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ABSTRACT

Compared to traditional visual question answering, video-grounded dialogues
require additional reasoning over dialogue context to answer questions in a multi-
turn setting. Previous approaches to video-grounded dialogues mostly use dialogue
context as a simple text input without modelling the inherent information flows at
the turn level. In this paper, we propose a novel framework of Reasoning Paths in
Dialogue Context (PDC). PDC model discovers information flows among dialogue
turns through a semantic graph constructed based on lexical components in each
question and answer. PDC model then learns to predict reasoning paths over this
semantic graph. Our path prediction model predicts a path from the current turn
through past dialogue turns that contain additional visual cues to answer the current
question. Our reasoning model sequentially processes both visual and textual
information through this reasoning path and the propagated features are used to
generate the answer. Our experimental results demonstrate the effectiveness of our
method and provide additional insights on how models use semantic dependencies
in a dialogue context to retrieve visual cues.

1 INTRODUCTION

Traditional visual question answering (Antol et al., 2015; Jang et al., 2017) involves answering
questions about a given image. Extending from this line of research, recently Das et al. (2017);
Alamri et al. (2019) add another level of complexity by positioning each question and answer pair in a
multi-turn or conversational setting (See Figure 1 for an example). This line of research has promising
applications to improve virtual intelligent assistants in multi-modal scenarios (e.g. assistants for
people with visual impairment). Most state-of-the-part approaches in this line of research (Kang
et al., 2019; Schwartz et al., 2019b; Le et al., 2019) tackle the additional complexity in the multi-turn
setting by learning to process dialogue context sequentially turn by turn. Despite the success of these
approaches, they often fail to exploit the dependencies between dialogue turns of long distance, e.g.
the 2nd and 5th turns in Figure 1. In long dialogues, this shortcoming becomes more obvious and
necessitates an approach for learning long-distance dependencies between dialogue turns.

To reason over dialogue context with long-distance dependencies, recent research in dialogues
discovers graph-based structures at the turn level to predict the speaker’s emotion (Ghosal et al.,
2019) or generate sequential questions semi-autoregressively (Chai & Wan, 2020). Recently Zheng
et al. (2019) incorporate graph neural models to connect the textual cues between all pairs of dialogue
turns. These methods, however, involve a fixed graphical structure of dialogue turns, in which only a
small number of nodes contains lexical overlap with the question of the current turn, e.g. the 1st, 3rd,
and 5th turns in Figure 1. These methods also fail to factor in the temporality of dialogue turns as
the graph structures do not guarantee the sequential ordering among turns. In this paper, we propose
a novel framework of Reasoning Paths in Dialogue Context (PDC). PDC model learns a reasoning
path that traverses through dialogue turns to propagate contextual cues that are densely related to
the semantics of the current questions. Our approach balances between a sequential and graphical
process to exploit dialogue information.
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Q: is it just one person in the video ? A: There is one visible person , yes .

Q: what is he carrying in his hand ? A: he is looking down at his cellphone and 
laughing while walking forward in a living room .

Q: Is there any noise in the video ? A: No there is no noise in the video .

Q: can you tell if he’s watching a video on his phone ? A: I can’t tell what he’s watching 
. he walks into a table from not paying attention . 

Q: does he just walk back and forth in the video? 

A: he walks towards the back of the living room , and walks right into the table . 
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(3)     Path-based propagation

Figure 1: Sequential reasoning approaches fail to detect long-distance dependencies between the current turn
and the 2nd turn. Graph-based reasoning approaches signals from all turns are directly forwarded to the current
turn but the 1st and 3rd contain little lexical overlap to the current question.

Our work is related to the long-studied research domain of discourse structures, e.g. (Barzilay
& Lapata, 2008; Feng & Hirst, 2011; Tan et al., 2016; Habernal & Gurevych, 2017). A form
of discourse structure is argument structures, including premises and claims and their relations.
Argument structures have been studied to assess different characteristics in text, such as coherence,
persuasiveness, and susceptibility to attack. However, most efforts are designed for discourse study
in monologues and much less attention is directed towards conversational data. In this work, we
investigate a form of discourse structure through semantic graphs built upon the overlap of component
representations among dialogue turns. We further enhance the models with a reasoning path learning
model to learn the best information path for the next utterance generation.

To learn a reasoning path, we incorporate our method with bridge entities, a concept often seen in
reading comprehension research, and earlier used in entity-based discourse analysis (Barzilay &
Lapata, 2008). In reading comprehension problems, bridge entities denote entities that are common
between two knowledge bases e.g. Wikipedia paragraphs in HotpotQA (Yang et al., 2018b). In
discourse analysis, entities and their locations in text are used to learn linguistic patterns that indicate
certain qualities of a document. In our method, we first reconstruct each dialogue turn (including
question and answer) into a set of component sub-nodes (e.g. entities, action phrases) using common
syntactical dependency parsers. Each result dialogue turn contains sub-nodes that can be used as
bridge entities. Our reasoning path learning approach contains 2 phases: (1) first, at each dialogue
turn, a graph network is constructed at the turn level. Any two turns are connected if they have an
overlapping sub-node or if two of their sub-nodes are semantically similar. (2) secondly, a path
generator is trained to predict a path from the current dialogue turn to past dialogue turns that provide
additional and relevant cues to answer the current question. The predicted path is used as a skeleton
layout to propagate visual features through each step of the path.

Specifically, in PDC, we adopt non-parameterized approaches (e.g. cosine similarity) to construct the
edges in graph networks and each sub-node is represented by pre-trained word embedding vectors.
Our path generator is a transformer decoder that regressively generates the next turn index conditioned
on the previously generated turn sequence. Our reasoning model is a combination of a vanilla graph
convolutional network (Kipf & Welling, 2017) and transformer encoder (Vaswani et al., 2017). In
each traversing step, we retrieve visual features conditioned by the corresponding dialogue turn and
propagate the features to the next step. Finally, the propagated multimodal features are used as input
to a transformer decoder to predict the answer.

Our experimental results show that our method can improve the results on the Audio-Visual Scene-
Aware Dialogues (AVSD) generation settings (Alamri et al., 2019), outperform previous state-of-
the-art methods. We evaluate our approach through comprehensive ablation analysis and qualitative
study. PDC model also provides additional insights on how the inherent contextual cues in dialogue
context are learned in neural networks in the form of a reasoning path.

2 RELATED WORK

Discourses in monologues. Related to our work is the research of discourse structures. A long-
studied line of research in this domain focuses on argument mining to identify the structure of
argument, claims and premises, and relations between them (Feng & Hirst, 2011; Stab & Gurevych,
2014; Peldszus & Stede, 2015; Persing & Ng, 2016; Habernal & Gurevych, 2017). More recently,
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Ghosh et al. (2016); Duthie & Budzynska (2018); Jiang et al. (2019) propose to learn argument
structures in student essays and official debates. In earlier approaches, Barzilay & Lapata (2008);
Lin et al. (2011); Feng et al. (2014) study discourses to derive coherence assessment methods
through entity-based representations of text. These approaches are proposed from linguistic theories
surrounding entity patterns in discourses, i.e. how they are introduced and discussed (Grosz et al.,
1995). Guinaudeau & Strube (2013); Putra & Tokunaga (2017) extend prior work with graphical
structures in which sentence similarity is calculated based on semantic vectors representing those
sentences. These lines of research show that studying discourse structures is useful in many tasks,
such as document ranking and discrimination. However, most of these approaches are designed for
monologues rather than dialogues.

Discourses in dialogues. More related to our problem setting is discourse research on text in a
multi-turn setting. Murakami & Raymond (2010); Boltužić & Šnajder (2014); Swanson et al. (2015);
Tan et al. (2016); Niculae et al. (2017); Morio & Fujita (2018); Chakrabarty et al. (2019) introduce
new corpus and different methods to mine arguments in online discussion forums. Their models
are trained to extract claims and premises in each user post and identify their relations between
argument components in each pair of user posts. More recently, Li et al. (2020a); Jo et al. (2020)
extend argument mining in online threads to identify attackability and persuasiveness in online posts.

In this work, we address the problem of video-grounded dialogue, in which dialogue turns are
often semantically connected by a common grounding information source, a video. In this task,
a discourse-based approach enables dialogue models to learn to anticipate the upcoming textual
information in future dialogue turns. However, directly applying prior work on discourse or argument
structures into video-grounded dialogues is not straightforward due to the inherent difference between
online discussion posts and video-grounded dialogues. In video-grounded dialogues, the language
is often closer to spoken language and there are fewer clear argument structures to be learned.
Moreover, the presence of video necessitates the interaction between multiple modalities, text and
vision. Incorporating traditional discourse structures to model cross-modality interaction is not
straightforward. In this work, we propose to model dialogue context by using compositional graphical
structures and constructing information traversal paths through dialogue turns.

Graph-based dialogue models. Related to our work is research study that investigates different
types of graph structures in dialogue. Hu et al. (2019); Shi & Huang (2019); Zhu et al. (2020) address
the “reply_to” relationship among multi-party dialogues through graph networks that incorporate
conversational flows in comment threads on social networks, e.g. Reddit and Ubuntu IRC, and online
games. Zheng et al. (2019) propose a fully connected graph structure at the turn level for visual
dialogues. Concurrently, Ghosal et al. (2019) also propose a fully connected graph structure with
heterogeneous edges to detect the emotion of participating speakers. All of these methods discover
graph structures connecting pairs of dialogue turns of little lexical overlap, resulting in sub-optimal
feature propagation. This drawback becomes more significant in question answering problems in
multi-turn settings. Our approach constructs graph networks based on compositional similarities.

Reasoning path learning. Our method is also motivated by the recent research of machine reading
comprehension, e.g. WikiHop (Welbl et al., 2018) and HotpotQA (Yang et al., 2018a). De Cao et al.
(2019); Qiu et al. (2019) construct graph networks of supporting documents with entity nodes that
are connected based on different kinds of relationships. Tu et al. (2019); Tang et al. (2020) enhance
these methods with additional edges connecting output candidates and documents. Extended from
these methods are path-based approaches that learn to predict a reasoning path through supporting
documents. Kundu et al. (2019); Asai et al. (2020) score and rank path candidates that connect
entities in question to the target answer. A common strategy among these methods is the use of bridge
entities. However, unlike reading comprehension, dialogues are normally not entity-centric and it is
not trivial to directly adopt bridge entities into dialogue context.

Cross-modality feature learning. Our work is related to study that integrates visual and linguistic
information representation. A line of research in this domain is the problem of visual QA, e.g.
(Minh Le et al., 2020; Gao et al., 2019). Closer to our method are methods that adopt compositionality
in textual features. Specifically, Socher et al. (2014) introduce image and language representation
learning by detecting the component lexical parts in sentences and combining them with image
features. The main difference between these approaches and our work is the study of cross-modalities
in a multi-turn setting. Our approach directly tackles the embedded sequential order in dialogue
utterances and examines how cross-modality features are passed from turn to turn.
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Figure 2: An overview of our PDC method.

3 METHOD

To describe our PDC model, we introduce a new graph-based method (Section 3.2) that constructs a
graph structure to connect turn-level representations in dialogue context based on their compositional
semantics. The compositional semantics consists of sub-nodes detected through syntactical depen-
dency parsing methods. We enhance our approach with a path-based propagation method (Section
3.3) to narrow down the contextual information that facilitates question answering of the current
turn. Our approach integrates a strong strategy to model dialogue flows in the form of graphical and
path-based information such that contextual linguistic information is exploited to propagate relevant
visual features (Section 3.4). Figure 2 demonstrates an overview of our method.

3.1 PROBLEM DEFINITION

The inputs to a question answering problem in a multi-turn setting consist of a dialogue D and the
visual input of a video I. Each dialogue contains a sequence of dialogue turns, each of which is a
pair of question Q and answer A. At each dialogue turn t, we denote the dialogue context Ct as all
previous dialogue turns Ct = {(Qi,Ai)}|i=t−1

i=1 . Since it is positioned in a dialogue, the question of
turn t Qt might be dependent on a subset of the dialogue context Ct. The output is the answer of the
current turn Ât. Each textual component, i.e. Q and A, is represented as a sequence of token or word
indices {wm}|m=L

m=1 ∈ |V|, where L is the sequence length and V is the vocabulary set. The objective
of the task is the generation objective that output answers of the current turn:

Ât = arg max
At

P (At|I, Ct,Qt;θ) = arg max
At

LA∏
m=1

Pm(wm|At,1:m−1, I, Ct,Qt;θ) (1)

3.2 COMPOSITIONAL SEMANTIC GRAPH OF DIALOGUE CONTEXT

The semantic relations between dialogue turns are decomposed to semantic relations between sub-
nodes that constitute each turn. These composition relations serve as strong clues to determine how a
dialogue turn is related to another. We first employ a co-reference resolution system, e.g. (Clark &
Manning, 2016), to replace pronouns with the original entities. We then explore using the Stanford
parser system1 to discover sub-nodes. The parser decomposes each sentence into grammatical
components, where a word and its modifier are connected in a tree structure. For each dialogue turn,
we concatenate the question and answer of that turn as input to the parser. The output dependency
tree is pruned to remove unimportant constituents and merge adjacent nodes to form a semantic unit.

1v3.9.2 retrieved at https://nlp.stanford.edu/software/lex-parser.shtml
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A graph structure G is then constructed. Any two turns are connected if one of their corresponding
sub-nodes are semantically similar. To calculate the similarity score, we obtain their pre-trained
word2vec embeddings2 and compute the cosine similarity score. Algorithm 1 provides the details
of the procedure to automatically construct a semantic graph. Note that our approach can also be
applied with other co-reference resolution systems, parser, or pre-trained embeddings. Unlike graph
structures in machine reading comprehension such as Wikipedia graph, the semantic graph G is not
fixed throughout the sample population but is constructed for each dialogue and at each turn.

Algorithm 1: Compositional semantic graph of dialogue context
Data: Dialogue context Ct, question of the current turn Qt

Result: Semantic graph G = (V, E)
1 begin
2 T ←− ∅; G = {V, E}; E ←− ∅; V ←− ∅; S ←− ∅;
3 H ←− Coreference_Resolution([Ct;Qt]);
4 for each dialogue turn h ∈ H do
5 Th ←− Merge_Nodes(Prune_Tree(Dependency_Parse(h))); T ←− T ∪ {Th};
6 V ←− V ∪ {h}; E ←− E ∪ {〈Turn_Position(h),Turn_Position(h)〉}
7 for each dependency tree T = (VT , ET ) ∈ T do S ←− S ∪ {VT }
8 for each sub-node si ∈ S do
9 for each sub-node sj ∈ S do

10 if not In_Same_Turn(si, sj) and Is_Similar(si, sj) then
11 E ←− E ∪ {〈Get_Dial_Turn(si),Get_Dial_Turn(sj)〉}
12 E ←− E ∪ {〈Get_Dial_Turn(sj),Get_Dial_Turn(si)〉}

13 return G

3.3 LEARNING TO GENERATE REASONING PATHS

Our proposed compositional approach to construct a semantic graph in dialogue context ensures
lexical overlaps with the question, but the graph structure does not guarantee the temporal order of
dialogue turns. To ensure this sequential information is maintained, we train a generator to predict
reasoning paths that traverse through current dialogue turn to past dialogue turns.

We use a Transformer decoder to model the reasoning paths from the current turn t. The first position
of the path, z0 is initialized with the turn-level position embedding of t. The next turn index is
generated auto-regressively by conditioning on the previously generated path sequence:

z0 = Embed(t) ∈ Rd (2)
Z0:m−1 = Embed([t; r̂1, ..., r̂m−1]) (3)

where r̂i denotes a predicted dialogue turn index. The dialogue context and question of the current
turn are represented by embedding vectors of their component tokens. Following Vaswani et al.
(2017), their representations are enhanced with the sine-cosine positional encoding PosEncode.

Qt = Embed(Qt) + PosEncode(Qt) ∈ RLQt×d (4)

Ct = Embed(Ct) + PosEncode(Ct) ∈ RLCt×d (5)

Note that the dialogue context representation Ct is the embedding of dialogue turns up to the last
turn t− 1, excluding answer embedding of the current turn At.

We denote a Transformer attention block as Transformer(query, key, value). The path generator
incorporates contextual information through attention layers on dialogue context and question.

D
(1)
path = Transfromer(Z0:m−1, Z0:m−1, Z0:m−1) ∈ Rm×d (6)

D
(2)
path = Transfromer(D

(1)
path, Qt, Qt) ∈ Rm×d (7)

D
(3)
path = Transfromer(D

(2)
path, Ct, Ct) ∈ Rm×d (8)

2https://code.google.com/archive/p/word2vec/
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At the m-th decoding step (m ≥ 1), our model selects the next dialogue turn among the set of
dialogue turns that are adjacent to one at (m − 1)-th decoding step in the semantic graph. This is
enforced through masking the softmax output scores in which non-adjacent turn indices are assigned
to a very low scalar smasked. We denote the adjacency matrix of semantic graph G = (V, E) as a
square matrix A of size |V| × |V| where Ai,j = 1 if 〈i, j〉 ∈ E and Ai,i = 1∀i = 1, ..., |V|. The
probability of decoded turns at the m-th decoding step is:

Pm = softmax(D
(3)
path,mWpath) ∈ R|V |, Pm,i = smasked∀i|Ar̂m−1,i = 0 (9)

where Wpath ∈ Rd×|V |. The decoding process is terminated when the next decoded token is an
[EOP] (end-of-path) token. During inference time, we adopt a greedy decoding approach. Due to the
small size of V , we found that a greedy approach can perform as well as beam search methods. The
computational cost of generating reasoning paths in dialogue context is, thus, only dependent on the
average path length, which is bounded by the maximum number of dialogue turns.

Data Augmentation. We train our path generator in a supervision manner. At each dialogue turn t
with a semantic graph G, we use a graph traversal method, e.g. BFS, to find all paths that start from
the current turn to any past turn. We maintain the ground-truth paths with dialogue temporal order by
keeping the dialogue turn index in path position m lower than the turn index in path position m− 1.
We also narrow down ground-truth paths based on their total lexical overlaps with the expected output
answers. Using the dialogue in Figure 1 as an example, using BFS results in three potential path
candidates: 5→ 4, 5→ 2, and 5→ 4→ 2. We select 5→ 4→ 2 as the ground-truth path because
it can cover the most sub-nodes in the expected answers. If two paths have the same number of lexical
overlaps, we select one with a shorter length. If two paths are equivalent, we randomly sample one
path following uniform distribution at each training step. Ground-truth reasoning paths are added
with [EOP] token at the final position for termination condition. The objective to train the path
generator is the generation objective of reasoning path at each dialogue turn:

R̂t = arg max
Rt

P (Rt|Ct,Qt;φ) = arg max
Rt

Lpath∏
m=1

Pm(rm|Rt,1:m−1, Ct,Qt;φ) (10)

3.4 MULTIMODAL REASONING FROM REASONING PATHS

The graph structure G and generated path R̂t are used as layout to propagate features of both textual
and visual inputs. For each dialogue turn from V , we obtain the corresponding embeddings and
apply mean pooling to get a vector representation. We denote the turn-level representations of V as
V ∈ Rd×|V |. We use attention to retrieve the turn-dependent visual features from visual input.

M = Transformer(V, I, I) ∈ Rd×|V | (11)

where I is a two-dimensional feature representation of visual input I. We define a new multi-
modal graph based on semantic graph G: Gmm = (Vmm, Emm) where Vmm = M and edges
〈mi,mj〉 ∈ Emm∀i, j|〈i, j〉 ∈ E . We employ a vanilla graph convolution network (Kipf & Welling,
2017) to update turn-level multimodal representations through message passing along all edges.

ek =
1

|Ωk|
∑

mj∈Ωk

f(mk,mj), e =
1

|V |
∑
k

ek, m̃k = g(mk, ek, e) (12)

where Ωk is the set of adjacent nodes of mk and f(.) and g(.) are non-linear layers, e.g. MLP
and their inputs are just simply concatenated. To propagate features along a reasoning path R̂t, we
utilize the updated turn-level multimodal representations M̃ ∈ |V | and traverse the path sequentially
through the representation of the corresponding turn index rm in each traversing step. Specifically,
We obtain G = {m̃r̂0 , m̃r̂1 ...} ∈ RLpath×d. The traversing process can be done through a recurrent
network or a transformer encoder.

G̃ = Transformer(G,G,G) ∈ RLpath×d (13)

To incorporate propagated features into the target response, we adopt a state-of-the-art decoder
model from (Le et al., 2019) that exploits multimodal attention over contextual features. Specifically,
We integrate both M̃ and G̃ at each response decoding step through two separate attention layers.
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Models B-1 B-2 B-3 B-4 M R C
Baseline (Hori et al., 2019) 0.621 0.480 0.379 0.305 0.217 0.481 0.733
TopicEmb (Kumar et al., 2019)‡ 0.632 0.499 0.402 0.329 0.223 0.488 0.762
FGA (Schwartz et al., 2019b) - - - - - - 0.806
JMAN (Chu et al., 2020) 0.667 0.521 0.413 0.334 0.239 0.533 0.941
FA+HRED (Nguyen et al., 2019)‡ 0.695 0.533 0.444 0.360 0.249 0.544 0.997
MTN (Le et al., 2019) 0.715 0.581 0.476 0.392 0.269 0.559 1.066
VideoSum (Sanabria et al., 2019)† 0.718 0.584 0.478 0.394 0.267 0.563 1.094
MSTN (Lee et al., 2020)‡ - - - 0.377 0.275 0.566 1.115
Student-Teacher (Hori et al., 2019)‡ 0.727 0.593 0.488 0.405 0.273 0.566 1.118
PDC (Ours) 0.747 0.616 0.512 0.429 0.282 0.579 1.194
VideoSum (Sanabria et al., 2019)†§ 0.723 0.586 0.476 0.387 0.266 0.564 1.087
VGD-GPT2 (Le & Hoi, 2020)†§ 0.749 0.620 0.520 0.436 0.282 0.582 1.194
RLM (Li et al., 2020b) ‡§ 0.765 0.643 0.543 0.459 0.294 0.606 1.308
PDC (Ours) + GPT2§ 0.770 0.653 0.539 0.449 0.292 0.606 1.295

Table 1: AVSD@DSTC7 test results: † uses visual features other than I3D, e.g. ResNeXt, scene graphs. ‡
incorporates additional video background audio inputs. § indicates finetuning methods on additional data or
pre-trained language models. Metric notations: B-n: BLEU-n, M: METEOR, R: ROUGE-L, C: CIDEr.

Besides, we also experiment with integrating propagated features with decoder as Transformer
language models. Transformer language models have shown impressive performance recently in
generation tasks by transferring language representations pretrained in massive data (Radford et al.,
2019). To integrate, we simply concatenate M̃ and G̃ to the input sequence embeddings as input to
language models, similar as (Le & Hoi, 2020; Li et al., 2020b).

Optimization. The multimodal reasoning model is learned jointly with other model components. All
model parameters are optimized through the objectives from both Equation 1 and 10. We use the
standard cross-entropy loss which calculates the logarithm of each softmax score at each decoding
position of Ât and R̂t.

4 EXPERIMENTS

Dataset. We use the Audio-Visual Sene-Aware Dialogue (AVSD) benchmark developed by Alamri
et al. (2019). The benchmark focuses on dialogues grounded on videos from the Charades dataset
(Sigurdsson et al., 2016). Each dialogue can have up to 10 dialogue turns, which makes it an
appropriate choice to evaluate our approach of reasoning paths over dialogue context. We used the
standard visual features I3D to represent the video input. We experimented with the test splits used in
the 7th Dialogue System Technology Challenge (DSTC7) (Yoshino et al., 2019) and DSTC8 (Kim
et al., 2019). Please see the Appendix A for our experimental setups.

Train Val Test@DSTC7 Test@DSTC8
#Dialogs 7,659 1,787 1,710 1,710
#Questions/Answers 153,180 35,740 13,490 18,810
#Words 1,450,754 339,006 110,252 162,226

Table 2: Dataset Summary of the AVSD benchmark with both test splits @DSTC7 and @DSTC8.

Overall Results. The dialogues in the AVSD benchmark focuses on question answering over multiple
turns and entail less semantic variance than open-domain dialogues. Therefore, we report the objective
scores, including BLEU (Papineni et al., 2002), METEOR (Banerjee & Lavie, 2005), ROUGE-L (Lin,
2004), and CIDEr (Vedantam et al., 2015), which are found to have strong correlation with human
subjective scores (Alamri et al., 2019). In Table 1 and 3, we present the test results of our models
in comparison with previous models in DSTC7 and DSTC8 respectively. In both test splits, our
models achieve very strong performance against models without using pre-trained language models.
Comparing with models using pre-trained models and additional fine-tuning, our models achieve
competitive performances in both test splits. The performance gain of our models when using GPT2
indicates current model sensitivity to language modelling as a generator. A unique benefit of our
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Models B-1 B-2 B-3 B-4 M R C
Baseline (Hori et al., 2019) 0.614 0.467 0.365 0.289 0.210 0.480 0.651
DMN (Xie & Iacobacci, 2020)‡ - - - 0.296 0.214 0.496 0.761
Simple (Schwartz et al., 2019a) - - - 0.311 0.224 0.502 0.766
JMAN (Chu et al., 2020) 0.645 0.504 0.402 0.324 0.232 0.521 0.875
STSGR (Geng et al., 2020)† - - - 0.357 0.267 0.553 1.004
MSTN (Lee et al., 2020)‡ - - - 0.385 0.270 0.564 1.073
PDC(Ours) 0.723 0.595 0.493 0.410 0.270 0.570 1.105
RLM (Li et al., 2020b) ‡§ 0.746 0.626 0.528 0.445 0.286 0.598 1.240
PDC (Ours) + GPT2§ 0.749 0.629 0.528 0.439 0.285 0.592 1.201

Table 3: AVSD@DSTC8 test results: † uses visual features other than I3D, e.g. ResNeXt, scene graphs. ‡
incorporates additional video background audio inputs. § indicates finetuning methods on additional data or
pre-trained language models. Metric notations: B-n: BLEU-n, M: METEOR, R: ROUGE-L, C: CIDEr.

Semantics Direction GraphProp PathProp B-1 B-2 B-3 B-4 M R C
Comp. BiDirect X X 0.747 0.616 0.512 0.429 0.282 0.579 1.194
Comp. BiDirect X 0.746 0.611 0.503 0.418 0.281 0.580 1.179
Comp. TODirect X 0.748 0.613 0.505 0.420 0.279 0.579 1.181
Comp. BiDirect X 0.745 0.611 0.504 0.419 0.282 0.577 1.172
Global BiDirect X X 0.743 0.609 0.504 0.421 0.279 0.579 1.178
Global BiDirect X 0.744 0.610 0.502 0.416 0.280 0.577 1.169
Global TODirect X 0.743 0.609 0.501 0.416 0.279 0.579 1.161
Global BiDirect X 0.749 0.613 0.505 0.421 0.279 0.578 1.172
Fully BiDirect X 0.745 0.607 0.500 0.414 0.277 0.576 1.169
Fully TODirect X 0.743 0.605 0.497 0.411 0.277 0.573 1.163

Table 4: Ablation of AVSD@DSTC7 test results: We experiment with graphs that are compositional semantics,
global semantics, and fully-connected with bidirectional or temporally ordered edges, and with graph-based or
path-based feature propagation. Metric notations: B-n: BLEU-n, M: METEOR, R: ROUGE-L, C: CIDEr.

models from prior approaches is the insights of how the models exploit information from dialogue
turns in the form of reasoning paths (Please see example outputs in Figure 3).

Ablation Analysis. In Table 4 we report the results of path learning in a global semantic graph. In
these graphs, we do not decompose each dialogue turn into component sub-nodes (line 5 in Algorithm
1) but directly compute the similarity score based on the whole sentence embedding. In this case, to
train the path generator, we obtain the ground-truth path by using BFS to traverse to the node with the
most sentence-level similarity score to the expected answer. We observe that: (1) models that learn
paths based on component lexical overlaps results in better performance than paths based on global
lexical overlaps in most of the objective metrics. (2) Propagation by reasoning path alone without
using GCN does not result in better performance. This can be explained as the information in each
traversal step is not independent but still contains semantic dependencies to other turns. It is different
from standard reading comprehension problems where each knowledge base is independent and it is
not required to propagate features through a graph structure to obtain contextual updates. Please see
the Appendix B for additional analysis of Table 4.

Impacts of Reasoning Path Learning. We compare models that can learn reasoning paths against
those that use a fixed propagation path through the past dialogue turns. From Table 5, we observe that:
(1) learning dynamic instance-based reasoning paths outperforms all models that propagate through a
default path. This is achieved by using the reasoning path as a skeleton for feature propagation as
well as adopting the joint training strategy. We can consider dynamically learned paths as an ideal
traversal path to propagate visual cues among all possible paths within the semantic graph of the
dialogue context. (2) our path generator can generate reasoning paths well and the model with learned
paths can perform as well as one using the oracle paths. (3) due to the short length of reasoning paths
(limited by the maximum dialogue length), either beam search or greedy decoding approach is good
enough to generate paths. The greedy approach has the advantage of much lower computational cost.

Qualitative Analysis. In Figure 3, we demonstrate some examples of our predicted responses and
the corresponding reasoning paths. Specifically, we showcase samples in which the reasoning paths
are 2-hops (Example A and B) and 3-hops (Example C and D), and the distance in each hop can be
over one dialogue turn (Example B and D) or more (Example A and C). The example reasoning paths
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Reasoning Path B-1 B-2 B-3 B-4 M R C
Learned Path (beam search) 0.747 0.616 0.512 0.429 0.282 0.579 1.194
Learned Path (greedy) 0.747 0.616 0.512 0.430 0.282 0.580 1.195
Oracle Path 0.748 0.617 0.512 0.430 0.282 0.580 1.195
Random Path 0.552 0.437 0.345 0.274 0.194 0.420 0.684
Path through last 10 turns 0.744 0.607 0.500 0.415 0.278 0.576 1.166
Path through last 9 turns 0.743 0.607 0.500 0.416 0.277 0.574 1.161
Path through last 8 turns 0.749 0.615 0.509 0.423 0.277 0.578 1.168
Path through last 7 turns 0.754 0.618 0.510 0.422 0.282 0.579 1.170
Path through last 6 turns 0.746 0.608 0.498 0.412 0.278 0.575 1.150
Path through last 5 turns 0.744 0.607 0.500 0.415 0.278 0.576 1.169
Path through last 4 turns 0.745 0.610 0.502 0.417 0.278 0.576 1.165
Path through last 3 turns 0.744 0.607 0.500 0.414 0.278 0.576 1.163
Path through last 2 turns 0.748 0.615 0.508 0.423 0.278 0.579 1.171
Path through last 1 turns 0.740 0.603 0.494 0.408 0.276 0.575 1.149

Table 5: Comparison of AVSD@DSTC7 test results between learned paths and paths as sequences of the
last n turns: We experiment with paths predicted by our path generator and paths as a sequence of the last n
turns, i.e. {t, ...,max(0, t− n)}. Metric notations: B-n: BLEU-n, M: METEOR, R: ROUGE-L, C: CIDEr.

Q: what objects does he interact with ? A: he opens a closet door and take out a 
plastic bag .

Q: are there any other objects he interacts with that you have not told me about 
? A: the only object is the broom and plastic bag .

Q: what does he do with the plastic bag ? A: he holds it in his hand and the 
video ends there .

Q: does he hold the broom the whole video ? 

... … ... ...

Predicted path: 6 → 5 → 4
Answer (predicted): yes he holds the broom the whole time .
Answer (ground-truth): yes throughout the whole video he is holding
 the broom .

3

4

5

6

Q: is this a living room ? A: no it isn't a living room

Q: does he look at the camera ? A: he looks at it when he goes to turn it off

Q: how old does he look ? 

... … ... ...

Predicted path: 10 → 9 
Answer (predicted): he looks like he is in his early 20 ' s
Answer (ground-truth): twenties maybe i guess 

8

9

10

B

D

Q: what does she do with the bag when she ’s done picking up trash ? A: she 
ties the bag and looks herself in the mirror of the bathroom .

Q: what is she holding in her hand at the beginning of the video ? A: she holding 
an old cushion .

... … ... ...

Predicted path: 10 → 9 → 7
Answer (predicted): she puts the cushion in the bag . 
Answer (ground-truth): she puts it in the white bag , in addition the cushion 
seems to be dusty because she sneezes. 

7

9

Q: does she leave the room at any point ? A: no , the video ends with her 
looking at the mirror .

8

A

Q: what does she do with the cushion ? 10

Q: who leaves the room first initially ? A: the man and the woman both leave the 
room in the first frame , but as soon as they enter the hallway , the woman goes 
back into the room , leaving the man standing in the hallway. 

Q: does the man wait for her ? A: yes , the man waits patiently in the hall for her.

Predicted path: 9 → 3 
Answer (predicted): the man walks out of the room .
Answer (ground-truth): the video stops as the man is going through the door . 
so , he would be first .

3

4

... … ... ...

Q: who leaves the house first ? 9

C

... … ... ...

Figure 3: Example outputs of reasoning paths and dialogue responses. We demonstrate 4 cases of reasoning
paths with 2 to 3 hops and with varied distances between two ends of the reasoning path.

show to be able to connect a sequence of dialogue turns that are most relevant to questions of the
current turn. For instance, in Example A, the reasoning path can connect the 7th and 9th turn to the
current turn as they contain lexical overlaps, i.e. “the bag”, and “the cushion”. The path skips the 8th
turn which is not relevant to the current question. Likewise, in Example C, the path skips the 4− 8th

turns. All examples show that dialogue context can be used to extract additional visual clues relevant
to the current turn. Information from dialogues, thus, deserves more attention than just being used as
a background text input. Please see the Appendix C for additional analysis.

5 CONCLUSION

We proposed PDC, a novel approach to learning a reasoning path over dialogue turns for video-
grounded dialogues. Our approach exploits the compositional semantics in each dialogue turn to
construct a semantic graph, which is then used to derive an optimal path for feature propagation.
Our experiments demonstrate that our model can learn to retrieve paths that are most relevant to the
current question. We hope our approach can motivate further study to investigate reasoning over
multiple turns, especially in complex settings with interconnected dialogue flows (Sun et al., 2019).
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A EXPERIMENTAL SETUP

We experiment with the Adam optimizer (Kingma & Ba, 2015). The models are trained with a
warm-up learning rate period of 5 epochs before the learning rate decays and the training finishes
up to 50 epochs. The best model is selected by the average loss in the validation set. All model
parameters, except the decoder parameters when using pre-trained language models, are initialized
with uniform distribution (Glorot & Bengio, 2010). The Transformer hyper-parameters are fine-tuned
by validation results over d = {128, 256}, h = {1, 2, 4, 8, 16}, and a dropout rate from 0.1 to 0.5.
Label smoothing (Szegedy et al., 2016) is applied on labels of Ât (label smoothing does not help
when optimizing over R̂t as the labels are limited by the maximum length of dialogues, i.e. 10 in
AVSD).

B IMPACTS OF COMPOSITIONAL SEMANTIC GRAPH

We experiment with model variants based on different types of graph structures. Specifically,
we compare our compositional semantic graph against a graph built upon the turn-level global
semantics. In these graphs, we do not decompose each dialogue turn into component sub-nodes
(line 5 in Algorithm 1) but directly compute the similarity score based on the whole sentence
embedding. We also experiment with a fully connected graph structure. In each graph structure, we
experiment with temporally ordered edges (TODirect). This is enforce by adding a check whether
Get_Dial_Turn(sj) > Get_Dial_Turn(si) in line 11 and removing line 12 in Algorithm 1. From
the results in Table 4, we observe that: (1) based on the CIDEr metric, the best performing graph
structure is the compositional semantic graph while the global semantic graph and fully connected
graph structure are almost equivalent. This is consistent with the previous insight in machine reading
comprehension research that entity lexical overlaps between knowledge bases are often overlooked by
global embeddings (Ding et al., 2019) and it is not reliable to construct a knowledge graph based on
global representations alone. (2) regarding the direction of edges, bidirectional edges and temporally
ordered edges perform similarly, indicating that processing dialogue turns following temporal orders
provides enough information and backward processing is only supplementary.

C ADDITIONAL QUALITATIVE ANALYSIS

In Figure 4, we demonstrate examples outputs of reasoning paths and dialogue responses and have
the following observations:

• For questions that do not involve actions and can be answered by a single frame, there is
typically no reasoning path, i.e. the path only includes the current turn (Example A and B).
These questions are usually simple and they are rarely involved in multiple dialogue turns.

• In many cases, the dialogue agent can predict an appropriate path but still not generate the
correct answers (Example D and G). These paths are able to connect turns that are most
relevant to the current turns but these past turns do not contain or contain very limited clues
to the expected answers. For example, in Example F, the 2nd and 4th turn are linked by the
lexical component for “the woman”. However, they do not have useful information relevant
to the current turn, i.e. her clothes.

• Finally, our approach shows that the current benchmark, AVSD, typically contains one-hop
(Example C, D, E) to two-hop (Example F, G, H) reasoning paths over dialogue context. We
hope future dialogue benchmarks will factor in the complexity of dialogue context in terms
of reasoning hops to facilitate better research of intelligent dialogue systems.

Discussion of failure cases. From the above observations, we identify the following scenarios that
our models are susceptible to and propose potential directions for improvement.

• Long complex utterances. One limitation of our methods is its dependence on syntactical
parser methods to decompose a sentence into sub-nodes. In most dialogues, this problem is
not too serious due to the short length of utterances, usually just a single sentence. However,
in cases that the utterance contains multiple sentences/clauses or exhibits usage of spoken
language with loose linguistic syntax, the parser may fail to decompose it properly. For
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instance, in Example G in Figure 4, the ground-truth answer contains a causality-based
clause (“because”), making it harder to identify sub-nodes such as “sneeze” or “dusty”.

• Contextualized semantic similarity. Another area we can improve upon this method is
to inject some forms of sentence-level contextual cues into each sub-node to improve their
semantic representations. For instance, in a hypothetical dialogue that involves 2 question
utterances such as the 2nd turn in Example A and the 6th turn in Example E in Figure 4,
our method might not detect the connection between these two as they do not have overlap
component sub-nodes. However, they are both related to the audio aspect of the video and a
reasoning path between these two turns is appropriate.

D STATISTICS OF LOCAL VS. GLOBAL SEMANTIC GRAPHS

In Table 6, we report the statistics of graph structures constructed by local and global semantics in all
data splits of the AVSD benchmark. We observe that constructing graphs with local semantics result
in a lower number of instances with no reasoning paths than making graphs with global semantics.
This is due to compositionality in our method, resulting in higher lexical overlap between dialogue
turns. With our method, the number of sub-nodes per dialogue turn is more than 4 on average, making
it easier to connect dialogue turns. This also leads to a larger and more diverse set of reasoning
paths for supervision learning. In local semantic graphs, the average number of reasoning paths per
dialogue turn is 2 to 3 on average, higher than this number in global semantic graphs. Although our
method requires additional computational effort to constructing these graphs, it is scalable to the size
of the dialogue, i.e. number of the dialogue turns. To efficiently construct these graphs in a dialogue,
the semantic graph of a dialogue turn can be built on top of the semantic graph of the last turn. This
is done by simply adding the new sub-nodes to the last turn’s semantic graph and defining new edges
adjacent to these sub-nodes only. In this way, the complexity of our graph construction method is
linear to the number of dialogue turns.

Local Semantic Graphs Global Semantic Graphs
train val test train val test

# sub-nodes in total 341,186 88,617 31,936 76,590 17,870 6,745
# sub-nodes per dialogue turn 4.45 4.96 4.73 1.00 1.00 1.00

# edges in total 619,428 147,588 32,765 270,356 63,141 40,470
# dialogue turns with no reasoning paths 27,704 6,420 3,048 35,048 8,152 3,696
max # reasoning paths per dialogue turn 35 33 24 10 9 5
avg. # reasoning paths per dialogue turn 3.10 3.10 1.99 1.21 1.10 1.04

Table 6: Comparison of dialogue context graphs built by local semantics and global semantics.
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Q: who leaves the room first initially ? A: the man and the woman both leave the 
room in the first frame , but as soon as they enter the hallway , the woman goes 
back into the room , leaving the man standing in the hallway. 

Q: does the man wait for her ? A: yes , the man waits patiently in the hall for her.

Q: does the woman return ? A: yes , she returns with a book in her hand , and 
gives it to the man .

Q: it looks like there ’s a bag , what does she do with it ? A: she picks the trash 
from the trashcan and puts it in the bag .

Q: does she look towards the camera at all ? A: no , she does not look at the 
camera .

Q: what does she do with the bag when she ’s done picking up trash ? A: she 
ties the bag and looks herself in the mirror of the bathroom .

Q: what is she holding in her hand at the beginning of the video ? A: she holding 
an old cushion .

... … ... ...

Predicted path: 9 → 3 
Answer (predicted): the man walks out of the room .
Answer (ground-truth): the video stops as the man is going through the door . 
so , he would be first .

3

4

5

... … ... ...

Predicted path: 10 → 9 → 7
Answer (predicted): she puts the cushion in the bag . 
Answer (ground-truth): she puts it in the white bag , in addition the cushion 
seems to be dusty because she sneezes. 

4

6

7

9

Q: do they talk to each other ? A: yes , they are speaking to each other as they 
walk down the hallway together .

6

Q: after she gives him the book, what happens ? A: they both walk down the 
hallway towards a door to leave the house . 

7

Q: is there anyone else in the video ? A: no , there is no one else shown in the 
video .

8

Q: who leaves the house first ? 9

C

Q: does she leave the room at any point ? A: no , the video ends with her 
looking at the mirror .

8

Q: what is he holding ? A: he is holding a jacket .

Q: what is he doing on the sofar ? A: he starts out laying on it then gets up .

Q: is anyone else in the video ? A: no , only the one man is in the video .

Q: how many windows are on the door ? 

... … ... ...

Predicted path: 5
Answer (predicted): there are two windows on the door . 
Answer (ground-truth): it looks like there is one window on the door .

1

2

3

5

B

Q: is it day or night ? A: it appears to be day .4

G

Q: does she show any emotion ? A: no she displays mostly neutral  emotions .5

Q: what does she do with the cushion ? 10

Q: is there just one person in the video ? A: yes , just a younger boy .

Q: is there any sound in the video ? A: yes . you can see and hear the boy laugh 
as he reads a book .

Q: is this a bedroom ? 

... … ... ...

Predicted path: 3
Answer (predicted): yes it appears to be a bedroom .
Answer (ground-truth): it appears to be yes .

1

2

3

A

Q: what happens first in the video ? A: the girl is pouring a drink

Q: what happens after that ? A: a man walks in with a plastic bag 

Q: what does the girl do next ? A: she takes a sip of her drink 

... … ... ...

Predicted path: 4 → 2
Answer (predicted): he puts it on the shelf 
Answer (ground-truth): he sets it on the couch

1

2

3

Q: what does the man do with the bag ? 4

D

Q: what is happening in the video ? A: a woman is cleaning a window .

Q: what time of day is it ? A: it ’s during the daytime hours .

Q: does she ever speak ? A: no , she does not speak .

Q: is there anything else in the video ? A: no , all you can see is the woman and 
the window .

... … ... ...

Predicted path: 7 → 4 → 2
Answer (predicted): she is wearing a black shirt and black pants .
Answer (ground-truth): she ’s wearing a blue shirt , black pants , and a red 
headscarf .  

1

3

4

6

Q: is the room decorated ? A: no , it just has plain white walls .5

Q: where is the woman located ? A: she is in front of a the window .2

Q: what is she wearing ?  7

H

Q: does he just walk into the room then sit in the chair ? A: yes , that is all he did 
. 
Q: is he watching something on the laptop ? A: yes , the laptop is open and on . 

Q: is the laptop where the sound is coming from ? A: no , it sounds just like 
ambient sound .

Q: is the man in the room the whole time ? A: yes , on the whole duration .

Q: does he ever stand back up ?

Predicted path: 9 → 6 → 5
Answer (predicted): no , he does not stand back back up .
Answer (ground-truth): no , the video ends with him sitted . 

5

6

7

8

9

... … ... ...

F

Q: does he do anything with the blanket ? A: no , he holds it the whole time . 

Q: is there anyone else in the video ? A: yes ,there is also a woman . 

Q: what does the woman do ? A: there is a woman voice but I don’t see her .

Q: oh okay, what does the woman say ? A: I don’t know, it isn’t in english .

Q: oh okay, does the man speak at all ? 

Predicted path: 6 → 2
Answer (predicted): no , the man does not speak at all .
Answer (ground-truth): no , the man doesn’t speak at all .

2

3

4

5

6

... … ... ...

E

Figure 4: Example outputs of reasoning paths and dialogue responses.
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