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Abstract

Predicting material properties based on structural information is a critical task in
materials science, where density functional theory (DFT)-based simulations remain
the gold standard. However, DFT computations are notoriously expensive, moti-
vating the development of deep learning methods such as graph neural networks
(GNNs) to accelerate and improve property predictions. Although GNNs have
demonstrated promising results, limitations still remain in capturing long-range
global interactions and lacking clear evidence of scalability. In this paper, we
propose a transformer-based unified framework for material property prediction.
The framework introduces a novel tokenizer coupled with a 3D positional encoding
scheme to effectively capture spatial information. Both BERT-style and GPT-style
pretraining strategies are utilized to learn robust and generalized representations
of material structures. The model therefore achieves performance on par with or
better than multiple specialized downstream models, while maintaining a single,
consistent network architecture. Furthermore, through interpretability analysis of
the learned embeddings, we also discovered that the element embeddings are in
high accordance with the well known principles in chemistry and the embedding
vectors exhibit a meaningful pattern, suggesting their potential to represent the
intrinsic properties of elements. This indicates that our pretrained transformer
model captures and organizes intrinsic chemical and structural knowledge, offering
a new avenue for scalable and interpretable material property prediction.

1 Introduction

Understanding material properties is a fundamental task in materials science, with critical applications
in fields such as semiconductor manufacturing, GPU design, and photolithography, which are closely
tied to the development of advanced technologies in AI and computing. For example, selecting
materials with specific properties such as high electrical conductivity and strong thermal conductivity
is essential in GPU development for optimizing the thermal management and power efficiency of the
device. Such large-scale industrial production demands fast and accurate predicting desired material
properties without time-consuming and costly experiments, where simulations based on Density
Functional Theory (DFT) have emerged as the gold standard, offering a powerful tool for fast and
reliable predictions in materials research and development.

However, DFT simulations are also computationally expensive, demanding significant computational
resources and time. Researchers therefore propose to accelerate and improve material property
predictions by leveraging deep learning techniques, which have been demonstrated effective in
previous works for AI4Science field, such as Alphafold series [1][2][3] in protein structure prediction
and DeepChem[4] in molecular property prediction.
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Figure 1: Example of a perovskite structure with the formula ABX3.

Remarkable contributions have been made by approaches utilizing neural networks to predict material
properties, such as SchNet [5], CGCNN [6], MEGNet [7], and ALIGNN [8], which have achieved
high accuracies in predicting various crystal properties, including formation energy, moduli, and
band gap. Among those architectures, GNNs have long dominated the field, as they are particularly
well-suited for capturing the properties of crystalline materials due to the inherent graph structure of
crystals.

Despite the success of current leading models, GNNs still have some limitations. One primary issue
is the assignment of contributions from different sites and atoms to the predicted properties. For
instance, in perovskites with the formula ABX3, as illustrated in Figure 1 (a), it is challenging to
determine whether the A site predominantly influences the bandgap, the B site affects the energy, or
the X element plays a crucial role. This difficulty arises because global pooling operations tend to
overlook the diversity of nodes within the graph, making it hard to discern the individual contributions
of different atomic sites.

Another significant limitation of existing models is their inadequacy in capturing the global features
of crystal structures. In a graph with N nodes, it may require O(N) layers for information from the
farthest nodes to propagate, particularly in sparsely connected graphs typical of crystal structures.
Consequently, these models are often not deep enough for information to traverse the entire graph
effectively, as depicted in Figure 1. This limitation results in suboptimal performance for predicting
properties related to global features of materials, such as global symmetry, which is intrinsically
linked to properties like piezoelectricity and dielectricity. For example, a material must lack inversion
symmetry to be piezoelectric, and the dielectric constant tends to be higher in materials with lower
symmetry. Accurate prediction of piezoelectric and dielectric constants necessitates an assessment
of the material’s global symmetry, a task current models struggle with due to their limited global
perspective. ALIGNN [8], for instance, excels in predicting formation and total energy but performs
less effectively in predicting piezoelectric and dielectric constants. This discrepancy arises because
energy prediction can be approximated by summing the energies of individual atoms, requiring less
global information [9].

Besides, to the best of our knowledge, there is no clear evidence of the scalability of GNN-based
models, which is crucial for handling large-scale datasets and learning robust and meaningful repre-
sentations. Transformer-based architectures have demonstrated remarkable scalability, generalization
capabilities and robust ability to capture global dependencies in large language models, such as GPT-3
[10] and GLM [11], for which similar structures have been utilized predicting crystal properties in
previous works [12][13][14]. Previous transformer-based models have shown promising results in
downstream tasks with graph as input. However, there is still a lack of well-pretrained transformer
models owing to the graph style input, which is challenging to reconstruct back to the original crystal
structure for auto-regressive pretraining.

In this paper, we propose a novel tokenizer and 3D positional encoding scheme to effectively pretrain
a transformer model for material, thereby gaining a robust and generalized representation of material
structures. We tokenize the crystal structures as 3D grids, simply splitting the codebook into vacant
and occupied tokens, and use a 3D positional encoding scheme to encode the crystal structure,
which make it possible to reconstruct the crystal structure from the output tokens, therefore enabling
auto-regressive pretraining. Both BERT-style and GPT-style pretraining strategies are utilized to
learn robust and generalized representations of material structures, where we want to compare
the performance of the two strategies in both pretraining performance and downstream tasks. We
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conduct interpretability analyses of the learned pretraining embeddings to evaluate the pretraining
performance and investigate whether the model captures intrinsic chemical and structural knowledge.
The promising results we find in the pretrained codebook show that the learned embeddings are in
high accordance with the well known principles in chemistry and the embedding vectors exhibit a
meaningful pattern, suggesting their potential to represent the intrinsic properties of elements. Finally,
we evaluate the performance of the pretrained transformer model on multiple downstream tasks
within one consistent network architecture. The comprehensive evaluation demonstrates that our
model achieves performance on par with or better than multiple specialized downstream models,
suggesting the potential of our pretrained transformer model in scalable and interpretable material
property prediction.

Our contributions can be summarized as follows:

• We propose a novel tokenizer and 3D positional encoding scheme for material auto-regressive
pretraining, enabling the model to learn robust and generalized representations of material
structures.

• Both BERT-style and GPT-style pretraining strategies are utilized to investigate the perfor-
mance of the two strategies in both pretraining performance and downstream tasks.

• Interpretability analyses are conducted, whose results on the learned embeddings denote
exciting intrinsic chemical and structural knowledge.

• We further evaluate the performance of the pretrained transformer model on multiple
downstream tasks within one consistent network architecture, demonstrating that our model
achieves performance on par with or better than multiple specialized downstream models.

2 Methods

2.1 Data Acquisition

We mainly use data from 3 sources: Alexandria, GNoME, and Materials Project (MP). Alexandria
is a comprehensive resource in the field of material science, particularly focused on providing a
wealth of data to support the development and validation of machine learning models. It contains 4.5
million DFT calculations for periodic compounds, including three-dimensional, two-dimensional,
and one-dimensional materials.

The Materials Project is a comprehensive initiative aimed at transforming materials discovery by
leveraging the power of supercomputing and advanced computational methods. It contains a wealth of
computed data, including the structures and properties of over 150 thousands of inorganic compounds.
Google’s GNoME (Graph Networks for Materials Exploration) project is a groundbreaking initiative
in the field of materials science, leveraging the power of artificial intelligence and deep learning to
discover novel material structures. It released 380 thousand structures of newly discovered stable
materials, which is a significant leap forward in materials science.

We gathered all the material structures (a total of 5 million) from the 3 data sources. These material
structures are tokenized and used to pre-train MatBERT and MatGLM. In terms of material properties,
we acquired 11 different types of properties from the MP database. These properties could be
categorized into 3 classes: energy (energy, formation energy, energy above the hull, whether is stable),
mechanics (bulk modulus, shear modulus, Poisson ratio), and band structures (band gap, fermi energy,
whether is gap direct, whether is metallic). 8 of them are regression tasks and 3 are classification
tasks. The number of samples vary from 10 thousand to 150 thousand. These property values are
used to finetune our model.

2.2 Proposed Tokenizer

The structure of molecules could be easily converted to text by means such as SMILES expressions
or IUPAC Nomenclature. However, this is not the case when it comes to crystals, for they possess
periodicity. A lattice is often used to represent material structure, with it being the smallest repetitive
unit in the huge atomic system, yet people still struggle to create text abstractions for these 3D blocks.

In our work, we tokenize a lattice into grid tokens through a rather naïve yet effective way, as shown
in Figure 2.
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Figure 2: The proposed tokenizer for material lattice.

We slice the material lattice into small voxels with lengths of 0.5 or 1 angstrom. The voxels are then
flattened into a sequence. We use element tokens for voxels that contain atoms and pad tokens for
empty ones. Sequential empty voxels are only represented by one pad token that denotes their number
(1 empty voxel will be [pad_1], 2 empty voxels will be [pad_2]. . . ). We also add special tokens at
the end of each column ([;]) and layer ([layer]) to help identify sequence patterns. In this way, we
tokenize a lattice structure into grid tokens that could be treated in a similar way as word tokens.

Symmetry is fundamental in deciding a material’s property and should be given high importance.
A material’s symmetry could be illustrated by its space group (230 types in total) and point group
(32 types in total). We add symmetry tokens at the front of each sequence. Meanwhile, we also add
composition tokens to clarify the elements that make up the material. These tokens are useful during
pre-training since two materials could have almost the same structure except that certain atoms are
replaced, for example, CaTiO3 and BaTiO3. Additional information about its composition would be
needed for the model to recover its structure during pretraining.

2.3 BERT-style Pretraining

The BERT (Bidirectional Encoder Representations from Transformers) model was first proposed by
Google in 2018. It is designed to pre-train deep bidirectional representations by joint conditioning on
both left and right contexts in all layers. Two types of strategies, namely Masked Language Modeling
(MLM) and Next Sentence Prediction (NSP) are used in the pretraining stage. The model achieved
state-of-the-art scores on various NLP benchmarks. Our model, MatBERT, inherits the structure of
the standard BERT model. The input to MatBERT consists of 3 parts: symmetry tokens, composition
tokens, and grid tokens. A classifier token [cls] is added in the front for output and different parts are
separated by separate tokens [sep].

Inspired by the idea of BERT, we proposed two methods for pretraining MatBERT: Masked Structure
Modeling (MSM) and Symmetry Prediction (SP), as shown in Figure 3.

During MSM, 15% of the grid tokens within the sequence are masked, leading to an incomplete
material structure. By filling the deprecated structure based on information regarding its symmetry,
composition as well as remaining fragments, the model could capture the knowledge of material
structure. Among the masked tokens, 80% of them are replaced by mask tokens [mask], 10% of them
are replaced by random element tokens ([H], [He], . . . ]), and the rest 10% is left unchanged.

Symmetry plays a pivotal role in deciding the properties and performances of materials, and a
comprehensive understanding of symmetry is crucial for models. Models trained through MSM
may later be subject to a second stage pretraining of SP. Among all the inputs, 50% have symmetry
tokens replaced by generated “fake” tokens. The model predicts whether the relationship between
structure and labeled symmetry is correct. It should be noted that the two types of symmetry tokens,
point groups, and space groups, are not independent of each other. Every space group is derived
from a certain point group by incorporating it into a legal Bravais lattice. Many space group point
group combinations are forbidden. We fully address this issue while constructing the “fake” symmety
tokens. Ninety percent of the generated tokens are legal, while the rest 10% of space and point groups
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Figure 3: Overview structure of MatBERT.

are chosen independently from random. This limits the number of out-of-distribution samples and
guarantees the difficulty of the SP task.

2.4 GPT-style Pretraining

In addition to BERT-style pretraining, we conduct GPT-style pretraining to further enhance the
model’s ability to predict material properties. Our GPT-style pretraining leverages similar Trans-
former architecture inspired by the GLM model, incorporating several key components to optimize
performance and scalability.

We employ the same Transformer architecture as the GLM model, which includes RMSNorm,
SwiGLU activation functions within the multilayer perceptron (MLP) modules, and the overall
Transformer design. This architecture is depicted in Figure 4. The use of RMSNorm contributes to
more stable training dynamics, while SwiGLU activations enhance the model’s expressiveness and
capacity to capture complex relationships within the data.

The model is implemented using the PyTorch Lightning framework and Distributed Data Parallel
(DDP) for data parallelism. Bfloat16 data type is utilized to provide a good balance between
precision and performance. For the attention mechanism, we implement Flash Attention 2 as the
attention block to accelerate training and improve the cost of memory, enabling longer sequences as
input.

In GPT-style pretraining, it is crucial to ensure that the model only attends to previous tokens when
predicting the next token. To achieve this, we apply a lower triangular attention mask, which restricts
the attention mechanism to consider only the tokens to the left of the current token, as illustrated in
Equation 1.

Attention Maski,j =
{
1 if j ≤ i,

0 otherwise.
(1)

Furthermore, to facilitate next-token prediction, we perform a right shift operation on the output
tokens. Specifically, the target sequence is shifted one position to the right relative to the input
sequence, allowing the model to compute the loss based on predicting the subsequent token in the
sequence.
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Figure 4: Transformer architecture for GPT-style pretraining.

This approach is formalized as follows:

Input Sequence: x1, x2, . . . , xN−1, (2)
Target Sequence: x2, x3, . . . , xN . (3)

To align the batch lengths during training, we apply left padding to the input sequences. This strategy
ensures that all sequences within a batch have the same length, which is necessary for efficient parallel
processing and batch computation. Left padding is particularly suitable in the GPT-style setup, where
the prediction of the next token relies on the preceding tokens, thereby maintaining the integrity of
the sequential information.

2.5 Finetuning on Downstream Tasks

Nine material properties are selected for downstream tasks, including formation energy, formation
energy per atom, energy above the hull, metallic behavior, stability, atomic energy, fermi level, direct
gap and band gap. To achieve that, nine extra special tokens are added to the right of the input
sequence, each representing one property, so that the property tokens can attend to the whole input
sequence. Simple MLP layers are added to the output of the property tokens to predict the property
values, where the classification tasks are implemented with BCE loss and regression tasks with MSE
loss.
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3 Experiments and Results

3.1 Pretraining with BERT-style

We pre-trained our MatBERT models by either MSM solely or two-stage MSM + SP. We set the size
of our model to be the same as standard bert-base and bert-large (Our vocabulary size is smaller than
BERT’s 30522, which makes total parameters smaller). In total, we pre-trained 4 models, as shown in
Table 1. Training is conducted on 8 H100 GPUs. Models pre-trained through MSM generally could
successfully recover 75%-80% of masked tokens.

Table 1: Config of Pretrained MatBERT models

Name Parameters Pre-train
MatBERT-base-MSM 0.3B MSM only
MatBERT-large-MSM 0.3B MSM only

MatBERT-base-MSM+SP 0.1B MSM + SP
MatBERT-large-MSM+SP 0.3B MSM + SP

We optimized the pretraining parameters, mainly focusing on the influence of weight decay, gradient
accumulation, and batch size. We found that disabling weight decay degrades model performance. It
is most optimal to set weight decay to 0 for bias and normalization layers while using weight decay
for other layers, as shown in Table 2. A non-zero weight decay for bias and normalization layers will
result in untrained parameters, as discovered through experiments. In the experiments, the batch size
is controlled at 1024 and gradient accumulation steps at 1.

Table 2: Influence of weight decay

Weight decay Eval loss Eval accuracy
0 0.832 0.763

0.01 0.740 0.798

Gradient accumulation simulates larger batch size by delaying parameter updates. We generally find
out that gradient accumulation could improve pretraining results when set to an adequate value, as
shown in Table 3. However, setting it too large makes the training significantly slower. It also delays
model convergence and worsens training results. In the experiments, weight decay is controlled at
0.01 and batch size at 1024.

Table 3: Influence of gradient accumulation

Gradient accumulation steps Eval loss Eval accuracy
1 0.740 0.798
4 0.552 0.817

3.2 Pretraining with GPT-style

In the GPT-style pretraining, we achieved a perplexity of 1.33 and accuracy of 0.949 on the validation
set. While inferencing on the validation set, the model makes mistakes almost exclusively on the
element tokens, which means the spatial structure is well preserved.

With pretrained models, we can successfully reconstruct the crystal structure with 80% of the original
tokens. The visualization results are shown in Figure 5.

There are two kinds of equivalent structures, transformation equivalence and simple equivalence. In
5, the first part shows the simple equivalence, where the model successfully reconstructs the structure
just like the ground truth. The second part shows the transformation equivalence, where the model
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Figure 5: Reconstruction of crystal structure in validation set.

reconstructs the structure that is transformation equivalent to the ground truth. All results have been
demonstrated equivalent by pymatgen matcher, and more results are shown in the appendix.

More than 100 tokens are needed to accurately reconstruct each of the shown crystal structures, which
means that the model knows the structure with the very first part of the structure. The promising
results in pretraining show that the model captures the spatial structure of the crystal effectively,
which is foundational for learning a robust and generalized representation of material structures.

3.3 Interpretability Analysis on pretrained embeddings

We computed the inner product between the 118 element tokens and plotted a heatmap based on
product values. Generally, we found that embeddings of elements from the same group, such as Li
Na, Be Ca, and B Al, have high similarity with each other.
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Figure 6: Heatmap of inner product between element embeddings.

We circled out these areas with white boxes. Elements within the same group tend to have similar
chemical properties, to which our results show high accordance, as shown in Figure 6.

Meanwhile, there is an easily spotted separate line, which is marked out by white dashed lines. The
line separates the elements into 2 classes and the map into 4 sections. Embeddings in the same class
have larger similarities whereas embeddings from different classes show less in common (the color
of the top-left and bottom-right sections are significantly brighter than the top-right and bottom-left
sections). The line is located at element Po (atom index is 84), which is the first radioactive element
in the periodic table. Almost all the elements after Po are radioactive. The map states the difference
between radioactive and non-radioactive elements, reflecting the model’s knowledge in this scope.

The green box points out the transition metal elements, and we can see from the dense yellow points
that these elements are fairly similar to one another. This agrees with the fact that transitional metal
possesses atomic properties alike. Some interesting facts are also worthy of discussion. For example,
the pink boxes show that halogen and rare gas elements have similar embeddings. These two types
of elements have very different properties, and certainly could not be claimed alike. A possible
explanation might be that rare gas compounds are generated by substituting VII atoms. Another
matter worth discussing is the lack of similarity within the halogen family. This might be because
they tend to occupy different kinds of sites, considering that their radius varies greatly.

Furthermore, we conducted t-SNE analysis on the embeddings of the 118 elements, which is a
non-linear dimensionality reduction technique that is particularly well-suited for embedding high-
dimensional data into two or three dimensions for visualization. We implement t-SNE on element
embeddings and plot the result below, as shown in Figure 7, where each point represents an element.

Figure 7: t-SNE visualization of element embeddings.
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In the plot, elements tend to group and form small blocks. The red block includes alkalis like Li, Na,
K. . . , while the yellow block is dominated by alkaline-earth metals. The green block in the middle
marks a variety of transition metal elements.

3.4 Finetuning on Downstream Tasks

Further experiments are still ongoing. We have still tried to finetune our pretrained models on
downstream tasks. Future results will be shown like the following figure (just a sample).

Figure 8: Sample results of finetuning on downstream tasks (the data is synthetic).

4 Conclusion

In this work, we present a novel approach for material property prediction by leveraging transformer
architectures through a specially designed tokenizer and 3D positional encoding scheme. Our method
facilitates effective auto-regressive pretraining, enabling the model to learn robust and generalized
representations of crystal structures. By implementing both BERT-style and GPT-style pretraining
strategies, we thoroughly investigate their respective performances in pretraining and downstream
tasks, providing insights into their suitability for materials science applications.

Our interpretability analyses reveal that the pretrained embeddings encapsulate intrinsic chemical and
structural knowledge, aligning closely with established chemical principles and exhibiting meaningful
patterns that reflect the inherent properties of elements. This demonstrates the model’s capability to
capture and represent complex material characteristics effectively. Furthermore, our comprehensive
evaluation across multiple downstream tasks showcases that the pretrained transformer model not only
matches but often surpasses the performance of specialized GNN-based models. This highlights the
potential of transformer-based approaches in achieving scalable and interpretable material property
predictions.

Overall, our findings underscore the viability of transformer models as a powerful tool in materials
science, offering significant advantages in scalability, generalization, and the ability to capture global
structural dependencies. Future work can explore the integration of additional domain-specific
knowledge into the pretraining process and extend the model to a wider variety of material types and
properties. By advancing the capabilities of machine learning models in this domain, we pave the
way for accelerated materials discovery and optimization, ultimately contributing to the development
of advanced technologies in AI and computing.
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Limitation: there are still limitations in our work. Our tokenizing scheme is less efficient in terms of
handling tiny variations of atom positions within the structure. As long as the displacement is smaller
than the size of the voxel, the input tokens will remain unchanged. Yet such subtle alterations of
structure are important in material science and might lead to significant change of property values.
Although we can increase the resolution of the voxel to capture more details, this will also lead
to a larger vocabulary size and more computational cost, further diluting the training of element
tokens. Limited by the computational resources, it is not feasible to minimize this resolution infinitely,
since this will lead to very long sequences with extremely sparse information. To resolve this, more
advanced tokenizing techniques should be developed or treat material structures with a continuous
philosophy, which is the mainstream in material field itself nowadays.
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Appendix

Figure 9: More results of crystal structure reconstruction in validation set.
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Figure 10: More results of crystal structure reconstruction in validation set.
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