
Under review as a conference paper at ICLR 2023

GATED DOMAIN UNITS FOR MULTI-SOURCE DOMAIN
GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Distribution shift (DS) is a common problem that deteriorates the performance
of learning machines. To tackle this problem, we postulate that real-world dis-
tributions are composed of elementary distributions that remain invariant across
different environments. We call this an invariant elementary distribution (I.E.D.)
assumption. The I.E.D. assumption implies an invariant structure in the solution
space that enables knowledge transfer to unseen domains. To exploit this property
in domain generalization (DG), we developed a modular neural network layer that
consists of Gated Domain Units (GDUs). Each GDU learns an embedding of an
individual elementary distribution that allows us to encode the domain similarities
during the training. During inference, the GDUs compute similarities between
an observation and each of the corresponding elementary distributions which are
then used to form a weighted ensemble of learning machines. Because our layer
is trained with backpropagation, it can naturally be integrated into existing deep
learning frameworks. Our evaluation on image, text, graph, and time-series data
shows a significant improvement in the performance on out-of-training target do-
mains without domain information and any access to data from the target domains.
This finding supports the practicality of the I.E.D. assumption and demonstrates
that our GDUs can learn to represent these elementary distributions.

1 INTRODUCTION

A fundamental assumption in machine learning is that training and test data are independently and
identically distributed (I.I.D.). This assumption ensures consistency-results from statistical learning
theory, meaning that the learning machine obtained from an empirical risk minimization (ERM) attains
the lowest achievable risk as sample size grows (Vapnik, 1998; Schölkopf, 2019). Unfortunately,
a considerable amount of research and real-world applications in the past decades has provided a
staggering evidence against this assumption (Zhao et al., 2018; 2020; Ren et al., 2019; Taori et al.,
2020) (see D’Amour et al. (2020) for case studies). The violation of the I.I.D. assumption is usually
caused by a distribution shift (DS) and can result in inconsistent learning machines (Sugiyama &
Kawanabe, 2012), implying the loss of performance guarantee of machine learning models in the real
world. Therefore, to tackle DS, recent work advocates for domain generalization (DG) (Blanchard
et al., 2011; Muandet et al., 2013; Li et al., 2017; 2018b; Zhou et al., 2021a). This generalization to
utterly unseen domains is crucial for robust deployment of the models in practice, especially when
new, unforeseeable domains emerge after model deployment. However, the most important question
that DG seeks to answer is how to identify the right invariance that allows for generalization.

The contribution of this work is twofold. First, we advocate that real-world distributions are composed
of smaller “units” called invariant elementary distributions that remain invariant across different
domains; see Section 2.1. Second, we propose to implement this hypothesis through so-called gated
domain units (GDUs). Specifically, we developed a modular neural network layer that consists of
GDUs. Each GDU learns an embedding of an individual elementary domain that allows us to express
the domain similarities during training. For this purpose, we adopt the theoretical framework of
reproducing kernel Hilbert space (RKHS) to retrieve a geometrical representation of each distribution
in the form of a kernel mean embedding (KME) without information loss (Berlinet & Thomas-Agnan,
2004; Smola et al., 2007; Sriperumbudur et al., 2010; Muandet et al., 2017). This representation
accommodates methods based on analytical geometry to measure similarities between distributions.
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We show that these similarity measures can be learned and utilized to improve the generalization
capability of deep learning models to previously unseen domains.

The remainder of this paper is organized as follows: Our theoretical framework is laid out in Section 2
with our modular DG layer implementation shown in Section 3. In Section 4, we outline related work.
Our experimental evaluations are presented in Section 5. Finally, we discuss potential limitations of
our approach and future work in Section 6.

2 DOMAIN GENERALIZATION WITH INVARIANT ELEMENTARY
DISTRIBUTIONS

We assume a mixture component shift for the multi-source DG setting. This shift refers to the most
common DS stating that the data is made up of different sources, each with its own characteristics,
and their proportions vary between the training and test scenario (Quinonero-Candela et al., 2022).
Our work thus differs in the assumption from related work in DG, in which the central assumption
is the covariate shift (i.e., the conditional distribution of the source and test data stays the same)
(David et al., 2010). In the following, let X and Y be the input and output space, with a joint
distribution P. We are given a set of D labeled source datasets {Ds

i }Di=1 with Ds
i ⊆ X × Y . Each of

the source datasets is assumed to be I.I.D. generated by a joint distribution Ps
i with support on X ×Y ,

henceforth denoted domain. The set of probability measures with support on X × Y is denoted by P .
The multi-source dataset Ds comprises the merged individual source datasets {Ds

j}Dj=1. We aim to
minimize the empirical risk, see Section 3.3 for details. Important notation is summarized in Table 1.

2.1 INVARIANT ELEMENTARY DISTRIBUTIONS

Table 1: Important notation

K number of elementary distributions

M number of elementary domain bases

N number of basis vectors

Ps combined multi-source distribution

Ps
j j-th single-source distribution

Pj j-th elementary distribution

Vj j-th domain basis

vj
k k-th vector in Vj

αs
j coefficient for Ps

j

αj coefficient for Pj

βij coefficient for sample xi and µVj

Similar to Mansour et al. (2009; 2012); Hoffman et al. (2018a),
we assume that the distribution of the source dataset can be de-
scribed as a convex combination Ps =

∑D
j=1 α

s
jPs

j where αs =

(αs
1, . . . , α

s
D) is an element of the probability simplex, i.e.,

αs ∈ ∆D := {α ∈ RD |αj ≥ 0 ∧
∑D

j=1 αj = 1}. In other
words, αj quantifies the contribution of each individual source
domain to the combined source domain.

In contrast, we generalize their problem descriptions: We ex-
press the distribution of each domain as a convex combination
of K elementary distributions {Pj}Kj=1 ⊂ P , meaning that
Ps =

∑K
j=1 αjPj where α ∈ ∆K . Our main assumption

is that these elementary distributions remain invariant across
the domains. The advantage is that we can find an invariant
subspace at a more elementary level, as opposed to when we
consider the source domains as some sort of basis for all unseen
domain. Figure 1 illustrates this idea.

Theoretically speaking, the I.E.D assumption is appealing because it implies the invariant structure in
the solution space, as shown in the following lemma. The proof is given in Appendix A.1.
Lemma 1. Let L : Y × Y → R+ be a non-negative loss function, F a hypothesis space of functions
f : X → Y , and Ps(X,Y ) a data distribution. Suppose that the I.E.D assumption holds, i.e.,
there exist K elementary distributions P1, . . . ,PK such that any data distribution can be expressed
as Ps(X,Y ) =

∑K
j=1 αjPj(X,Y ) for some α ∈ ∆K . Then, the corresponding Bayes predictor

f∗ ∈ argminf∈F E(X,Y )∼P[L(Y, f(X))] is Pareto-optimal with respect to a vector of elementary
risk functionals (R1, . . . , RK) : F → RK

+ where Rj(f) := E(X,Y )∼Pj
[L(Y, f(X))].

Lemma 1 implies that, under the I.E.D assumption, Bayes predictors must belong to a subspace
of F called the Pareto set FPareto ⊂ F which consists of Pareto-optimal models. The model f is
said to be Pareto-optimal if there exists no g ∈ F such that Rj(g) ≥ Rj(f) for all j ∈ {1, . . . ,K}
with Rj(g) > Rj(f) for some j; see, e.g., Sener & Koltun (2018, Definition 1). In other words, the
I.E.D assumption allows us to translate the invariance property of data distributions to the solution
space. Since Bayes predictors of all future test domains must lie within the Pareto set, which is a
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Figure 1: A visualization of an “invariant elementary distribution (I.E.D.)” assumption for domain
generalization (DG): the observed data distributions (orange and violet) are composed of the same set
of unobserved elementary distributions (blue and red) that remain invariant across different domains.
Hence, the first challenge during the training phase (left panel) is to extract these elementary distri-
butions from the observed data (orange). The unobserved elementary distributions are represented
by the elementary bases V1 and V2 (cyan and pink). The second challenge during the inference
phase (right panel) is to create a weighted ensemble of learning machines that utilize the similarities
between the embedding of the unseen observation ϕ(xi) and the embeddings of these distributions
µV1 and µV2 in the RKHS H (green rectangle) as weights βi1 and βi2.

strict subset of the original hypothesis space, it is still possible to identify the optimal predictors of
future test domains, even without additional data from the test domains, except the I.E.D. assumption
itself. Hence, given data from the training domains, it is sufficient for the purpose of generalization to
maintain only solutions within this Pareto set during the training time.

Unfortunately, neither the elementary distributions nor the weights α are known in practice. Motivated
by this theoretical insight, our DG layer presented in Section 3 is designed to uncover them from
a multi-source training dataset Ds. While Lemma 1 shows the theoretical appeal of the I.E.D.
assumption, we discuss below a situation in which it might hold in practice. The limitations will be
discussed later in Section 6.

Real-world example. In this work, we postulate that the elementary domain bases are the invariant
subspaces that allow us to generalize to unseen domains. In practice, the question arises if and when
elementary domains evolve. Consider that we aim to learn to predict the risk of developing Diabetes
from laboratory data from Europe and then infer the risk from data from the United States of America.
Naturally, factors influencing the data-generating process may change, such as the level of physical
activity and nutritional habits. While, to a certain degree, these common factors remain invariant
across continents, each of these factors’ contributions may differ. In terms of our assumptions, we
model each of these factors with a corresponding elementary distribution Pj . For a previously unseen
individual, we can then determine the coefficients αs

j and quantify each factor’s contribution without
any information about the individual’s origin.

2.2 KERNEL MEAN EMBEDDING OF DISTRIBUTIONS

We leverage the KME of distributions (Berlinet & Thomas-Agnan, 2004; Smola et al., 2007; Muandet
et al., 2017) to discover the elementary distributions and evaluate similarities between them. Let H
be a reproducing kernel Hilbert space (RKHS) of real-valued functions on X with a reproducing
kernel k : X × X → R (Schölkopf et al., 2001). The KME of a probability measure P ∈ P in the
RKHS H is defined by a mapping ϕ(P) = µP :=

∫
X k(x, ·) dP(x). We assume that the kernel k is

characteristic, i.e., the mapping µP is injective (Fukumizu et al., 2004; Sriperumbudur et al., 2008).
Theoretically, this essential assumption ensures that there is no information loss when mapping the
distribution into H. Given the samples {x1, . . . , xn} generated I.I.D. from P, µP can be approximated
by the empirical KME µ̂P = (1/n)

∑n
i=1 k(xi, ·) = (1/n)

∑n
i=1 ϕ(xi). We refer non-expert readers

to Muandet et al. (2017) for a thorough review on this topic.
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Challenges. Figure 1 depicts two challenges that come with our assumption of elementary distribu-
tions. First, since we do not have access to the samples from the hidden elementary distributions,
the elementary KME cannot be estimated directly from the samples at hand. To overcome this
challenge, we instead seek a proxy KME µVj

:= (1/N)
∑N

k=1 ϕ(v
j
k) = (1/N)

∑N
k=1 k(v

j
k, ·)

for each elementary KME µPj from a domain basis Vj , where Vj = {vj1, . . . , v
j
N} ⊆ X for all

j ∈ {1, . . . ,M}. Hence, the KME µVj
can be interpreted as the KME of the empirical probability

measure P̂Vj
= (1/N)

∑N
k=1 δvj

k
. Here, we assume that M = K. The sets Vj are referred to

as elementary domain basis. Intuitively, the elementary domain basis V1, . . . , VM represents each
elementary distribution by a set of vectors that mimic samples generated from the corresponding
distribution. In Figure 1, V1 and V2 as well as their mapping in H visualize this first challenge.

The second challenge is the objective of learning the unknown similarity between a single sample xi

and an elementary domain Vj , which we denote by βij . Considering the advantage of KMEs, that is
to tackle this challenge from a geometrical viewpoint, we quantify similarities between KMEs. For
example, in Figure 1, the similarity between ϕ(xi) and µV1

(βi1) and µV2
(βi2) could be quantified

as their distance or angle. These similarity coefficients enable our Domain Generalization Layer to
represent a convex combination of elementary domain-specific learning machines, commonly known
as ensembles. We introduce our layer in the following Section 3.

3 DOMAIN GENERALIZATION LAYER

This section aims to transfer the theoretical ideas presented in Section 2 into a deep learning
framework. For the purpose of implementation, let x ∈ Rh×w denote the input data point and
hξ : Rh×w → Re the feature extractor (FE) that maps the input into a low-dimensional representation
x̃ ∈ Re. Then the prediction layer gθ : Re → Y infers the label y. To tackle the DG problem, we
introduce a layer module called the gated domain unit (GDU). A GDU consists of three main compo-
nents: (1) a similarity function γ : H×H → R that is the same for all elementary domains, (2) an
elementary basis Vj and (3) a learning machine f(x̃, θj) for each elementary domain j ∈ {1, . . . ,M}.
The architecture of the layer proposed herein is depicted in Figure 2.

Σ

x̃

GDU1

β1

f(x̃; θ1)

ŷ1

· · ·

· · ·

GDUM

βM

f(x̃; θM )

ŷM

γ(ϕ(x̃), µVj
)

Vj µVj

x̃

ϕ

ϕ βj

Figure 2: Visualization of the DG layer (left panel) and its main component, the GDU (right panel).
The DG layer consists of several GDUs that represent the elementary distributions. During training,
these GDUs learn the elementary domain bases V1, . . . , VM that approximate these distributions.

Essentially, the process is as follows: First, the j-th GDU takes x̃i as an input and yields βij as
an output. The KME of each domain basis Vj is required in order to apply γ to compute simi-
larity between x̃i and Vj . These KMEs are obtained by ϕ(Vj) := µVj

= (1/N)
∑N

k=1 ϕ(v
j
k) =

(1/N)
∑N

k=1 k(v
j
k, ·). The GDU, therefore, has the task to allocate coefficients βij for each ele-

mentary domain based on a similarity function γ. The function γ outputs the βij = γ(ϕ(x̃i), µVj
)

coefficients that in turn represent similarities between the KME of both, the corresponding domain
basis Vj and the input x̃i. Theoretically speaking, µVj

and the feature mapping ϕ(x̃i) are elements of
the associated RKHS H, which allow us to evaluate similarities of non-linear features in a higher
dimensional feature space. Each GDU is then connected to a learning machine f(x̃i, θj) that yields
an elementary domain-specific inference. The final prediction of the layer is then an ensemble of
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these learning machines gθ(x̃i) =
∑M

j=1 βijf(x̃i, θj) where θ = (θ1, . . . , θM ). In Figure 2, we give
an overview of how data is processed and information is stored in the GDU.

In summary, GDUs leverage the invariant elementary distribution (I.E.D.) assumption and represent
our algorithmic contribution: The elementary domain bases are stored as weights in the layer. Storing
information as a weight matrix (i.e., domain memory) allows to learn the elementary domain bases
efficiently using backpropagation. Hence, we avoid the dependency on problem-adaptive methods
(e.g., domain-adversarial training) and domain information (e.g., domain labels).

3.1 DOMAIN SIMILARITY MEASURES

For the similarity function γ, we consider two similarity measures H(ϕ(x̃), µVj
), namely the cosine

similarity (CS) (Kim et al., 2019) and maximum mean discrepancy (MMD) (Borgwardt et al., 2006;
Gretton et al., 2012). To ensure that the resulting coefficients βi lie on the probability simplex, we
apply the kernel softmax function (Gao et al., 2019) and interpret its output as the similarity between
an observation x̃ and an elementary domain basis Vi. We get

βij = γ(ϕ(x̃i), µVj
) =

exp
(
κH(ϕ(x̃i), µVj

)
)∑M

k=1 exp
(
κH(ϕ(x̃i), µVk

)
) , (1)

where κ > 0 is a positive softness parameter for the kernel softmax. Geometrically speaking, these
similarities correspond to the angle and distance of two KMEs in the RKHS H. The function ϕ maps
the observation x̃ and domain basis Vj into H meaning that ϕ(x̃) = µδx̃ = k(x̃, ·) is the KME of a
Dirac measure δx̃ and ϕ(Vj) = µVj

= (1/N)
∑N

k=1 k(v
j
k, ·).

CS. The CS function H(ϕ(x̃i), µVj
) =

⟨ϕ(x̃i),µVj
⟩H

∥ϕ(x̃i)∥H∥µVj
∥H

is used as an angle-based similarity.

MMD. We consider the MMD for calculating a distance-based similarity measure. The distance
is then given as ∥ϕ(x̃i) − µVj∥H. Subsequently, the similarity function H is the negative MMD:
H(ϕ(x̃i), µVj ) = −∥ϕ(x̃i)−µVj∥H. The intuition behind the negative MMD is to put higher weights
on samples that are closer to the KME of an elementary domain basis.

3.2 PROJECTION-BASED GENERALIZATION

For classification tasks, we introduce an alternative approach to infer the βi coefficients that is based
on the idea of kernel sparse coding (Gao et al., 2010; 2013). Herein the goal is to find an approximated
representation of each feature mapping ϕ(x̃i) using the elements of a dictionary {µVj}Mj=1. This
approach allows us to approximate the feature mapping with these elements by ϕ(x̃i) ≈

∑M
j=1 βijµVj .

In contrast to the aforementioned approaches, an elementary domain KME µVj
does not necessarily

represent the KME of an elementary distribution µPj
. Therefore, we present another approach that

aims to find a set {µVj
}Mj=1 that permits µPs to be represented as a linear combination.

Since P is assumed to be a convex combination of elementary distributions, we can find a linear
combination to represent µPs by the domain KMEs µVj , as long as µPs ∈ HM := span{µVj | j =
1, . . . ,M}. The RKHS HM is a subspace of the actual RKHS H, which allows us to represent
elements of H at least approximately in the subspace HM . By keeping the HM large, we gain more
representative power. To make HM as large as possible, we have to ensure its spanning elements are
linearly independent or, even better, orthogonal. Orthogonal KMEs ensure two desirable properties.
First, pairwise orthogonal elements in HM guarantee no redundancy. Second, having orthogonal
elements allows us to make use of the orthogonal projection. This projection geometrically yields the
best approximation of ϕ(x̃) in HM . In other words, we can achieve the best possible approximation
of the feature mapping by using its orthogonal components (see Proposition 3.1). The orthogonal
projection is given by

ΠHM
: H → HM , ϕ(x̃) 7→

M∑
i=1

⟨ϕ(x̃), µVj
⟩H

∥µVj∥2H
µVj . (2)
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Proposition 3.1. For a KME µP of a given mixture distribution P the following holds µP ∈
span{µVj

|Vj ,∀j = 1, . . . ,M}, where ⟨µVi
, µVj

⟩H = 0,∀i ̸= j (i.e., the KME of the elemen-
tary domains basis are pairwise orthogonal). The value of the function

∑M
j=1∥µP − βjµVj

∥2Hk
is

minimal if the coefficients are set as β∗
j = ⟨µP, µVj

⟩H/∥µVj
∥2H.

The Proposition 3.1 can be used to give an approximation of µP by projecting it into HM , i.e.,
µP ≈

∑M
j=1 βjµVj

, where βj = ⟨µP, µVj
⟩H/∥µVj

∥2H. This best approximation property is the main
advantage of our assumption in Proposition 3.1 (i.e., having orthogonal KME) and thus a potential
advantage of projection-based DG. Appendix A.2 provides the proof of Proposition 3.1.

3.3 MODEL TRAINING

For model training, we adapt the domain adaptation (DA) framework from Zhuang et al. (2021).
Thus, our learning objective function is formalized as L(g) + λDΩD(∥g∥H). The goal of the
training can be described in terms of the two components of this function. Consider a batch of
training data {x1, . . . , xb}, where b is the batch size. During training, we minimize the loss function
L(g) = 1

b

∑b
i=1 L(ŷi, yi) =

1
b

∑b
i=1 L(

∑M
j=1 γ(ϕ(x̃i), µVj )fj(x̃i), yi) for an underlying task and

the respective batch size. In addition, our objective is that the model learns to distinguish between
different domains. Thus, the regularization ΩD is introduced to control the domain basis. In
our case, we require the regularization ΩD to ensure that the KMEs of the elementary domain
basis are able to represent the KMEs of the elementary domains. Therefore, we minimize the
MMD between the feature mappings ϕ(x̃i) and the associated representation

∑M
j=1 βijµVj . Note

that βij = γ(ϕ(x̃i), µVj
). Hence, the regularization ΩD = ΩOLS

D is defined as ΩOLS
D

(
∥g∥H

)
=

1
b

∑b
i=1 ∥ϕ(x̃i)−

∑M
j=1 βijµVj

∥2H (see Appendix B.2 for details). The intuition is the objective to
represent each feature mapping ϕ(x̃i) by the domain KMEs µVj

. Thus, we try to minimize the MMD
between the feature map and a combination of µVj

. The minimum of the stated regularization can be
interpreted as the ordinary least square-solution of a regression-problem of ϕ(x̃i) by the components
of HM . In other words, we want to ensure that the basis Vj is contained in feature mappings ϕ(x̃i).

In the particular case of projection, we want the KME of the elementary domain to be orthogonal to
ensure high expressive power. For this purpose, the additional term Ω⊥

D will be introduced to ensure
the desired orthogonality. Considering a kernel function with k(x, x) = 1, orthogonality would
require the Gram matrix Kij = ⟨µVi

, µVj
⟩H to be close to the identity matrix I . There are a variety

of methods for regularizing matrices available (Xie et al., 2017; Bansal et al., 2018). A well-known
method to ensure orthogonality is the soft orthogonality (SO) regularization Ω⊥

D = λ∥K − I∥2F
(Bansal et al., 2018). As pointed out by Bansal et al. (2018), the spectral restricted isometry property
(SRIP) and mutual coherence (MC) regularization can be a promising alternative for SO and thus
are additionally implemented in the DG layer. Hence, in the case of projection, the regularization is
given by ΩD

(
∥g∥H

)
= λOLSΩ

OLS
D

(
∥g∥H

)
+ λORTHΩ⊥

D

(
∥g∥H

)
, λOLS , λORTH ≥ 0.

Lastly, sparse coding is an efficient technique to find the least possible basis to recover the data
subject to a reconstruction error (Olshausen & Field, 1997). Several such applications yield strong
performances, for example in the field of computer vision (Lee et al., 2007; Yang et al., 2009). Kernel
sparse coding transfers the reconstruction problem of sparse coding into H by using the mapping
ϕ, and, by applying a kernel function, the reconstruction error is quantified as the inner product
(Gao et al., 2010; 2013). To ensure sparsity, we apply the L1-norm on the coefficients β and add
ΩL1

D (∥γ∥) := ∥γ(ϕ(x̃i), µVj
)∥1 to the regularization term ΩD with the corresponding coefficient

λL1
. Appendix B.3 gives a visual overview of the model training.

4 RELATED WORK

DG, also known as out-of-distribution (OOD) generalization, is among the hardest problems in
machine learning (Blanchard et al., 2011; Muandet et al., 2013; Arjovsky et al., 2019). In contrast,
DA, which predates DG and OOD problems, deals with a slightly simpler scenario in which some data
from the test distribution are available (Ganin et al., 2015). Hence, based on the available data, the
task is to develop learning machines that transfer knowledge learned in a source domain specifically
to the target domain. Approaches pursued in DA can be grouped primarily into (1) discrepancy-based
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DA (Sun et al., 2016; Peng & Saenko, 2018; Ben-David et al., 2010; Fang et al., 2020; Tzeng et al.,
2014; Long et al., 2015; Baktashmotlagh et al., 2016) (2) adversary-based DA (Tzeng et al., 2017; Liu
& Tuzel, 2016; Ganin et al., 2015; Long et al., 2018), and (3) reconstruction-based DA (Bousmalis
et al., 2016; Hoffman et al., 2018b; Kim et al., 2017; Yi et al., 2017; Zhu et al., 2017; Ghifary et al.,
2014). In DA, learning the domain-invariant components requires access to unlabeled data from the
target domain. Unlike problems in DA, where the observed data from the test domains can be used to
find the most appropriate invariant structures (Ben-David et al., 2010), the lack thereof in DG calls
for a postulation of invariant structure that will enable the OOD generalization.

To enable generalization to unseen domains without any access to data from them, researchers have
made significant progress in the past decade and developed a broad spectrum of methodologies (Zhou
et al., 2021a;c; Li et al., 2019; Blanchard et al., 2011). For thorough review see, e.g., Zhou et al.
(2021a); Wang et al. (2021). Existing works can be categorized into methods based on domain-
invariant representation learning (Muandet et al., 2013; Li et al., 2018b;d), meta-learning (Li et al.,
2018a; Balaji et al., 2018), data augmentation (Zhou et al., 2020), to name a few. Another recent
stream of research from a causal perspective includes invariant risk minimization (Arjovsky et al.,
2019), invariant causal prediction (Peters et al., 2016), and causal representation learning (Schölkopf
et al., 2021). The overall motivation here is to learn the representation that is robust to domain-specific
spurious correlations. In other words, it is postulated that “causal” features are the right kind of
invariance that will enable OOD generalization. Despite the successful applications, DG remains a
challenging research gap.

We differentiate our work from existing ones as follow. First, we postulate the existence of domain-
invariant structure at the distributional level rather than at the data representation, which is a common
assumption in DG. This is motivated by theoretical results (Mansour et al., 2009; Hoffman et al.,
2018a), stating that a distribution-weighted combination of source hypotheses represents the ideal
hypothesis. Furthermore, our distributional assumption, as we argued in Section 2, generalizes
previous work that proposes to use domain-specific knowledge to tackle the problem of DG from
a more elementary setting. For example, approaches such as Piratla et al. (2020); Monteiro et al.
(2021) can be compared to our GDUs as domain-specific predictors, in the special case, where each
elementary domain represents a single source domain. However, GDUs do not assume the existence
of a single common classifier for all the domains, providing a combination of multiple common
classifiers shared between different source domains.

Second, we incorporate the I.E.D. assumption directly into our model’s architecture, as shown in
Figure 2. Designing effective architectures for DG has been largely neglected (Zhou et al., 2020, Sec.
4.1). Last, we do not assume access to domain information. Although obtaining such information can
be difficult in practice, see our short discussion in Appendix C.4 (Niu et al., 2017), DG methods that
can deal with their absence (e.g., Huang et al. (2020); Carlucci et al. (2019); Li et al. (2018c)) are yet
scarce (Zhou et al., 2020, Sec. 4.2).

5 EXPERIMENTS

Since ERM is one of the strongest baselines in DG (Gulrajani & Lopez-Paz, 2020; Koh et al., 2021),
we, first, compare our approach compared to ERM and ensemble learning (Table 2 and Appendix
C.1). Second, we benchmark our approach to state-of-the-art DG (e.g., CORAL, LISA, IRM, FISH,
Group DRO) methods focusing on image, graph, and text data (Table 3 and Appendix C.4). Third, we
analyse the GDUs robustness gainst DS that occurs in daily clinical practice (Table 12 and Appendix
C.3). Finally, in Appendix C.2, we conduct an ablation study focusing on the representation learned
during training (Appendix C.2.2). In our experiments, we distinguish two modes of training the DG
layer: fine tuning (FT), where we extract features using a pre-trained model, and end-to-end training
(E2E), where the FE and the DG layer are jointly trained1.

5.1 PROOF-OF-CONCEPT BASED ON DIGITS CLASSIFICATION

Following Feng et al. (2020) among others, we create a multi-source dataset by combining five
publicly available digits image datasets, namely MNIST (Lecun et al., 1998), MNIST-M (Ganin
& Lempitsky, 2015), SVHN (Netzer et al., 2011), USPS, and Synthetic Digits (SYN) (Ganin &

1All source code is made available on GitHub.
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Lempitsky, 2015). The task is to classify digits between zero and nine. Each of these datasets is
considered an out-of-training target domain which is inaccessible during training, and the remaining
four are the source domains. Details are given in Appendix C.1. Table 2 summarizes the results
for the most challenging out-of-training target domain, namely MNIST-M. In Appendix C.1, we
provide the results on the remaining target domains in Table 7 and a discussion heuristics for choosing
hyperparameters for our GDUs. Our method noticeably improves for all datasets mean accuracy
and decreases the standard deviation in comparison to the ERM and ensemble baselines, making the
results more stable across the ten iterations reported.

Table 2: Results Digits experiment.
The mean (standard deviation) ac-
curacy for ten runs is reported. Best
results are bold.

MNIST-M

ERM
Single 63.00 (3.20)

Ensemble 62.87 (1.50)

CS 68.55 (0.80)

FT MMD 68.62 (0.70)

PROJECTION 68.56 (0.91)

CS 69.25 (0.61)

E2E MMD 69.04 (0.83)

PROJECTION 68.67 (0.98)

We also compare our methods with related work that uses
domain information and data augmentation, based on the results
of Li et al. (2021) (Table 9 in Appendix C.1). Although data
augmentation in DG is a comparatively strong approach and,
at the same time, we do not use domain information; we obtain
comparable results to the baselines reported by Li et al. (2021).

Ablation study We chose the digits dataset to analyze each
component of our DG layer in 1st paragraph in Appendix C.1
and C.2. We (A) vary M , N on Figure 9, and the strength of
the regularization terms on Figure 6, Figure 7, and Figure 8 to
assess the sensitivity of the DG layer to the choice of hyper-
parameters, (B) visualize the output of the FE (Figure 11).
Our ablation study in (A) reveals stable results across different
sets of hyper-parameters. While the layer is not sensitive to
the choice of regularization strength, we recommend not to
omit the regularization completely, although the computational
expenses decrease without the orthogonal regularization. As an illustration in (B), we project the
output of the FE trained with a dense layer (ERM) and with the DG layer by t-SNE (t-distributed
stochastic neighbor embedding). The GDU-trained FE yields more concentrated and bounded clusters
in comparison to the one trained by ERM. Hence, we observe a positive effect on the representation
learned by the FE.

5.2 WILDS BENCHMARK

To challenge the I.E.D. assumption and the OOD generalization capabilities of the GDUs, we use
WILDS, a curated set of real-world experiments for benchmarking DG methods (Koh et al., 2021).
Further, WILDS is a semi-synthetic dataset set that operates under similiar assumptions as the source
component shift (Koh et al., 2021). We consider the following eight datasets: Camelyon17, FMoW,
FMoW, Amazon, iWildCam, and RxRx1, OGB-MolPCBA, Civil-Comments, and PovertyMap, which
represent the task of real-world DG. We closely follow Koh et al. (2021) for the experiments. Details
on datasets and benchmark methods are given in Appendix C.4. We present our benchmarking
in Table 3. Our results are achieved out-of-the-box (i.e., default parameters) since hyperparameter
optimization has a substantial impact on the generalization performance (Gulrajani & Lopez-Paz,
2020), and we aim to highlight the improvements solely attributable to our GDUs.

First, we observe the strengths and weaknesses of the benchmarks in the different data sets, all of
which are lower than ERM at least once. In contrast, although GDUs show similar behavior across
the datasets, performing very well for some datasets (e.g., FMoW, Poverty Map), they, however,
do not fall below ERM across all GDU experiments conducted. In addition, the baselines require
domain information. Our approach requires less information, yet, achieving comparable results to the
benchmarks.

5.3 ECG EXPERIMENT

The PhysioNet/Computing in Cardiology Challenge 2020 (Perez Alday et al., 2021; Goldberger et al.,
2000; Perez Alday et al., 2020) aims to identify clinical diagnoses from 12-lead ECG recordings from
6 different databases. This publicly available pooled dataset contains 43,101 recordings sampled
with various sampling frequencies and lengths. Each recording is labeled as having one or more of
24 cardiac abnormalities; hence, the task is to perform a multi-label binary classification. For our
experiment, we iterate over the databases, taking one at a time as the test domain while utilizing
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Table 3: Results on WILDS benchmarking tasks. Our results are achieved out-of-the-box (i.e., default
parameters) without hyperparameter optimization. We use a grey background to highlight methods
using no domain information for DG. We compute the metrics following Koh et al. (2021) and report
the mean (standard deviation). Best benchmark and GDU results are bold.

CAMELYON17 FMOW AMAZON IWILDCAM RXRX1 OGB-
MOLPCBA

CIVIL
COMMENTS

POVERTY
MAP

AVG ACC WORST-
REG ACC

10% ACC MACRO F1 AVG ACC
AVG WORST-
REGION ACC

WORST-
GROUP ACC

WORST-U/R
R

ERM 70.3 (6.4) 31.3 (0.17) 53.8 (0.8) 31.0 (1.3) 29.9 (0.4) 27.2 (0.3) 56.0 (3.6) 0.45 (0.06)
ERM ENSEMBLE 70.0 (9.4) 34.3 (0.18) 54.0 (0.5) 29.5 (0.4) 29.6 (0.3) 26.9 (0.3) 55.6 (0.8) 0.52 (0.08)
CORAL 59.3 (7.7) 32.8 (0.66) 52.9 (0.8) 32.8 (0.1) 28.4 (0.3) 17.9 (0.5) 65.6 (1.3) 0.44 (0.07)
FISH 74.7 (7.1) 34.6 (0.18) 53.3 (0.0) 22.0 (1.8) - - 75.3 (0.6) -
IRM 64.2 (8.1) 32.8 (2.09) 52.4 (0.8) 15.1 (4.9) 8.2 (1.1) 15.6 (0.3) 64.2 (8.1) 0.43 (0.07)
GROUP DRO 68.4 (7.3) 31.1 (1.66) 53.3 (0.0) 23.9 (2.1) 22.5 (0.3) 22.4 (0.6) 68.4 (7.3) 0.39 (0.06)
LISA 77.1 (6.9) 35.5 (0.81) 54.7 (0.0) - 31.9 (1.0) - 72.9 (1.0) -
CGD 69.4 (7.9) 32.0 (2.26) - - - - 69.1 (1.9) 0.43 (0.04)
ARM-BN - 24.4 (0.54) - 23.3 (2.8) 31.2 (0.1) - - -

CS 68.5 (8.3) 31.8 (1.2) 54.2 (0.8) 31.2 (0.8) 29.9 (0.3) 27.5 (0.2) 56.0 (3.7) 0.46 (0.07)
FT MMD 67.9 (8.0) 31.9 (1.2) 54.2 (0.8) 31.2 (0.8) 29.9 (0.3) 27.5 (0.2) 55.9 (3.7) 0.50 (0.06)

PRO 66.7 (8.9) 31.8 (1.0) 54.2 (0.8) 30.4 (1.0) 29.8 (0.3) 27.4 (0.2) 56.5 (2.9) 0.49 (0.07)

CS 66.7 (8.9) 34.0 (1.9) 53.9 (0.7) 27.8 (2.1) 29.7 (0.4) 26.9 (0.1) 55.9 (0.8) 0.46 (0.07)
E2E MMD 65.7 (6.7) 34.4 (0.7) 54.2 (0.8) 27.4 (1.6) 29.6 (0.2) 27.0 (0.5) 55.8 (0.7) 0.50 (0.06)

PRO 72.3 (9.5) 32.9 (0.8) 53.8 (0.8) 30.1 (1.2) 29.0 (0.2) 26.6 (0.3) 56.4 (2.1) 0.49 (0.07)

the remaining five databases for training. The performance was measured according to the original
PhysioNet challenge score. This generalized intersection-over-union score assigns partial credit to
misdiagnoses that result in similar treatments or outcomes. The score is then adjusted for a solution
that always selects the normal/majority class and normalized for the perfect solution. Therefore, the
score can have negative values and a best possible score of 1.

Table 4 reports results for the ECG experiments (see Appendix C.3 for details). For this clinical
time-series data, we observe an improvement in mean score and a reduction in standard deviation
over the ERM and ERM ensemble baselines across all DG tasks. We attribute poorer performance
for the PTB dataset to the fact that it contains considerably longer recordings than other datasets
(except for INCART which, however, contains only 75 samples) and a higher sampling rate (1000Hz
vs. 500Hz and 257Hz). The negative challenge score for the PTB-XL dataset is due to the presence of
previously unobserved labels in other datasets as well as a considerably smaller amount of data for
training since the PTB-XL dataset comprises the majority of all samples (21,837 out of 43,101).

Table 4: Results ECG experiment. All experiments were repeated five times and the mean (standard
deviation) challenge metric is reported. Higher is better. Best overall results are highlighted in bold.

CPSC CPSC-EXTRA INCART PTB PTB-XL G12EC

ERM
Single 0.0840 (0.0220) 0.2715 (0.0270) 0.2290 (0.0059) -8.8206 (0.3908) -0.3373 (0.0403) 0.2011 (0.0015)

Ensemble 0.1699 (0.0346) 0.2488 (0.0079) 0.2456 (0.0109) -8.9115 (0.1023) -0.4136 (0.0780) 0.2079 (0.0161)

CS 0.1830 (0.0061) 0.2950 (0.0035) 0.1595 (0.0313) -8.8802 (0.1069) -0.1932 (0.0168) 0.1853 (0.0036)

FT MMD 0.1877 (0.0077) 0.3011 (0.0035) 0.2100 (0.0413) -8.8082 (0.1458) -0.1567 (0.0211) 0.1919 (0.0036)

PROJECTION 0.1941 (0.0050) 0.3135 (0.0015) -0.1041 (0.0015) -8.8817 (0.0478) -0.2166 (0.0191) 0.2409 (0.0042)

CS 0.1067 (0.0170) 0.2866 (0.0146) 0.2539 (0.0289) -9.2947 (0.3004) -0.1651 (0.0494) 0.1927 (0.0080)

E2E MMD 0.1034 (0.0143) 0.2834 (0.0228) 0.2398 (0.0257) -9.0600 (0.3100) -0.1433 (0.0293) 0.1925 (0.0067)

PROJECTION 0.1411 (0.0269) 0.2962 (0.0065) -0.1467 (0.0513) -8.5904 (0.3310) -0.0178 (0.0291) 0.2947 (0.0117)

6 CONCLUSION AND DISCUSSIONS

We introduced the I.E.D. assumption, postulating that real-world distributions are composed of
elementary distributions that remain invariant across different domains and showed that it implies an
invariant structure in the solution space that enables knowledge transfer to unseen domains. Empirical
results based on real-world data support the practicality of the I.E.D. assumption and that we can
learn such a representation. Further, we presented a modular neural network layer consisting of Gated
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Domain Units (GDUs) that leverage the I.E.D. assumption. Our GDUs can substantially improve the
downstream performance of learning machines in real-world DG tasks. Across our experiments, we
observed that for some datasets FT is better than E2E and vice versa. In E2E training, the feature
extractor (encoder) is jointly trained with GDUs. Hence, the latent representation is stochastic during
training, meaning that we have variability in the representation fed into GDUs between epochs.
In contrast, in FT, the feature extractor is pretrained and always produces the same embedding.
Especially with large feature extractors such as ResNet-50, learning the elementary domains can be
more effective when we avoid any stochasticity in the latent representation.

Limitations. A major limitation of our I.E.D. assumption is to provide theoretical evidence that
this assumption holds in practice. We aim to expand the scope of the theoretical understanding of
the I.E.D. assumption and the GDUs. In addition, the particular theoretical setting of Albuquerque
et al. (2019) (i.e., each elementary domain represents a source domain) seems promising to extend
their generalization guarantee to cases where our I.E.D. assumption holds. Second, our GDU layer
induces additional computational overhead due to the regularization and model size that increases
as a function of the number of elementary domains. Noteworthy, our improvement is achieved with
a relatively small number of elementary domains indicating that the increased complexity is not a
coercive consequence of applying the DG layer. Also, the results achieved are not a consequence of
increased complexity, as the ensemble baseline shows.

Future work We expect the I.E.D. assumption and GDUs to be adapted, yielding novel applications
that tackle DG. For example, we suggest dynamically increasing the number of elementary domains
during learning until their distributional variance reaches a plateau as a measure of their heterogeneity.
Hence, one would learn the number of elementary domains instead of fixing the number of elementary
domains prior to training.
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A PROOFS

A.1 PROOF OF LEMMA 1

Proof. The result holds trivially for K = 1. For K ≥ 2 and by the I.E.D assumption,
Ps(X,Y ) =

∑K
j=1 αjPj(X,Y ) for some α ∈ ∆K . Then, we can write the risk functional

for each f ∈ F as R(f) =
∫
L(y, f(x)) dPs(x, y) =

∫
L(y, f(x)) d(

∑K
j=1 αjPj(x, y)) =∑K

j=1 αj

∫
L(y, f(x)) dPj(x, y) =

∑K
j=1 αjRj(f) where Rj : F → R+ is the elementary risk

functional associated with the elementary distribution Pj(X,Y ). Hence, the Bayes predictors satisfy

f∗ ∈ argmin
f∈F

R(f) = argmin
f∈F

K∑
j=1

αjRj(f). (A.3)

Since the rhs of equation A.3 corresponds to the linear scalarization of a multi-objective function
(R1, . . . , RK), its solution (i.e., a stationary point) is Pareto-optimal with respect to these objective
functions (Ma et al., 2020, Definition 3.1); see, also, (Hillermeier, 2001a;b). That is, the Bayes
predictors for the data distribution that satisfies the I.E.D assumption must belong to the Pareto set
FPareto := {f∗ : f∗ = argminf∈F

∑K
j=1 αjRj(f), α ∈ ∆K} ⊂ F .

A.2 PROOF OF PROPOSITION 3.1

Proof. Suppose we have a representation,

µP =

M∑
j=1

βjµVj
⟨µVi

, µVi
⟩H = 0∀i ̸= j, (A.1)

i.e. {µV1
, . . . , µVm

} are pairwise orthogonal. We want to minimize the MMD by minimizing

∥µP −
M∑
j=1

βjµVj∥2H = ⟨µP, µP⟩H︸ ︷︷ ︸
∥µP∥2

H=

−2⟨µP,

M∑
j=1

βjµVj ⟩H + ⟨
M∑
i=1

βiµVi ,

M∑
j=1

βjµVj ⟩H (A.2)

= ∥µP∥2H − 2

M∑
j=1

βj⟨µP, µVj
⟩H +

M∑
i=1

M∑
j=1

βiβj ⟨µVi
, µVj

⟩H︸ ︷︷ ︸
δij⟨µVi

,µVj
⟩H=

(A.3)

= ∥µP∥2H − 2

M∑
j=1

βj⟨µP, µVj
⟩H +

M∑
j=1

β2
j ∥µVj

∥2H . (A.4)

By defining

Φ(β) := ∥µP −
M∑
j=1

βjµVj∥2H , (A.5)

we can simply find the optimal βj by using the partial derivative

∂Φ

∂βj
= −2⟨µP, µVj

⟩H + 2βj∥µVj
∥2H

!
= 0 (A.4)

⇔ βj∥µVj
∥2H = ⟨µP, µVj

⟩H (A.5)

⇔ β∗
j =

⟨µP, µVj
⟩H

∥µVj
∥2H

. (A.6)

Please note that the function Φ is convex.
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DE CH AT US

Task: Forecast glucose values from past observations 

OOD generalization 

requires to find the “right” invariance!

DE CH AT US

Elementary 
distributions

DE CH AT USA

Problems: 

Ø Learn invariant structure based on observed data
Ø Domains are defined too broad (countries vs. subpopulations 

within countries)

Prior research Motivation GDUs

Figure 3: Visualization and motivation of our invariant elementary distribution assumption and how
they can be instantiated with Gated Domain Units.

B DETAILS ON THE GATED DOMAIN UNITS

B.1 REAL-WORLD EXAMPLE: VISUALIZATIONS

As written in Section 2.1, we postulate that the elementary domain bases are the invariant subspaces
that allow us to generalize to unseen domains. In practice, the question arises if and when elementary
domains evolve. Consider that we aim to learn to predict the risk of developing Diabetes from
laboratory data from Europe and then infer the risk from data from the United States of America.
Naturally, factors influencing the data-generating process may change, such as the level of physical
activity and nutritional habits. While, to a certain degree, these common factors remain invariant
across continents, each of these factors’ contributions may differ. In terms of our assumptions, we
model each of these factors with a corresponding elementary distribution. Figure 3 depicts our
assumption and how it differs from existing works 2.

To exploit this assumption in out-of-distribution (OOD) generalization, we developed a modular neural
network layer that consists of so-called Gated Domain Units (GDUs). In Figure 4, we visualized
the fundamental concept of the GDUs. Each GDU learns an embedding of an individual elementary
domain that allows us to encode the domain similarities during the training. During inference,
the GDUs compute similarities between observation and each of the corresponding elementary
distributions, which are then used to form a weighted ensemble of learning machines. In other words,
for a previously unseen individual, we aim to determine the coefficients and quantify each factor’s
contribution without any information about the individual’s origin.

B.2 DETAILED VIEW OF THE REGULARIZATION TERM ΩOLS
D

First, consider the following single term ∥ϕ(x̃i)−
∑M

j=1 βijµVj
∥2H that can be expressed as

∥ϕ(x̃i)−
M∑
j=1

βijµVj∥2H = ∥ϕ(x̃i)∥2H︸ ︷︷ ︸
(1)

−2 ⟨ϕ(x̃i),

M∑
j=1

βijµVj ⟩H︸ ︷︷ ︸
(2)

+ ∥
M∑
j=1

βijµVj∥2H︸ ︷︷ ︸
(3)

. (B.1)

AD (1):

We begin with Term (1) and write ∥ϕ(x̃i)∥2H as ∥ϕ(x̃i)∥2H = ⟨ϕ(x̃i), ϕ(x̃i)⟩H = k(x̃i, x̃i). We could
evaluate this term using the kernel function k for each data point in the batch b. However, since this

2Of note, Figure 3 is a complete fictive example, and we do not want to make medical implications in any
way.
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Gated Domain Units
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DE CH AT USA

During Training
we extract the set of unobserved elementary 
distributions that remain invariant from the 

observed data.

During Inference
we create a weighted ensemble using 

similarities between unseen observation and 
elementary distributions

(!!$%&' , $!$%&')

Figure 4: Visualization of the concept of the Gated Domain Unit and how they are leveraged to build
distributionally weighted ensembles of learning machines.

term does not depend on the the elementary domains {V1, . . . , VM}, it is unnecessary to compute this
value to minimize the penalty. Thus, we obtain a similar result by minimizing the penalty without
considering ∥ϕ(x̃i)∥2H in the regularization.

AD (2):

Term (2) can be expressed as

⟨ϕ(x̃i),

M∑
j=1

βijµVj ⟩H =

M∑
j=1

βij⟨ϕ(x̃i), µVj ⟩H (B.2)

Implementation-wise, the evaluation of this term requires the calculation of the inner product
⟨ϕ(x̃i), µVj

⟩H. Since our CS and projection-based methods involve this inner product to deter-
mine the coefficients βij , we pre-compute the inner product ⟨ϕ(x̃i), µVj

⟩H once for a mini-batch and
store these information during training to avoid multiple calculations of the same term.

Moreover, the projection-based method does not apply softmax and has a linear form. Therefore, the
term (2) can be simplified even further:

⟨ϕ(x̃i),

M∑
j=1

βijµVj ⟩H =

M∑
j=1

βij⟨ϕ(x̃i), µVj ⟩H (B.3)

=

M∑
j=1

⟨ϕ(x̃i), µVj
⟩H

∥µVj
∥2H

⟨ϕ(x̃i), µVj ⟩H (B.4)

=

M∑
j=1

⟨ϕ(x̃i), µVj
⟩2H

∥µVj
∥2H

. (B.5)

AD (3):

Last, we express the term (3) as follows

∥
M∑
j=1

βijµVj
∥2H =

M∑
j=1

M∑
k=1

βijβik⟨µVj
, µVk

⟩H, (B.6)
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and calculate the inner product of the domains ⟨µVj
, µVk

⟩H by

⟨µVj
, µVk

⟩H =
1

N2

N∑
l=1

N∑
m=1

⟨ϕ(vlj), ϕ(vmk )⟩H (B.7)

=
1

N2

N∑
l=1

N∑
m=1

k
(
vlj , v

m
k

)
=: Kjk, (B.8)

where N represents the number of vectors per domain basis. Note that this term does not depend on
the input data xi and, hence, matrix Kjk can be calculated once at the beginning of the optimization
step and stored to be re-used for all the data point of a batch.

Combining Equation B.6 and Equation B.8 yields

∥
M∑
j=1

βijµVj
∥2H =

M∑
j=1

M∑
k=1

βijβik⟨µVj
, µVk

⟩H (B.9)

=
1

N2

M∑
j=1

M∑
k=1

βijβik

N∑
l=1

N∑
m=1

k
(
vlj , v

m
k

)
(B.10)

=

M∑
j=1

M∑
k=1

βijβikKjk (B.11)

= βT
i Kjkβi . (B.12)

As a final step, we use the results for Term (1), (2), and (3) to obtain the desired regularization term

ΩOLS
D =

1

b

b∑
i=1

(
∥ϕ(x̃i)−

M∑
j=1

βijµVj
∥2H

)
(B.13)

=
1

b

b∑
i=1

(
∥ϕ(x̃i)∥2H − 2⟨ϕ(x̃i),

M∑
j=1

βijµVj
⟩H + ∥

M∑
j=1

βijµVj
∥2H

)
. (B.14)

As mentioned above, ∥ϕ(x̃i)∥2H is independent from the elementary domains, and, thus a constant in
the regularization. Hence, we can exclude this term, which avoids additional computational effort.

B.3 VISUALIZATION OF DG LAYER

Figure 5 depicts the layout of our DG layer.

C EXPERIMENTS

In this section, we provide a detailed description of the DG experiment presented in Section 5. Our
Digits and ECG experiments are implemented using TensorFlow 2.4.1 and TensorFlow Probability
0.12.1. For the WILDS benchmarking we use our PyTorch (version 1.11.0). All source code will
be made available on GitHub https://github.com/ (TensorFlow) and https://github.
com/ (PyTorch). Overall, our experiments aim to show the validity of the invariant elementary
distribution (I.E.D.) assumption and the Gated Domain Units (GDUs).

For the DG layer, we considered two modes of model training: fine tuning (FT) and end-to-end
training (E2E). In FT scenario, we first pre-train the FE in the ERM single fashion. Then, we extract
features using the pre-trained model and pass them to the DG layer for training the latter. For the
E2E training, however, the whole model including the FE and DG layer is trained jointly from the
very beginning.
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hθ x Σ

HM = span{µVi
|i = 1, . . . ,M}

L(ŷ, y) + Ω(∥f∥H)
+

µV1 β1(W1x + b1)

µV2 β2(W2x + b2)

...
...

µVM βM (WMx + bM )

ϕ(x) γ(ϕ(x), µVM
)

VM ϕ(VM ) µVM

x
(x, βM )

Figure 5: Domain generalization (DG) layer.

C.1 DIGITS EXPERIMENT

Our experiment setup is closely related to Peng et al. (2019); Feng et al. (2020); Zhang et al. (2020);
Zhao et al. (2018). Each dataset, except USPS, is split into training and test sets of 25,000 and 9,000
images, respectively. For USPS, we take the whole dataset for the experiment since it contains only
9,298 images3. Our experimental setup regarding datasets, data loader, and FE are based on existing
work (Feng et al., 2020; Peng et al., 2019). The structure of the FE is summarized in Table 5 and the
subsequent learning machine is a dense layer.

In the Empirical Risk Minimization (ERM) single experiment, we add a dense layer with 10 outputs
(activation=tanh) as a classifier to the FE. In the Empirical Risk Minimization (ERM) ensemble
experiment, we add M classification heads (a dense layers with 10 outputs and tanh activation each)
to the FE and average their output for the final prediction. This sets a baseline for our DG layer to
show performance gain against the ERM model with the same number of learning machines.

For training, we resorted to the Adam optimizer with a learning rate of 0.001. We used early stopping
and selected the best model weights according to the validation accuracy. For the validation data,
we used the combined test splits only of the respective source datasets. The batch size was set to
512. Although the DG layer requires more computation resources than the ERM models, all digits
experiments were conducted on a single GPU (NVIDIA GeForce RTX 3090).

Heuristics for main parameter of DG layer From a practical perspective, our layer requires
choosing two main hyper-parameters: the number of elementary domains M and since we use the
characteristics Gaussian kernel the corresponding parameter σ. The parameter M determines the size
of the ensemble of learning machines and, thus, for deep learning models, their overall network size.
As a heuristic to choose M , we suggest to cluster the output of a pre-trained FE. In the following,
we provide an example. We pre-trained the FE for the test domain MNIST-M and pass the source
data through this FE, which we cluster with the k-means algorithm. Subsequently, we analyse three
different metrics (Calinski Harabasz score, Davies Bouldinn score, and Silhouette score) to select the
optimal number of clusters as the basis to choose M . All scores yielded an accordance between four
to five clusters. Therefore, we set M to five and observed in Table 2 in Section 5 strong results in the
generalizing to the unseen test domain MNIST-M.

3We used the digits data from https://github.com/FengHZ/KD3A [last accessed on 2022-05-17,
available under MIT License.] published in Feng et al. (2020).
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Table 5: Feature Extractor used for the Digits Experiment

FEATURE EXTRACTOR

LAYER TYPE OUTPUT SHAPE
2D-CONVOLUTIONAL LAYER (32, 32, 64)

BATCH NORMALIZATION (32, 32, 64)
MAXPOOLING 2D (16, 16, 64)

2D-CONVOLUTIONAL LAYER (16, 16, 64)
BATCH NORMALIZATION (16, 16, 64)

MAXPOOLING 2D (8, 8, 64)
2D-CONVOLUTIONAL LAYER (8, 8, 128)

BATCH NORMALIZATION (8, 8, 128)
MAXPOOLING 2D (4, 4, 128)

FLATTEN (2048)
DENSE LAYER (3072)

BATCH NORMALIZATION (3072)
DROPOUT (3072)

BATCH NORMALIZATION (2048)
DENSE LAYER (2048)

As for the parameter σ, we resort to the median heuristic proposed in (Muandet et al., 2016) that is
σ2 = median{ ∥ x̃i − x̃j ∥2 : i, j = 1, . . . , n}. While both heuristics require a pre-trained
FE, cross-validation can act as a reasonable alternative. The hyper-parameters relevant for the DG
layer are summarized in Table 6. In the FT setting, we applied the median heuristics presented above
to estimate σ of the Gaussian kernel function, where the estimator is denoted as σ̂. Since median
heuristic is not applicable for the E2E scenario, σ was fixed to 7.5 for E2E.

Note that our approach to choose the relevant parameters was kept very general to show the feasibility
of the I.E.D. assumption and the generalization ability of GDUs and, most importantly, to provide
easy-to-reproduce results. During training, additional epoch metrics can be subscribed using our
custom DG layer callback, which may help to choose the model parameters. Furthermore, we
observed that the elementary domains become naturally orthogonal during the experiments, and thus,
we set λORTH relatively small. Since the orthogonal regularization puts additional computational
burden, one could omit this term completely to speed up training.

Table 6: Parameters for DG Layer in Digits and Digit-DG Experiments for the Fine Tuning (FT) and
End-to-end training (E2E) Settings. In case of Projection, we chose the spectral restricted isometry
property (SRIP) as the orthogonal regularization Ω⊥

D.

EXPERIMENT M N λL1
λOLS λORTH σ κ

FT
CS 5 10 1e−3 1e−3 - σ̂ 2

MMD 5 10 1e−3 1e−3 - σ̂ 2
PROJECTION 5 10 1e−3 1e−3 1e−8 σ̂ -

E2E
CS 5 10 1e−3 1e−3 - 7.5 2

MMD 5 10 1e−3 1e−3 - 7.5 2
PROJECTION 5 10 1e−3 1e−3 1e−8 7.5 -

Digit-DG Benchmark In previous research, the aforementioned digits data is not only used for
domain adaptation (DA), but also for domain generalization (DG) methods. For the latter, Zhou et al.
(2021b) and Li et al. (2021) introduced Digit-DG dataset and the evaluation protocol to benchmark
seven DG methods and ERM 4. Unlike the Digits experiment described above, Digit-DG dataset from
Zhou et al. (2021b) and Li et al. (2021) consists of only four datasets (without USPS) and a different
FE summarized in Table 8. Therefore, we follow their instructions to conduct a fair comparison and
ensure reproducibility. For the hyper-parameters, however, we kept the same values that we used for
the Digits experiment, see Table 6.

4Results were reported by Zhou et al. (2021b) and Li et al. (2021). Of note, both authors did not report the
standard deviation on their results.
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Table 7: Results Digits experiment. All experiments were repeated ten times and the mean (standard
deviation) accuracy is reported. Best results according to the mean accuracy are highlighted in bold.

MNIST MNIST-M SVHN USPS SYN

ERM
Single 97.98 (0.34) 63.00 (3.20) 70.18 (2.74) 93.70 (1.74) 83.62 (1.47)

Ensemble 98.21 (0.39) 62.87 (1.50) 72.01 (3.59) 95.16 (0.89) 83.80 (1.22)

CS 98.53 (0.16) 68.55 (0.80) 78.90 (1.41) 95.83 (0.50) 88.39 (0.82)

FT MMD 98.60 (0.08) 68.62 (0.70) 79.20 (2.01) 96.24 (0.71) 88.27 (0.41)

PROJECTION 98.57 (0.17) 68.56 (0.91) 79.34 (0.72) 96.24 (0.71) 88.58 (0.53)

CS 98.62 (0.19) 69.25 (0.61) 79.42 (1.27) 96.17 (0.52) 87.92 (0.84)

E2E MMD 98.58 (0.16) 69.04 (0.83) 79.20 (0.90) 96.00 (0.44) 88.18 (0.86)

PROJECTION 98.67 (0.12) 68.67 (0.98) 78.56 (1.68) 96.24 (0.77) 88.77 (0.48)

Table 8: Feature Extractor used for the Digit-DG Benchmark Experiment

FEATURE EXTRACTOR

LAYER TYPE OUTPUT SHAPE
2D-CONVOLUTIONAL LAYER (32, 32, 64)

MAXPOOLING 2D (16, 16, 64)
2D-CONVOLUTIONAL LAYER (16, 16, 64)

MAXPOOLING 2D (8, 8, 64)
2D-CONVOLUTIONAL LAYER (8, 8, 64)

MAXPOOLING 2D (4, 4, 128)
2D-CONVOLUTIONAL LAYER (8, 8, 64)

MAXPOOLING 2D (4, 4, 128)
2D-CONVOLUTIONAL LAYER (4, 4, 64)

MAXPOOLING 2D (2, 2, 64)
FLATTEN (256)

As a first method, we consider the CCSA (Classification and Contrastive Semantic Alignment)
method, which learns a domain-invariant representation by utilizing the CCSA loss (Motiian et al.,
2017). Second, MMD-AAE (Maximum Mean Discrepancy-based Adverserial Autoencoders) extends
adverserial autoencoders by a maximum mean discrepancy regularization to learn a domain-invariant
feature representation (Li et al., 2018b). CrossGrad (Cross-Gradient) augments data by perturbating
the input space using the cross-gradients of a label and domain predictor (Shankar et al., 2018).
Another augmentation-based DG method is L2A-OT (Learning to Augment by Optimal Transport)
(Zhou et al., 2021b). Specifically, a data generator trained to maximize the optimal transport distance
between source and pseudo domains, is used to augment the source data. All aforementioned
methods rely on the availability of domain information such as domain labels. To benchmark our
layer to a method for DG without domain information, we resort to the JiGen (Jigsaw puzzle based
Generalization) method (Carlucci et al., 2019). JiGen introduces an auxiliary loss for solving jigsaw
task during training. Further, we use the adaptive and non-adaptive stochastic feature augmentation
(SFA-S and SFA-A, respectively) method proposed by Li et al. (2021). In principle, both method
augment the latent feature embedding of a FE using random noise.

Our results are summarized in Table 9. As noted by Li et al. (2021), it is challenging to outperform
augmentation-based DG methods. In addition, SFA-A and SF-S are computationally light (i.e., only
adding random noise to the feature embedding) and do not require domain information (Li et al.,
2021). Nevertheless, our layer achieves competitive results even against the strongest baselines in all
DG tasks without requiring domain information.
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Table 9: Results of the Digits-DG experiment. All experiments were repeated ten times. Methods
are classified into augmentation-based (A) and non-augmentation-based (B) as well as DG with (✓)
and without (✗) domain information according to Li et al. (2021). Best results according to the mean
accuracy are highlighted in bold.

MNIST MNIST-M SVHN SYN CATEGORIE DOMAIN INFORMATION

Results reported by Li et al. (2021) .

ERM 95.8 58.8 61.7 78.6 B ✗
CCSA (MOTIIAN ET AL., 2017) 95.2 58.2 65.5 79.1 B ✓
MMD-AAE (LI ET AL., 2018B) 96.5 58.4 65.0 78.4 B ✓
CrossGrad (SHANKAR ET AL., 2018) 96.7 61.1 65.3 80.2 A ✓
L2A-OT (ZHOU ET AL., 2021B) 96.7 63.9 68.6 83.2 A ✓
SFA-S (LI ET AL., 2021) 96.7 66.3 68.8 85.1 A ✗
SFA-A (LI ET AL., 2021) 96.5 66.5 70.3 85.0 A ✗
JiGen (CARLUCCI ET AL., 2019) 96.5 61.4 63.7 74.0 B ✗

Gated Domain Units (GDUs) .

CS 97.5 68.9 74.0 85.5 B ✗
FT MMD 97.6 69.0 74.2 84.3 B ✗

PROJECTION 97.7 69.1 74.1 86.1 B ✗

CS 97.6 69.4 75.9 86.5 B ✗
E2E MMD 97.6 69.5 75.6 86.5 B ✗

PROJECTION 97.8 66.7 73.4 84.0 B ✗

C.2 ABLATION STUDY

C.2.1 MAIN COMPONENTS OF THE GATED DOMAIN UNIT

We chose the Digits dataset to conduct an ablation study, which is organized as follows: (1) ablation
of the regularization terms presented in Section 3, (2) effect of the orthogonal regularization for
projection-based generalization, and (3) affect on the FE’s output.

As a reminder, we introduced the regularization to be dependent on the form of generalization
(i.e., domain similarity measures or projection-based generalization in Section 3). For the domain
similarity measure case, the regularization is

ΩD

(
∥g∥H

)
= λOLSΩ

OLS
D

(
∥g∥H

)
+ λL1

ΩL1

D (∥γ∥), (C.1)

where λOLS , λL1
≥ 0. In the case of projection, the regularization is given by

ΩD

(
∥g∥H

)
= λOLSΩ

OLS
D

(
∥g∥H

)
+ λORTHΩ⊥

D

(
∥g∥H

)
(C.2)

with λOLS , λORTH ≥ 0. Although one can additionally choose the sparse regularization in
projection-based generalization, we set the focus in the ablation study on the two main regularization
terms that are the OLS and orthogonal regularization. For (1) we vary in Equation C.1 and Equation
C.2 the corresponding weights λ1 and λ2 in the interval of [0; 0.1] and display the mean classification
accuracy for the most challenging classification task of MNSIT-M in the form of a heatmap. In
Figures 6-8, we see that the classification accuracy remains on an overall similar level which indicates
that the DG layer is not very sensitive to the hyper-parameter change for MNIST-M as the test domain.
Nevertheless, we observe that ablating the regularization terms by setting the corresponding weights
to zero decreases the classification results and the peaks in performance occur when the regularization
is included during training of the DG layer.

Applying the DG layer comes with additional overhead, especially the regularization that ensures
the orthogonality of the elementary domain bases. This additional effort raises a question whether
ensuring the theoretical assumptions outweigh the much higher computational effort. Thus, in a
second step, we analyze how the orthogonal regularization affects the orthogonality of the elementary
domain bases (i.e., spectral restricted isometry property (SRIP) value) and the loss function (i.e.,
categorical cross-entropy).

In Figure 10, we depict the mean and standard deviation of the SRIP value and loss over five runs for
40 epochs. The SRIP value can be tracked during training with the DG layer’s callback functionalities.
First, we observe that the elementary domains are almost orthogonal when initialized. Training the
layer leads in the first epochs to a decrease in orthogonality. This initial decrease happens because
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Figure 6: Classification results for varying λL1 and λOLS in the interval of [0; 0.1] for FT (left) and
E2E (right) CS on MNIST-M.

Figure 7: Classification results for varying λL1
and λOLS in the interval of [0; 0.1] for FT (left) and

E2E (right) MMD on MNIST-M.

cross-entropy has a stronger influence on the optimization than regularization in the first epochs.
After five epochs, the cross-entropy decrease to a threshold when the regularization becomes more
effective and the orthogonality of the elementary domain bases increases again. In Figure 10, we
also observe that ablating the orthogonal regularization, while leading to better orthogonality of the
domains, does not significantly affect the overall cross-entropy during training.

Finally, we project the output of the FE trained with a dense layer (ERM) and with the DG layer by
t-SNE (t-distributed stochastic neighbor embedding) in Figure 11. The GDU-trained FE yields more
concentrated and bounded clusters in comparison to the one trained by ERM. Hence, we observe a
positive effect on the representation learned by the FE.

C.2.2 INTERPRETATION OF THE ELEMENTARY DOMAINS

We analyze the learned elementary domains in the digits experiment based on two visualizations,
and choose the maximum mean discrepancy (MMD) as the similarity measure and MNIST-M as the
test domain. The first visualization depicts the MMD between the datasets (i.e., MNIST, MNIST-M,
SVHN, USPS, and Synthetic Digits (SYN)) and the learned elementary domains (i.e., V1 − V5) as a
heatmap (see Figure 12 (left)). The heatmap indicates that the source and test domains are close to
one another in terms of the MMD. Hence, we expect that their closeness reflects in the learning of the
elementary domains. In other words, we expect that each elementary domains contributes similarly to
the source and test domains (i.e., the coefficients β are similar for each of these domains). In Section
3.1, we derive the coefficients by applying a kernel softmax function to the negative MMD distances.
Since the MMD distances between the source / test domains and the elementary domains are similar,
the coefficients will be similar too. We conclude that the learned elementary domains represent the
same distributional characteristics that existed among the source and test domains.

In the second visualisation, we show the t-SNE (t-distributed stochastic neighbor embedding) of the
feature extractor output for each source and test domain alongside the elementary domains in Figure
12 (right). First, we observe that the learned elementary domain bases form distinctive clusters. We
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Figure 8: Classification results for varying λORTH and λOLS in the interval of [0; 0.1] for FT (left)
and E2E (right) Projection on MNIST-M.

Figure 9: Mean and standard deviation of classification accuracy over 10 runs for varying number of
elementary domains (M , upper panel) and varying number of vector for each domain basis (N , lower
panel) for MNIST-M dataset.

see these clusters as a validation of our hypothesis that each GDU learns to mimic samples generated
from a corresponding elementary distribution as pointed out in Section 2.2. However, we can not
answer whether and where these elementary distributions occur in the real world. Moreover, these
elementary distributions yet lack interpretability.

In summary, the MMD heatmap and t-SNE embeddings of the learned elementary and source domains
on Figure 12 indicate that the GDUs learn to represent distributional structures in the dataset.

C.3 ECG EXPERIMENT

We adopted the task of multi-label binary classification of 12-lead electrocardiogram (ECG) signals
combined from 6 different sources introduced in the PhysioNet/Computing in Cardiology Challenge
20205 (Perez Alday et al., 2021; Goldberger et al., 2000; Perez Alday et al., 2020). Each ECG
recordings is annotated with 24 binary labels indicating whether or not a certain cardiac abnormality
is present. The data is aggregated from 6 different databases and contains 43,101 recordings sampled

5https://physionetchallenges.org/2020/ [last accessed on 2021-03-10, available under Cre-
ative Commons Attribution 4.0 International Public License].
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Figure 10: Effect of omitting the orthogonal regularization term Ω⊥
D. Spectral restricted isometry

property (SRIP) (left) and categorical cross-entropy (right) with and without orthogonal regularization
and their evolution during training for MNSIT-M dataset. The mean and standard deviation presented
for End-to-end (E2E) and Fine-tuning (FT) training scenarios are calculated over 10 runs.

Figure 11: Visualization of t-SNE Embedding on unseen Synthetic Digits Dataset. Colors encode
true label.

with various sampling frequencies, number of subjects, and lengths. Table 10 summarizes most
important details about the data sources for this experiment.

According to the original challenge score, we measure the performance in terms of the generalized
Intersection-over-Union (IoU) score where partial credit is assigned to misdiagnoses that result in
similar treatments or outcomes. The score is defined as

score :=
yT ·W · ŷ

y ∪ ŷ
, (C.3)

where y, ŷ ∈ {0, 1}24 represent actual labels and predicted labels and W stands for the partial
credit-assignment matrix provided as a part of the challenge description. Note that in case of identity
matrix W the score is exactly the Intersection-over-Union (IoU) score. The score is then adjusted for
a solution ymajority, which always predicts the normal/majority class, and is moreover normalized
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Figure 12: MMD heatmap (left) and t-SNE embedding (right) for the test domain MNIST-M.
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Table 10: ECG Data Sources Details.

DATASET NUMBER OF SAMPLES ECG LENGTH [SEC] FREQUENCY COUNTRY

CPSC 6,877 6 TO 60 500 HZ CHINA
CPSC-EXTRA 3,453 6 TO 60 500 HZ CHINA

INCART 75 1,800 257 HZ RUSSIA
PTB 549 UP TO 120 1,000 HZ GERMANY

PTB-XL 21,837 10 500 HZ GERMANY
G12EC 10,344 10 500 HZ USA

for the perfect solution y. Therefore, the final score can have negative values and the best possible
score of 1 and is formalized as

adjusted score :=
score(y, ŷ)− score(y, ymajority)

score(y, y)− score(y, ymajority)
. (C.4)

As a pre-processing step, we down-sampled all the signals to 125 Hz and applied Z-score, random
amplification and random stretching according to Vicar et al. (2020). For that we partially adopted
the code provided by the authors6. Additionally, we cropped each signal to its first 15,000 points
if the signal was too long (mostly applied to INCART database). Each dataset was randomly split
into train and validation parts with 3:1 ratio. During each experiment, we used the train splits of 5
databases for training and utilized the validation splits of the training databases for early stopping.
The hold-out 6-th database was used for inference and testing only.

Table 11 describes the architecture of FE used for the task. Since the provided ECG recordings have
different lengths, we used TensorFlow padded batching, which is padding all the recordings in a
batch to the length of the longest sequence in the batch. Therefore, input from different batches can
have different lengths so the spatial dimensions of the 1D-Convolutional layers are not predefined
and are presented as *.

Table 11: Feature Extraction Architecture used for the ECG Experiment is an adapted Version of
LeNet Architecture for 1D input Signals. Note that ECG recordings have variable lengths, therefore,
the spatial dimension is not defined and denoted as *.

FEATURE EXTRACTOR

LAYER TYPE OUTPUT SHAPE
1D-CONVOLUTIONAL LAYER (KERNEL SIZE=3, ACTIVATION=relu) (*, 32)
BATCH NORMALIZATION (*, 32)
MAXPOOLING 1D (POOL SIZE=2, STRIDES=2) (*, 32)
1D-CONVOLUTIONAL LAYER (KERNEL SIZE=2, ACTIVATION=relu) (*, 64)
BATCH NORMALIZATION (*, 64)
GLOBAL AVERAGE POOLING 1D (64)
DENSE LAYER (ACTIVATION=relu) (100)
DENSE LAYER (ACTIVATION=relu) (100)

We used the Adam optimizer to optimize weighted binary cross-entropy loss defined as −(wpos ·
y · log ŷ) + (1− y) · log (1− ŷ). Positive weights wpos are defined per class based on the training
split data inversely proportional to the frequency of positive labels for each class. A learning rate
was initially set to 0.001 and during the training reduced by the factor of 0.2 if the training loss was
not improving for 10 epochs. We also applied early stopping and restored model weights to the best
model according to the validation accuracy after the training end. Since each input samples for this
experiment have a larger size than the previous one, we decreased the batch size to 64. Each ECG
experiment was performed on a single GPU (Nvidia GTX 1080 Ti). The parameters relevant for
the DG layer are summarized in Table 12. We have to emphasize that we did not perform extensive
hyper-parameter tuning since our goal was to show the feasibility of the I.E.D. assumption and GDUs
while keeping the experiments reproducible.

6https://github.com/tomasvicar/BUTTeam [last accessed on 2022-05-17, available under BSD
2-Clause License].
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Table 12: Parameters for DG Layer in ECG experiments for the Fine Tuning (FT) and End-to-end
training (E2E) Settings.

EXPERIMENT M N λL1
λOLS λORTH σ κ

FT
CS 10 10 1e−3 1e−3 - 5.5 2

MMD 10 10 1e−3 1e−3 - 5.5 2
PROJECTION 10 10 1e−3 1e−3 1e−6 5.5 -

E2E
CS 10 10 1e−3 1e−3 - 5.5 2

MMD 10 10 1e−3 1e−3 - 5.5 2
PROJECTION 10 10 1e−3 1e−3 1e−6 5.5 -

C.4 WILDS BENCHMARKING EXPERIMENTS

For comparison of our approach and benchmarking, we followed the standard procedure of WILDS
experiments, described in Koh et al. (2021). As a technical note, all WILDS experiments have
been implemented in Pytorch (version >= 1.7.0) based on the specifications made in Koh et al.
(2021) and their code published on https://github.com/p-lambda/wilds [last accessed
on 2022-05-17, available under MIT License]. The results for the benchmarks were retrieved from
the official leaderboard https://wilds.stanford.edu/leaderboard/ [last accessed on
2022-09-26].

Camelyon17 In medical applications, the goal is to apply models trained on a comparatively small
set of hospitals to a larger number of hospitals. For this application, we study images of tissue slides
under a microscope to determine whether a patient has cancer or not. Shifts in patient populations,
slide staining, and image acquisition can impede model accuracy in previously unseen hospitals.
Camelyon17 comprises images of tissue patches from five different hospitals. While the first three
hospitals are the source domains (302,436 examples), the forth and fifth are the validation (34,904
examples) and test domain (85,054 examples), respectively.

We deviate from the specifications made in (Koh et al., 2021) in terms of the FE. We use the FE
from Feng et al. (2020); Peng et al. (2019) since we observed a higher mean accuracy and faster
training than with the by Koh et al. (2021) originally proposed DenseNet-121 FE (Huang et al., 2017).
We trained the FE from scratch. Both, ERM and the DG were trained over 250 epochs with early
stopping, a learning rate of 0.001, which is reduced by a factor of 0.2 if the cross-entropy loss has not
improved after 10 epochs. All results were aggregated over ten runs.

FMoW Analyzing satellite images with machine learning (ML) models may enable novel possibili-
ties in tackling global sustainability and economic challenges such as population density mapping
and deforestation tracking. However, satellite imagery changes over time due to human behavior
(e.g., infrastructure development), and the extent of change is different in each region. The Functional
Map of the World (FMoW) dataset consists of satellite images from different continents and years:
training (76,863 images; between 2002–2013), validation (19,915 images; between 2013 and 2016),
and test (22,108 images, between 2016–2017). The objective is to determine one of 62 building types
(e.g., shopping malls) and land-use.

As instructed in Koh et al. (2021), we used the DenseNet-121 pre-trained on ImageNet without
L2-regularization. For the optimization, we use the Adam optimizer with a learning rate of 1e-4,
which is decayed by a factor of 0.96 per epoch. The models were trained for 50 epochs with early
stopping and a batch size of 64. Additionally, we report the worst-region accuracy, which is a specific
metric used for FMoW. This worst-region accuracy reports the worst accuracy across the following
regions: Asia, Europe, Africa, America, and Oceania (see Koh et al. (2021) for the details). Again,
we report the results over three runs.

Amazon Recent research shows that consumer-facing machine learning application large perfor-
mance disparities across different set of users. To study this performance disparities, WILDS (Koh
et al., 2021) leverages a variant of the Amazon Review dataset. The Aamazon-WILDS dataset is
composed of data from 3,920 domains (number of reviewers) and the task is a multi-class sentiment
classification, where the model receives a review text and has to predict the rating from one to five.
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To split this dataset, a between training, validation, and test disjoint set of reviewers is used: training
(245,502 reviews from 1,252 reviewers), validation (100,050 reviews from 1,334 reviewers), test
(100,050 reviews from 1,334 reviewers).

For the experiments and baseline models, we use the specifications made in Koh et al. (2021). As for
the FE, we used DistilBERT-base-uncased models. For ERM, we use a batch size of 8, learning rate
1e-5, L2 regularization of 0.01, 3 epochs with early stopping and 512 as the maximum length of tokens.
For training the DG layer, we used the same specifications as made for ERM. The performance is
measured in 10th percentile accuracy.

iWildsCam Wildlife camera traps offer an excellent possibility to understand and monitor biodiver-
sity loss. However, images from different camera traps differ in illumination, color, camera angle,
background, vegetation, and relative animal frequencies. We use the iWildsCam dataset consisting
of 323 different camera traps positioned in different locations worldwide. In the dataset, we refer
to different locations of camera traps as different domains, in particular 243 training traps (129,809
images), 32 validation traps (14,961 images), and 48 test traps (42,791 images). The objective is to
classify one of 182 animal species.

Following the instructions by Koh et al. (2021), we used again the ResNet50 pre-trained on ImagNet
(He et al., 2016). For ERM, we used a learning rate of 3e-5 and no L2-regularization. The models
were trained for 12 epochs with a batch size of 16 with the Adam optimizer. In addition to the
accuracy, we report the macro F1-score to evaluate the performance on rare species (see Koh et al.
(2021) for details). All results were aggregated over three runs.

RxRx1 In biomedical research areas such as genomics or drug discovery, high-throughput screening
techniques generate a vast amount of data in several batches. Because experimental designs cannot
fully mitigate the effects of confounding variables like temperature, humidity, and measurements
across batches, this creates heterogeneity in the observed datasets (commonly known as batch effect).
The RxRx1 dataset comprises images obtained by fluorescent microscopy from 51 domains (disjoint
experiments): training (40,612 images, 33 domains), validation (9,854 images, 4 domains), and test
(34,432 images, 14 domains). The aim is to classify one of 1,139 genetic treatments. All results were
aggregated over three runs.

We conducted the RxRx1 experiments in accordance with the specifications made in (Koh et al.,
2021). As for the FE, we, thus, used the ResNet50 pre-trained on ImagNet (He et al., 2016). We
trained the models using AdamW with default parameters β1 = 0.9 and β2 = 0.999 using a learning
rate of 1e-4 and a L2-regularization with strength 1e-5 for 90 epochs with a batch size of 75. We
scheduled the learning rate to linearly increase in the first ten epochs and then decreased it following
a cosine rate. For trainingthe DG layer, we chose the same parameters as for the ERM. All results
were aggregated over three runs.

OBG-MolPCBA In biomedical research, machine learning has the potential to accelerate drug
discovery while reducing the experimental overhead due to lowering the number of experiments
required. However, to leverage the potential of machine learning, the models need to generalize to
molecules structurally different from those seen during training. To study this OOD generalization
across molecule scaffolds, we use the OGB-MolPCBA dataset. This dataset is split into the following
subsets according to the scaffold structure: training (44,930 domains), validation (31,361 domains),
and test (43,739 domains). The task is to classify the presence/absence of 128 biological activities
based on a graph representation of a molecule.

In line with Koh et al. (2021), we use a Graph Isomorphism Network (GIN) combined with virtual
nodes as the FE. For training ERM and our DG, we use the default parameters: five GNN layers with
a dimensionality of 300 and a learning rate of 0.001. We train for 100 epochs using early stopping.
As for the performance, we report the mean and standard deviation of the average precision across all
scaffolds (domains) over three runs.

CivilComments In the last decades, users have generated a vast amount of text on the Internet,
some of which contain toxic comments. Machine learning has been leveraged for automatic text
review to flag toxic comments. However, the models are prone to learn spurious correlations between
toxicity and information on demographics in the comment, which causes the model performance to
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drop in specific subpopulations. To study this OOD task, we leverage the modified CivilComment
dataset from Koh et al. (2021). Based on text input, the task is to predict a binary label, toxic or
non-toxic. The domains are defined according to eight demographic identities: male, female, LGBTQ,
Christian, Muslim, other religions, Black, and White. All comments were randomly split into a
disjoint training (269,038 comments), validation (45,180 comments), and test (133,782 comments)
set.

Again, we follow Koh et al. (2021) and use a DistillBERT-base-uncased model with the following
parameters: batch size = 16, learning rate = 1e-5, AdamW optimizer, number of epochs = 5, L2
regularization 0.01, and the maximum number of tokens of 300. We use these default parameters for
training our DG layer. The performance is measured in the worst-group accuracy and we report mean
and standard deviation across five runs.

PovertyMap As the FMoW example shows, satellite images in combination with machine learning
models can been used to monitor sustainability and economic challenges on a global scale. Another
application of these satellite images is poverty estimation across different spatial regions. However,
there exists a lack of labels for developing countries since obtaining the ground truth is expensive,
which makes this application attractive for machine learning models. To study the OOD generalization
to unseen countries, we use a modified version of the poverty mapping dataset of WILDS (Koh et al.,
2021). The task is to predict a real-valued aset wealth index between 1 and 5 based on a multi-spectral
satellite image. The domain refers to the country and whether the the the image is from a rural or
urban are. In contrast to the other datasets, this dataset is split in five different folds, whereby in each
fold the the training, valdiation and test set contains a disjoint set of countries, however, data from
both rural and urban regions. The avergae size of each set across the 5 folds is for the training ˜10,000
images (13-14 countries), ˜4,000 images (4-5 different countries), and for the test set ˜4,000 images
(13-14 countries).

On the challenge of obtaining domain labels. In the example of hospitals (e.g. Camelyon17
dataset), domain labels come, in fact, for free. However, other examples, such as the CivilComments
dataset, show the opposite. This dataset requires additional annotations (i.e., demographic identities),
which can be tedious to obtain in practice. Some algorithms need these domain annotations to achieve
superior performance on each subgroup. Furthermore, the task of subgroup detection in itself is a
difficult and relevant problem. Coming back to our hospital example, even people from the same
hospital might belong to different subpopulation (e.g. gender, race, age) and these demographic
subgroups are often more relevant for diagnosis than which hospital a patient comes from. This
information, however, is not always available (due to anonymization standards, for instance) and,
therefore, the relevant domain annotation might be hard to obtain.

We follow Koh et al. (2021) and use a pre-trained ResNet-18 model minimizing the sqarred error loss.
For the optimization, we rely on the Adam optimizer with the following parameters: learning rate of
1e-3 with a decay of 0.96 per epoch, batch size of 64 and early stopping based on the OOD evaluation
score. For evaluation, we report the Pearson correlation (r) between the predicted and actual asset
wealth indices across the five different folds.

General benchmark methods Following the WILDS benchmarking procedure (Koh et al., 2021),
we compare our proposed DG layer to the following baselines. First, empirical risk minimization
(ERM), which minimizes the average training loss over the pooled dataset. Second, a group of
DG algorithms provided by the WILDS benchmark, namely, Coral, Fish, IRM, and DRO. The
Coral algorithm introduces a penalty for differences in means and covariances of the domains
feature distributions. The Fish algorithm achieves DG by approximating an inter-domain gradient
matching objective, i.e., maximizing the inner product between gradients from different domains
(Shi et al., 2021). Conceptually, Fish learns feature representations that are invariant across domains.
Invariant risk minimization (IRM) introduces a penalty for feature distributions with different optimal
classifiers for each domain (Arjovsky et al., 2019). The idea is to enable OOD generalization by
learning domain-invariant causal predictors. Lastly, group distributionally robust optimization (DRO)
explicitly minimizes the training loss on the worst-case domain (Sagawa et al., 2020; Hu et al., 2018).

In addition to the baselines originally presented in Koh et al. (2021), we consider the following
more recent DG baselines. First, we describe LISA, which instead of regularizing the internal
representations for generalization, seeks to learn domain-invariant predictors with selective data
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Table 13: Parameters for DG Layer in WILDS experiments for the Fine Tuning (FT) and End-to-end
training (E2E) Settings.

EXPERIMENT M N λL1
λOLS λORTH σ κ

WILDS
BENCHMARK

FT AND E2E
CS 5 10 1e−3 1e−3 - 4 2

MMD 5 10 1e−3 1e−3 - 4 2
PROJECTION 5 10 - 1e−3 1e−3 16 -

augmentation Yao et al. (2022). Common Gradient Descent (CGD), introduced by Piratla et al. (2021),
is based on Group-DRO. However, it proposes to focus not on groups with the worst regularization
but on common groups that enable generalization. Last, Adaptive Risk Minimization using batch
normalization (ARM-BN) by Zhang et al. (2021) is different from the methods presented since it
adapts to previously unseen domains during test time using unlabeled observations from this test
domain.
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Table 14: Detailed results on RxRx1 dataset.

RXRX1

VAL
ACCURACY

IID
ACCURACY

OOD
ACCURACY

ERM 19.4 (0.2) 35.9 (0.4) 29.9 (0.4)
CORAL 18.5 (0.4) 34.0 (0.3) 28.4 (0.3)
FISH - -
IRM 5.6 (0.4) 9.9 (1.4) 8.2 (1.1)
GROUP DRO 15.2 (0.1) 28.1 (0.3) 22.5 (0.3)
LISA 20.1 (0.4) 41.1 (1.3) 31.9 (1.0)
CGD - - -
ARM-BN 20.9 (0.2) 34.9 (0.2) 31.2 (0.1)

CS 18.9 (0.4) 36.0 (0.4) 29.7 (0.4)
FT MMD 19.0 (0.2) 36.0 (0.2) 29.6 (0.2)

PRO 18.5 (2.5) 35.1 (0.3) 29.0 (0.2)

CS 19.5 (0.5) 36.2 (0.4) 29.9 (0.3)
E2E MMD 19.5 (0.5) 36.2 (0.4) 29.9 (0.3)

PRO 19.3 (0.5) 36.0 (0.5) 29.8 (0.3)

Table 15: Detailed results on FMoW dataset.

FMOW

VAL TEST
AVG ACC WORST-

REGION ACC
AVG ACC WORST-

REGION ACC

ERM 59.2 (0.07) 49.8 (0.36) 52.7 (0.23) 31.3 (0.17)
CORAL 56.5 (0.15) 48.9 (1.31) 50.1 (0.07) 32.8 (0.66)
FISH 57.8 (0.15) 49.5 (2.34) 51.8 (0.32) 34.6 (0.18)
IRM 56.1 (0.61) 49.7 (0.97) 50.4 (0.75) 32.8 (2.09)
GROUP DRO 57.6 (0.70) 48.7 (0.92) 52.8 (1.15) 31.1 (1.66)
LISA 58.7 (1.12) 48.7 (0.92) 52.8 (1.15) 35.5 (0.81)
CGD 57.0 (1.03) 49.8 (1.04) 50.6 (1.39) 32.0 (2.26)
ARM-BN 48.0 (0.65) 38.9 (2.17) 42.1 (0.26) 24.4 (0.54)

CS 59.6 (0.21) 50.4 (0.50) 53.1 (0.22) 31.8 (1.24)
FT MMD 59.6 (0.24) 50.3 (0.60) 53.1 (0.22) 31.9 (1.17)

PRO 59.2 (0.36) 50.0 (0.76) 52.7 (0.14) 31.8 (1.08)

CS 59.3 (0.33) 52.1 (0.80) 53.4 (0.25) 34.4 (1.86)
E2E MMD 58.5 (0.41) 52.9 (1.67) 52.7 (0.45) 34.4 (0.71)

PRO 58.5 (0.43) 50.9 (0.85) 52.7 (0.68) 32.9 (0.78)
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