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Abstract

Advances in multiplex biomarker imaging systems have enabled the study of complex spatial
biology within the tumor microenvironment. However, the high-resolution multiplexed
images are often only available for a subset of regions of interest (RoIs), clinical data is
not easily accessible and the datasets are generally too small to apply off-the-shelf deep
learning methods commonly used in histopathology. In this paper, we focus on datasets
with few images and without labels and aim to learn representations for slides. We choose
a task of patient identification that leads our new model to select RoIs with discriminative
properties and infer patient-specific features that can be used later for any task via transfer
learning. The experimental results on the synthetic data generated by taking the tumor
microenvironment into account indicate that the proposed method is a promising step
towards computer-aided analysis in unlabeled datasets of high-resolution images.

1. Introduction

The immune microenvironment is believed to carry valuable information for cancer prog-
nosis and personalized medicine (Whiteside, 2008). Recent progress in cell segmentation
and classification or automated image analysis software has facilitated the use of cell-graphs
(Yener, 2016) with network analysis tools for the investigation of structure-function relation-
ship in tumour microenvironment. In particular, the multiplex biomarker imaging systems
deliver precise outcomes for such analysis, such as the cell phenotype for a diverse set of
markers or the morphological properties of cells. However, as the technology is relatively
recent, access to big datasets of such slides with accompanying clinical data is often limited.
Moreover, in practice, only some regions of interest (RoIs) are available at high resolution.

Here, we consider a scenario where few slides are available with no associated labels, and
every slide is described by cell level analysis of RoIs extracted from different parts of the
slide. We use the patient identification problem as the task to aid learning representations
for whole slides using a chosen subset of RoIs that help to distinguish a patient from
the others by considering the spatial organization of their different cells. The slide-specific
representations learned in this self-supervised way can be easily used for any supervised task
with transfer learning, almost imitating a bottom-up clustering approach. For this purpose,
we first describe each RoI as cell-graphs, where nuclei centers form the nodes, which are
later processed using graph neural networks (GNNs). The resultant embeddings are then
aggregated using a permutation invariant function to obtain the whole-slide representation,
which is used for pretraining with the imposed classification task. We finally learn how
to select a subset of ROIs using pre-trained ROI embeddings and stochastic layers with
discrete random variables, which, in return, offers interpretability for the final decision.
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Figure 1: Multi-graph classification with learned graph selection.2

2. Proposed Method

The end-to-end differentiable proposed model is illustrated in Figure 12. We assume that
each slide has n different ROIs, with cell nuclei centers and phenotypes are available. The
cell graphs are constructed by thresholding the Euclidean distance between each pair of
cells and the phenotype for each cell is encoded as one-hot vector as the initial cell features.

Graph Embeddings and Pre-training. The hierarchical graph embedding module is
composed of successive GrapSAGE (Hamilton et al., 2017) and DiffPool (Ying et al., 2018)
layers. GraphSAGE layers learn node embeddings by taking neighboring cells and their
phenotypes into account. DiffPool layers leads to hierarchical abstraction of representations
by clustering input nodes and jointly learning cluster embeddings. The uppermost DiffPool
layer output is considered to be the ROI embedding, and it is pre-trained with the so-called
patient identification task, where the slide-level embedding is obtained via a permutation-
invariant aggreator, such as element-wise summation or maximum operator across all n
embeddings belonging to the same slide. Using fully connected layers (MLPs) followed by a
softmax layer on top, we pre-train the embeddings with the well-known cross-entropy loss.

Patch Selection. All n embeddings for each slide are used as input to another set of
MLP layers, with the uppermost layer having n neurons, to learn a discrete stochastic
latent variable using the Gumbel-Softmax trick (Jang et al., 2016). By sampling the learned
variable, z, K times and taking the dot-product with RoI embeddings, we obtain K RoI
embeddings, which are then used for the second phase of training with MLPs followed by
a permutation invariant aggreagator and a softmax layer. The graph embedding layers
continue to be updated with a smaller learning rate while learning the selection mechanism.

3. Experiments

Dataset We generate a synthetic dataset to imitate the the tumour microenvironment
(Balkwill et al., 2012). We create an illustrative dataset of 10 patients, each represented
by 15 cell graphs. The total number of nodes for each graph is fixed to 1000. We assume
six different types of cells, two of which represent tumour and stroma cells, while the
rest resemble lymphocytes. The majority of graphs are composed of uninfiltrated tumour-
stroma border, while the rest is patient-specific combination of discriminative graphs. To
represent 10 patients, we create five discriminative cell graphs with different combinations of
lymphocyte types and percentages with different spatial organization. The specifics about
the synthetic dataset can be seen in Table 1.

2. Image taken from https://www.leicabiosystems.com/
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Ratio of Different Types of Cells Discriminative Patches
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Patch 1 0.40 0.40 0.10 0.10 0.00 0.00 X X X X

Patch 2 0.30 0.30 0.40 0.00 0.00 0.00 X X X X

Patch 3 0.30 0.30 0.20 0.20 0.00 0.00 X X X X

Patch 4 0.30 0.30 0.15 0.15 0.00 0.00 X X X X

Patch 5 0.30 0.30 0.10 0.10 0.10 0.10 X X X X

Table 1: Characteristics of Synthetic Dataset. Figure 2: Identification accuracy

Results. We use equal splits for training/validation/testing and the location of discrim-
inative graphs are shuffled at each training step and test realization. We experimented
with different aggregators, different architectures and soft and hard selection of patches.
We here report the best performance out of all different settings, which is obtained with
element-wise mean aggregator and soft selection mechanism. In Figure 3, the confusion
matrix corresponding to the average of 100 realizations of sampling two graphs, i.e., two
patches, per patient is presented. The corresponding percentage of selecting both ground
truth discriminative patches correctly, selecting one out of two patches correctly and not
being able to select any right patches correctly are 49.1%, 50.8% and 0.1%, respectively.

4. Conclusion

In this paper, we proposed a novel pipeline that uses cell graphs to represent high resolution
images of RoIs, learns to select a subset of them and computes a hierarchical slide level
representation from an unlabeled dataset on an representative patient identification task.
The initial results on the synthetic dataset motivates the use of proposed method as a
pre-training strategy or for supervised methods with minor modifications.
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