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ABSTRACT

Generating physically feasible dynamics in a data-driven context is challenging,
especially when adhering to physical priors expressed in specific equations or
formulas. Existing methodologies often overlook the integration of “physical pri-
ors”, resulting in violation of basic physical laws and suboptimal performance. In
this paper, we introduce a novel framework that seamlessly incorporates physi-
cal priors into diffusion-based generative models to address this limitation. Our
approach leverages two categories of priors: 1) distributional priors, such as roto-
translational invariance, and 2) physical feasibility priors, including energy and
momentum conservation laws and PDE constraints. By embedding these priors
into the generative process, our method can efficiently generate physically realis-
tic dynamics, encompassing trajectories and flows. Empirical evaluations demon-
strate that our method produces high-quality dynamics across a diverse array of
physical phenomena with remarkable robustness, underscoring its potential to ad-
vance data-driven studies in AI4Physics. Our contributions signify a substantial
advancement in the field of generative modeling, offering a robust solution to gen-
erate accurate and physically consistent dynamics.

1 INTRODUCTION

The generation of physically feasible dynamics is a fundamental challenge in the realm of data-
driven modeling and AI4Physics. These dynamics, driven by Partial Differential Equations (PDEs),
are ubiquitous in various scientific and engineering domains, including fluid dynamics (Kutz, 2017),
climate modeling (Rasp et al., 2018), and materials science (Choudhary et al., 2022). Accurately
generating such dynamics is crucial for advancing our understanding and predictive capabilities in
these fields (Bzdok & Ioannidis, 2019). Recently, generative models have revolutionized the study
of physics by providing powerful tools to simulate and predict complex systems.

Generative v.s. discriminative models. Even when high-performing discriminative models for
dynamics are available such as finite elements (Zhang et al., 2021; Uriarte et al., 2022), finite differ-
ence (Lu et al., 2021; Salman et al., 2022), finite volume (Ranade et al., 2021) or physics-informed
neural networks (PINNs) (Raissi et al., 2019), generative models are crucial in machine learning for
their ability to capture the full data distribution, enabling more effective data synthesis (de Oliveira
et al., 2017), anomaly detection (Finke et al., 2021), and semi-supervised learning (Ma et al., 2019).
They enhance robustness and interpretability by modeling the joint distribution of data and labels,
offering insights into unseen scenarios (Takeishi & Kalousis, 2021). Generative models are also piv-
otal in creative domains, such as drug discovery (Lavecchia, 2019), where they enable the creation
of novel data samples.

Challenge. However, the intrinsic complexity and high-dimensional nature of physical dynamics
pose significant challenges for traditional learning systems. Recent advancements in generative
modeling, particularly diffusion-based generative models (Song et al., 2020), have shown promise
in capturing complex data distributions. These models iteratively refine noisy samples to match
the target distribution, making them well-suited for high-dimensional data generation. Despite their
success, existing approaches often overlook the incorporation of “physical priors” expressed in spe-
cific equations or formulas, which are essential for ensuring that the generated dynamics adhere to
fundamental physical laws.

Solution. In this work, we propose a novel framework that integrates priors into diffusion-based
generative models to generate physically feasible dynamics. Our approach leverages two types of
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priors: Distributional priors, including roto-translational invariance and equivariance, ensure that
models capture the intrinsic properties of the data rather than their specific representations; Physical
feasibility priors, including energy and momentum conservation laws and PDE constraints, enforce
the adherence to fundamental physical principles, thus improving the quality of generated dynamics.

Figure 1: Animated visualization of
generated samples of shallow water
dynamics, showcasing the variations
over time. Use the latest version of
Adobe Acrobat Reader to view.

The integration of priors into the generative process is a
complex task that necessitates a deep understanding of the
relevant mathematical and physical principles. Unlike pre-
dictive tasks, where the objective is to estimate a specific
ground-truth value x0, diffusion generative models aim to
characterize a full ground-truth distribution ∇x log qt(xt)
or E[x0 | xt] (notation in Equation 1). This fundamental
difference complicates the direct application of priors based
on ground-truth values to the output of generative models.
In this work, we propose a framework to address this chal-
lenge by effectively embedding priors within the generative
model’s output distribution. By incorporating these priors
into a diffusion-based generation framework, our approach
can efficiently produce physically plausible dynamics. This
capability is particularly useful for studying physical phe-
nomena where the governing equations are too complex to
be learned purely from data.

Results. Empirical evaluations of our method demonstrate its effectiveness in producing high-
quality dynamics across a range of physical phenomena. Our approach exhibits high robustness
and generalizability, making it a promising tool for the data-driven study of AI4Physics. In Fig. 1,
we provide a generated sample of the shallow water dataset (Martı́nez-Aranda et al., 2018). The gen-
erated dynamics not only capture the intricate details of the physical processes but also adhere to the
fundamental physical laws, offering an accurate and reliable representation of underlying systems.

Contribution. In conclusion, our work presents a significant advancement in the field of data-driven
generative modeling by introducing a novel framework that integrates physical priors into diffusion-
based generative models. In all, our method 1) improves the feasibility of generated dynamics, mak-
ing them more aligned with physical principles compared to baseline methods; 2) poses the solution
to the longstanding challenge of generating physically feasible dynamics; 3) paves the way for more
accurate and reliable data-driven studies in various scientific and engineering domains, highlighting
the potential of AI4Physics in advancing our understanding of complex physical systems.

2 PRELIMINARIES

In Appendix A, we present a comprehensive review of Related Work, specifically focusing on three
key areas: generative methods for physics, score-based diffusion models, and physics-informed
neural networks. This section aims to provide foundational knowledge for readers who may not be
familiar with these topics. We recommend that those seeking to deepen their understanding of these
areas consult this appendix.

2.1 DIFFUSION MODELS

Diffusion models generate samples following an underlying distribution. Consider a random vari-
able x0 ∈ Rn drawn from an unknown distribution q0. Denoising diffusion probabilistic mod-
els (Song & Ermon, 2019; Song et al., 2020; Ho et al., 2020) describe a forward process xt, t ∈ [0, T ]
governed by an Ito stochastic differential equation (SDE)

dxt = f(t)xtdt+ g(t)dwt, x0 ∼ q0, f(t) =
d logαt

dt
, g2(t) =

dσ2
t

dt
− 2

d logαt

dt
σ2
t , (1)

where wt ∈ Rn denotes the standard Brownian motion, and αt and σt are predetermined functions
of t. This forward process has a closed-form solution of qt (xt | x0) = N

(
xt | αtx0, σ

2
t I
)

and
has a corresponding reverse process of the probability flow ordinary differential equation (ODE),
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running from time T to 0, defined as (Song et al., 2020)
dxt

dt
= f(t)xt −

1

2
g2(t)∇x log qt(xt), xT ∼ qT (xT | x0) ≈ qT (xT ). (2)

The marginal probability densities {qt(xt)}Tt=0 of the forward SDE align with the reverse
ODE (Song et al., 2020). This indicates that if we can sample from qT (xT ) and solve Equation 2,
then the resulting x0 will follow the distribution q0. By choosing αt → 0 and σt → 1, the dis-
tribution qT (xT ) can be approximated as a normal distribution. The score ∇x log qt(xt) can be
approximated by a deep learning model. The quality of the generated samples is contingent upon
the models’ ability to accurately approximate the score functions (Kwon et al., 2022; Gao & Zhu,
2024). A more precise approximation results in a distribution that closely aligns with the distribu-
tion of the training set. To enhance model fit, incorporating priors of the distributions and physical
feasibility into the models is advisable. Section 3 will elaborate on our methods for integrating
distributional priors and physical feasibility priors, as well as the objectives for score matching.

2.2 INVARIANT DISTRIBUTIONS

An invariant distribution refers to a probability distribution that remains unchanged under the action
of a specified group of transformations. These transformations can include operations such as trans-
lations, rotations, or other symmetries, depending on the problem domain. Formally, let G be a group
of transformations. A distribution q is said to be G-invariant under the group G if for all transfor-
mations G ∈ G, we have q(G(x)) = q(x). Invariance under group transformations is particularly
significant in modeling distributions that exhibit symmetries. For instance, in the case of 3D coordi-
nates, invariance under rigid transformations—such as translations and rotations (SE(3) group)—is
essential for spatial understanding (Zhou et al., 2024). Equivariant models are usually required to
embed invariance. A function (or model) f : Rn → Rn is said to be (G,L)-equivariant where G is
the group actions and L is a function operator, if for any G ∈ G, f(G(x)) = L(G)(f(x)).

3 METHOD

In this study, we aim to investigate methodologies for enhancing the capability of diffusion models
to approximate the targeted score functions. We have two primary objectives: 1) To incorporate
distributional priors, such as translational and rotational invariance, which will aid in selecting the
appropriate model for training objective functions; 2) To impose physical feasibility priors on the
diffusion model, necessitating injection of priors to model’s output of a distribution related to the
ground-truth samples (specifically, ∇x log qt(xt) or E[x0 | xt]). In this section, we consider the
forward diffusion process given by Equation 1, where xt = αtx0 + σtϵ, with ϵ ∼ N (0, I).

3.1 INCORPORATING DISTRIBUTIONAL PRIORS

In this section, we study the score function ∇x log qt(xt) for G-invariant distributions. Understand-
ing its corresponding properties can guide the selection of models with the desired equivariance,
facilitating sampling from the G-invariant distribution. In the following, we will assume that the
sufficient conditions of Theorem 1 hold so that the marginal distributions qt are G-invariant. The
definitions of the terminologies and proof of the theorem can be found in Appendix F.1.
Theorem 1 (Sufficient conditions for the invariance of q0 to imply the invariance of qt). Let q0 be
a G-invariant distribution. If for all G ∈ G, G is volume-preserving diffeomorphism and isometry,
and for all 0 < a < 1, there exists H ∈ G such that H(ax) = aG(x), then qt is also G-invariant.

Property of score functions. Let qt be a G-invariant distribution. By the chain rule, we have
∇x log qt(xt) = ∇x log qt(G(xt)) =

∂G(xt)
∂x ∇G(x) log qt(G(xt)), for all G ∈ G. Hence,

∇G(x) log qt(G(xt)) =

(
∂G(xt)

∂x

)−1

∇x log qt(xt). (3)

This implies that the score function of G-invariant distribution is (G,∇−1)-equivariant. We should
use a (G,∇−1)-equivariant model to predict the score function. The loss objective is given by

Jscore(θ) = Et,x0,ϵ

[
w(t) ∥sθ (xt, t)−∇x log qt(xt)∥2

]
, (4)
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where w(t) is a positive weight function and sθ is a (G,∇−1)-equivariant model. We will discuss
the handling of the intractable score function ∇x log qt(xt) subsequently in Equation 6.

In the context of simulating physical dynamics, two distributional priors are commonly considered:
SE(n)-invariance and permutation-invariance. They ensure that the learned representations are con-
sistent with the fundamental symmetries of physical laws, including rigid body transformations and
indistinguishability of particles, thereby enhancing the model’s ability to generalize across different
physical scenarios. The derivations for the following examples can be found in Appendix F.2.
Example 1. (SE(n)-invariant distribution) If q0 is an SE(n)-invariant distribution, then qt is also
SE(n)-invariant. The score function of an SE(n)-invariant distribution is SO(n)-equivariant and
translational-invariant.
Example 2. (Permutation-invariant distribution) If q0 is a permutation-invariant, then qt is also
permutation-invariant. The score function of a permutation-invariant distribution is permutation-
equivariant.

In the following, we will show that using such a (G,∇−1)-equivariant model, we are essentially
training a model that focuses on the intrinsic structure of data instead of their representation form.

Equivalence class manifold for invariant distributions. An equivalence class manifold (ECM)
refers to the minimum subset of samples where all the rest elements are considered equivalent to
one of the samples in this manifold (informal). For example, in three-dimensional space, coordi-
nates that have undergone rotation and translation maintain their pairwise distances, which allows
the use of a set of coordinates to represent all other coordinates with the same distance matrices,
thereby forming an equivalence class manifold (see Appendix B for the formal definition and ex-
amples). By incorporating the invariance prior to the training set, we can construct ECM from the
training set or a mini-batch of samples. The utilization of ECM enables the models to concentrate
on the intrinsic structure of the data, thereby enhancing generalization and robustness to irrelevant
variations. We assume that the distribution of x follows an G-invariant distribution qt. Let φ map
xt to the corresponding point having the same intrinsic structure in ECM. Then there exists G ∈ G
such that G(φ(xt)) = xt . Since qt is G-invariant, we have qt(xt) = qECM(φ(xt))·pUniform(G)(G),
where qECM is defined on the domain of ECM. Taking the logarithm and derivative, we have
∇φ(x) log qt(xt) = ∇φ(x) log qECM(φ(xt)). Note that ∇x log qt(xt) = ∂φ(xt)

∂x ∇φ(x) log qt(xt).
Hence,

∇x log qt(xt) =
∂φ(xt)

∂x
∇φ(x) log qECM(φ(xt)). (5)

This implies that the score function of the G-invariant distribution is closely related to the score
function of the distribution in ECM. Such a result indicates that if we have a (G,∇−1)-equivariant
model that can predict the score functions in ECM, then, this model predicts the score functions for
all other points closed under the group operation. We summarize this result in the following theorem
whose proofs can be found in Appendix F.3.
Theorem 2 (Equivalence class manifold representation). If we have a (G,∇−1)-equivariant model
such that sθ(xt, t) = ∇x log qECM(xt) almost surely on xt ∈ ECM, then we have sθ(xt, t) =
∇x log qt(xt) almost surely.

Objective for fitting the score function. The score function ∇x log qt(xt) is generally intractable
and we consider the objective for noise matching and data matching (Vincent, 2011; Song et al.,
2020; Zheng et al., 2023), where objectives and optimal values are given by

Jnoise(θ) = Et,x0,ϵ

[
w(t) ∥ϵθ (xt, t)− ϵ∥2

]
, ϵ∗θ (xt, t) = −σt∇x log qt (xt) ; (6a)

Jdata(θ) = Et,x0,ϵ

[
w(t) ∥xθ (xt, t)− x0∥2

]
, x∗

θ (xt, t) =
1

αt
xt +

σ2
t

αt
∇x log qt (xt) . (6b)

The diffusion objectives for both the noise predictor ϵθ and the data predictor xθ are intrinsically
linked to the score function, thereby inheriting its characteristics and properties. However, the data
predictor incorporates a term, 1

αt
xt, whose numerical range exhibits instability. This instability

complicates the predictor’s ability to inherit the straightforward properties of the score function.
Therefore, to incorporate G-invariance, it is advisable to employ noise matching, which is given by
Equation 6a and ϵθ is (G,∇−1)-equivariant, which is the property of the score function.
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A specific instance of a distributional prior is defined by samples that conform to the constraints
imposed by PDEs. In this context, the dynamics at any given spatial location depend solely on the
characteristics of the system within its local vicinity, rather than on absolute spatial coordinates. Un-
der these conditions, it is appropriate to employ translation-invariant models for both noise matching
and data matching. Nevertheless, the samples in question exhibit significant smoothness. As a re-
sult, utilizing the noise matching objective necessitates that the model’s output be accurate at every
individual pixel. In contrast, applying the data matching objective only requires the model to pro-
duce smooth output values. Therefore, it is recommended to adopt the data matching objective
for this purpose. The selection between data matching and noise matching plays a critical role in
determining the quality of the generated samples. For detailed experimental results, refer to Sec. 4.3.
Remark 1. In this section, we primarily explore the principle for incorporating distributional priors
by selecting models with particular characteristics. Specifically:

1. When the distribution exhibits G-invariance, a (G,∇−1)-equivariant model should be em-
ployed alongside the noise matching objective (Equation 6a).

2. For samples that are subject to PDE constraints and exhibit high smoothness, the data
matching objective (Equation 6b) is recommended.

3.2 INCORPORATING PHYSICAL FEASIBILITY PRIORS

In this section, we explore how to incorporate physical feasibility priors such as physics laws
and explicit PDE constraints into noise and data matching objectives in diffusion models. By
Tweedie’s formula (Efron, 2011; Kim & Ye, 2021; Chung et al., 2022), we have E[x0 | xt] =
1
αt

(
xt + σ2

t∇x log qt (xt)
)
. Hence,

E[x0 | xt] =
1

αt
(xt − σtϵ

∗
θ (xt, t)) , E[x0 | xt] = x∗

θ (xt, t) . (7)

For both noise and data matching objectives, we are essentially training a model to approximate
E[x0 | xt]. A purely data-driven approach is often insufficient to capture the underlying physical
constraints accurately. Therefore, similar to PINNs (Leiteritz & Pflüger, 2021), we incorporate an
additional penalty loss JR into the objective function to enforce physical feasibility priors R (x0) =
0 and set the loss objective to be J (θ) = Jscore(θ) + λJR(θ), where Jscore is the data matching
or noise matching objectives and λ is a hyperparameter to balance the diffusion loss and physical
feasibility loss. We consider the data matching objective where xθ (xt, t) approximates E[x0 | xt].
For noise matching models, we can transform the model’s output by Equation 7. For general cases,
we cannot directly add the constraints R (x0) = 0 to the output of the diffusion model E[x0 | xt]
due to the presence of Jensen’s gap (Bastek et al., 2024), i.e., R (E[x0 | xt]) ̸= E[R (x0) | xt] = 0.
However, in some special cases, we can avoid dealing with this gap.

Linear cases. When the constraints are linear/affine functions, Jensen’s gap equals 0. Hence, we
can directly add the constraints to xθ (xt, t). We have JR (θ) = Et,x0,ϵ

[
w(t) ∥R (xθ (xt, t))∥2

]
.

Multilinear cases. A function is called multilinear if it is linear in several arguments when the

other arguments are fixed. Denote x0 =

[
u0

v0

]
∈ Rm+n,u0 ∈ Rm,v0 ∈ Rn. When the constraints

function is multilinear w.r.t. u0, we can write the constraints in the form of R (x0) = W0u0+b0 =
0, where W0 and b0 are functions of v0. In this case, we can use the penalty loss as JR (θ) =
Et,x0,ϵ[w(t)∥W0uθ (xt, t) + b0∥2]. Such a design is supported by the following theorem whose
proof can be found in Appendx F.4.
Theorem 3 (Multilinear Jensen’s gap). The optimizer for Et,x0,ϵ[w(t)∥uθ1 (xt, t) − u0∥2] is the
reweighted optimizer of Et,x0,ϵ[w(t)∥W0uθ2 (xt, t) + b0∥2] with reweighted variable W⊤

0 W0.

Convex cases. If the constraints R is convex, by Jensen’s inequality, R (E[x0 | xt]) ≤ E[R (x0) |
xt] = 0. Hence, 0 = ∥E[R (x0) | xt]∥2 ≤ ∥R (E[x0 | xt]) ∥2. When a data matching model is
approximately optimized, directly applying constraints to the model’s output minimizes the up-
per bound of the constraints on x0. The upper bound of the Jensen’s gap is related the absolute
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centered moment σp = p
√
E[|x0 − µ|xt|p], where µ = E[x0|xt]. If the constraints function R

approach R(µ) no slower than |x0 − µ|η and grow as x0 → ±∞ no faster than ±|x0|n for
n ≥ η, then the Jensen’s gap E[R (x0) | xt] − R (E[x0 | xt]) approaches to 0 no slower than
ση
n as σn → 0 (Gao et al., 2017). Usually, in the reverse diffusion process, σn → 0 as t → 0

since the generated noisy samples converge to a clean one. In this case, we use the penalty loss of
JR (θ) = Et,x0,ϵ

[
w(t) ∥R (xθ (xt, t))∥2

]
.

In the aforementioned three scenarios, at the implementation level, the model’s output may be
directly considered as the ground-truth sample x0 itself, rather than the conditional expectation
E[x0 | xt]. These scenarios are referred to as “elementary cases”. In the following, we will discuss
how to deal with nonlinear cases using the above elementary cases.

Reducible nonlinear cases. For nonlinear constraints, mathematically speaking, we cannot di-
rectly apply the constraints to E[x0 | xt]. However, we may recursively use multilinear functions
to decompose the nonlinear constraints into elementary ones as: R (x0) = g1 ◦ · · ·gm (x0) = 0,
where all gi are elementary. Using elementary functions for decomposition, we may 1) reduce non-
linear constraints into elementary ones by treating terms causing nonlinearity as constants, and 2)
reduce the complex constraints into several simpler ones. In this case, the penalty loss is set to
JR (θ) = Et,x0,ϵ

[
w(t) ∥g1 ◦ · · · gm (xθ (xt, t))∥2

]
. See Sec. 4.2 for concrete examples of nonlin-

ear formulas for the conservation of energy.

General nonlinear cases. For general nonlinear cases, if it is not feasible to decompose the non-
linear constraints into their elementary components, it may be necessary to consider alternative
approaches where we may reparameterize the constraints variable into elementary cases. Given
the nonlinear constraints, we reparameterize it as R (x0) = g (h(x0)) = 0, where g is elemen-
tary and h is non-necessarily elementary functions. Subsequently, another diffusion model, de-
noted as x̃θ (xt, t), is trained to predict h(x0), utilizing the same hidden states as model xθ (xt, t).
This training process employs the methods applicable to elementary cases. The objective is for
model x̃θ to learn the underlying physical constraints and encode these constraints into its hid-
den states. Consequently, when model xθ predicts, it inherently incorporates the learned phys-
ical constraints g parameterized by h(x0). To train model x̃θ, we set the penalty loss to be
JR (θ) = Et,x0,ϵ

[
w(t) ∥x̃θ (xt, t)− h(x0)∥2

]
. See Appendix E.1 for implementation details.

Notably, in our proposed methods for integrating constraints, the explicit form of prior knowledge,
such as the physics constants required for energy calculations, is not necessary. Instead, it suffices
to determine whether the model’s output parameters are elementary w.r.t. the constraints. This
approach enhances the applicability of our methods to a broader spectrum of constraints.

Remark 2. In conclusion, incorporating the physics constraints can be achieved in different ways
depending on their complexity. For elementary constraints, one can directly omit Jensen’s gap and
impose the penalty loss on the model’s output. In the case of nonlinear constraints, decomposition
or reparameterization techniques are utilized to transform constraints into elementary ones.

4 EXPERIMENTS

In this section, we assess the enhancement achieved by incorporating physics constraints into the
fundamental diffusion model across various synthetic physics datasets. We conduct a grid search
to identify an equivalent set of suitable hyperparameters for the network to perform the data/noise
matching, ensuring a fair comparison between the baseline method (diffusion objectives without
penalty loss) and our proposed approach of incorporating physics constraints. Appendix E provides
a detailed account of the selection of backbones and the training strategies employed for each dataset.
We also provide ablation studies in Sec. 4.3 of 1) data matching and noise matching techniques for
different datasets, revealing that incorporating a distributional prior enhances model performance;
2) the effect of omitting Jensen’s gap, finding that nonlinear constraints can hinder performance if
not properly handled. However, appropriately managing these priors using our proposed methods
can lead to significant performance improvements.
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4.1 PDE DATASETS

PDE datasets, including advection (Zang, 1991), Darcy flow (Li et al., 2024), Burgers (Rudy et al.,
2017), and shallow water (Klöwer et al., 2018), are fundamental resources for studying and modeling
various physical phenomena. These datasets enable the simulation of complex systems, demonstrat-
ing the capability of models for broader application across a wide range of PDE datasets. Through
this, they facilitate advances in understanding diverse natural and engineered processes.

Experiment settings. The PDE constraints for the above datasets are given by:

Advection: ∂tu(t, x) + β∂xu(t, x) = 0, (8a)
Darcy flow: ∂tu(x, t)−∇(a(x)∇u(x, t)) = f(x), (8b)

Burger: ∂tu(x, t) + u(x, t)∂xu(x, t) = 0, (8c)

Shallow water: ∂tu = −∂xh, ∂vt = −∂hy, ∂th = −c2 (∂xu+ ∂yv) . (8d)

A detailed introduction and visualization of the datasets can be found in Appendix C.1. In this
study, we investigate the predictive capabilities of generative models applied to advection and Darcy
flow datasets. Our experiments focus on evaluating the models’ accuracy in forecasting future states
given initial conditions. Additionally, we examine the models’ ability to generate physically feasible
samples that align with the distribution of the training set on advection, Burger, and shallow water
datasets. The evaluation metrics are designed to assess to what extent the solutions adhere to the
physical feasibility constraints imposed by the corresponding PDEs.

Injecting physical feasibility priors. We train the models that apply the data matching objective
as suggested in Remark 1. We employ finite difference methods to approximate the differential
equations. This approach renders the PDE constraints linear for the advection, Darcy flow, and
shallow water datasets. However, PDE constraints become multilinear for the Burgers’ equation
dataset (see Appendix C.2 for the proof). Thus, the first set of datasets: advection, Darcy flow, and
shallow water—correspond to the linear case, while the Burgers’ equation dataset corresponds to the
multilinear case. We can directly apply the physical feasibility constraints on the model’s output.

Experimental results. Results can be seen in Tab. 1, 2. In Tab. 1, we analyze the performance
of diffusion models in predicting physical dynamics, given initial conditions, within a generative
framework that produces a Dirac distribution. The accuracy of these models is evaluated using
the RMSE metric. The observed loss magnitude is comparable to the prediction loss using with
FNO, U-Net, and PINN models (Takamoto et al., 2022) (refer to Appendix E.4 for further details).
Our results indicate that the incorporation of constraints consistently enhances the accuracy of the
prediction. In Tab. 2, the feasibility of the generated samples is evaluated by calculating the RMSE
of the PDE constraints, which determine the impact of incorporating physical feasibility priors on
diffusion models. We also provide visualization of the generated samples in Fig. 11, 13, 14.

Method Advection (×10−2) Darcy flow (×10−2)
w/o prior 1.7263±0.0491 2.261
w/ prior 1.6536±0.0677 2.174

Table 1: Performance comparison of diffu-
sion models with/without priors for predict-
ing physical dynamics. The models’ accu-
racy is measured using the RMSE metric,
highlighting the impact of incorporating con-
straints on improving prediction accuracy.

Method Advection Burger Shallow water
w/o prior 2.398±0.024 6.858±0.004 8.0153±0.0960
w/ prior 2.305±0.001 6.652±0.012 7.7618±0.0645

Table 2: Comparative analysis of diffusion
models, assessing the feasibility of generated
samples with/without physical feasibility pri-
ors. We evaluate the RMSE of PDE con-
straints, demonstrating the effect of physical
feasibility priors on the adherence to PDEs.

4.2 PARTICLE DYNAMICS DATASETS

We train diffusion models to simulate the dynamics of chaotic three-body systems in 3D (Zhou &
Yu, 2023) and five-spring systems in 2D (Kuramoto, 1975; Kipf et al., 2018) (see Appenidx. D.1
for visualizations of datasets). In the case of the three-body, we unconditionally generate the posi-
tions and velocities of three particles, where gravitational interactions govern their dynamics. The
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stochastic nature of this dataset arises from the random distribution of the initial positions and ve-
locities. In five-spring systems, each pair of particles has a probability 50% of being connected by
a spring. The movements of the particles are influenced by the spring forces, which cause stretch-
ing or compression interactions. We conditionally generate the positions and velocities of the five
particles based on their spring connectivity.

Notations. The features of the datasets are represented as X(0) = [C(0) V(0)] ∈ RL×K×2D,
where C(0),V(0) ∈ RL×K×D. Here, the matrix C0 encapsulates the coordinate features, while V0

encapsulates the velocity features. The superscript denotes the time for the diffusion process and
the subscripts denote the matrix index. L represents the temporal length of the physical dynamics,
K denotes the number of particles, and D corresponds to the spatial dimensionality. We use the
subscript l to indicate time, while the subscripts i, j, and k are used to denote the indices of particles.
The subscript d represents the index corresponding to the spatial axis. We also use the subscript of
θ to denote the corresponding values of the model’s prediction of E[X(0) | X(t)] with inputs X(t)

and t, and Xθ = [Cθ Vθ].

Injecting SE(n)-invariance and permutation invariance. Two physical dynamic systems are
governed by the interactions between each pair of particles, resulting in a distribution that is SE(n)
and permutation invariant. Our objective is to develop models that are SO(n)-equivariant, translation
invariant, and permutation equivariant. We intend to apply a noise matching objective to achieve the
desired invariant distribution. However, to the best of our knowledge, no such architecture satisfying
the above properties has been established within the context of diffusion generative models. There-
fore, we opt to utilize a data augmentation method to ensure the model’s equivariance and invariance
properties (Chen et al., 2019; Botev et al., 2022), i.e. we apply these group operations in the training
process, which enforces models to be equivariant and invariant.

Conservation of momentum. For both datasets, the conservation of momentum can be expressed
as follows:

K∑
k=1

mkV
(0)
l,k,d = constantd, ∀l = 1, . . . , L, d = 1, . . . , D. (9)

Here, mk represents the mass of the k-th particle, and V
(0)
l,k,d denotes the velocity along axis d of

the k-th particle at time l. The total momentum in each axis remains constant, as indicated by
the equality. This constraint is linear w.r.t. V

(0)
l,k,d, corresponding to the linear case. Hence, let

f : RL×K×D × RK → RD calculate the mean of the total momentum over time and we set the
penalty loss as

JR (θ) = Et,x0,ϵ

w(t) L∑
l=1

D∑
d=1

∥∥∥∥∥
(

K∑
k=1

mk (Vθ)l,k,d

)
− fd(Vθ, {mk}Kk=1)

∥∥∥∥∥
2
 . (10)

Conservation of energy for the three-body dataset. The total of gravitational potential energy
and kinetic energy remains constant over time. The energy conservation equation is given by:

−
K∑
i̸=j

Gmimj

R
(0)
l,ij

+

K∑
k=1

D∑
d=1

1

2
mk(V

(0)
l,k,d)

2 = constant, ∀l = 1, . . . , L, (11)

where G denotes the gravitational constant. R(0)
l,ij = ∥C(0)

l,i −C
(0)
l,j ∥ denotes the Euclidean distance

between the i-th and j-th particle at time l. This constraint is nonlinear with X(0) but can be de-
composed into elementary cases. Note that the constraint is multilinear w.r.t. 1/R(0)

l,ij and (V
(0)
l,k,d)

2.
Hence, from the results of the general nonlinear cases, we can train another model sharing the same
hidden size as the model for noise matching to predict these variables related to the conservation of
energy. Furthermore, since these variables are convex w.r.t. X(0), by the results of the convex case,
we can directly apply the penalty loss as:

JR (θ) = Et,x0,ϵ

w1(t)
∑
l;i ̸=j

∥∥∥∥∥ 1

(Rθ)l,ij
− 1

R
(0)
l,ij

∥∥∥∥∥
2

+ w2(t)
∑
l,k,d

∥∥∥∥(Vθ)
2
l,k,d −

(
V

(0)
l,k,d

)2∥∥∥∥2
, (12)
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Figure 2: Visualization of generated samples from the three-body (first row) and five-spring (second
row) datasets. The leftmost figures in each row represent methods without priors, the middle figures
correspond to our proposed methods, and the rightmost figures illustrate the physical properties as
they evolve over time. Both total momentum and total energy should remain conserved. The samples
generated by our methods demonstrate stronger adherence to physical feasibility.

where (Rθ)l,ij = ∥Cθ

(
X(t), t

)
l,i

− Cθ

(
X(t), t

)
l,j

∥, i.e. model’s prediction of the Euclidean
distance between two particles calculated from its prediction of coordinates. This penalty loss can
also be derived from the reducible case. The detailed derivation can be found in Appendix D.2.

Conservation of energy for the five-spring dataset. The combined elastic potential energy and
the kinetic energy are conserved throughout time. The equation for the conservation of energy is
represented by:

∑
(i,j)∈E

1

2
κ
(
R

(0)
l,ij

)2
+

K∑
k=1

D∑
d=1

1

2
mk

(
V

(0)
l,k,d

)2
= constant, ∀l = 1, . . . , L, (13)

where κ denotes the elastic constant, R(0)
l,ij = ∥C(0)

l,i −C
(0)
l,j ∥ denotes the distance between the i-th

and j-th particle at time l, and E denotes the edge set of springs connecting particles. mk represents
the mass of the k-th particle. Analogue to the conservation of energy for the three-body dataset, we
can reduce the nonlinear constraints into elementary cases.

Method Three-body Five-spring
Traj error Vel error Energy error Dynamic error Momentum error Energy error

w/o prior 2.5613 2.6555 3.8941 5.1929 5.3511 1.0891
w/ prior 1.6072 0.7307 0.5062 5.0919 0.3687 0.7448

Table 3: Sample quality of the three-body and five-spring datasets. For both datasets, we simulate
the ground-truth future motion based on the current states of the generated samples and report the
MSE error between the ground-truth motion and the generated ones. We also calculate the error
of physical feasibility such as conservation of the energy and momentum, which should remain
unchanged along the evolution of the systems.

Experimental results. The results can be seen in Tab. 3 and Fig. 2, 15, 16, and we refer readers
to Appendix E.2 for a detailed account of the experimental settings, as well as a more extensive
comparison of the effects of hyperparameters and various methods for injecting constraints across
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the discussed cases. Our analysis indicates that for the three-body dataset, the incorporation of
the conservation of energy prior, via the reducible case method, substantially enhances the model’s
performance across all evaluated metrics. Similarly, applying the conservation of momentum prior to
the five-spring dataset significantly reduces the momentum error in the generated samples. This also
contributes to a reduction in the errors associated with dynamics and energies. Fig. 2 demonstrates
that the total momentum and energy of samples generated with the incorporation of priors exhibit
greater stability compared to those without priors. We also provide sampling results using the DPM-
solvers (Lu et al., 2022) in Appendix E.7, which significantly lower computational expenses.

4.3 ABLATION STUDIES

Method Three-body Five-spring Darcy flow Shallow water
distributional prior 2.6084 5.1929 2.261 8.150

alternative 4.7241 5.3120 7.268 27.40

Table 4: Results of an ablation study comparing the ef-
fects of data matching and noise matching techniques.
The findings show that incorporating a distributional
prior improves model performance. We use the mean
of trajectory error and velocity error as the metric for
the three-body dataset.

Method Traj error Vel error Energy error
w/o prior 2.5613 2.6555 3.8941

prior by PINN 2.6048 2.6437 4.2219
prior by ours 1.6072 0.7307 0.5062

Table 5: Results show the impact of enforcing energy
conservation constraints on the three-body dataset.
Direct application of nonlinear constraints (prior by
PINN) can degrade performance, while proper han-
dling (prior by ours) improves accuracy.

Distributional priors through match-
ing objective. We employ data match-
ing and noise matching techniques for the
PDE and particle dynamics datasets, re-
spectively. An ablation study is conducted
to investigate the effects of applying the
alternative matching objective on the par-
ticle dynamics and PDE datasets, both
without physical feasibility priors. The
results, presented in Tab. 4, demonstrate
that incorporating a distributional prior
can significantly improve the model’s per-
formance.

Omitting Jensen’s gap. In the three-
body dataset, we employ a multilinear
function to simplify constraints into con-
vex scenarios. We now conduct an abla-
tion study in which the output of a diffu-
sion model is considered the ground-truth,
and the constraint of energy conservation
is imposed similarly to the injection of
constraints by penalty loss in the prediction tasks of PINNs. This configuration is referred to as
“prior by PINN”. We define a penalty loss based on the variation of energy over time, analogous to
the penalty loss used to enforce momentum conservation constraints. However, unlike the conser-
vation of momentum, which is governed by a linear constraint and can thus be applied directly, the
conservation of energy involves a nonlinear constraint. This introduces Jensen’s gap, preventing the
direct application of the constraint. The results, presented in Tab. 5, indicate that directly applying
nonlinear constraints can degrade the model’s performance. However, appropriately handling these
constraints can significantly improve the sample quality.

More on data augmentation. We conduct additional ablation studies to investigate the importance
of the distributional priors. We test two cases: 1) with data augmentation like random permutation
and 2) without data augmentation. The results can be seen in Appendix E.6.

5 CONCLUSION

In conclusion, this paper presents a groundbreaking and principled method for generating physically
feasible dynamics using diffusion-based generative models by integrating two types of priors: distri-
butional priors and physical feasibility priors. We inject distributional priors by choosing the proper
equivariant models and applying the noising matching objective. We incorporate physical feasibility
priors by decomposing nonlinear constraints into elementary cases. Empirical results demonstrate
the robustness and high quality of the dynamics produced across a variety of physical phenomena,
underscoring the significant promise of our method for data-driven AI4Physics research. This work
emphasizes the importance of embedding domain-specific knowledge into learning systems, setting
a precedent for future research bridging physics and machine learning through innovative use of
physical priors.
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Dirk Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine
learning. Advances in Neural Information Processing Systems, 35:1596–1611, 2022.

Naoya Takeishi and Alexandros Kalousis. Physics-integrated variational autoencoders for robust
and interpretable generative modeling. Advances in Neural Information Processing Systems, 34:
14809–14821, 2021.

Carlos Uriarte, David Pardo, and Ángel Javier Omella. A finite element based deep learning solver
for parametric pdes. Computer Methods in Applied Mechanics and Engineering, 391:114562,
2022.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural compu-
tation, 23(7):1661–1674, 2011.

Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen
Change Loy. Esrgan: Enhanced super-resolution generative adversarial networks. In Proceedings
of the European conference on computer vision (ECCV) workshops, pp. 0–0, 2018.

Jin-Long Wu, Karthik Kashinath, Adrian Albert, Dragos Chirila, Heng Xiao, et al. Enforcing sta-
tistical constraints in generative adversarial networks for modeling chaotic dynamical systems.
Journal of Computational Physics, 406:109209, 2020.

Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geo-
metric diffusion model for molecular conformation generation. arXiv preprint arXiv:2203.02923,
2022.

Qi Yan, Zhengyang Liang, Yang Song, Renjie Liao, and Lele Wang. Swingnn: Rethinking per-
mutation invariance in diffusion models for graph generation. arXiv preprint arXiv:2307.01646,
2023.

Gefan Yang and Stefan Sommer. A denoising diffusion model for fluid field prediction. arXiv
preprint arXiv:2301.11661, 2023.

Liu Yang, Dongkun Zhang, and George Em Karniadakis. Physics-informed generative adversarial
networks for stochastic differential equations. SIAM Journal on Scientific Computing, 42(1):
A292–A317, 2020.

Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay,
and Tommi Jaakkola. Se (3) diffusion model with application to protein backbone generation.
arXiv preprint arXiv:2302.02277, 2023.

Thomas A Zang. On the rotation and skew-symmetric forms for incompressible flow simulations.
Applied Numerical Mathematics, 7(1):27–40, 1991.

Lei Zhang, Lin Cheng, Hengyang Li, Jiaying Gao, Cheng Yu, Reno Domel, Yang Yang, Shaoqiang
Tang, and Wing Kam Liu. Hierarchical deep-learning neural networks: finite elements and be-
yond. Computational Mechanics, 67:207–230, 2021.

Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. Improved techniques for maximum likelihood
estimation for diffusion odes. In International Conference on Machine Learning, pp. 42363–
42389. PMLR, 2023.

Zihan Zhou and Tianshu Yu. Learning to decouple complex systems. In International Conference
on Machine Learning, pp. 42810–42828. PMLR, 2023.

Zihan Zhou, Ruiying Liu, Jiachen Zheng, Xiaoxue Wang, and Tianshu Yu. On diffusion process in
se (3)-invariant space. arXiv preprint arXiv:2403.01430, 2024.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A RELATED WORK

A.1 GENERATIVE METHODS FOR PHYSICS

Numerous studies have been conducted on the development of surrogate models to supplant nu-
merical solvers for physics dynamics with GANs (Farimani et al., 2017; de Oliveira et al., 2017;
Wu et al., 2020; Yang et al., 2020; Bode et al., 2021) and VAEs (Cang et al., 2018). Neverthe-
less, to generate realistic physics dynamics, one must accurately learn the data distribution or inject
physics prior (Cuomo et al., 2022). Recent advancements in diffusion models (Song et al., 2020)
have sparked increased interest in their direct application to the generation and prediction of phys-
ical dynamics, circumventing the need for specific physics-based formulations (Shu et al., 2023;
Lienen et al., 2023; Yang & Sommer, 2023; Apte et al., 2023; Jadhav et al., 2023; Bastek et al.,
2024). However, these approaches, which do not incorporate prior physical knowledge, may exhibit
limited performance, potentially leading to suboptimal results.

A.2 SCORE-BASED DIFFUSION MODELS

Score-based diffusion models are a class of generative models that create high-quality data samples
by progressively refining noise into detailed data through a series of steps (Song et al., 2020). These
models estimate the score function, the gradient of the log-probability density of the data, using a
neural network (Song & Ermon, 2019). By applying this score function iteratively to noisy samples,
the model reverses the diffusion process, effectively denoising the data incrementally, and generates
samples following the same distribution as the training set. Although numerous studies on diffusion
models have focused on generating SE(3)-invariant distributions (Xu et al., 2022; Yim et al., 2023;
Zhou et al., 2024), there remains a lack of comprehensive research on the generation of general in-
variant distributions under group operations. Meanwhile, in contrast to GANs, the outputs produced
by diffusion models represent the distributional properties of the data samples. This fundamental
difference means that physical feasibility priors cannot be added directly to the model output due to
the presence of a Jensen gap (Chung et al., 2022), i.e. R (E[x0 | xt]) ̸= E[R (x0) | xt]. A poten-
tial solution to this problem involves iterating and drawing samples during the training process and
subsequently incorporating the loss of physics feasibility on the generated samples (Bastek et al.,
2024). However, this approach necessitates numerous iterations, often in the hundreds, rendering
the training process inefficient.

A.3 PHYSICS-INFORMED NEURAL NETWORKS

Physics-Informed Neural Networks (PINNs) are a class of deep learning models that incorporate
physical laws and constraints into their training process (Lawal et al., 2022). Unlike traditional
training processes, which learn patterns solely from data, PINNs leverage priors including PDEs
that describe physical phenomena to guide the learning process. By incorporating these physical
feasibility equations as part of the penalty loss, alongside the data prediction loss, PINNs enhance
their ability to model complex systems. This integration allows PINNs to be applied across various
fields, including fluid dynamics (Cai et al., 2021), electromagnetism (Khan & Lowther, 2022), and
climate modeling (Hwang et al., 2021). Their ability to integrate domain knowledge with data-driven
learning makes them a powerful tool for tackling complex scientific and engineering challenges.

B EXTENSION ON EQUIVALENCE CLASS MANIFOLD

B.1 FORMAL DEFINITION

Let X be a set and ∼ be an equivalence relation on X . The equivalence class manifold M is defined
as the set of equivalence classes under the relation ∼. Formally,

M = {x | x ∈ X, y ∈ [x] ⇒ y = x}, (14)

where M is a Riemannian manifold and [x] denotes the equivalence class of x, defined as:

[x] = {y ∈ X | y ∼ x}. (15)
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B.2 EQUIVALENCE CLASS MANIFOLD OF SE(3)-INVARIANT DISTRIBUTION

The following theorem provides a method to use a set of coordinates to represent all other coordi-
nates having the same pairwise distances.

Theorem 4 (Equivalence class manifold of SE(3)-invariant distribution (Dokmanic et al., 2015;
Hoffmann & Noé, 2019; Zhou et al., 2024)). Given any pairwise distance matrix D ∈ Rn×n

+ , there
exists a corresponding Gram matrix M ∈ Rn×n defined by

Mij =
1

2
(D1j +Di1 −Dij) (16)

and conversely
Dij = Mii +Mjj − 2Mij . (17)

By performing the singular value decomposition (SVD) on the Gram matrix M ∈ Rn×n (associated
with D), we obtain exactly three positive eigenvalues λ1, λ2, λ3 and their respective eigenvectors
v1,v2,v3, where λ1 ≥ λ2 ≥ λ3 > 0. The set of coordinates

C = [v1,v2,v3]

 √
λ1 0 0
0

√
λ2 0

0 0
√
λ3

 (18)

satisfies has the same pairwise distance matrix as D.

Define the above mapping from the pairwise distances to coordinates as f . Then, the equivalence
class manifold of SE(3)-invariant distribution can be given by

M = {f(D) | D is a pairwise distance matrix}. (19)

M satisfies the property of being a Riemannian manifold (Zhou et al., 2024).

C PDE DATASETS

A summary of the important properties of datasets can be found in Tab. 6.

Datasets Cond/Uncond generation Matching objective Distributional priors Constraint cases

PDE

advection both

data (Equation 6b) PDE constraints

linear
Darcy flow conditional linear

Burger unconditional multilinear
shallow water conditional linear

particle dynamics three-body unconditional noise (Equation 6a) SE(3) + permutation invariant all cases
five-spring conditional SE(2) + permutation invariant all cases

Table 6: Comparative summary of datasets. The table highlights key aspects such as the type of
generation (conditional or unconditional), the matching objective, the distributional priors, and the
nature of the constraint cases.

C.1 DATASET SETTINGS

Advection. The advection equation is a fundamental model in fluid dynamics, representing the
transport of a scalar quantity by a velocity field. The dataset presented herein consists of numerical
solutions to the linear advection equation, characterized by

∂tu(t, x) + β∂xu(t, x) = 0, x ∈ (0, 1), t ∈ (0, 2] (20)

where u denotes the scalar field and β = 0.1 is a constant advection speed. The visualization of
training samples can be seen in Fig. 3. Based on the initial conditions provided for the advection
equation, our model utilizes a generative framework to predict the subsequent dynamics, with the
specific aim of forecasting the next 40 frames. We then compare these predictions with the ground-
truth to assess performance. Additionally, we evaluate the model’s capability to generate samples
unconditionally, without initial conditions, and measure performance using the physical feasibility
implied by the PDE constraints.
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Figure 3: Samples from the advection dataset with varying initial conditions. The horizontal axis
represents the spatial coordinate x, while the vertical axis represents the parameter t.

Darcy flow. Darcy’s law describes the flow of fluid through a porous medium, which is a fun-
damental principle in hydrogeology, petroleum engineering, and other fields involving subsurface
flow. The mathematical formulation of the Darcy flow PDE is given by:

∂tu(x, t)−∇(a(x)∇u(x, t)) = f(x), x ∈ (0, 1)2, (21)
where u(x, t) represents the fluid pressure at location x and time t, a(x) is the permeability or
hydraulic conductivity, and f(x) denotes sources or sinks within the medium. Given the initial state
at t = 0, we use the generative scheme to forecast the state at t = 1. Fig. 4 provides a visualization
of training samples. The accuracy of these predictions is evaluated by comparing them with the
ground-truth values.
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Figure 4: The figure illustrates representative training samples from the Darcy flow dataset. The first
row displays the values for the function a(x), while the second row shows the values of u(x, t) at
time t = 1.

Burger. The Burgers’ equation is a fundamental PDE that appears in various fields such as fluid
mechanics, nonlinear acoustics, and traffic flow. It is a simplified model that captures essential
features of convection and diffusion processes. The equation is given by:

∂tu(x, t) + u(x, t)∂xu(x, t) = 0, (22)
where u(x, t) represents the velocity field, x and t denote spatial and temporal coordinates, re-
spectively. We unconditionally generate samples following the distribution of the training set and
evaluate feasibility within the realm of physics as dictated by the constraints of PDE.

Shallow water. The linearized 2D shallow water equations describe the dynamics of fluid flows
under the assumption that the horizontal scale is significantly larger than the vertical depth. These
equations are instrumental in fields such as oceanography, meteorology, and hydrology for modeling
wave and current phenomena in shallow water regions. Let u and v denote the components of the
velocity field in the x- and y-directions, respectively. The variable h represents the perturbation in
the free surface height of the fluid from a mean reference level. The parameter c denotes the phase
speed of shallow water waves, which is a function of the gravitational acceleration and the mean
water depth. The equations are expressed as follows:

∂u

∂t
= −∂h

∂x
,

∂v

∂t
= −∂h

∂y
,

∂h

∂t
= −c2

(
∂u

∂x
+

∂v

∂y

)
. (23)
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Figure 5: The figure depicts representative training samples from the Burger dataset. The samples
within this dataset exhibit minimal variability. The horizontal axis denotes the spatial coordinate x,
whereas the vertical axis represents the parameter t.

We conditionally generate the dynamics of shallow water expressed by h, u, v conditioned on the
given c. We provide a visualization of one sample in Fig. 6.

Figure 6: In the figure, the sequence from left to right represents a sample of the dynamics of shallow
water. Each sample consists of 50 frames, from which 10 frames have been uniformly selected for
visualization.

C.2 CONVERTING TO ELEMENTARY CASES BY FINITE DIFFERENCE APPROXIMATION

Advection and shallow water. The original constraint of the advection equation is given by

∂tu(t, x) + β∂xu(t, x) = 0. (24)

If we use the finite difference method to approximate the derivative, assume a grid with time steps
tn and spatial points xi. Let ui

n denote the approximation to u(tn, xi). For the time derivative,

use a forward difference approximation: ∂tu ≈ ui
n+1−ui

n

∆t . For the spatial derivative, use a central

difference approximation: ∂xu ≈ ui+1
n −ui

n

∆x . Substituting these approximations into the PDE, we
have

ui
n+1 − ui

n

∆t
+ β

ui+1
n − ui

n

∆x
= 0. (25)

Rearrange to obtain an equation that involves only u values and constants:

ui
n+1 − (1 + β

∆t

∆x
)ui

n + β
∆t

∆x
ui+1
n = 0. (26)

In this form, the constraint is a linear equation involving ui
n+1, u

i
n, u

i+1
n . The linearization of the

shallow water constraints can be performed in an analogous manner.

Darcy flow. The given Darcy flow equation is:

∂tu(x, t)−∇(a(x)∇u(x, t)) = f(x), (27)

Using the finite difference method, we discretize the domain into a grid with grid spacing ∆x =
∆y and ∆t. Let ui,j represent u(xi, yj , tn) and un represent u(xi, yj , tn). The finite difference
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approximations for the gradients and divergence are:

∂tu ≈ un+1 − un−1

2∆t
, (28a)

∂xu ≈ ui+1,j − ui−1,j

2∆x
, (28b)

∂yu ≈ ui,j+1 − ui,j−1

2∆y
. (28c)

The Hessian matrix of ∇2u(x, t) is also linear w.r.t. u(x, t) when approximated by the finite differ-
ence method. Hence, the left-hand side of the Darcy flow equation is the sum of terms linear w.r.t.
u(x, t) and thus the constraint is linear.

Burger. The partial differential equation

∂tu(x, t) + u(x, t)∂xu(x, t) = 0 (29)

can be approximated using finite differences as follows: time derivative (forward differ-
ence): ∂tu(x, t) ≈ u(x,t+∆t)−u(x,t)

∆t , spatial derivative (central difference): ∂xu(x, t) ≈
u(x+∆x,t)−u(x−∆x,t)

2∆x . Substituting these into the PDE gives:

u(x, t+∆t)− u(x, t)

∆t
+ u(x, t) · u(x+∆x, t)− u(x−∆x, t)

2∆x
= 0 (30)

Hence, the constraint is multilinear w.r.t. u(x, t) if we consider values of u at other points as con-
stants.

D PARTICLE DYNAMICS DATASETS

D.1 DATASET INTRODUCTION

The dataset features are structured as X(0) = [C(0) V(0)], where C(0) and V(0) are both elements
of RL×K×D. In this context, L refers to the temporal length of the physical dynamics, K represents
the number of particles, and D denotes the spatial dimensionality. Specifically, C(0) captures the
coordinate features, and V(0) captures the velocity features. For the three-body dataset, the param-
eters are set as L = 10, K = 3, and D = 3, indicating a temporal length of 10, with 3 particles in
a 3-dimensional space. Similarly, for the five-spring dataset, L = 50, K = 5, and D = 2, corre-
sponding to a temporal length of 50, 5 particles, and a 2-dimensional space. For both datasets, we
generated 50k samples for training. We aim to generate samples following the same distribution as
in the training dataset.

Fig. 7 provides visual representations of two samples from the particle dynamics dataset, showcasing
the behavior of systems within the three-body and five-spring datasets.

D.2 DETAILS OF INJECTING THE CONSERVATION OF ENERGY FOR THE THREE-BODY
DATASET.

The total of gravitational potential energy (GPE) and kinetic energy (KE) remains constant over
time. The formula of the energy conservation equation is given by:

−
K∑
i ̸=j

Gmimj

R
(0)
l,ij

+

K∑
k=1

D∑
d=1

1

2
mk(V

(0)
l,k,d)

2 = constant, ∀l = 1, . . . , L, (31)

where G denotes the gravitational constant, and all three bodies have the same mass mk. R
(0)
l,ij =

∥C(0)
l,i − C

(0)
l,j ∥ denotes the Euclidean distance between the i-th and j-th mass at time l. This con-

straint is nonlinear with X(0) but can be decomposed into elementary cases. Note that the constraint
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Figure 7: The presented figures illustrate samples from the particle dynamics dataset. The first two
rows depict a sample from the three-body dataset, while the subsequent two rows represent a sample
from the five-spring dataset.

is multilinear w.r.t. 1/R
(0)
l,ij and (V

(0)
l,k,d)

2. Hence, from the results of the general nonlinear cases,
we can apply the penalty loss JR (θ) = JGPE (θ) + JKE (θ), and

JGPE (θ) = Et,x0,ϵ

w1(t)
∑
l;i̸=j

∥∥∥∥∥(R̃θ

)
l,ij

− 1

R
(0)
l,ij

∥∥∥∥∥
2
 , (32a)

JKE (θ) = Et,x0,ϵ

w2(t)
∑
l,k,d

∥∥∥∥(Ṽθ

)
l,k,d

−
(
V

(0)
l,k,d

)2∥∥∥∥2
 , (32b)

where R̃θ and Ṽθ share the same hidden state as the model Xθ and Xθ predicts E[X(0) | X(t)].
The setting details of these models are introduced in Appendix E.1. We refer such a setting as
“noise matching + conservation of energy (general nonlinear)”. Meanwhile, note that 1/R(0)

l,ij and

(V
(0)
l,k,d)

2 are convex w.r.t. model’s output. From the results in the convex case, we can directly
apply the penalty loss to the output of Xθ and set the penalty loss to be

JGPE (θ) = Et,x0,ϵ

w1(t)
∑
l;i ̸=j

∥∥∥∥∥ 1

(Rθ)l,ij
− 1

R
(0)
l,ij

∥∥∥∥∥
2
 , (33a)

JKE (θ) = Et,x0,ϵ

w2(t)
∑
l,k,d

∥∥∥∥(Vθ)
2
l,k,d −

(
V

(0)
l,k,d

)2∥∥∥∥2
 , (33b)

where (Rθ)l,ij = ∥Cθ

(
X(t), t

)
l,i

−Cθ

(
X(t), t

)
l,j

∥, i.e. model’s prediction of the Euclidean dis-
tance between two masses. We refer such a setting as “noise matching + conservation of energy
(reducible nonlinear)”, since this penalty loss function can be derived using a multilinear function
composed with convex functions. In comparison to the penalty loss described in Equation 32, the
penalty loss presented in Equation 33 is applied directly to the output of Xθ. This direct applica-
tion imposes a stronger constraint, thereby more effectively ensuring that the model adheres to the
specified physical constraints.
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E EXPERIMENTS DETAILS

Configuration. We conduct experiments of advection, Darcy flow, three-body, and five-spring
datasets on NVIDIA GeForce RTX 3090 GPUs and Intel(R) Xeon(R) Silver 4210R CPU @
2.40GHz CPU. For the rest of the datasets, we conduct experiments on NVIDIA A100-SXM4-80GB
GPUs and Intel(R) Xeon(R) Platinum 8358P CPU @ 2.60GHz CPU.

Training details. We use the Adam optimizer for training, with a maximum of 1000 epochs. We
set the learning rate to 1e-3 and betas to 0.95 and 0.999. The learning rate scheduler is ReduceL-
ROnPlateau with factor=0.6 and patience=10. When the learning rate is less than 5e-7, we stop the
training.

Diffusion details. As for diffusion configuration, we set the steps of the forward diffusion process
to 1000, the noise scheduler to σt = sigmoid(linspace(−5, 5, 1000)) and αt =

√
1− σ2

t . The loss

weight w(t) is set to g2(t) =
dσ2

t

dt − 2d logαt

dt σ2
t (Song et al., 2021). We generate samples using the

DPM-Solver-1 (Lu et al., 2022).

Experiment summary. We summarize the choice for backbones and properties of datasets in
Tab. 6. We conducted an equivalent search for the hyperparameters of both the baseline methods
and the proposed methods. The specific search ranges for each dataset and the corresponding hyper-
parameters are summarized in Tab. 7.

Datasets Backbone Model hyperparameters Batch size

PDE

advection GRU (Chung et al., 2014) hidden size: [128, 256, 512], layers: [3, 4, 5] 128
Darcy flow Karras Unet (Ho et al., 2020) dim: [128] 8

Burger Karras Unet (Ho et al., 2020) dim: [32] 128
shallow water 3D Karras Unet (Ho et al., 2020) dim: [16] 64

particle dynamics three-body NN+GRU (Chung et al., 2014)
RNN hidden size: [64, 128, 256, 512, 1024],

layers: [3, 4, 5] 64
five-spring EGNN (Satorras et al., 2021)+GRU (Chung et al., 2014) RNN hidden size: [256, 512, 1024] 64

Table 7: Summary of the model hyperparameters.

E.1 TRAINING GENERAL NONLINEAR CASES

Three-body dataset. To reduce the nonlinear conservation of the energy by general nonlinear
cases, we apply the penalty loss JR (θ) = JGPE (θ) + JKE (θ), and

JGPE (θ) = Et,x0,ϵ

w1(t)
∑
l;i ̸=j

∥∥∥∥∥(R̃θ

)
l,ij

− 1

R
(0)
l,ij

∥∥∥∥∥
2
 , (34a)

JKE (θ) = Et,x0,ϵ

w2(t)
∑
l,k,d

∥∥∥∥(Ṽθ

)
l,k,d

−
(
V

(0)
l,k,d

)2∥∥∥∥2
 . (34b)

The models R̃θ and Ṽθ share the same hidden state as the model Xθ, where Xθ is tasked with
predicting E[X(0) | X(t)]. The GRU architecture serves as the backbone for Xθ. Consequently, we
have designed the outputs of the models R̃θ and Ṽθ to be generated by an additional linear layer
that takes the hidden state of the GRU within Xθ as input.

Five-spring dataset. For the five-spring dataset, we apply the penalty loss JR (θ) = JPE (θ) +
JKE (θ), and

JPE (θ) = Et,x0,ϵ

w1(t)
∑

(i,j)∈E,l

∥∥∥∥(R̃θ

)
l,ij

−
(
R

(0)
l,ij

)2∥∥∥∥2
 , (35a)

JKE (θ) = Et,x0,ϵ

w2(t)
∑
l,k,d

∥∥∥∥(Ṽθ

)
l,k,d

−
(
V

(0)
l,k,d

)2∥∥∥∥2
 . (35b)
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The models R̃θ and Ṽθ utilize the same hidden state as the model Xθ, with Xθ responsible for
predicting E[X(0) | X(t)]. The underlying structure of Xθ is based on EGNN for extracting node
and edge features and a GRU network for dealing with time series. As a result, the outputs of R̃θ are
produced by an additional linear layer that processes the edge features generated by EGNN within
Xθ, and the outputs of Ṽθ are produced by an additional linear layer that takes the hidden state of
the GRU within Xθ as input.

E.2 DETAILS OF EXPERIMENT RESULTS

Tab. 8 and Tab. 9 present the outcomes of the grid search conducted on both the three-body and five-
spring datasets. For the three-body datasets, the top three combinations of hyperparameters—hidden
size and the number of layers—are highlighted for each training method. For the five-spring datasets,
the top three hidden size hyperparameters identified for each training method are provided.

Method Hyperparameter Trajectory error Velocity error Energy error

data matching
256, 4 5.2455 4.2028 12.758
512, 5 5.7765 3.8985 13.636
256, 5 5.5098 4.4144 11.643

noise matching
256, 4 2.5613 2.6555 3.8941
256, 5 2.5695 2.6713 3.8944
512, 3 2.6368 2.7192 3.5427

noise matching
+

conservation of momentum (linear)

512, 5 2.1409 2.2529 4.1116
1024, 4 2.4179 2.5261 3.9003
512, 4 2.4188 2.5264 6.8971

noise matching
+

conservation of energy (reducible nonlinear)

128, 3 1.6072 0.7307 0.5062
128, 4 1.6659 0.7605 0.5198
128, 5 1.7821 0.8030 0.4532

noise matching
+

conservation of energy (general nonlinear)

512, 4 2.2745 2.4238 4.0223
512, 3 2.5335 2.6234 3.8091
1024, 3 2.5068 2.6737 5.2131

Table 8: The outcomes of the grid search conducted on the three-body datasets are summarized.
For each training method, we highlight the top three combinations of hyperparameters, focusing on
hidden size and the number of layers. “linear” refers to the settings in 10, and “reducible nonlinear”
and “general nonlinear” refer to the settings in Equation 33 Equation 34, respectively.

Method Hyperparameter Dynamic error Momentum error Energy error

data matching 1024 5.3120 5.2320 1.1204

256 5.3872 5.1448 1.1030

noise matching 512 5.1929 5.3511 1.0891

256 5.1950 5.3468 1.0805
noise matching

+
conservation of momentum (linear)

256 5.0919 0.3687 0.7448
512 5.0990 0.4335 0.7652

noise matching
+

conservation of energy (general nonlinear)

256 5.1615 5.3032 1.0548

1024 5.1809 5.3902 1.0879

Table 9: Grid search results for the five-spring datasets are provided. We present the top two hyper-
parameter hidden size identified for each training method. The results of our experiment indicate
that the output of the GRU model is inadequate to accurately predict the distance between particles.
This limitation renders the methods designed for reducible nonlinear cases inapplicable, and conse-
quently, their results have been excluded from our study. In contrast, the convoluted edge features
generated by the EGNN model are sufficiently informative for predicting particle distances. More-
over, the application of methods suitable for general nonlinear cases improves performance. “linear”
refers to the settings in Equation 10 and “general nonlinear” refers to the settings in Equation 35.

E.3 SENSITIVITY OF PENALTY LOSS WEIGHT
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Figure 8: Sensitivity of model performance to variations in the penalty loss weight on the three-body
dataset. The table shows the results of testing different loss weights on a logarithmic scale, with
performance metrics recorded at five distinct points. The results indicate that model performance is
relatively stable across a range of loss weight values.

Regarding the hyperparameters of the penalty loss weight, our experimental results show that the
model performance is not highly sensitive to variations in the loss weight. Specifically, we conducted
a search for the loss weight across a logarithmic scale, testing it approximately five times. To further
illustrate this, we provide an example of how the loss weight affects model performance on the three
body dataset using conservation of momentum in Fig. 8.

E.4 COMPARSION WITH PREDICTION METHODS

We conduct a comparison between the performance of the generation and prediction methods. In
Tab. 10, we present a comparative analysis of generative models and prediction models for predicting
physical dynamics, specifically advection and Darcy flow. The results of the prediction methods are
taken from Takamoto et al. (2022), which performs a comprehensive comparison of FNO (Li et al.,
2020), Unet (Ronneberger et al., 2015), and PINN (Raissi et al., 2019) (using DeepXDE (Lu et al.,
2021)). Generative models that use diffusion techniques, both with and without prior information,
exhibit comparable performance in both tasks. The diffusion model with priors shows an improve-
ment over the one without priors. In this work, we do not conduct the procedure of super-resolution
or denoising (Wang et al., 2018; Saharia et al., 2022), which are critical in practical applications to
produce high-quality, clean, and detailed images from diffusion models. Hence, the performance of
diffusion models can be further enhanced by the introduction of super-resolution and denoising.

Method Backbone Advection Darcy flow

Generation diffusion w/o prior Karras Unet 1.716× 10−2 2.261× 10−2

diffusion w/ prior 1.621× 10−2 2.174× 10−2

Prediction
forward propagator approximation FNO 4.9× 10−3 1.2× 10−2

autoregressive method Unet 3.8× 10−2 6.4× 10−3

PINN DeepXDE 7.8× 10−1 -

Table 10: Performance comparison of diffusion generative models with prediction models. The
results of the prediction methods are brought from Takamoto et al. (2022).

E.5 WHY NOT TRANSFORMER?

We attempted to implement a transformer architecture as the backbone for sequential data in particle
dynamics datasets. However, our results indicate that the transformer-based model does not achieve
performance comparable to that of recurrent structure backbones. This discrepancy is likely due to
the nature of physical dynamics, where the next state is strongly dependent on the current state. The
attention mechanism employed by transformers may reduce performance in this context, as it does
not inherently account for the temporal evolution of states.
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E.6 ABLATION STUDIES ON DISTRIBUTIONAL PRIOR THROUGH DATA AUGMENTATION

Some existing works argue that considering the invariance property of the distribution may sacrifice
the empirical performance(Yan et al., 2023). We perform further ablation studies to examine the sig-
nificance of the distributional priors. Specifically, we evaluate two scenarios: 1) with permutational
data augmentation, and 2) without permutational augmentation. To perform the permutational data
augmentation, we randomly permute particles along with other properties such as their edge con-
nectivity. The results are presented in Tab. 11 and 12 below.

Method Traj error Velocity error Energy error
w/o aug w/ aug w/o aug w/ aug w/o aug w/ aug

momentum conservation 2.1953 2.1409 2.2974 2.2529 3.4364 4.1116
reducible energy conservation 1.8170 1.6072 1.9239 0.7307 3.2382 0.5062

Table 11: Ablation study on data augmentation for the equivalence of the model on the three-body
dataset.

Method Dynamic error Momentum error Energy error
w/o aug w/ aug w/o aug w/ aug w/o aug w/ aug

momentum conservation 6.3972 5.0919 0.3564 0.3687 1.5536 0.7448
reducible energy conservation 6.6211 5.1615 7.0716 5.3032 2.4910 1.0548

Table 12: Ablation study on data augmentation for the equivalence of the model on the five-spring
dataset.

We also test the equivalence of the trained models, one trained with data augmentation and the other
without. Results show that, even without the introduction of data augmentation for equivalence, the
model still learns to exhibit the desired equivalence, which aligns with our mathematical analysis.
Furthermore, when equivalence data augmentation is applied, the model achieves a significant re-
duction in equivalence error, decreasing from 1.6e-3 to 3.5e-4. This further supports the correctness
of our analysis, demonstrating that, when using two models with the same capacity, a

(
G,∇−1

)
-

equivariant model should be employed for noise matching.

E.7 SAMPLING IN FEWER STEPS USING DPM-SOLVERS

We conduct experiments of using the DPM-solvers (Lu et al., 2022) to sample in fewer steps. By
reducing the number of diffusion steps required, DPM solvers significantly lower computational
expenses in generating physics dynamics. This efficiency is achieved with minimal degradation
in performance, ensuring that the resulting dynamics remain closely aligned with the underlying
physical principles. We apply the DPM-Solver-3 (Algorithm 2 in Lu et al. (2022)) and the results
can be seen in Fig. 9 and 10.

F PROOFS

F.1 SUFFICIENT CONDITIONS FOR THE INVARIANCE OF MARGINAL DISTRIBUTION

Definition 5 (volume-preserving). A function whose derivative has a determinant equal to 1 is
known as a volume-preserving function.

Definition 6 (isomorphism). An isomorphism is a structure-preserving mapping between two struc-
tures of the same type that can be reversed by an inverse mapping.

Definition 7 (diffeomorphism). A diffeomorphism is an isomorphism of differentiable manifolds. It
is an invertible function that maps one differentiable manifold to another such that both the function
and its inverse are continuously differentiable.

Definition 8 (isometry). Let X and Y be metric spaces with metrics (e.g., distances) dX and dY. A
map f : X → Y is called an isometry if for any a,b ∈ X, dX(a,b) = dY(f(a), f(b)).

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

10 20 30 50 70 100 150 200
total sampling steps

1

2

3

4

5

6

7

dy
na

m
ics

 e
rro

rs

1.13 1.23 1.281.41 1.471.47

3.79

5.89

1.93
2.13 2.17

2.342.40 2.53

4.57

5.19

2.102.23 2.37 2.482.52 2.64

4.82

5.44

2.37
2.562.66 2.732.872.91

4.89

6.82 conservation of energy (reducible)

conservation of momentum (linear)

conservation of energy (general)

w/o priors

Figure 9: Results of sampling through DPM-
Solver-3 on the three-body dataset. The x-
axis denotes the values for M in Algorithm 2
in Lu et al. (2022).
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Figure 10: Results of sampling through
DPM-Solver-3 on the five-spring dataset.
The x-axis denotes the values for M in Al-
gorithm 2 in Lu et al. (2022).

Definition 9 (homothety). If for all G ∈ G and for all scalar 0 < a < 1, there exists H ∈ G
such that H(ax) = aG(x). H would be a homothety (a transformation that scales distances
by a constant factor but does not necessarily preserve angles). The group G formed by all such
transformations is called the homothety group.
Theorem 1 (Sufficient conditions for the invariance of q0 to imply the invariance of qt). Let q0 be
a G-invariant distribution. If for all G ∈ G, G is volume-preserving diffeomorphism and isometry,
and for all 0 < a < 1, there exists H ∈ G such that H(ax) = aG(x), then qt is also G-invariant.

Proof. For VE diffusion (defined in Sec. 3.4 in Song et al. (2020)), qt (xt | x0) = N
(
xt | x0, σ

2
t I
)
.

For any G-invariant distribution q0 and G ∈ G, we have

qt(G(xt)) =

∫
qt(G(xt) | x0)q0(x0)dx0 probability chain rule

(36a)

=

∫
qt(G(xt) | G(x0))q0(G(x0))dG(x0) change of variables

(36b)

=

∫
N
(
G(xt) | G(x0), σ

2
t I
)
q0(x0)dx0 volume-preserving diffeomorphism

(36c)

=

∫
N
(
xt | x0, σ

2
t I
)
q0(x0)dx0 isotropic Gaussian N and isometry G

(36d)

=

∫
qt(xt | x0)q0(xt)dx0 (36e)

= qt(xt) (36f)
Hence, the marginal distribution qt at any time t is an G-invariant distribution.

For VP diffusion (defined in Sec. 3.4 in Song et al. (2020)), assume αt > 0 at any time
t. qt (xt | x0) = N (xt | αtx0, (1− αt)I). Define q̂t(xt) = qt(

1
αt
xt). Note that 1

αt
xt =

x0 +
√
1−αt

αt
ϵ, ϵ ∼ N (0, I), is a random variable generated by some VE diffusion process. Hence,

its marginal distribution at any time t is G-invariant. For any G-invariant distribution q0, we have
qt(G(xt)) = q̂t(αtG(xt)) by definition (37a)

= q̂t(H(αtxt)) by sufficient conditions (37b)
= q̂t(αtxt) G-invariance (37c)
= qt(xt) (37d)
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Discussion of related theorems.
Theorem 10 (Proposition 1 in Xu et al. (2022)). Let q (xT ) be an SE(3)-invariant density func-
tion, i.e., q (xT ) = q (G (xT )) for G ∈ SE(3). If Markov transitions q (xt−1 | xt) are SE(3)-
equivariant, i.e., q (xt−1 | xt) = q (G (xt−1) | G (xt)), then we have that the density qθ (x0) =∫
q (xT ) qθ (x0:T−1 | xT ) dx1:T is also SE(3)-invariant.

Xu et al. (2022) explore the integration of invariance during the sampling process while disregarding
it during the forward process. Xu et al. (2022) propose that sampling through equivalent translational
kernel results in invariant distributions. In contrast, our Theorem 1 demonstrates that even when
the transition probabilities of the Markov chain are not SE(n)-equivariant, the resulting composed
distribution can still be SE(n)-invariant. This result offers a stronger conclusion than that presented
by Xu et al. (2022).

Theorem 11 (Proposition 3.6 in Yim et al. (2023), Proposition 3.1 in Mathieu et al. (2024)). Let
G be a Lie group and H a subgroup of G. Let X(0) ∼ q0 for an H invariant distribution q0. If
dX(t) = b

(
t,X(t)

)
dt+ Σ1/2 dB(t) for bounded, H-equivariant coefficients b and Σ satisfying

b ◦ Lh = dLh(b) and ΣdLh(·) = dLh(Σ·), and where B(t) is a Brownian motion associated with
a left-invariant metric. Then the distribution qt of X(t) is H-invariant.

In contrast to our Theorem 1, Theorem 11 in Yim et al. (2023) and Mathieu et al. (2024) imposes
specific conditions on the relationship between the forward diffusion scheduler and the group oper-
ators, whereas our theorem does not. However, Yim et al. (2023) impose fewer constraints on the
properties of the group operations.

F.2 INVARIANT DISTRIBUTION EXAMPLES

F.2.1 SE(n)-INVARIANT DISTRIBUTION

If q0 is an SE(n)-invariant distribution, then qt is also SE(n)-invariant.

Proof. Given any G ∈ SE(n), let G(x) = Rx+ b, where R ∈ SO(n),b ∈ Rn.

• volume-preserving: det
(

dG(x)
dx

)
= det

(
R⊤) = 1.

• diffeomorphism: smoothness: The transformation G(x) = Rx + b is smooth because
it involves linear operations (rotation and translation) that are smooth. Specifically, the
rotation R and the translation b are smooth functions of their parameters; bijectivity: The
function G(x) is bijective. For any x ∈ Rn, the function G(x) is one-to-one and onto.
The inverse function is given by: G−1(y) = R−1 (y − b), where y ∈ Rn. Since R is a
rotation matrix, it is invertible, and its inverse R−1 is also smooth. Therefore, the inverse
function is smooth.

• isometry: for all x,y ∈ Rn, ∥G(x) − G(y)∥2 = ∥Rx + b − (Ry + b) ∥2 =

(x− y)
⊤
R⊤R (x− y) = ∥x− y∥2. Hence, ∥G(x)−G(y)∥ = ∥x− y∥.

• homothety: Given any G ∈ SE(n) and 0 < a < 1, let H(x) = Rx+ ab ∈ SE(n). Then,
H(ax) = R (ax) + ab = a (Rx+ b) = aG(x).

Hence, sufficient conditions are satisfied and qt is also SE(n)-invariant.

Let q be an SE(n)-invariant distribution. Given a set of m points C ∈ Rn×m, we write it in the vector
form x := vec(C) ∈ Rmn. For any G(C) = RC + b,R ∈ SO(n), let R̂ ∈ Rmn×mn be a block
matrix with R on its diagonal block and b̂ = [b⊤ · · · ,b⊤]⊤ ∈ Rmn. We have Ĝ(x) = R̂x + b̂.
Then, (∇xĜ(x))−1 = (R̂⊤)−1 = R̂. Hence, ∇Ĝ(x) log q(Ĝ(x)) = R̂∇x log q(x), which imples
∇G(C) log q(G(C)) = R∇C log q(C). Thus, the score function of an SE(n)-invariant distribution is
SO(n)-equivariant and translational-invariant.
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F.2.2 PERMUTATION-INVARIANT DISTRIBUTION

We first list some useful properties of the Kronecker product:

• vec(AXB) =
(
BT ⊗A

)
vec(X).

• det (A⊗B) = det (A)
m
det (B)

n, where A ∈ Rm×m,B ∈ Rn×n.

• (A⊗B)T = AT ⊗BT .

• (A⊗B)(C⊗D) = (AC)⊗ (BD).

• For square nonsingular matrices A and B: (A⊗B)−1 = A−1 ⊗B−1.

If q0 is a permutation-invariant, then qt is also permutation-invariant.

Proof. Given any G ∈ G with G(X) = PXP⊤, we consider its vector form of vec (G(X)) =
vec
(
PXP⊤) = (P⊗P) vec (X).

• volume-preserving: det
(

d vec(G(X))
d vec(X)

)
= det

(
(P⊗P)

⊤
)

= det (P⊗P) =

det (P)
n
det (P)

n
= det (P)

2n
= (±1)

2n
= 1.

• diffeomorphism: smoothness: G is smooth because it involves matrix multiplication,
which is a smooth operation in X. Since P and P⊤ are constant matrices (not func-
tions of X), G inherits the smoothness from the matrix operations; bijectivity: Suppose
Y = G(X) = PXP⊤. To recover X from Y, we compute: X = P⊤YP, which is a
valid operation because P is invertible.

• isometry: note that (P⊗P)
⊤
(P⊗P) =

(
P⊤ ⊗P⊤) (P⊗P) =

(
P⊤P

)
⊗
(
P⊤P

)
=

I⊗ I = I. For all X,Y ∈ Rn×n,

∥ vec (G(X))− vec (G(Y)) ∥2 (38a)

= ∥ (P⊗P) vec (X)− (P⊗P) vec (Y) ∥2 (38b)

= (vec (X)− vec (Y))
⊤
(P⊗P)

⊤
(P⊗P) (vec (X)− vec (Y)) (38c)

= (vec (X)− vec (Y))
⊤
I (vec (X)− vec (Y)) (38d)

= ∥ vec (X)− vec (Y) ∥2 (38e)

Hence, ∥G(X)−G(Y)∥F = ∥X−Y∥F .

• homothety: Given any G ∈ G and 0 < a < 1, let H = G ∈ G. Then, H(aX) =
P (aX)P⊤ = aPXP⊤ = aG(X).

Hence, sufficient conditions are satisfied and qt is also permutation-invariant.

Let q be a permutation-invariant distribution of feature X ∈ Rn×n such as affinity/connectivity
matrices representing relationships or connections between pairs of entities (e.g., nodes in a
graph) or Gram matrices in kernel methods representing similarities between a set of vec-
tors. Let q(PXP⊤) = q(X) for any permutational matrix P. Consider the vectoriza-
tion of X. Let q̂(vec(X)) := q(X). Note that vec(PXP⊤) = (P ⊗ P) vec(X).
Hence, ∇vec(PXP⊤) log q̂(vec(PXP⊤)) = (P ⊗ P)−T∇vec(X) log q̂(vec(X)) = (P ⊗
P)∇vec(X) log q̂(vec(X)). This implies that ∇PXP⊤ log q(PXP⊤) = P∇X log q(X)P⊤. Thus,
the score function of a permutation-invariant distribution is permutation-equivariant.

F.3 ECM EQUIVALENCE

Theorem 2 (Equivalence class manifold representation). If we have a (G,∇−1)-equivariant model
such that sθ(xt, t) = ∇x log qECM(xt) almost surely on xt ∈ ECM, then we have sθ(xt, t) =
∇x log qt(xt) almost surely.
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Proof. Suppose we have a (G,∇−1)-equivariant model sθ and sθ(φ(x)) = ∇φ(x) log qECM(φ(x))
almost surely. Then, we have

sθ(x) =
∂φ(x)

∂x
sθ(φ(x)) by equivariance of the model (39a)

=
∂φ(x)

∂x
∇φ(x) log qECM(φ(x)) (39b)

= ∇x log qt(x) by Equation 5 (39c)

F.4 MULTILINEAR JENSEN’S GAP

The following lemma is directly from the results of the optimal values of noise matching, which will
be used in proving Theorem. 3.
Lemma 12. The gradient of Et,x0,ϵ[w(t)∥ϵθ (xt, t)−ϵ∥2] w.r.t. θ at ϵθ (xt, t) = −σt∇x log qt (xt)
equals 0.

Theorem 3 (Multilinear Jensen’s gap). The optimizer for Et,x0,ϵ[w(t)∥uθ1 (xt, t) − u0∥2] is the
reweighted optimizer of Et,x0,ϵ[w(t)∥W0uθ2 (xt, t) + b0∥2] with reweighted variable W⊤

0 W0.

Proof. Without loss of generality, suppose that the optimizer of uθ2
is given by uθ∗

1
+ u∆θ. The

loss optimizer of data matching is given by uθ∗
1
(xt, t) =

1
αt

(
ut + σ2

t∇u log qt (xt)
)
. Substituting

into the PDE loss term, we have

Et,x0,ϵ[w(t)∥W0uθ2
(xt, t) + b0∥2] (40a)

= Et,x0,ϵ[w(t)∥
1

αt
W0

(
ut + σ2

t∇u log qt (xt)
)
+W0u∆θ + b0∥2] (40b)

= Et,x0,ϵ[w(t)∥
1

αt
W0

(
αtu0 + σtϵ+ σ2

t∇u log qt (xt)
)
+W0u∆θ + b0∥2] (40c)

= Et,x0,ϵ[w(t)∥W0u0 + b0 +
σt

αt
W0ϵ+

σ2
t

αt
W0∇u log qt (xt) +W0u∆θ∥2] (40d)

= Et,x0,ϵ[w(t)∥
σt

αt
W0ϵ+

σ2
t

αt
W0∇u log qt (xt) +W0u∆θ∥2] (40e)

= Et,x0,ϵ[w(t)
σ2
t

α2
t

∥W0

(
ϵ+ σt∇u log qt (xt) +

αt

σt
u∆θ

)
∥2] (40f)

Dropping the reweighting term σ2
t /α

2
t does not change the optimal solution. When u∆θ ≡ 0,

observing the above objective and the noise matching objective, the above objective is the reweighted
objective of noise matching by replacing I with W⊤

0 W0.

G VISUALIZATION OF GENERATED SAMPLES

In this study, we refrain from applying super-resolution and denoising procedures, which are essen-
tial in practical applications for generating high-quality, clear, and detailed images from diffusion
models. Consequently, the generated samples contain noise. For the three-body dataset, since we
only generate 10 frames, we apply the cubic spline to visualize a smooth trajectory and this is not
applied when evaluating the quality of samples.
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Figure 11: Examples of Darcy flow samples generated by models trained with/without PDE con-
straints.
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generated ground truth generated ground truth

generated ground truth generated ground truth

Figure 12: Visualizations of the conditional generative images alongside the corresponding ground
truth samples. These comparisons highlight the model’s ability to capture key features and the
evolution dynamics of the PDE task, despite the presence of some noise in the generated samples.
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Figure 13: Examples of Burger samples generated by models trained with/without PDE constraints.
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Figure 14: Examples of shallow water samples generated by models trained with PDE constraints.
Each sample contains 50 frames and we uniformly visualize 10 of them.
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Figure 15: The figure illustrates examples of three-body samples produced by models trained with
and without conservation constraints. The left panel represents the baseline model, the middle panel
corresponds to our model, and the right panel depicts the energy as a function of time.
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Figure 16: The figure illustrates examples of five-spring samples produced by models trained with
and without conservation constraints. The left panel represents the baseline model, the middle panel
corresponds to our model, and the right panel depicts the momentum as a function of time.
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