is the posterior mean
X̂∗ := E[X|Y ], which typically produces overly-smooth reconstructions (Blau & Michaeli, 2018).
Therefore, in PIR tasks, it is more appropriate to aim for the solution to Problem (3). Interest-
ingly, Freirich et al. (2021) proved that a solution to Problem (3) can be obtained by solving the
optimal transport problem

pU,V ∈ argmin
pU′,V ′∈Π(pX ,pX̂∗ )

E[∥U ′ − V ′∥2], (4)

where Π(pX , pX̂∗) := {pU ′,V ′ : pU ′ = pX , pV ′ = pX̂∗} is the set of all joint probabilities pU ′,V ′

with marginals pU ′ = pX and pV ′ = pX̂∗ . Namely, the optimal solution to Problem (3) can
be constructed as follows: Given a degraded measurement y, first predict the posterior mean
x̂∗ = E[X|Y = y], and then sample from pU |V (·|x̂∗), which is the optimal transport plan from pX̂∗
to pX . Similarly to Freirich et al. (2021), we denote such a solution to Problem (3) by X̂0.

As discussed before, one of the most common and appealing solutions for PIR tasks is the estima-
tor X̂ that samples from the posterior distribution pX|Y , such that pX̂|Y = pX|Y . While such an
estimator always attains a perfect perceptual index (Blau & Michaeli, 2018), its MSE is typically
larger than that of X̂0 (Blau & Michaeli, 2018; Freirich et al., 2021) (see Figure 1). In other words,
to design an algorithm with minimal MSE under a perfect perceptual index constraint, one should
often not resort to posterior sampling, but rather to solving Problem (3). This is our goal in this
paper. Lastly, one may wonder whether sampling from pX|X̂∗ instead of using the optimal transport
plan from Equation (4) may also be effective in terms of MSE. However, in Appendix A.1 we prove
that such an approach leads to precisely the same MSE as sampling from the posterior.

2.3 FLOW MATCHING AND RECTIFIED FLOWS

Flow matching. Flow matching algorithms (Albergo & Vanden-Eijnden, 2023; Lipman et al.,
2023; Liu et al., 2023) are generative models defined via the ODE

dZt = v(Zt, t)dt, (5)

where v is often called a vector field, and Zt is some forward process such that pZ0
is the source

distribution, from which we can easily sample (e.g., isotropic Gaussian noise), and pZ1
is the target

distribution from which we aim to sample (e.g., natural images). In principle, one can generate
samples from the target distribution pZ1

by solving Equation (5), where samples from the source
distribution pZ0 are set as the initial conditions for the ODE solver. Nevertheless, given a particular
forward process Zt, there are possibly many different vector fields that satisfy Equation (5). The
goal in flow matching is to somehow find an appropriate vector field with desirable practical and
theoretical properties, e.g., where the solution to Equation (5) is unique.

Rectified flow. Rectified flow (Liu et al., 2023) is a flow matching algorithm defined via the par-
ticular forward process

Zt = tZ1 + (1− t)Z0, (6)
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Algorithm 1: Posterior-Mean Rectified Flow (PMRF)
Training

Stage 1: Solve ω∗ ← argminω E
[
∥X − fω(Y )∥2

]
Stage 2: Solve θ∗ ← argminθ E

[
∥(X − Z0)− vθ(Zt, t)∥2

]
// Zt := tX + (1− t)(fω∗(Y ) + σsϵ), where t is sampled from U [0, 1].

Inference (using Euler’s method with K steps to solve the ODE)
Sample ϵ ∼ N (0, I)
x̂← fω∗(y) + σsϵ // y is the given degraded measurement
for i← 0, . . . ,K − 1 do

x̂← x̂+ 1
K vθ∗(x̂, i

K )

Return x̂

which connects samples from pZ1
and pZ0

with straight lines. Here, Z0 and Z1 can be statistically
independent, as is typically the case when learning a flow model from Gaussian noise to image data,
but they can also have any joint distribution pZ0,Z1 . This forward process clearly adheres to the
ODE dZt = (Z1 − Z0)dt, where Z1 − Z0 is the corresponding vector field. However, this is not a
practical generative model, since it requires knowing the “destination” realization of Z1 at any time
step t < 1 (i.e., the solution is not causal). To solve this issue, Liu et al. (2023) offer instead to use

vRF(Zt, t) = E[Z1 − Z0|Zt], (7)

which is a causal vector field that generates the target distribution, given that the solution to Equa-
tion (5) exists and is unique when adopting such a vector field (Theorem 3.3 in (Liu et al., 2023)).
Interestingly, solving the ODE in Equation (5) with vRF often approximates the optimal transport
map from the source distribution to the target one, especially when the process is repeated several
times (i.e., reflow) or when pZ1,Z0

is close to the optimal transport plan between pZ0
and pZ1

(Liu
et al., 2023; Tong et al., 2024). To learn vRF, one can simply train a model vθ by minimizing the loss∫ 1

0

E
[
∥(Z1 − Z0)− vθ(Zt, t)∥2

]
dt, (8)

where the expectation is taken over the joint distribution pZ1,Z0
(Liu et al., 2023).

3 POSTERIOR-MEAN RECTIFIED FLOW

We now describe our proposed algorithm, which we coin Posterior-Mean Rectified Flow (PMRF)
(Algorithm 1). Our method consists of two simple training stages. First, we train a model fω to
predict the posterior mean by minimizing the MSE loss,

ω∗ = argmin
ω

E
[
∥X − fω(Y )∥2

]
. (9)

Note that this training stage can often be skipped, whenever there exists an off-the-shelf algorithm
that attains sufficiently small MSE (high PSNR) in the desired restoration task. In the second stage,
we train a rectified flow model vθ (a vector field) to solve

θ∗ = argmin
θ

∫ 1

0

E
[
∥(X − Z0)− vθ(Zt, t)∥2

]
dt, (10)

where Zt := tX + (1− t)Z0. Here, Z0 := fω∗(Y ) + σsϵ, where ϵ ∼ N (0, I) is statistically in-
dependent of Y and X , and σs is a hyper-parameter that controls the level of the Gaussian noise
added to the posterior mean prediction. As shown by Albergo et al. (2023), adding such a noise is
critical when the source and target distributions lie on low and high dimensional manifolds, respec-
tively. Specifically, it alleviates the singularities resulting from learning a deterministic mapping
between such distributions. Note, however, that adding noise to fω∗(Y ) may harm the MSE of the
reconstructions produced by PMRF, and so σs should be taken to be sufficiently small.

To explain why PMRF approximates the desired estimator X̂0, we prove an important proposition
and demonstrate it on a simple example with closed-form solutions. Specifically, let

dẐt = vRF(Ẑt, t)dt with Ẑ0 = Z0 (11)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

be the ODE in PMRF, where vRF(z, t) = E[X − Z0|Zt = z] and Ẑt is the random vector generated
by PMRF at time step t ∈ [0, 1]. In Appendix A.2 we prove the following:
Proposition 1. Suppose that σs = 0, and let us assume that the solution of the ODE in Equation (11)
exists and is unique. Then,

(a) Ẑ1 attains a perfect perceptual index (pẐ1
= pX ).

(b) The MSE of Ẑ1 cannot be larger than that of the posterior sampler.
(c) If the distribution of (X − X̂∗)|Zt = zt is non-degenerate for almost every zt ∈ supp pZt

and
t ∈ [0, 1], then the MSE of Ẑ1 is strictly smaller than that of the posterior sampler.

Note that the assumption in (a) and (b) is the same as the one in (Liu et al., 2023), so it is not more
limiting. Whether the additional assumption in (c) holds depends on the nature of the restoration
task. For example, if X can be restored from Y with zero error (i.e., pX|Y (·|y) is a Dirac delta
function for almost every y), then X − X̂∗ = 0 almost surely and the assumption in (c) does not
hold. Yet, this is not an interesting setting as the degradation is not invertible in most practical
scenarios. To gain intuition into a more common scenario, consider the following example:
Example 1. Let Y = X+N , where X ∼ N (0, 1) and N ∼ N (0, σ2

N ) are statistically independent
and σN > 0. Then, the MSE of X̂0 is strictly smaller than that of the posterior sampler. Moreover,
when σs = 0, all the assumptions in Proposition 1 hold, and we have Ẑ1 = X̂0 almost surely.

See Appendix A.3 for the proof of Example 1. This example shows that PMRF not only outperforms
posterior sampling, but may even coincide with the desired estimator X̂0 in certain cases.

4 RELATED WORK

Before moving on to demonstrate the effectiveness of our approach, it is instructive to note the
difference between our PMRF method and existing techniques that may superficially seem similar.

Diffusion and flow-based posterior samplers. Diffusion or flow-based image restoration algo-
rithms often attempt to sample from the posterior distribution by training a conditional model that
takes Y (or some function of Y , like X̂∗) as an additional input (Lin et al., 2024; Zhu et al., 2024).
Some works avoid training a conditional model for each task separately, and rather modify the sam-
pling process of a trained unconditional diffusion model (Chung et al., 2023; Kawar et al., 2022).
In Section 5.2 we perform a controlled experiment on various inverse problems, which shows that
our PMRF method consistently outperforms posterior samplers with the same architecture.

Flow from degraded image. Some diffusion/flow models are trained on corresponding pairs of
ground-truth images and degraded measurements (Albergo et al., 2023; Delbracio & Milanfar, 2023;
Li et al., 2023). In this approach, the idea is to obtain a high-quality image by solving an ODE/SDE
with the degraded measurement set as the initial condition. For example, Albergo et al. (2023)
trained a rectified flow model for the forward process Zt = tX + (1− t)Y †, where Y † is an up-
sampled version of Y such that it matches the dimensionality of X . These algorithms are closely
related to PMRF, in the sense that they learn to transport an intermediate signal (instead of pure
noise) to the ground-truth image distribution. Yet, they have two critical disadvantages compared
to PMRF. First, the flow model’s design is not agnostic to the type of degradation, as the degraded
signals can have varying dimensionalities or lie in a different domain than that of the ground-truth
images (e.g., in MRI image reconstruction). Thus, the task of the flow model may be harder than
necessary, as it needs to translate signals from one domain to another. On the other hand, in PMRF
the flow model always operates in the image domain, where the dimensionalities of the source and
target signals are the same. Second, the theoretical motivation for flowing from Y is not clear,
at least from a reconstruction performance standpoint (e.g., distortion). In contrast, the theoretical
motivation underlying PMRF is clear: it approximates X̂0, which achieves the minimal possible
MSE under the constraint of perfect perceptual index. As we show in Section 5.2, PMRF always
either outperforms or is on-par with the solution that flows from Y (see Figure 4).

Methods that aim for X̂0 directly. To the best of our knowledge, Deep Optimal Transport
(DOT) (Adrai et al., 2023) is the only existing method that, like PMRF, attempts to approximate

6
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X̂0 directly. Specifically, DOT approximates the desired optimal transport map (Equation (4)) via
a linear transformation in the latent space of a variational auto-encoder (VAE) (Kingma & Welling,
2014). This transformation is computed in closed-form using the empirical means and covariances
(in latent space) of the source distribution (that of the posterior mean predictions) and the target
distribution (that of the ground-truth images), under the assumption that both are Gaussian. This
method is computationally efficient, but the use of a VAE imposes a performance ceiling. Moreover,
the optimal transport in DOT occurs in latent space and assumes that the source and target distri-
butions are Gaussians, unlike Equation (4) which occurs in pixel space and does not make such an
assumption. In contrast, PMRF does not use a VAE, and approximates the optimal transport directly
in pixel space. In Section 5 we show that PMRF significantly outperforms DOT (see Figure 4).

5 EXPERIMENTS

5.1 BLIND FACE IMAGE RESTORATION

We train PMRF to solve the challenging blind face image restoration task, and compare its perfor-
mance with leading methods. As in previous works (e.g., (Wang et al., 2021)), we use the FFHQ
data set (Karras et al., 2019) with images of size 512× 512 to train our model. Similarly to previous
works, we adopt a complex and random degradation process to synthesize the degraded images,

Y = [(X ⊛ kσ) ↓R +Nδ]JPEGQ
, (12)

where ⊛ denotes convolution, kσ is a Gaussian blur kernel of size 41 × 41 and variance σ2, ↓R
is bilinear down-sampling by a factor R, Nδ is white Gaussian noise of variance δ2, and [·]JPEGQ

is JPEG compression-decompression with quality factor Q. Similarly to (Yue & Loy, 2024), we
synthesize the degraded images by sampling σ,R, δ and Q uniformly from [0.1, 15], [0.8, 32], [0, 20],
and [30, 100], respectively. See Appendix B.1 for additional implementation details.

5.1.1 EVALUATION SETTINGS

For evaluation, we consider the common synthetic CelebA-Test benchmark, as well as the real-
world data sets LFW-Test (Huang et al., 2008; Wang et al., 2021), WebPhoto-Test (Wang et al.,
2021), CelebAdult-Test (Wang et al., 2021), and WIDER-Test (Zhou et al., 2022). CelebA-Test
consists of 3,000 high-quality images taken from the test partition of CelebA-HQ (Karras et al.,
2018), and the degraded images were synthesized by Wang et al. (2021). For the real-world data
sets, the degradations are unknown and there is no access to the clean ground-truth images. We
compare our performance with DOT (Adrai et al., 2023) and leading blind face restoration models,
including BFRffussion (Chen et al., 2024), DiffBIR (Lin et al., 2024), DifFace (Yue & Loy, 2024),
CodeFormer (Zhou et al., 2022), GFPGAN (Wang et al., 2021), VQFRv1 and VQFRv2 (Gu et al.,
2022), RestoreFormer and RestoreFormer++ (Wang et al., 2022; 2023b). We do not compare with
FlowIE (Zhu et al., 2024), as the official checkpoints of this method are currently unavailable. How-
ever, note that FlowIE is a conditional method that employs a ControlNet (similarly to DiffBIR).
Namely, it falls under the category of methods that attempt to sample from the posterior distribution,
which are fundamentally different from PMRF. Notably, the restoration methods that we compare
against also use the degradation model from Equation (12), though the ranges of σ, R, δ, and Q
differ across methods. The ranges we choose, those from (Yue & Loy, 2024), are the most severe
among all the compared methods. For example, the range of R we use is [0.8, 32], whereas Wang
et al. (2021) use [1, 8]. Thus, PMRF attempts to solve a more difficult restoration task than some of
the compared methods. In the following experiments, we use K = 25 flow steps in PMRF (Algo-
rithm 1). Refer to Appendix B.2 for an evaluation of additional values of K, and to Appendix B.3
for the implementation details of DOT.

5.1.2 RESULTS ON CELEBA-TEST

For the CelebA-Test benchmark, we measure the perceptual quality by FID (Heusel et al., 2017),
KID (Bińkowski et al., 2018), NIQE (Mittal et al., 2013), and Precision (Kynkäänniemi et al., 2019),
and measure the distortion by the PSNR, SSIM (Wang et al., 2004), and LPIPS (Zhang et al., 2018).
Similarly to previous works (Gu et al., 2022; Wang et al., 2021), we also compute the identity metric
Deg (using the embedding angle of ArcFace (Deng et al., 2019)) and the landmark distance LMD.
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Figure 3: Real-world face image restoration. Top: Qualitative results on inputs from the WIDER-
Test data set. Bottom: Comparison on the “distortion”-perception plane (IndRMSE vs. FID), where
IndRMSE indicates the RMSE of each method (the true distortion cannot be computed as there is
no access to the ground-truth images). Our algorithm outperforms all other methods in IndRMSE,
while achieving on-par perceptual quality compared to the state-of-the-art.

Both of these can be considered as distortion measures, as they quantify some type of discrepancy
between each reconstructed image and its ground-truth counterpart.

The results are reported in Table 1. Notably, PMRF outperforms all other methods in FID, KID,
PSNR, and SSIM, achieves the second best scores in NIQE, Precision and Deg, and the third best
scores in LPIPS, and LMD. Interestingly, no other method attains such a consensus in performance
like PMRF, namely, where none of the measures are significantly compromised compared to the
state-of-the-art. For example, while DifFace achieves the highest Precision, it attains worse LMD,
Deg, LPIPS, SSIM, and PSNR compared to the third best method in each of these metrics. This
demonstrates that PMRF produces robust reconstructions, in the sense that it does not “over-fit”
particular perceptual quality or distortion measures, but rather achieves high performance in all of
them simultaneously. Visual results are provided in Figure 2 and in Figure 6 in the appendix.

5.1.3 RESULTS ON REAL-WORLD DEGRADED IMAGES

Evaluating the distortion for real-world degraded images is impossible, as there is no access to the
ground-truth images. Consequently, previous works conduct only a perceptual quality evaluation
(e.g., FID) on real-world data sets such as WIDER-Test and LFW-Test. Yet, high perceptual quality
alone is clearly not indicative of reconstruction performance (to attain high perceptual quality, one
may simply ignore the inputs and generate samples from pX ). Thus, we consider a measure which
indicates the Root MSE (RMSE) and allows ranking algorithms according to their (approximate)
RMSE, without access to the ground-truth images. Specifically, for any estimator X̂ it holds that

E[∥X − X̂∥2] ≈ E[∥X̂ − f(Y )∥2] +m, (13)

where f(Y ) ≈ X̂∗ is an approximation of the true posterior mean predictor X̂∗, and m is a con-
stant that does not depend on X̂ (see Appendix E for an explanation). Thus, the square root of
E[∥X̂ − f(Y )∥2], which we denote by IndRMSE, indicates the true RMSE. We utilize the posterior
mean predictor trained by (Yue & Loy, 2024)2 as f , and compute the IndRMSE of all the evalu-
ated algorithms on the LFW-Test, WebPhoto-Test, CelebAdult-Test, and WIDER-Test data sets. As

2Importantly, the exact same posterior mean predictor model (and weights) is also used by other methods
such as DifFace and DiffBIR, so this is a fair evaluation.
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Figure 4: A controlled experiment comparing PMRF (our method) with several baseline methods,
where the models are trained with the same architecture, hyper-parameters, etc. (see Section 5.2).
Top: Qualitative comparison of PMRF and the baseline methods on several tasks. Bottom: Quan-
titative comparison on the distortion-perception plane. DOT is not a flow model, but rather another
approach that attempts to approximate X̂0 (like PMRF). These experiments demonstrate that PMRF
is either superior or is on-par with previous frameworks (i.e., posterior sampling or flowing from Y )
on a variety of image restoration tasks. See Section 5.2 for more details.

before, we evaluate perceptual quality by FID, KID, NIQE, and Precision. In Figure 3 we provide
visual results on inputs from the WIDER-Test data set, and compare the algorithms on a “distortion”-
perception plane (IndRMSE vs. FID). DOT is not plotted as it achieves far worse FID compared to
other methods. Our algorithm attains the best (smallest) IndRMSE on all data sets, while achiev-
ing on-par perceptual quality compared to the state-of-the-art. This indicates that PMRF achieves
superior distortion on such real-world data sets, while not compromising perceptual quality. In the
appendix, we report the rest of the perceptual quality measures in Tables 7 to 10, provide visual
results in Figures 7 to 9, and also report the performance of DOT.

5.2 COMPARING PMRF WITH PREVIOUS FRAMEWORKS IN CONTROLLED EXPERIMENTS

One may wonder whether the performance of PMRF is attributed to the framework itself (Algo-
rithm 1), or, maybe it is attributed to the model architecture, the rectified flow training approach,
the chosen hyper-parameters, etc. Could we have done better by training a flow to sample from the
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posterior, or by adopting the approach of (Albergo et al., 2023) and flow directly from Y ? Here,
we conduct a controlled study where we demonstrate that the high performance of PMRF is indeed
attributed to the proposed framework itself (Algorithm 1). Specifically, we consider several im-
age restoration tasks (denoising, super-resolution, etc.), where we train PMRF and several baseline
methods on the “same grounds”, using the ImageNet (Deng et al., 2009) (128 × 128) and FFHQ
(256 × 256) data sets. In each task we train two conditional rectified flow models, where one is
conditioned on the degraded measurement Y (we call this method flow conditioned on Y ), and the
other is conditioned on the posterior mean predictor fω∗(Y ) (we call this method flow conditioned
on X̂∗). The first model represents posterior sampling methods, and the second model allows for
a fair comparison of model capacity with PMRF (since PMRF is comprised of fω∗(Y ) and a flow
model). In fact, theoretically speaking, the second approach achieves precisely the same MSE as
the posterior sampler (see Appendix A.1), and is often used in practice (e.g., in (Lin et al., 2024;
Zhu et al., 2024)). In addition, we train an unconditional rectified flow model, where the forward
process is defined as Zt = tX + (1− t)Z0, Z0 = Y † + σsϵ, ϵ ∼ N (0, I), and Y † is the up-scaled
version of the degraded measurement Y such that it matches the dimensionality of X (we call this
method flow from Y ). This method represents the frameworks in (Albergo et al., 2023; Delbracio &
Milanfar, 2023; Li et al., 2023), which we discuss in Section 4. All of the models are trained with the
same hyper-parameters as PMRF, using the same architecture, learning rate, weight decay, number
of training epochs, etc. Moreover, for PMRF and flow conditioned on X̂∗ method, we use the exact
same architecture and weights for fω∗(Y ). To clarify the differences between the mathematical for-
mulations of the baseline methods, in Table 11 in the appendix we summarize the definitions of the
training loss and the forward process of all methods. Moreover, in Algorithms 2 to 4 we disclose a
pseudo-code for the training and inference procedures of the baseline methods. While DOT is not a
flow method, we still evaluate its performance as it is related to PMRF.

In Figure 4 we compare the algorithms on the distortion-perception plane (RMSE vs. FID for face
restoration and RMSE vs. FDCLIP (Stein et al., 2023) for ImageNet restoration), using K = 100
flow steps for each flow algorithm. We clearly PMRF dominates all other methods in most tasks,
achieving notably smaller RMSE without compromising (and sometimes even improving) perceptual
quality. This demonstrates that PMRF achieves our desired goal, which is to attain low distortion
without compromising on perceptual quality. For the image denoising tasks, we observe that PMRF
and flow from Y attain relatively similar performance, and both dominate the posterior sampling
approaches. We hypothesize that, in some tasks (e.g., denoising), flowing from Y may be as effec-
tive as PMRF in terms of approximating X̂0. To demonstrate this, we prove in Appendix D that
flowing from Y is optimal in the toy problem in Example 1 (just like PMRF). Yet, our experiments
demonstrate that PMRF generally leads to better performance compared to previous frameworks. To
assess the effectiveness of each method given different inference time constraints, in Figure 5 in the
appendix we vary the number of flow inference steps K for each method. Interestingly, we observe
that PMRF is still either on-par or dominates the other methods for any given number of inference
steps. These results further demonstrate that the superior performance of PMRF is attributed to our
framework itself, rather than to the chosen hyper-parameters. See Appendix C for more details, and
refer to Figures 10 to 16 in the appendix for visual comparisons.

6 CONCLUSION AND LIMITATIONS

We presented a method that directly approximates X̂0 – the estimator that minimizes the MSE under
a perfect perceptual index constraint (Equation (3)). We showed that our approach, coined PMRF,
is a simple yet highly effective image restoration algorithm that outperforms previous frameworks
(e.g., posterior sampling, flow from Y , and GAN-based methods) in a variety of image restoration
tasks. As we explained in Section 3, PMRF alleviates the issues resulting from solving the ODE by
adding Gaussian noise to the posterior mean predictions. We note that the noise level σs should be
carefully tuned, as taking it to be too large or too small may cause the MSE or the perceptual quality
of PMRF to degrade, respectively. While the flow from Y method (Algorithm 4) suffers from the
same limitation (though it does not provide a theoretical guarantee on the MSE, like PMRF), this
may be considered a disadvantage of PMRF compared to posterior sampling methods (e.g., Algo-
rithm 2), which do not require such a hyper-parameter. Finally, we proved in Proposition 1 that,
under some conditions, PMRF is guaranteed to achieve a smaller MSE than the posterior sampler.
However, as in (Liu et al., 2023), one could argue that the assumptions in Proposition 1 may be too
limiting in some cases.
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REPRODUCIBILITY STATEMENT

Our codes are available at https://drive.google.com/drive/folders/
1m8GlKQ-dadpvZ_SEys_XvoLf6OLjSSER?usp=sharing. We provide all the expla-
nations and checkpoints necessary to reproduce our results, including training, inference, and the
computation of the distortion and perceptual quality measures in Section 5. Besides our code,
our paper discloses all the implementation details required to reproduce the results, including
architecture details, training hyper-parameters, etc. Refer to Sections 5.1 and 5.2 and appendices B
and C for implementation details, and to Table 12 in the appendix for a summary of our training
hyper-parameters.
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A SUPPLEMENTARY EXPLANATIONS FOR PMRF

A.1 PROOF THAT CONDITIONING ON X̂∗ ACHIEVES THE SAME MSE AS POSTERIOR
SAMPLING

Proposition 2. Let X̂ ′ be the estimator which, given any degraded measurement y, first predicts
the posterior mean x̂∗ = E[X|Y = y] and then samples from pX|X̂∗(·|x̂∗)3. Then, the MSE of X̂ ′

equals twice the MMSE, which is the MSE attained by the posterior sampler.

Proof. The MSE of X̂ ′ is given by

E[∥X − X̂ ′∥2] = E[∥X − X̂∗∥2] + E[∥X ′ − X̂∗∥2], (14)

where this equality follows from Lemma 2 in (Freirich et al., 2021) (Appendix B.1). By the defini-
tion of X̂ ′ we have pX̂′,X̂∗ = pX,X̂∗ , so

E[∥X ′ − X̂∗∥2] = E[∥X − X̂∗∥2]. (15)

Substituting this result into Equation (14), we get

E[∥X − X̂ ′∥2] = 2E[∥X − X̂∗∥2]. (16)

Namely, X̂ ′ attains precisely the same MSE as the posterior sampler, which is equal to twice the
MMSE (Blau & Michaeli, 2018). Thus, in theory, one should not expect to improve the MSE of a
conditional diffusion/flow model by supplying X̂∗ as a condition instead of Y .

A.2 PROOF OF PROPOSITION 1

For completeness, we first restate Proposition 1 and then provide its proof.

Proposition 1. Suppose that σs = 0, and let us assume that the solution of the ODE in Equation (11)
exists and is unique. Then,

(a) Ẑ1 attains a perfect perceptual index (pẐ1
= pX ).

(b) The MSE of Ẑ1 cannot be larger than that of the posterior sampler.
(c) If the distribution of (X − X̂∗)|Zt = zt is non-degenerate for almost every zt ∈ supp pZt

and
t ∈ [0, 1], then the MSE of Ẑ1 is strictly smaller than that of the posterior sampler.

Proof. We first prove (a) and (b) assuming that the solution for the ODE in Equation (11) ex-
ists and is unique for σs = 0. Then, we will prove (c) by also assuming that the distribution of
(X − X̂∗)|Zt = zt is non-degenerate for almost every zt and t ∈ [0, 1].

From Theorem 3.3 in (Liu et al., 2023) we have pẐt
= pZt for every t ∈ [0, 1]. This implies that

pẐ1
= pZ1 = pX , i.e., PMRF attains a perfect perceptual index when σs = 0. This proves (a).

Next, without additional assumptions, we will prove (b) by showing that

E[∥Ẑ1 − X̂∗∥2] ≤ E[∥X − X̂∗∥2], (17)

which will imply that the MSE of Ẑ1 can only be smaller than that of the posterior sampler. Since
σs = 0, we have Z0 = X̂∗ + σsϵ = X̂∗. Following similar arguments to those in the proof of

3Note that X̂ ′ is a “posterior sampler” which is conditioned on X̂∗. Thus, Algorithm 3 represents such an
algorithm, which is one of the baseline methods we evaluate in Section 5.2.
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Theorem 3.5 in (Liu et al., 2023), it holds that

E[∥Ẑ1 − X̂∗∥2] = E

[∥∥∥∥∫ 1

0

vRF(Ẑt, t)dt

∥∥∥∥2
]

(18)

= E

[∥∥∥∥∫ 1

0

vRF(Zt, t)dt

∥∥∥∥2
]

(19)

≤ E
[∫ 1

0

∥vRF(Zt, t)∥2 dt
]

(20)

= E
[∫ 1

0

∥∥∥E[X − X̂∗|Zt]
∥∥∥2 dt] (21)

≤ E
[∫ 1

0

E[∥X − X̂∗∥2|Zt]dt

]
(22)

=

∫ 1

0

E
[
E[∥X − X̂∗∥2|Zt]

]
dt (23)

=

∫ 1

0

E[∥X − X̂∗∥2]dt (24)

= E[∥X − X̂∗∥2], (25)

where Equation (18) follows from the definition of Ẑ1 and X̂∗, Equation (19) follows from the fact
that pẐt

= pZt
, Equation (20) follows from Jensen’s inequality, Equation (21) follows from the def-

inition of vRF(Zt, t), Equation (22) follows from Jensen’s inequality, Equation (23) follows from the
linearity of the integral operator, and Equation (24) follows from the law of total expectation. Thus,
we have E[∥Ẑ1 − X̂∗∥2] ≤ E[∥X − X̂∗∥2]. Combining this result with Lemma 2 from (Freirich
et al., 2021) (Appendix B.1), we conclude that

E[∥X − Ẑ1∥2] = E[∥X − X̂∗∥2] + E[∥Ẑ1 − X̂∗∥2]
≤ 2E[∥X − X̂∗∥2], (26)

where the left hand side is the MSE of PMRF, and the right hand side is the MSE of the posterior
sampler, which always equals twice the MMSE (Blau & Michaeli, 2018).

Finally, to prove (c), let us further assume that (X − X̂∗)|Zt = zt is a non-degenerate ran-
dom vector for every zt ∈ supp pZt

and t ∈ [0, 1]. Thus, the inequality in Equation (22)
becomes strict (from Jensen’s inequality for strictly convex functions), and hence we have
E[∥Ẑ1 − X̂∗∥2] < E[∥X − X̂∗∥2]. Combining this result with Lemma 2 from (Freirich et al., 2021)
(Appendix B.1), we conclude that

E[∥X − Ẑ1∥2] < 2E[∥X − X̂∗∥2]. (27)
Namely, the MSE of Ẑ1 (left hand side) is strictly smaller than that of the posterior sampler (right
hand side).

A.3 PROOF OF THE RESULTS IN EXAMPLE 1

From (Blau & Michaeli, 2018; Freirich et al., 2021), we know that X̂0 in Example 1 attains a MSE
that is strictly smaller than that of the posterior sampler (assuming that σN > 0). Specifically, the
closed-form solution of X̂0 in Example 1 is given by (Freirich et al., 2021):

X̂0 =
1√

1 + σ2
N

Y. (28)

Moreover, in this example, it is well known that the posterior mean E[X|Y ] is given by

X̂∗ =
1

1 + σ2
N

Y. (29)

Next, we will prove that:

(a) All the assumptions in Proposition 1 hold.
(b) Ẑ1 = X̂0 almost surely.
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Proof of (a). Since σs = 0, we have vRF(Zt, t) = E[X − X̂∗|Zt] and Zt = tX + (1− t)X̂∗.
Below, we show that

Cov(X − X̂∗, Zt) = t
σ2
N

1 + σ2
N

, and (30)

Var(Zt) = t2
σ2
N

1 + σ2
N

+
1

1 + σ2
N

. (31)

Since X − X̂∗ and Zt are jointly Gaussian4, we have

vRF(Zt, t) = E[X − X̂∗|Zt]

= E[X − X̂∗] +
Cov(X − X̂∗, Zt)

Var(Zt)
(Zt − E[Zt])

=
Cov(X − X̂∗, Zt)

Var(Zt)
Zt, (32)

=
t

σ2
N

1+σ2
N

t2
σ2
N

1+σ2
N
+ 1

1+σ2
N

Zt

=
tσ2

N

1 + t2σ2
N

Zt, (33)

where Equation (32) follows from the fact that E[X − X̂∗] = 0 and E[Zt] = 0. One can verify that
the solution of dẐt = vRF(Ẑt, t)dt for any initial condition Ẑ0 = c is unique and is given by

Ẑt = c
√
1 + t2σ2

N . (34)

To show that the distribution of (X − X̂∗)|Zt = zt is non-degenerate for almost every zt and
t ∈ [0, 1], note that

Var(X − X̂∗) = Cov(X − X̂∗, X − X̂∗)

= Cov(X,X)− 2Cov(X, X̂∗) + Cov(X̂∗, X̂∗)

= 1− 2Cov
(
X,

1

1 + σ2
N

Y

)
+ Cov

(
1

1 + σ2
N

Y,
1

1 + σ2
N

Y

)
= 1− 2

1 + σ2
N

Cov(X,Y ) +
1

(1 + σ2
N )2

Cov(Y, Y )

= 1− 2

1 + σ2
N

+
1

1 + σ2
N

= 1− 1

1 + σ2
N

=
σ2
N

1 + σ2
N

. (35)

4X − X̂∗ and Zt can be written as a linear transformation of (X,Y ), which are jointly Gaussian random
variables. Thus, X − X̂∗ and Zt are jointly Gaussian.
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Thus, for any t > 0, and assuming σN > 0, the correlation between X − X̂∗ and Zt is given by

Cov(X − X̂∗, Zt)√
Var(Zt)Var(X − X̂∗)

=
t

σ2
N

1+σ2
N√(

t2
σ2
N

1+σ2
N
+ 1

1+σ2
N

)(
σ2
N

1+σ2
N

)
=

tσN√
1 + t2σ2

N

=
1√

1 + 1
t2σ2

N

< 1. (36)

Namely, the correlation between X − X̂∗ and Zt is strictly smaller than 1 for every t ∈ (0, 1].
Moreover, for t = 0 the correlation between X−X̂∗ and Zt clearly equals zero, so such a correlation
is smaller than 1 for every t ∈ [0, 1]. This implies that the distribution of (X − X̂∗)|Zt = zt is non-
degenerate for almost every zt and t ∈ [0, 1], and so all the assumptions in Proposition 1 hold.

To prove Equations (30) and (31), first note that Cov(X, X̂∗) = Cov(X̂∗, X̂∗) = 1
1+σ2

N
, and so

Cov(X, X̂∗)− Cov(X̂∗, X̂∗) = 0. Thus,

Cov(X − X̂∗, Zt) = Cov(X − X̂∗, tX + (1− t)X̂∗)

= t(Cov(X,X)− Cov(X, X̂∗)) + (1− t)(Cov(X, X̂∗)− Cov(X̂∗, X̂∗))

= t

(
1− 1

1 + σ2
N

)
= t

σ2
N

1 + σ2
N

, (37)

and,

Var(Zt) = Cov(Zt, Zt)

= Cov(tX + (1− t)X̂∗, tX + (1− t)X̂∗)

= t2Cov(X,X) + 2t(1− t)Cov(X, X̂∗) + (1− t)2Cov(X̂∗, X̂∗)

= t2 + (2t(1− t) + (1− t)2)
1

1 + σ2
N

= t2 + (2t− 2t2 + 1− 2t+ t2)
1

1 + σ2
N

= t2 + (1− t2)
1

1 + σ2
N

= t2
σ2
N

1 + σ2
N

+
1

1 + σ2
N

. (38)

Proof of (b). The proof follows directly from Equation (34). Specifically, for the initial condition
Ẑ0 = X̂∗, we have

Ẑ1 =
√

1 + σ2
N X̂∗

=
√

1 + σ2
N

1

1 + σ2
N

Y

=
1√

1 + σ2
N

Y (39)

= X̂0. (40)

Thus, in Example 1, PMRF with σs = 0 coincides with the desired optimal estimator X̂0.
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A.4 REFLOW (OPTIONAL)

To potentially improve the MSE of PMRF further, one may conduct a reflow procedure (Liu et al.,
2023), where a sequence of flow models are trained, and the flow model at index k+1 learns to flow
from the source distribution to the distribution generated by the flow model at index k. Specifically,
let Ẑk+1

1 be the random vector generated by PMRF (Algorithm 1), where Ẑk
1 replaces the role of

X in Algorithm 1 and Ẑ0
1 = X (Z0 remains unchanged). Thus, from Theorem 3.5 in (Liu et al.,

2023), we have E[c(Ẑk+1
1 − Z0)] ≤ E[c(Ẑk

1 − Z0)], which implies the reflowing may only improve
the MSE of PMRF, and hence improve the approximation of the desired optimal transport map
(Equation 4). We leave this possibility for future work.

B SUPPLEMENTARY DETAILS AND EXPERIMENTS IN BLIND FACE IMAGE
RESTORATION

B.1 IMPLEMENTATION DETAILS OF PMRF

During training, we only use random horizontal flips for data augmentation. We use the
SwinIR (Liang et al., 2021) model trained by Yue & Loy (2024) as the posterior mean predictor
fω∗ in Algorithm 1, and use σs = 0.1. This model was trained using the same synthetic degrada-
tion as in Equation (12), with the same ranges for σ, R, δ, and Q we mentioned in Section 5.1. The
SwinIR model’s weights are kept frozen during the vector field’s training stage, and the same weights
are utilized during inference as well. The vector field vθ is a HDiT model (Crowson et al., 2024),
which we train from scratch. As in (Crowson et al., 2024), we sample t uniformly from U [0, 1]
using a stratified sampling strategy. The vector field is trained for 3850 epochs using the AdamW
optimizer (Loshchilov & Hutter, 2019), with a learning rate of 5 · 10−4, (β1, β2) = (0.9, 0.95), and
a weight decay of 10−2 (as in (Crowson et al., 2024)). In the last 350 epochs, we reduce the learning
rate gradually, multiplying it by 0.98 at the end of every epoch. The training batch size is set to 256
and is kept fixed. We compute the exponential moving average (EMA) of the model’s weights, using
a decay of 0.9999. The EMA weights of the model are then used in all evaluations. Our model is
trained using bfloat16 mixed precision. A summary of the vector field training hyper-parameters is
provided in Table 12.

B.2 VARYING THE NUMBER OF FLOW STEPS K IN PMRF

In Tables 2 to 6 we evaluate the performance of PMRF for various choices of K (the number of in-
ference steps in Algorithm 1). As expected, increasing K generally improves the perceptual quality
while harming the distortion.

B.3 DETAILS OF DOT

We use the official codes of DOT (Adrai et al., 2023) as provided by the authors. This method
performs optimal transport between the source and target distributions in latent space, using the
closed-form solution for the optimal transport map between two Gaussians. As in (Adrai et al.,
2023), we use the VAE (Kingma & Welling, 2014) of stable-diffusion (Rombach et al., 2022). For
computing the latent empirical mean and covariance of the target distribution, we provide to the code
the first 1000 images from FFHQ, with images of size 512×512 (the default is 100 images, so using
1000 images instead ensures that the performance of DOT is not compromised, as explain by Adrai
et al. (2023)). For computing the latent empirical mean and covariance of the source distribution,
we randomly synthesize degraded images according to Equation (12) from the first 1000 images in
FFHQ, and reconstruct each image using the SwinIR model with the pre-trained weights from (Yue
& Loy, 2024) (the same weights we use in PMRF). Given a degraded image y at test time, the code
of Adrai et al. (2023) first predicts the posterior mean using the SwinIR model, encodes it to latent
space, optimally transports the result using the pre-computed empirical means and covariances, and
finally uses the decoder to obtain the reconstructed image.
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B.4 COMPUTATION OF FID, KID, AND PRECISION

For each data set and algorithm, the FID, KID, and Precision are computed between the entire
FFHQ 512 × 512 training set, and the reconstructed images produced for the degraded images in
the test data set (as in previous works). For example, for the evaluations on the CelebA-Test data,
this means that the FID is computed between the 70,000 FFHQ images, and the 3,000 CelebA-Test
reconstructed images.

C SUPPLEMENTARY DETAILS ON SECTION 5.2

C.1 DEGRADATIONS

Face restoration. The degraded images in each face restoration task in the controlled experiments
are synthesized according to the following degradations:

1. Denoising: We apply additive white Gaussian noise with standard deviation 0.35.
2. Super-resolution: We use the 8× bicubic down-sampling operator, and add Gaussian noise with

standard deviation 0.05.
3. Inpainting: We randomly mask 90% of the pixels in the ground-truth image, and add Gaussian

noise with standard deviation 0.1.
4. Colorization: We average the color channels in the ground-truth image (with a weight of 1

3 for
each color channel), and add Gaussian noise with standard deviation 0.25.

ImageNet restoration. For the general-content (ImageNet) image restoration tasks in the con-
trolled experiments, we consider the following degradations:

1. Denoising: We apply additive white Gaussian noise with standard deviation 0.2.
2. Super-resolution: We use the 4× bicubic down-sampling operator, and add Gaussian noise with

standard deviation 0.05.
3. Colorization: We average the color channels in the ground-truth image (with a weight of 1

3 for
each color channel), and add Gaussian noise with standard deviation 0.05.

C.2 IMPLEMENTATION DETAILS OF THE FLOW METHODS

C.2.1 TRAINING

Face restoration. For all the face restoration tasks in Section 5.2, the models are trained on the
FFHQ data set with images of size 256× 256 (we down-sample the original 1024× 1024 images to
256 × 256). Unlike in the blind face image restoration experiments, where the model is trained on
images of size 512 × 512, here we choose to use a smaller image resolution to save computational
resources and achieve shorter training times. We use random horizontal flips for data augmentation.

ImageNet restoration. The general-content image restoration models are trained on the Ima-
geNet (Deng et al., 2009) training data, after resizing the images to 128 × 128 pixels. To obtain
these images, we first resize the original images to have a shorter side of 128 pixels, and then perform
random cropping to obtain the desired size. We use random horizontal flips for data augmentation.

C.2.2 CHOICE OF σs

As expected, we observe that using σs = 0 in both PMRF (Algorithm 1) and the flow from Y method
(Algorithm 4) leads to blurry results with small MSE and large FID. Thus, for a fair comparison, we
use the same value of σs > 0 in both methods. We use σs = 0.025 for all the ImageNet restoration
tasks and for the face image denoising task. For the rest of the face restoration tasks (inpainting,
colorization, and super-resolution), we use σs = 0.15.

5Note that the “optimal” value of σs depends on the severity of the restoration task. For example, in a mild
image denoising task, the posterior mean X̂∗ may already be close to the ground-truth image, so σs should be
smaller compared to a case where the noise is severe.
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C.2.3 VECTOR FIELD

Face restoration. Similarly to Appendix B.1, the vector field is a HDiT model. The time t in Al-
gorithms 1 and 2 to 4 is sampled from U [0, 1] using a stratified sampling strategy. For all baseline
methods and PMRF, we train the vector field for 1000 epochs, use a fixed batch size of 256, adopt
the AdamW optimizer with a learning rate of 5× 10−4, (β1, β2) = (0.9, 0.95), and a weight decay
of 10−2. As in (Crowson et al., 2024), we do not apply learning rate scheduling. Finally, we use
the EMA weights for evaluation, using a decay of 0.9999. A summary of the hyper-parameters is
provided in Table 12.

ImageNet restoration. The vector field remains the exact same HDiT model as in the face restora-
tion experiments. Here, the model is trained for 100 epochs, and the rest of the hyper-parameters
(optimization, EMA for evaluation, etc.) remain the same as before.

C.2.4 POSTERIOR MEAN PREDICTOR

Face restoration. The posterior mean predictor fω is a 4.4M parameters SwinIR model6 which we
train from scratch for each task. In all tasks, this model is trained for 1000 epochs, with a fixed batch
size of 256, using the AdamW optimizer with a learning rate of 5 × 10−4, (β1, β2) = (0.9, 0.95),
without weight decay, and without learning rate scheduling. When utilizing this model in the flow
process (e.g., in PMRF), we use the EMA weights computed with a decay of 0.9999.

ImageNet restoration. For the posterior mean predictor fω , we use the exact same HDiT model
as in appendix C.2.3. Namely, for the general-content restoration experiments, the posterior mean
predictor and the vector field models are the same. This model is trained for 100 epochs in all tasks.
The rest of the training hyper-parameters (optimization, EMA, etc.) remain the same as the those of
the SwinIR model described above.

C.2.5 EVALUATION

Face restoration. We test all models on the CelebA-Test data set, with images of size 256 ×
256. We utilize the torch-fidelity package (Obukhov et al., 2020) to compute FID, using the
default inception-v3-compat image feature extractor (Szegedy et al., 2016). The FID of each
method is computed between the entire FFHQ 256 × 256 training set, and the images produced by
the algorithm for the synthesized CelebA-Test degraded images.

ImageNet restoration. We test all models on the ImageNet validation data set (50,000 images),
with images resized to 128×128 pixels. To obtain these images, we first resize the original images to
have a shorter side of 128 pixels, followed by center cropping to the desired size. We again utilize the
torch-fidelity package to compute FDCLIP, which is the Fréchet distance in the latent space
of the clip-vit-b-32 image feature extractor (Radford et al., 2021) (using this model instead
of inception-v3-compat ensures a better alignment with human opinion scores Stein et al.
(2023)). The FDCLIP of each method is computed between the entire ImageNet validation data set
(ground-truth images) and the images produced by the algorithm for the corresponding synthesized
degraded images.

C.3 DETAILS OF DOT

Face restoration. We utilize DOT (Adrai et al., 2023) similarly to Appendix B.3, using images of
size 256 × 256 instead of 512 × 512, and adopting the official codes of the authors. To compute
the latent empirical mean and covariance of the target distribution, we provide the first 1000 from
FFHQ to the official code of DOT. For the source distribution, we randomly synthesize degraded
images according to the degradation of each task (Appendix C.1) from the first 1000 images in
FFHQ, reconstruct each image using the SwinIR model we trained for each task (the same weights
we use in PMRF), and finally compute the empirical mean and covariance of the reconstructions in
latent space.

6We use the official code for the SwinIR architecture from https://github.com/JingyunLiang/
SwinIR. Implementation details and hyper-parameters are provided in our code.
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ImageNet restoration. We select the first image from each class in the ImageNet training data. To
compute the latent empirical mean and covariance of the target distribution, we provide the gathered
1000 images to the official code of DOT. For the source distribution, we degrade each of the collected
1000 ground-truth images according to the degradation of each task (described in appendix C.1),
reconstruct the results using the trained ImageNet posterior mean predictor model (described in ap-
pendix C.2.4), and finally compute the empirical mean and covariance of the reconstructions in
latent space.

D PROVING THAT FLOW FROM Y IS ALSO OPTIMAL IN EXAMPLE 1

In Section 5.2 we show that, for the denoising task, PMRF and flow from Y are on-par in terms
of both perceptual quality and MSE. To provide intuition for this result, we show that flow from Y
leads to the desired estimator X̂0 in Example 1 (just like PMRF does).

Specifically, as in Example 1, suppose that X ∼ N (0, 1), N ∼ N (0, σ2
N ), σN > 0, and Y = X+N .

In flow from Y with σs = 0 we have Zt = tX + (1 − t)Y , and thus vRF(Zt, t) = E[X − Y |Zt].
Below, we show that

Cov(X − Y,Zt) = (t− 1)σ2
N , and (41)

Var(Zt) = σ2
N (t2 − 2t+ 1) + 1. (42)

Hence,

vRF(Zt, t) = E[X − Y |Zt]

= E[X − Y ] +
Cov(X − Y,Zt)

Var(Zt)
(Zt − E[Zt])

=
Cov(X − Y,Zt)

Var(Zt)
Zt (43)

=
(t− 1)σ2

N

σ2
N (t2 − 2t+ 1) + 1

Zt, (44)

where Equation (43) holds since E[X − Y ] = 0 and E[Zt] = 0. One can verify that the solution of
dẐt = vRF(Ẑt, t)dt for any initial condition Ẑ0 = c is given by

Ẑt = c

√
σ2
N (t2 − 2t+ 1) + 1√

1 + σ2
N

. (45)

Namely, we have

Ẑ1 =
1√

1 + σ2
N

Y

= X̂0, (46)

where the last equality follows from Equation (28). It follows that flow from Y is also optimal
in Example 1, just like PMRF.

Demonstrating Equations (41) and (42) is straightforward. We have

Cov(X − Y, Zt) = Cov(X − Y, tX + (1− t)Y )

= tCov(X,X) + (1− t)Cov(X,Y )− tCov(X,Y )− (1− t)Cov(Y, Y )

= t+ (1− t)− t− (1− t)(1 + σ2
N )

= (t− 1)σ2
N , (47)
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and

Var(Zt) = Cov(tX + (1− t)Y, tX + (1− t)Y )

= t2Cov(X,X) + 2t(1− t)Cov(X,Y ) + (1− t)2Cov(Y, Y )

= t2 + 2t(1− t) + (1− t)2(1 + σ2
N )

= t2 + 2t− 2t2 + (1− 2t+ t2)(1 + σ2
N )

= t2(1− 2 + 1 + σ2
N ) + 2t(1− 1− σ2

N ) + 1 + σ2
N

= t2σ2
N − 2tσ2

N + σ2
N + 1

= σ2
N (t2 − 2t+ 1) + 1. (48)

E INDICATOR RMSE (INDRMSE) DERIVATION

The MSE of any estimator X̂ can always be written as

E[∥X − X̂∥2] = E[∥X̂ − X̂∗∥2] + E[∥X − X̂∗∥2] (49)

= E[∥X̂ − X̂∗∥2] +m, (50)

where X̂∗ = E[X|Y ] is the MMSE estimator, Equation (49) follows from Lemma 2 in (Freirich
et al., 2021) (Appendix B.1), and m is some constant that does not depend on X̂ . Thus, if
f(Y ) ≈ X̂∗, we have

E[∥X − X̂∥2] ≈ E[∥X̂ − f(Y )∥2] +m, (51)

so
√
E[∥X̂ − f(Y )∥2] may be used as an indicator for

√
E[∥X − X̂∥2]. Future works should in-

vestigate the effectiveness of this measure.
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Table 2: Varying the number of flow steps K in PMRF (Algorithm 1) on the CelebA-Test blind
face image restoration benchmark. Red, blue and green indicate the best, the second best, and the
third best scores, respectively. Increasing the number of steps improves the perceptual quality while
hindering the distortion. These results are expected due to the distortion-perception tradeoff.

Perceptual Quality Distortion

K FID↓ KID↓ NIQE↓ Precision↑ PSNR↑ SSIM↑ LPIPS↓ Deg↓ LMD↓
3 81.81 0.0811 8.9012 0.2820 27.668 0.7669 0.3582 31.41 2.0340
5 63.77 0.0581 7.4568 0.4563 27.498 0.7601 0.3401 30.80 2.0294

10 44.39 0.0342 5.2648 0.6427 27.017 0.7388 0.3314 30.49 2.0215
25 37.46 0.0257 4.1179 0.7073 26.373 0.7073 0.3470 30.67 2.0303
50 36.63 0.0244 3.8492 0.7050 26.028 0.6896 0.3591 30.89 2.0409
100 36.57 0.0240 3.7311 0.7010 25.810 0.6787 0.3662 31.06 2.0409

Table 3: Varying the number of flow steps K in PMRF (Algorithm 1) on the LFW-Test blind face
image restoration benchmark. Red, blue and green indicate the best, the second best, and the third
best scores, respectively. Increasing the number of steps generally improves the perceptual quality
while hindering the IndRMSE. These results are expected due to the distortion-perception tradeoff.

K FID↓ KID↓ NIQE↓ Precision↑ IndRMSE↓
3 78.2331 0.0692 8.2315 0.3477 3.3934
5 64.3121 0.0524 6.8733 0.5143 3.8008

10 51.9845 0.0387 4.9896 0.6546 4.8648
25 49.3151 0.0366 4.0028 0.6692 6.1382
50 49.5581 0.0375 3.7126 0.6826 6.7960
100 49.6561 0.0377 3.6242 0.6710 7.2004

Table 4: Varying the number of flow steps K in PMRF (Algorithm 1) on the WIDER-Test blind
face image restoration benchmark. Red, blue and green indicate the best, the second best, and the
third best scores, respectively. Increasing the number of steps generally improves the perceptual
quality while hindering the IndRMSE. These results are expected due to the distortion-perception
tradeoff.

K FID↓ KID↓ NIQE↓ Precision↑ IndRMSE↓
3 85.0361 0.0704 9.9988 0.2742 5.3486
5 65.2563 0.0451 8.4650 0.5381 5.7665

10 42.5002 0.0179 5.5677 0.7144 7.1134
25 41.2685 0.0160 4.0726 0.7144 9.2164
50 41.4446 0.0174 3.6953 0.6845 10.3403
100 42.9437 0.0183 3.5704 0.6907 11.0674
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Table 5: Varying the number of flow steps K in PMRF (Algorithm 1) on the WebPhoto-Test blind
face image restoration benchmark. Red, blue and green indicate the best, the second best, and the
third best scores, respectively. Increasing the number of steps generally improves the perceptual
quality while hindering the IndRMSE. These results are expected due to the distortion-perception
tradeoff.

K FID↓ KID↓ NIQE↓ Precision↑ IndRMSE↓
3 128.7858 0.0996 9.1626 0.3907 3.2961
5 113.4734 0.0782 7.5893 0.5553 3.7371
10 91.3677 0.0484 5.4199 0.6413 4.8369
25 81.0642 0.0347 4.2402 0.6462 6.3098
50 78.7174 0.0324 3.9512 0.6265 7.0159

100 79.1239 0.0313 3.7990 0.5602 7.6887

Table 6: Varying the number of flow steps K in PMRF (Algorithm 1) on the CelebAdult-Test blind
face image restoration benchmark. Red, blue and green indicate the best, the second best, and the
third best scores, respectively. Increasing the number of steps generally improves the perceptual
quality while hindering the IndRMSE. These results are expected due to the distortion-perception
tradeoff.

K FID↓ KID↓ NIQE↓ Precision↑ IndRMSE↓
3 122.8780 0.0551 6.6818 0.3944 3.7339
5 113.7837 0.0426 5.5810 0.4444 4.3313
10 105.7426 0.0319 4.4119 0.6111 5.4908
25 102.8914 0.0293 3.7367 0.5500 6.7145
50 102.1454 0.0276 3.5609 0.6278 7.3004

100 102.0568 0.0279 3.4878 0.5944 7.7286

Table 7: Quantitative evaluation of blind face restoration algorithms on the LFW-Test data set.

Method FID↓ KID↓ NIQE↓ Precision↑ IndRMSE↓
SwinIR (≈ Posterior mean) 87.34 0.0808 8.595 0.2513 0

DOT 97.09 0.0891 5.705 0.1806 26.24
RestoreFormer++ 50.80 0.0386 3.911 0.6330 9.429

RestoreFormer 49.04 0.0355 4.168 0.6674 12.21
CodeFormer 52.82 0.0387 4.484 0.6756 9.534

VQFRv1 51.31 0.0399 3.590 0.6014 11.26
VQFRv2 51.16 0.0378 3.761 0.6154 16.15
GFPGAN 47.59 0.0308 4.554 0.6400 9.842

DiffBIR 40.97 0.0234 5.738 0.5804 9.105
DifFace 46.48 0.0329 4.024 0.7411 11.33

BFRffusion 50.93 0.0377 4.963 0.6850 7.210

PMRF (Ours) 49.32 0.0366 4.003 0.6692 6.138
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Table 8: Quantitative evaluation of blind face restoration algorithms on the WIDER-Test data set.

Method FID↓ KID↓ NIQE↓ Precision↑ IndRMSE↓
SwinIR (≈ Posterior mean) 91.96 0.0780 10.16 0.1649 0

DOT 82.15 0.0618 7.633 0.4082 14.900
RestoreFormer++ 45.41 0.0209 3.759 0.6505 14.466

RestoreFormer 50.23 0.0251 3.894 0.6505 14.200
CodeFormer 39.27 0.0138 4.164 0.7227 12.185

VQFRv1 44.21 0.0192 3.055 0.5959 17.042
VQFRv2 38.70 0.0157 3.995 0.6381 16.368
GFPGAN 41.28 0.0182 4.450 0.7876 11.840

DiffBIR 35.87 0.0114 5.659 0.6361 11.106
DifFace 37.38 0.0131 4.383 0.7856 10.418

BFRffusion 56.82 0.0307 4.647 0.5825 11.759

PMRF (Ours) 41.27 0.0160 4.073 0.7144 9.2164

Table 9: Quantitative evaluation of blind face restoration algorithms on the WebPhoto-Test data set.

Method FID↓ KID↓ NIQE↓ Precision↑ IndRMSE↓
SwinIR (≈ Posterior mean) 132.1 0.1022 9.638 0.2383 0

DOT 125.6 0.0865 7.397 0.3071 20.69
RestoreFormer++ 75.60 0.0291 4.080 0.6143 18.43

RestoreFormer 77.80 0.0334 4.460 0.6265 11.55
CodeFormer 84.17 0.0406 4.709 0.6830 8.952

VQFRv1 75.57 0.0312 3.608 0.5774 12.53
VQFRv2 83.52 0.0411 4.620 0.5848 14.48
GFPGAN 88.43 0.0494 4.941 0.6781 9.240

DiffBIR 92.82 0.0541 6.069 0.5307 9.152
DifFace 80.05 0.0341 4.405 0.7273 10.31

BFRffusion 84.83 0.0388 5.612 0.5872 7.222

PMRF (Ours) 81.06 0.0347 4.240 0.6462 6.310

Table 10: Quantitative evaluation of blind face restoration algorithms on the CelebAdult-Test data
set.

Method FID↓ KID↓ NIQE↓ Precision↑ IndRMSE↓
SwinIR (≈ Posterior mean) 143.80 0.0811 7.477 0.4222 0

DOT 208.54 0.1634 6.018 0.0444 44.24
RestoreFormer++ 103.81 0.0313 4.006 0.5167 11.43

RestoreFormer 103.96 0.0315 4.320 0.5556 14.97
CodeFormer 111.62 0.0427 4.544 0.5722 10.49

VQFRv1 105.59 0.0336 3.756 0.5944 11.14
VQFRv2 104.72 0.0337 3.999 0.6056 18.51
GFPGAN 109.19 0.0395 4.423 0.5111 11.90

DiffBIR 109.74 0.0411 5.650 0.5000 9.853
DifFace 98.780 0.0243 3.901 0.6833 12.66

BFRffusion 103.06 0.0290 4.702 0.6056 8.037

PMRF (Ours) 102.89 0.0293 3.737 0.5500 6.715
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(b) ImageNet restoration.

Figure 5: A controlled experiment comparing PMRF with previous methodologies, where we
vary the number of steps K in each algorithm (Algorithms 1 and 2 to 4). Specifically, we use
K ∈ {5, 10, 20, 50, 100}, where a larger marker size corresponds to a larger value of K. See Sec-
tion 5.2 for more details.

Table 11: A comparison of the forward process and training loss of PMRF and the baseline methods
from Section 5.2. For the flow from Y algorithm, we have Y † = Y for all tasks besides super-
resolution. For the super-resolution task, we up-scale Y using nearest-neighbor interpolation.

Forward process Flow training loss

PMRF (Ours)
Zt = tX + (1− t)Z0

minθ
∫ 1

0
E
[
∥(X − Z0)− vθ(Zt, t)∥2

]
dtZ0 = fω∗(Y ) + σsϵ

ϵ ∼ N (0, I)

Flow cond. on Y
Zt = tX + (1− t)Z0

minθ
∫ 1

0
E
[
∥(X − Z0)− vθ(Zt, t, Y )∥2

]
dtZ0 ∼ N (0, I)

Flow cond. on X̂∗ Zt = tX + (1− t)Z0
minθ

∫ 1

0
E
[
∥(X − Z0)− vθ(Zt, t, fω∗(Y ))∥2

]
dtZ0 ∼ N (0, I)

Flow from Y
Zt = tX + (1− t)Z0

minθ
∫ 1

0
E
[
∥(X − Z0)− vθ(Zt, t)∥2

]
dtZ0 = Y † + σsϵ

ϵ ∼ N (0, I)
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Algorithm 2: Flow conditioned on Y

Training
Solve θ∗ ← argminθ E

[
∥(X − Z0)− vθ(Zt, t, Y )∥2

]
// Zt := tX + (1− t)Z0, Z0 ∼ N (0, I). t is sampled uniformly from U [0, 1].

Inference (using Euler’s method with K steps to solve the ODE)
Initialize x̂ ∼ N (0, I)
for i← 0, . . . ,K − 1 do

x̂← x̂+ 1
K vθ∗(x̂, i

K , y) // y is the given degraded measurement

Return x̂

Algorithm 3: Flow conditioned on X̂∗

Training
Stage 1: Solve ω∗ ← argminω E

[
∥X − fω(Y )∥2

]
Stage 2: Solve θ∗ ← argminθ E

[
∥(X − Z0)− vθ(Zt, t, fω∗(Y ))∥2

]
// Zt := tX + (1− t)Z0, Z0 ∼ N (0, I). t is sampled uniformly from U [0, 1].

Inference (using Euler’s method with K steps to solve the ODE)
Initialize x̂ ∼ N (0, I)
for i← 0, . . . ,K − 1 do

x̂← x̂+ 1
K vθ∗(x̂, i

K , fω∗(y)) // y is the given degraded measurement

Return x̂

Algorithm 4: Flow from Y

Training
Solve θ∗ ← argminθ E

[
∥(X − Z0)− vθ(Zt, t)∥2

]
// Zt := tX + (1− t)Z0,

Z0 = Y † + σsϵ, ϵ ∼ N (0, I), and Y † is the up-scaled version of Y that
matches the dimensionality of X. t is sampled uniformly from
U [0, 1].

Inference (using Euler’s method with K steps to solve the ODE)
Initialize x̂ ∼ N (y†, Iσ2

s) // y† is the up-scaled version of the degraded
measurement y

for i← 0, . . . ,K − 1 do
x̂← x̂+ 1

K vθ∗(x̂, i
K )

Return x̂
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Table 12: HDiT architecture (Crowson et al., 2024) details and training hyper-parameters.

Hyper-parameter
Blind face restoration

(Section 5.1)
Controlled experiments

(Section 5.2)

Parameters 160M 121M

GFLOPs / forward 100.67
44.83 (face restoration)

11.21 (ImageNet restoration)
Memory consumption 612MB 464MB

Training epochs 3850
1000 (face restoration)

100 (ImageNet restoration)
Batch size 256 256

Image size 512×512
256×256 (face restoration)

128×128 (ImageNet restoration)
Precision bfloat16 mixed bfloat16 mixed

Training hardware 16 A100 40GB 4 L40 48GB
Training time 12 days 2.5 days

Patch size 4 4
Levels

(local + global attention)
2 + 1 1 + 1

Depth (2,2,8) (2,11)
Widths (256,512,1024) (384,768)

Attention heads
(width / head dim.)

(4, 8, 16) (6,12)

Attention head dim. 64 64
Neighborhood

kernel size
7 7

Mapping depth 1 1
Mapping width 768 768

Optimizer AdamW AdamW
Learning rate 5 · 10−4 5 · 10−4

Learning rate
scheduler

Multi-step
last 350 epochs

Not applied

AdamW betas (0.9, 0.95) (0.9, 0.95)
AdamW eps. 10−8 10−8

Weight decay 10−2 10−2

EMA decay 0.9999 0.9999
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PMRF (Ours)

Figure 6: Comparison with state-of-the-art blind face restoration methods on inputs from the
CelebA-Test data set. Our method produces high perceptual quality while achieving lower dis-
tortion overall. Zoom in for best view.

PMRF (Ours)

Figure 7: Qualitative results on the real-world LFW-Test data set. Our algorithm produces re-
constructions with either better or on-par perceptual quality compared to the state-of-the-art, while
maintaining very high consistency with the input measurements. Zoom in for best view.
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PMRF (Ours)

Figure 8: Qualitative results on the real-world WebPhoto-Test data set. Our algorithm produces
reconstructions with either better or on-par perceptual quality compared to the state-of-the-art, while
maintaining very high consistency with the input measurements. Zoom in for best view.

PMRF (Ours)

Figure 9: Qualitative results on the real-world CelebAdult-Test data set. Our algorithm produces
reconstructions with either better or on-par perceptual quality compared to the state-of-the-art, while
maintaining very high consistency with the input measurements. Zoom in for best view.
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Figure 10: Visual results on the face image colorization task from Section 5.2. Our method outper-
forms all baselines for any number of inference steps K. Zoom in for best view.
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Figure 11: Visual results on the face image denoising task from Section 5.2. Our method is on-par
with flow from Y , and outperforms the posterior sampling methods for any number of inference
steps K. Zoom in for best view.
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Figure 12: Visual results on the face image inpainting task from Section 5.2. Our method outper-
forms all baselines for any number of inference steps K. Zoom in for best view.
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Figure 13: Visual results from Section 5.2 on the face image super-resolution task. Our method
is on-par with flow from Y , and outperforms the posterior sampling methods for any number of
inference steps K. Zoom in for best view.
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Figure 14: Visual results from Section 5.2 on the ImageNet denoising task. Our method outperforms
all baselines for any number of inference steps K. Zoom in for best view.
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Figure 15: Visual results from Section 5.2 on the ImageNet super-resolution task. Our method
outperforms all baselines for any number of inference steps K. Zoom in for best view.
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Figure 16: Visual results from Section 5.2 on the ImageNet colorization task. Our method outper-
forms all baselines for any number of inference steps K. Zoom in for best view.
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