Leveraging LLMs to Improve Hardware-Software
Co-Design Workflow Productivity and Accessibility

Kavya Sreedhar!, Josh Ogbonda', Pengqi Yin', Narges Shahidi', Kanthi Nagaraj', Zhijie Deng', Rami Cohen',

Ton Kalker!, Sameer Kumar!, Amir Yazdanbakhsh?, Suvinay Subramanian

1

'Google 2GoogleDeepMind
kavyasreedhar@google.com

Abstract—Hardware-software co-design workflows are critical
for chip design. However, these workflows are often manual and
require expert knowledge. In this paper, we propose leveraging
LLMs to improve the productivity and the accessibility of
these workflows. With customized prompt engineering, we can
enable LLMs to generate architecture insights from various large
data sources describing the performance of models on different
hardware systems. We create a taxonomy for the stages of
questions that users ask during a typical co-design workflow. This
taxonomy provides a way to logically reason about performance
data and evaluate the capabilities of LLM-integrated workflows.
We then introduce our prototype system, VIEW, which relies on
custom prompting with Gemini 2.0 Flash. VIEW is currently able
to replace humans in the loop for some types of questions, im-
proving productivity, and explain its reasoning when arriving at
conclusions, improving accessibility. To illustrate the importance
of our prompt engineering, we evaluate Gemini 2.0 Flash out of
the box, without any prompting, in this workflow. Unlike VIEW,
Gemini 2.0 Flash by itself hallucinates answers when data is not
available. We hope this preliminary proof of concept encourages
the community to further pursue this direction of research.

I. INTRODUCTION

Hardware-software co-design is critical for designing ef-
ficient accelerators for deep learning models [15]. The in-
creasing scale and complexity of Large Language Models
(LLMs) [1], [2], [14], [25], coupled with the duality of
the rapidly-evolving application landscape and the naturally-
slower pace of hardware development and fabrication, make it
difficult to quickly iterate in co-design workflows [19], [33].
Furthermore, a key challenge in realizing the full potential of
co-design lies in the vast and complex design space encom-
passing both algorithmic and architectural choices.

To explore this design space, traditional co-design method-
ologies often rely on expert knowledge in model develop-
ments (e.g., attention [28], flash attention [9], mixture of
experts [24], long-context modeling [23], [34]) and specialized
hardware (e.g., tailored processing elements [7], [17], multi-
level memory hierarchies with complicated dataflows [5],
[20], [27], [29]). This workflow can be manual and time-
consuming. Some works leverage LLMs in this workflow, but
they can require computationally-expensive automated search
techniques [3], [6], [12], [21], [35] or retraining [21], [22].

Consider the traditional co-design workflow shown in Fig-
ure 1. The user is given some performance data. This data is
broadly defined: for example, this data can be a collection
of measurements from executing LLMs on real hardware

In a traditional co-design workflow, users typically go through an iterative
Q&A process to generate insights from performance (perf) data.

R R One-time steps: Retrieval
1b decides which data to use l and processing of data
G Selected Processed Perf
eIkl Data Data Data
2
1a | formulates
4 There are 3 actions we propose
integrating LLMs to help with:
User — Co-design Expert e Formulate questions
e Decide what subset of the data
A synthesizes to use to answer questions
4 inputs to e Answer questions
3
informs the y_generate

next question

Answer :>
Fig. 1: The traditional hardware-software co-design workflow
is iterative (the blue loop for steps 1 to 4). Given a large
amount of performance data, the user starts by asking ques-
tions and deciding what subset of data to look at for answers.
The user works to answer these questions, which then help the
user formulate following questions until they arrive at a model
or architectural insight. We propose integrating LLMs into this
workflow, as shown in Figure 2, to make this workflow more
accessible, efficient, and automated.

Insights

systems, simulation results, or rough spreadsheet models.
Furthermore, this data can be aggregated from various sources
and provide different views of executing various models on
various hardware systems, from detailed performance metrics
to high-level summaries. The data input does not need to be
limited to raw performance data. Other data sources such
as hardware system specifications, model hyperparameters,
code describing compiler optimization passes, and analytical
equations can provide more context. As a result, this data can
be large and may require a one-time pre-processing step.
The user typically iteratively formulates questions (la) to
make sense of this data. Every iteration, the user has to decide
what subsets of the data to focus on to ask questions, and
what data is relevant to answer these questions (1b). Given
the question and the data (2), the user answers the question
(3). This process repeats: the user continues asking questions,
using what they learn from previous answers (4). With enough
answers, the user can determine insights about the evaluation.
In this paper, we propose integrating LLMs themselves
into this co-design workflow to improve user productivity and
accessibility. In Figure 1, the green box represents the user,

who is typically a co-design expert. We formulate the key tasks
the user is responsible for in this flow, with output arrows
from the user: formulating questions, selecting what data
subset is relevant for the questions being asked, and generating
the answers. To replace/aid the user for any combination of
these three tasks, we leverage the emergent reasoning and
generative capabilities of LLMs. Our work builds upon recent
advancements in LLM prompting [4], [8], [10], [26], [30], [31]
for our customized prompt engineering. With these prompts,
and our pre-processing of raw data sources, we enable LLMs
to synthesize information and answer key questions that arise
during the co-design process.

We next introduce a taxonomy for the stages of increasingly-
complicated questions users ask during a typical co-design
flow. This taxonomy also provides the basis for a metric to
evaluate the capabilities of LLM-integrated workflows. We
believe that building upon this formulation is a critical task
for the co-design community: this will allow us to construct
an open standardized benchmark to evaluate LLM-integrated
co-design workflows.

We first evaluated Gemini 2.0 Flash out of the box to under-
stand the necessity of prompt engineering. While effective for
the first stage of questions (“Stage 1), this baseline approach
struggles when data is sparse, often hallucinating incorrect
answers or conflating disparate data sources. Our prototype
system, Visualization Insights and Exploration Workbench
(VIEW), overcomes these limitations by integrating domain-
specific knowledge. VIEW leverages our understanding of
common co-design workflows to retrieve an accurate subset
of simulation data relevant to the user query. It then provides
the LLM with a custom prompt that contextualizes how to in-
terpret the selected data. This synergy of targeted retrieval and
associated context improves response accuracy and reliability.

Unlike general-purpose retrieval-augmented generation sys-
tems relying on vector embeddings [13], VIEW employs a
more focused strategy. It further uses another LLM informed
by domain awareness to automate data selection. VIEW
explicitly communicates when an answer cannot be reliably
determined—a vital feature for less-seasoned users building
intuition. With LLMs in the loop to automate and explain the
co-design process, VIEW is a start towards improving produc-
tivity, and enabling non-experts to derive meaningful insights.
We hope our problem formulation and taxonomy stimulate
further research in accelerating the co-design process.

II. REASONING ABOUT PERFORMANCE DATA

There are different logical sequences of questions that users
may have about the performance data input in Figure 1,
referred to as “data” below. We provide a taxonomy to classify
these types of questions. We consider a high-level grouping
of questions, denoted stages, which consist of progressively
harder questions to reason about:

o Stage 1 — What is the data?
o Stage 2 — Why is the data the way it is?

o Stage 3 — How can I change the model or the hardware
system, to get a different desired result or make it match
an expected result?

o Stage 4 — Where in the data should I look to focus my
analysis? What questions should I ask about the data?

For most Stage 1 questions, the answer is directly available
within the performance data. The exceptions are Stage 1
“Data Query +” questions, explained later in this section. For
questions in the remaining stages, the LLM has to reason about
the raw data given to answer these questions. In other words,
these answers are not directly present in the performance data.

Stage 1 questions are data queries or data comparisons.
These questions do not require co-design, model, or hardware
knowledge and can be answered by anyone with the data. Data
queries require simple lookups in the data. Examples include
“What is the execution time for Q projection for Llama2-70B
on a state-of-the-art GPU system?” and “Which collectives
were required, and which operators were they after?”.

Basic data comparisons require multiple data queries, with
answers present in the data. Then, these questions require com-
parisons. The LLM needs to extrapolate which data queries are
required for the comparison and how to compare these num-
bers. Example questions include “What are the performance
bottlenecks?”, “Is the Q projection communication-bound or
compute-bound?”’, and “How does the distribution of FLOPs
required by model operations correspond to the percentage of
total execution time required for these operations? Are some
operations not efficiently executed on this hardware?”. The
last example guides the user on which operations to focus on
optimizing. These questions can extend to data comparisons
across many different workloads on many hardware systems.

Stage 1 questions can go further than simple lookup and
comparison by relying on knowledge that a previously-trained
LLM would have. We refer to these questions as “Data Query
+” questions, which do require some expert knowledge in
order to better contextualize the results. For example, to get a
sense of how a current experiment compares to prior standards,
we could ask “Can you compare this simulator data of serving
this model on a mock hardware system to measurements for
serving on a state-of-the-art GPU?”. As another example, to
evaluate gaps in simulator accuracy, we could ask “Are there
any model operators not simulated in these results for this
model? What proportion of FLOPs do these missing operators
comprise for this model?”.

Stage 2 requires reasoning about consequences to explain
what causes the data to be the way it is. These questions
do require some co-design, model architecture, or hardware
system knowledge for a human to answer. Importantly, the
answers to these questions are not directly in the performance
data, and the LLM must extrapolate to understand causes
and effects. Example questions include “Why does the same
workload consume less power on hardware system xPU-A than
xPU-B?”, “Why can the weights for Q projection fit in the
lowest level of the memory hierarchy for model A but not for
model B?” and “Why do the feedforward layers require the
largest proportion of execution time on xPU-A?".

Label | Stage | Question

| Answer

I

‘ Which system achieves higher performance for this workload? ‘

xPU-A is 15% faster

2 1 Which operator has the highest performance Q projection
difference between the two systems?
3 2 Why is the Q projection runtime different xPU-A pins all the Q projection weights in local SRAM,
between the two systems? while xPU-B has to fetch these weights from off-chip HBM.
4a 2 Why can A pin the weights while B cannot? xPU-A has a 15% larger on-chip SRAM, and
the Q projection weights size is in between
xPU-A and xPU-B’s on chip-SRAM capacity.
Sa 3 |If we increase XxPU-B’s on-chip SRAM by 7% so the Q projection| No, xPU-A also pins the output projection weights while xPU-B does
weights fit, will xPU-A and xPU-B have the same performance? | not, and that operator’s weights will still not fit in this larger SRAM.
6a 3 How much do I need to increase xPU-B’s on-chip SRAM by A 10% increase in SRAM capacity for xPU-B will produce the same
to get the same performance as xPU-A? runtime for Q projection and output projection, but there may be other
differences in the hardware resulting in performance differences.
4b 3 Why can xPU-A pin the weights while xPU-B cannot? xPU-A and xPU-B have the same on-chip SRAM and HBM
xPU-A and xPU-B should have the same on-chip capacities, but it looks like the activations for this operator
SRAM capacity and HBM capacity. require 2x the memory in B.
5b 3 Why do the activations require more memory in xPU-B? The data type for the activations in FP8 for xPU-B and INT4 for
xPU-A. The workload is not the same. Please run your evaluations
again with the same INT4 data type for the workload for both systems.

TABLE I: Two examples of logical sequences of questions a user may ask about performance data for the execution of a
workload on two different hardware systems xPU-A and xPU-B, with expected answers and questions classified by Stage type.

With the answers from Stage 1 and Stage 2 questions, the
user better understands the characteristics of the performance
results they have. The value addition of bringing an LLM into
the loop for Stage 1 questions is to speed up the lookup and
comparison process when going through a lot of performance
data. These questions can also provide some further context for
these specific lookups and comparisons. In Stage 2, an LLM
helps the user in two ways: first, in saving time in hunting
down different possibilities that may explain the resulting
data, and second, in guiding the user in where to look for
causal relationships for the workload and architecture. An
LLM capable of reasoning about these dependencies, even
when the answers are not explicitly available, can explain its
insights to an end-user. This capability not only saves time
for experts, but it also enables non-experts to actively build
intuition in reasoning about performance data.

Stage 3 requires building upon the understanding from
Stage 1 and Stage 2 answers to further reason about whether
the data makes sense or what would need to be done to make
the data look a certain way. For a human, these questions
are typically answered by a co-design expert with a deep
knowledge of the models and the hardware architectures. We
identify two different use cases in this stage.

In the first use case, Stage 3 questions ask if the data
matches user intuition. If the data does not match intuition,
Stage 3 questions enable going further to discern what features
of the workload and/or the system cause the discrepancy. For
example, consider a model layer requiring F; FLOPs and a
hardware system with Fj FLOPs. If the evaluation reports
FLOPs utilization U and compute execution time ¢, we expect
t= FﬁU. If hardware system xPU-A has 2x the FLOPs of
xPU-B, where F} > Fj,(p), we would expect that t(4) < t(p).

There are two reasons there can be a data/intuition mis-
match. In one case, the evaluation is correct, and this discrep-

ancy highlights a misunderstanding in the intuition. Then, the
LLM can help the user better understand the flaw in their logic.
Alternatively, the intuition is correct, and there is a bug in the
evaluation. For example, this bug could be in the evaluation
setup, model or system definitions, or underlying implementa-
tions. If there is a bug, the LLM-integrated workflow can help
pinpoint the issue, and suggest an approach for the fix.

In the second use case for Stage 3, the user understands
why the data looks the way it does, and would like to
understand what to change in the system and the workload
to produce some other behavior. These questions can be
more architecture-focused, e.g., “How can I minimize memory
transfers for the Q projection operator in this model on this
system?”, or more model-focused, e.g., “How many attention
heads should my model have for more efficient mappings to
a given hardware architecture?”. Note that the LLM would
need to have some sense of model quality for the second
example, and know not to produce trivial answers such as zero.
This understanding could already be present from the LLM’s
training, or may require fine-tuning, augmentation with further
data sources, or more refined custom prompting.

Stage 4 serves as a meta-stage that reasons about what
questions should be asked in Stages 1, 2, and 3. Stage 4 ques-
tions direct the user on what is interesting in their data, what
trends appear, and where to look and focus their understanding
or debugging efforts. This stage does not necessarily require
specific questions prompted by the user as in the other stages.
Instead, Stage 4 allows for reasoning about the takeaways from
this data without that explicit direction from the user.

Having an LLM reason about this data and answer Stage 3
questions would qualitatively save significant time, thus im-
proving the productivity of this workflow. Experts can now
rely on the LLM to sort through various data sources and check
the LLM’s reasoning with their expectations. Stage 3 answers

also help individuals with less specialized domain knowledge
ramp up in this space, improving accessibility. Stage 4 goes
further to direct the user in what to look for and takeaway from
the data. Importantly, Stage 4 questions move the burden of the
question sequence generation from the user to the LLM. This
shift opens up this workflow to users who are not concerned
about the specifics and only want high-level insights. Overall,
this stage automates more of the workflow and enables guiding
a user with any level of expertise.

A. Example Workflows

We show examples of sets of questions that we asked in
recent co-design studies in Table I. A user is comparing the
performance of a workload on two different hardware systems,
xPU-A and xPU-B. For this workload, xPU-A achieves better
performance than xPU-B, and the user wants to understand
why. User 1 asks questions 1, 2, 3, 4a, 5a, and 6a, while
User 2 asks questions 1, 2, 3, 4b, and 5b. For the sequences
of questions shown, both users are co-design experts looking
to deeply understand the particulars of the data.

User 1 wants to improve xPU-B so that xPU-B achieves
similar performance for this workload as xPU-A. Questions 1
and 2 are Stage 1 questions to understand what the data is,
while questions 3 and 4a are Stage 2 questions to understand
what causes the data to be that way. Finally, questions Sa
and 6a are Stage 3 questions to understand what to change
in xPU-B for this workload to achieve the same performance
as when run on xPU-A. These Stage 3 questions consider the
first Stage 3 use case of how to match desired behavior.

A Stage 4 question would allow for bypassing all of these
steps. The user could directly ask “Which system achieves
higher performance for this workload, and how could I im-
prove the lower-performing system to get similar performance
to the better system?”. The LLM, not the user, would then
automatically follow a similar reasoning breakdown as shown
in Table I, with the answer directly showing the question 6a
answer of increasing the SRAM capacity by 10% to improve
the Q and output projection execution times for the systems to
have similar performance. The Stage 4 question opens up this
understanding process to non-experts. Importantly, the Stage 4
question flow enables users looking for high-level insights to
walk away with this overall understanding of the data without
having to delve into the specifics of the data shown in the
breakdown of questions, greatly improving accessibility.

In contrast, User 2 exemplifies the second case in Stage 3,
where this workflow could assist with finding bugs in the per-
formance data. We see that the logical sequence of questions
are the same between User 1 and User 2 up until question 3.
Question 4b is a Stage 3 question that dives into discrepancies
between the data and the user’s expectation. Question 5b
is another Stage 3 question, where the answer identifies
an inconsistency in the workload evaluation and provides a
solution to fix the bug. A Stage 4 question would again enable
bypassing all these steps and directly asking “Which system
achieves higher performance for this workload and why?”. The
LLM could then reason about the data to conclude that the

performance difference is due to using different data types
in the workload for different systems. The LLM can further
suggest using the same data types for fair comparison.

III. THE VIEW PROTOTYPE SYSTEM
A. Workflow Setup

In our specific use case, we are synthesizing takeaways from
simulator data showing how various deep learning workloads
perform on different hardware architectures. Our internal sim-
ulator builds from the roofline model [32]. In this workflow
setup, a user typically conducts some sweeps, which are
Cartesian products of various execution configurations for a
workload. These configurations could include various batch
sizes, sharding strategies, and sequence lengths, simulated on
a set of GPU or TPU systems that are modeled in the simulator.

Evaluating all of these possible combinations can generate
a significant amount of data. To narrow the data to look
at, we focus on Pareto-optimal [11] execution configurations,
when considering the performance normalized by the total
cost of ownership (TCO) of the hardware system [16] versus
the latency of serving or training. This forms a Pareto curve
of execution configurations, with a mock graph shown in
the “Data Visualization” in Figure 2. Every hardware sys-
tem that the workload was evaluated on has its own set
of execution configurations on the Pareto frontier, as the
example shows for xPU-A and xPU-B. Then, we consider
only these Pareto-optimal points and the resulting performance
metrics on various hardware systems to limit the amount
of data. These metrics include operator-level execution time
breakdown, FLOPs utilization, and the location of weights in
the memory hierarchy.

In a typical workflow, we would need to manually look
through these Pareto-optimal points to find specific areas of
interest, such as where two systems may differ in perfor-
mance for the same workload. In this example, we would
then examine the details of the performance metrics for the
different hardware systems to determine what factors cause
the observed differences. This investigation often results in
insights about the workload and the hardware (or identifies
bug(s) in the evaluation). This process exemplifies how co-
design workflows can require a lot of iterations and also rely
on expert knowledge about the features of the workload and
target hardware system to know where to look and dig deeper.

B. VIEW Overview

We built the VIEW prototype system, shown in Figure 2,
to aid our day-to-day co-design workflows. A user enters
questions in a chat box on the user interface (UI). A question
triggers an LLM call to select the subset of data to focus on
the answer the question. The Data Retriever and Filter, as the
name suggests, gets and filters the chosen subset of data from
all of the simulator performance data. This data may be further
processed and then input to another LLM call, which generates
a response presented back to the user via the Ul. Both LLMs
are provided different custom prompts to provide context for
their specific tasks, as explained in Section III-D.

\
e xPU-A e xPU-B A User Interface
8 .
~{ Question
Data
Visualization
Answer |
o 6
2]
= —
% 1 v
2 Il Custom LLM
2 4 ,' Prompt Auto-Select Data
o
' ¢
| | Simulator Data Retriever
2 1 Data and Filter
I
| ¢
0 I Custom LLM
1 2 3 4 5 6 7 I Prompt Generate Answer
SLO (5) ! —— |

Fig. 2: VIEW system (Workflow 5 in Figure 3). Arrows show
the system process. Green boxes indicate LLM integration.

We intentionally construct an intuitive conversational UL
With this UI, we hope to lower the activation barrier for
early co-design researchers who may not have specialized
knowledge in deep learning workloads and hardware design.
The VIEW UI also allows the user to interact with the Pareto
Curve graph, with a mock example shown in Figure 2. VIEW
also provides other data visualizations for specific execution
configurations. These interactive graphs and tables can further
help the user formulate questions.

C. Integrating LLMs into this Workflow

We include an LLM, Gemini 2.0 Flash, with prompting,
in two places in this workflow, indicated by green boxes in
Figure 2. First, consider the “Auto-Select Data” LLM. To
motivate this LLM integration, note that even the files with
only the Pareto Curve subset of data from the model sweeps
can be hundreds of megabytes. This file size easily exceeds the
sequence length for current LLMs, so it is necessary to select
what data to focus on when looking to answer questions.

To address this challenge, VIEW integrates an LLM to
select what data is required to answer a question. In this case,
the LLM is given the question asked by the user. Then, the
LLM is tasked with deciding which data subset is relevant to
answer this question. This is a nontrivial task since the input
data is coming from many different data sources and several
files may need to be retrieved. In addition, this selection is not
an obvious lookup. Unlike many search problems, there are no
key words to guide the selection. In our case, the data consists
of many numbers, where there is no clear indication of what
data is relevant. Thus, the context provided in the prompting
is critical to enable the LLM to reason about what data is
required, and which data sources can provide that information.

Currently, VIEW supports asking questions about specific
configurations on the Pareto curve, trend and best-of questions
across a Pareto curve, and comparisons between multiple
system. For example, if a user asks about the performance
of a specific execution configuration, VIEW selects only the

data for that configuration. If a user instead asks to compare
the performance of a workload between two different systems,
VIEW is capable of recognizing that the characteristics and
performance metrics for the Pareto-optimal points for both
systems in the question, not just one system, must be selected.

Second, the “Generate Answer” LLM synthesizes the vari-
ous data sources selected and answers user questions. Having
an LLM answer user questions saves the user the significant
time of hunting through data for specific points on the Pareto
curve and manually comparing them to arrive at a conclusion.
Importantly, the LLM is able to explain its reasoning process
to the user. For an expert user, this reasoning serves as a sanity
check to see if this data and process are expected. For a less
seasoned user, this reasoning equips them to build intuition on
where in this vast amount of data to focus on, and how the
model and hardware together affect performance.

D. Custom Prompt Engineering

This section describes the custom prompts we developed to
provide the LLMs context. Section V then provides examples
of the consequences of specific prompting. For the “Auto-
Select Data” LLM, our prompt frames this task as a classifica-
tion problem: the LLM is asked to classify the user question
into one of several question types. The prompt provides at
most three-sentence descriptions of each data source available
from the simulator, such as summaries of the Pareto-optimal
execution configurations and detailed performance metrics
for all evaluated configurations (Pareto-optimal or not). The
prompt then specifies the possible question categories, and
which data sources to pull in depending on the classification.
For example, to compare Pareto-optimal execution configura-
tions on several different systems, the prompt would direct
the LLM to retrieve several files, one for each system with
the relevant performance metrics. The prompt includes two
examples of user questions for each category.

The prompt for the “Generate Answer” LLM starts with
a general tool-agnostic introduction paragraph that tells the
LLM that it is an “ML systems performance expert”, describes
roofline models, and explains the basic structure of LLM
workloads. The rest of the prompt is constructed dynamically
based on the question classification determined from the first
“Auto-Select Data” LLM. This prompt is then combined
with the relevant data selected from the database and the
conversation history.

For questions about individual execution points, the prompt
explains the formatting of the data (to illustrate, for exam-
ple, how repeated layers are represented), and the type of
performance metrics included. For our simulator data, there
are attributes (e.g., FLOPs, tensor shapes, number of bytes
read/written from memory, number of bytes communicated
across chips for weights) and metrics derived from these
attributes and hardware system parameters (e.g., time spent
in compute, time spent in memory reads/writes, time spent on
collectives, tensorcore power).

For questions about Pareto curve trends or multi-system
comparisons, the prompts are very short: these prompts simply

direct the LLM to use metrics like latency and performance
per TCO to compare different execution configurations. The
multi-system category specifies that these comparisons are
between multiple systems. This infrastructure can be extended
to compare multiple workloads as well.

These prompts do not contain any information about the
stages described in Section II, or any further classifications
within a stage (e.g., data query vs data comparison vs data
query + for Stage 1, or the two use cases in Stage 3). The LLM
extrapolates how to answer various questions on its own.

IV. EVALUATION SETUP

We use VIEW as a proof of concept to demonstrate the
value of LLM-integrated co-design workflows. We generated
simulator data for various execution configurations of serving
Llama2-70B on TPUvVS. Using this data, we evaluated various
co-design workflows for some question types. For each co-
design workflow row listed in Figure 3, we asked five rep-
resentative questions for each of the three different types of
Stage 1 questions, as discussed in Section II: “Data Query”,
“Data Comparison”, and “Data Query +”.

“Data Query” questions have answers that are directly avail-
able in the CSVs of numbers that are the data input. Note that
the column names may not correspond to the terms used in the
questions (e.g., column title is roofline but the question asks
about execution time). “Data Comparison” questions require
comparing several values available in the data, but neither
the question nor the prompt provide any guidance on what
numbers to compare or how to do this comparison.

“Data Query +’ questions describe data queries that rely
on broader knowledge not available in the simulation data;
the LLM has to rely on its trained knowledge for answers.
An example question from our evaluation is “Are there any
model layers missing from these results for Llama2-70B,
based on what you know about this model architecture? If
there are, please provide a table listing the layers in this
model and specify which ones are modeled/not modeled in the
results data.” In this example, we posit that an LLM would
be able to reason about what the full Llama2-70B model
architecture looks like and explain gaps in the simulator data
and accuracy, without the data, user, or prompt providing this
information. Answering these kinds of questions would greatly
aid simulator accuracy validation, which often requires a deep
understanding of the model execution.

We describe questions as “valid” if the data contains the
answer to the question either by direct lookup or inference.
For “valid” questions, we denote the percentage of correct
answers provided for all the questions of that type asked. In
our evaluation, the questions in each question type were all
answered correctly (100%) or incorrectly (0%).

We describe questions as “invalid” if the data does not con-
tain enough information to reason about the answer. For “in-
valid” questions, a correct answer indicates that the workflow
clearly communicated to the user that the answer is not known.
In contrast, an incorrect answer means that the workflow did
not realize that the answer could not be determined, and worse,

hallucinated an incorrect answer. Following the principles of
LLM grounding [18], we include invalid questions in our
evaluation to stress the importance of not misleading the user
when the answer is not known. This is especially important
for non-experts who may not have the intuition to realize that
the answer is made up.

V. RESULTS

The workflows are described by whether LLMs or humans
are in the loop for the three tasks in the co-design workflow
denoted in Figure 1: selecting what data to focus on and use
to answer a question, formulating the questions themselves,
and reasoning about the answers to these questions. At this
time, all workflows require a human to formulate questions.
The baseline workflow is Workflow 1, the traditional workflow
where only humans are in the loop and all questions are
correctly answered. We compare Workflow 1 to workflows
with an LLM integrated—either an LLM out of the box,
with no prompting (denoted “Gemini 2.0 Flash”) or an LLM
within the VIEW system, with custom prompting (denoted
“VIEW”). For fair comparison, both Gemini 2.0 Flash and
VIEW are provided the same pre-processed data before the
iterative question-and-answer process.

Workflows 2 and 3 use Gemini 2.0 Flash, out of the box,
to generate answers. In Workflow 2, the LLM is not given
any direction on what subset of the data to look at. In this
case, the model returns incorrect answers. However, the data
in these incorrect answers consist of values that exist in the
data provided, and when asking Gemini 2.0 Flash to explain
its reasoning, its thought process is correct. This behavior
indicates issues with potentially exceeding the sequence length
for the LLM, suggesting that some understanding of pulling in
only necessary subsets of data is necessary for functionality.
In Workflow 3, a human provides only the subset of the data
relevant for the questions. Then, we find that Gemini 2.0 Flash
accurately generates answers for all valid questions, including
“Data Query +”, without any custom prompting.

However, for invalid questions, we observe that Gemini 2.0
Flash out of the box returns incorrect answers, without any
indication that the answer is speculation or a hallucination.
For Stage 1 questions, it may not be obvious to experts
and non-experts alike that the answer is not correct, since
these questions are often asking what the data looks like,
rather requiring complex reasoning about consequences. This
behavior lowers productivity compared to Workflow 1 since
the user has to realize that there is an error (if they realize). For
less seasoned users, these kinds of answers may result building
incorrect intuitions about model and hardware behavior.

Workflows 4 and 5 are tested with the VIEW system. To
generate answers with VIEW, we use Gemini 2.0 Flash, with
the custom prompting described in Section III-D. The example
questions in the prompt are a subset of the questions we ask
to evaluate the correctness of the workflow. Importantly, the
VIEW is tested on questions that it has not been provided
before or given guidance on how to reason about in the prompt.

Workfl Percentage of correct answers
orkflow Data Query Data Comparison || Data Query +

Label Select Data |Formulate Questions | Generate Answers Valid Invalid Valid Invalid Valid

1 Human Human Human 100% 100% 100% 100% 100%

2 None Human Gemini 2.0 Flash 0% 0% 0% 0% 0%

3 Human Human Gemini 2.0 Flash 100% 0% 100% 0% 100%

4 Human Human VIEW 100% 100% 100% 100% 100%

5 VIEW Human VIEW 100% 100% 100% 100% 100%

Fig. 3: We evaluate various co-design workflows in answering data queries and data comparisons, with LLMs without prompting
(“Gemini 2.0 Flash”) and with prompting (“VIEW”). Only Workflows 4 and 5 with VIEW answer all questions correctly (green)
like Workflow 1, the traditional workflow, which solely relies on an human expert (purple). Workflow 5, the VIEW prototype
in Figure 2, also saves the human time, effort, and expertise required for selecting data and reasoning about answers.

We observe that Workflow 4 answers all the question types
correctly. For valid question types, we observed some dangers
with overprompting when there are implicit assumptions. Our
prompting originally included the below phrasing:

If the user asks for anything more specific, like what
a particular operator is bound by, you can inspect the
corresponding row in the dataframe and roofline.

In this example, if we asked the VIEW system whether a
layer was compute-bound, memory-bound, or communication-
bound, we found that the system found the right com-
pute, memory, and execution times for that layer. In other
words, data queries were functional. However, the answer to
this boundedness question was often wrong (e.g., returning
memory-bound when compute-bound). To understand this
behavior, we realized that a result in the “roofline” column
contains a single execution time that had previously calculated
max(time_compute, time_mem, time_comm). However, which
of the three times had been chosen for the roofline was not
directly exposed to the LLM in the roofline number in the
data. Thus, this prompting directing the LLM to look at a
roofline number lead to confusion with this hidden maximum
comparison. We instead wanted the LLM to compare these
execution times instead of looking up the roofline result, so
we removed the above excerpt from the prompt. With this
deletion, we observed that the LLM figured out that it needed
to compare these three times on its own, and it did not need
specific guidance. The LLM then got the right answer, and
used these comparisons to explain its reasoning.

Importantly, for invalid questions, VIEW clearly states
that the provided data does not contain the information to
determine an answer. For example, when asked about the
collectives required for Llama2-70B decode, without providing
this information in the performance data, VIEW responds
that “The provided data does not contain enough information
to definitely determine which collectives were required for
each layer. The operand_a, operand_b, and output columns
show tensor shapes and sharding information but do not
explicitly state which collectives were used. More information
is needed to answer this question.” This behavior can directly
be attributed to the part of the prompt shown below:

When you are pulling knowledge that is not in the
data, please explicitly call it out. If in doubt, we

prefer that you say that you do not know, rather than

provide an incorrect response.
Thus, while LLMs out of the box are valuable for answering
valid Stage 1 questions, these invalid questions show the value
of custom prompting for an LLM-integrated workflow.

Finally, consider Workflow 5, which corresponds to the

VIEW system shown in Figure 2. VIEW has a second call
to Gemini 2.0 Flash with a different prompt asking the
model to classify types of user questions. The output of this
LLM then triggers retrieving different subsets of the data.
With this classifier, we can automate the process of deciding
what data to pull in, and remove humans from the loop in
selecting data. With the same prompting as Workflow 4 for
the answer generation, VIEW still maintains correct answers
for all questions types, indicating that the data required to
answer the question was correctly selected.

VI. CONCLUSION AND FUTURE WORK

We believe that integrating LLMs to generate insights
in a hardware-software co-design workflow is a promising
direction of research to close productivity and accessibility
gaps in the current co-design process. To that end, we reason
about progressively complicated stages of questions that users
may ask to analyze performance data, building the foundation
for developing a benchmark for evaluating LLM-integrated co-
design workflows. We demonstrate that our prototype system
can successfully automate and speed up part of this workflow,
while explaining how it arrives to its conclusions.

There are many interesting directions for future work on
evaluating LLM-integrated workflows on further stages of
questions. While VIEW currently only takes raw performance
numbers as input, we could also provide more varied inputs
such as simulator code, compiler code, hardware system
specifications, and model specifications. We also highlight that
improving the “Auto-Select Data” LLM remains an important
consideration since providing all of these data inputs can easily
exceed the sequence lengths of these models. We could also
explore fine-tuning an LLM, in addition to custom prompting
and data pre-processing, for targeted results. The LLM could
be further augmented with specialized performance analysis
tools to automate tasks such as sensitivity analyses.

Providing more data and adding more techniques in this
workflow may improve the reasoning capabilities of LLMs.

However, a key challenge is not overcomplicating the solution:
we want to determine the minimum viable combinations of
data and techniques required for a functional approach. To
that end, building a standardized benchmark to evaluate the
success rate and cost of LLM-integrated workflows is crucial.
We hope this work spurs a discussion on these open questions
and encourages further work in this area.

[5]

[6]

[7]

[10]
(11]

[12]

[13]

[14]

[15]

REFERENCES

L. T. Al @ Meta, “The llama 3 herd of models,” arXiv preprint
arXiv:2407.21783, 2024.

Anthropic, “The claude 3 model family: Opus, sonnet, haiku,” Claude-3
Model Card, 2024.

G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le, “Under-
standing and simplifying one-shot architecture search,” in International
conference on machine learning. PMLR, 2018, pp. 550-559.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” in Advances
in neural information processing systems, vol. 33, 2020, pp. 1877-1901.
Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks,” ACM
SIGARCH computer architecture news, vol. 44, no. 3, pp. 367-379,
2016.

K. T. Chitty-Venkata and A. K. Somani, “Neural architecture search
survey: A hardware perspective,” ACM Computing Surveys, vol. 55,
no. 4, pp. 1-36, 2022.

J. Choquette, W. Gandhi, O. Giroux, N. Stam, and R. Krashinsky,
“Nvidia al00 tensor core gpu: Performance and innovation,” /EEE
Micro, vol. 41, no. 2, pp. 29-35, 2021.

A. Chowdhery, S. Narayanan, J. Devlin, M. Bosma, G. Mishra,
A. Roberts, P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, P. Schuh,
K. Shi, S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes, Y. Tay,
N. Shazeer, V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope,
J. Bradbury, J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Lev-
skaya, S. Ghemawat, S. Dev, H. Michalewski, X. Garcia, V. Misra,
K. Robinson, L. Fedus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph,
A. Spiridonov, R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. M.
Dai, T. S. Pillai, M. Pellat, A. Lewkowycz, E. Moreira, R. Child,
O. Polozov, K. Lee, Z. Zhou, X. Wang, B. Saeta, M. Diaz, O. Firat,
M. Catasta, J. Wei, K. Meier-Hellstern, D. Eck, J. Dean, S. Petrov, and
N. Fiedel, “Palm: Scaling language modeling with pathways,” arXiv
preprint arXiv:2204.02311, 2022.

T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré, “Flashattention: Fast and
memory-efficient exact attention with io-awareness,” Advances in neural
information processing systems, vol. 35, pp. 16 344—16 359, 2022.

K. Dong, X. Wang, D. Newman-Griffis, Y. Chai, and C. D. Manning, “A
survey of in-context learning,” arXiv preprint arXiv:2301.00234, 2022.
M. Ehrgott, “Vilfredo pareto and multi-objective optimization,” Doc.
math, vol. 8, pp. 447-453, 2012.

T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” Journal of Machine Learning Research, vol. 20, no. 55, pp.
1-21, 2019.

Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun,
H. Wang, and H. Wang, “Retrieval-augmented generation for large
language models: A survey,” arXiv preprint arXiv:2312.10997, vol. 2,
2023.

G. T. Google, “Gemini: a family of highly capable multimodal models,”
arXiv preprint arXiv:2312.11805, 2023.

C. Guo, F. Cheng, Z. Du, J. Kiessling, J. Ku, S. Li, Z. Li, M. Ma,
T. Molom-Ochir, B. Morris, H. Shan, J. Sun, Y. Wang, C. Wei, X. Wu,
Y. Wu, H. F. Yang, J. Zhang, J. Zhang, Q. Zheng, G. Zhou, H. H. Li,
and Y. Chen, “A survey: Collaborative hardware and software design in
the era of large language models,” IEEE Circuits and Systems Magazine,
vol. 25, no. 1, pp. 35-57, 2025.

[16]

(17]

(18]

[19]

(20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

(30]

N. P. Jouppi, D. H. Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin,
G. Kurian, J. Laudon, S. Li, P. Ma, X. Ma, T. Norrie, N. Patil, S. Prasad,
C. Young, Z. Zhou, and D. Patterson, “Ten lessons from three gener-
ations shaped google’s tpuv4i: Industrial product,” in 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2021, pp. 1-14.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P-I. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R.
Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey,
A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar,
S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Na-
garajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter perfor-
mance analysis of a tensor processing unit (tpu),” in 2017 ACM/IEEE
International Symposium on Computer Architecture (ISCA). IEEE,
2017, pp. 1-12.

K. Kenthapadi, M. Sameki, and A. Taly, “Grounding and evaluation
for large language models: Practical challenges and lessons learned
(survey),” in Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2024, pp. 6523-6533.

K. Koul, J. Melchert, K. Sreedhar, L. Truong, G. Nyengele, K. Zhang,
Q. Liu, J. Setter, P-H. Chen, Y. Mei, M. Strange, R. Daly, C. Donovick,
A. Carsello, T. Kong, K. Feng, D. Huff, A. Nayak, R. Setaluri,
J. Thomas, N. Bhagdikar, D. Durst, Z. Myers, N. Tsiskaridze,
S. Richardson, R. Bahr, K. Fatahalian, P. Hanrahan, C. Barrett,
M. Horowitz, C. Torng, F. Kjolstad, and P. Raina, “Aha: An agile
approach to the design of coarse-grained reconfigurable accelerators
and compilers,” ACM Transactions on Embedded Computing Systems,
vol. 22, no. 2, pp. 1-34, 2023.

H. Kwon, A. Samajdar, and T. Krishna, “Maeri: Enabling flexible
dataflow mapping over dnn accelerators via reconfigurable intercon-
nects,” ACM Sigplan Notices, vol. 53, no. 2, pp. 461-475, 2018.

Y. Lin, D. Hafdi, K. Wang, Z. Liu, and S. Han, “Neural-hardware
architecture search,” NeurIPS WS, 2019.

M. Liu, T.-D. Ene, R. Kirby, C. Cheng, N. Pinckney, R. Liang, J. Alben,
H. Anand, S. Banerjee, 1. Bayraktaroglu, B. Bhaskaran, B. Catanzaro,
A. Chaudhuri, S. Clay, B. Dally, L. Dang, P. Deshpande, S. Dhodhi,
S. Halepete, E. Hill, J. Hu, S. Jain, A. Jindal, B. Khailany, G. Kokai,
K. Kunal, X. Li, C. Lind, H. Liu, S. Oberman, S. Omar, G. Pasandi,
S. Pratty, J. Raiman, A. Sarkar, Z. Shao, H. Sun, P. P. Suthar, V. Tej,
W. Turner, K. Xu, and H. Ren, “Chipnemo: Domain-adapted 1lms for
chip design,” arXiv preprint arXiv:2311.00176, 2023.

X. Ma, X. Yang, W. Xiong, B. Chen, L. Yu, H. Zhang, J. May,
L. Zettlemoyer, O. Levy, and C. Zhou, “Megalodon: Efficient 1lm
pretraining and inference with unlimited context length,” Advances in
Neural Information Processing Systems, vol. 37, pp. 71831-71 854,
2024.

S. Masoudnia and R. Ebrahimpour, “Mixture of experts: a literature
survey,” Artificial Intelligence Review, vol. 42, pp. 275-293, 2014.
OpenAl, “Gpt-4 technical report,” arXiv preprint arXiv:2303.08774,
2023.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” OpenAl blog,
vol. 1, no. 8, p. 9, 2019.

M. Strange, K. Sreedhar, and M. Horowitz, “Lake: An agile framework
for designing and automatically configuring physical unified buffers,”
2024.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and 1. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, vol. 30, 2017.

R. Venkatesan, Y. S. Shao, M. Wang, J. Clemons, S. Dai, M. Fojtik,
B. Keller, A. Klinefelter, N. Pinckney, P. Raina, Y. Zhang, B. Zimmer,
W. J. Dally, J. Emer, S. W. Keckler, and B. Khailany, “Magnet: A
modular accelerator generator for neural networks,” in 2019 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). 1EEE,
2019, pp. 1-8.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. H. Chi, Q. V.

[31]

(32]

(33]

[34]

[35]

Le, and D. Zhou, “Chain of thought prompting elicits reasoning in large
language models,” arXiv preprint arXiv:2201.11903, 2022.

J. Wei, D. Zhou, Q. V. Le, and E. H. Chi, “Rethinking the role of
scale for in-context learning: What makes good demonstrations?” arXiv
preprint arXiv:2203.01118, 2022.

S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Communications
of the ACM, vol. 52, no. 4, pp. 65-76, 2009.

P. Xu, X. Zhang, C. Hao, Y. Zhao, Y. Zhang, Y. Wang, C. Li, Z. Guan,
D. Chen, and Y. Lin, “Autodnnchip: An automated dnn chip predictor
and builder for both fpgas and asics,” in Proceedings of the 2020
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2020, pp. 40-50.

Y. Zhang, R. Sun, Y. Chen, T. Pfister, R. Zhang, and S. Arik, “Chain of
agents: Large language models collaborating on long-context tasks,” Ad-
vances in Neural Information Processing Systems, vol. 37, pp. 132208-
132237, 2024.

B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” arXiv preprint arXiv:1611.01578, 2016.

	Introduction
	Reasoning about Performance Data
	Example Workflows

	The VIEW Prototype System
	Workflow Setup
	VIEW Overview
	Integrating LLMs into this Workflow
	Custom Prompt Engineering

	Evaluation Setup
	Results
	Conclusion and Future Work
	References

