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ABSTRACT

Clarifying confusion is the most critical issue for improving classification perfor-
mance. The current mainstream research mainly focuses on solving the confusion
in a specific case, such as data insufficiency and class imbalance. In this paper, we
propose a novel, simple and intuitive Aggregation Separation Loss (ASLoss), as
an adjunct for classification loss to clarify the confusion in some common cases.
The ASLoss aggregates the representations of the same class samples as near as
possible and separates the representations of different classes as far as possible.
We use two image classification tasks with three simultaneous confounding char-
acteristics i.e. data insufficiency, class imbalance, and unclear class evidence to
demonstrate ASLoss. Representation visualization, confusion comparison and de-
tailed comparison experiments are conducted. The results show that representa-
tions in deep spaces extracted by ASLoss are sufficiently clear and distinguishable,
the confusion among different classes is significantly clarified and the optimal net-
work using ASLoss reaches the state-of-the-art level.

1 INTRODUCTION
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Aggregated Aggregated

Figure 1: Schematic of Aggregation Separation Loss.

Clarifying confusion is the most crit-
ical issue for improving classifica-
tion performance. In fact, all pre-
diction mistakes in classification are
confusion, i.e., the model incorrectly
considers samples of class “A” as
class “B”. Confusion occurs with
almost all classification models but
tends to be ignored in excellent-
performing models because the main-
stream datasets are artificially con-
structed to be nearly perfect Tor-
ralba et al. (2008); Russakovsky et al.
(2015); Lin et al. (2014). However,
the sample distribution in practical
problems is often not as perfect as artificial datasets. First, collecting enough samples is difficult in
some situations, such as the medical field due to privacy invasion Lin et al. (2021). High-performing
models are extremely hard to obtain with insufficient data. Second, samples of different categories
generally do not follow a uniform distribution but class imbalance Liu et al. (2019); Buda et al.
(2018). The vast majority of samples belong to a small number of categories. Samples from unim-
pressive categories will be confused by the model into fat categories Cui et al. (2019). In addition,
the classification boundaries of some problems are not clear Lin et al. (2022). Models will always
confuse samples into similar classes. More seriously, many real-world problems simultaneously
have more than one case confusing the models.

Many methods have been proposed to clarify confusion, but almost focus on insufficient data or
class imbalance. For insufficient data, few-shot learning is a mainstream, including meta-learning
Antoniou et al. (2019); Jamal et al. (2019); Lifchitz et al. (2019); Metz et al. (2019); Rajeswaran
et al. (2019) and metric-based Zhang et al. (2020); Li et al. (2019); Sung et al. (2018) methods.

1



Under review as a conference paper at ICLR 2023

These methods have made great progress but the lack of data in few-shot learning is too extreme
while its true generalization performance is still unclear. For class imbalance, resampling Chawla
et al. (2002); Wang et al. (2019c); Zhou et al. (2020) and reweighting Cao et al. (2019); Cui et al.
(2019) are two mainstreams. All these methods balance input sample frequency or loss of different
classes but ignore the characteristic difference among categories.

In view of previous research, we believe that focusing on the class-level representation of samples
to mine the commonalities of the same class and the gaps among different classes can clarify
the confusion in these common fusion cases. As long as deep learning models can construct suffi-
ciently clear representations during extracting features, the confusion under common conditions
will be clarified. We propose an assistant to optimize the representations into distinguishable in
the geometric space of deep features to efficiently clarify the confusion.
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Figure 2: Schematic of Using Aggregation Separation Loss.

In this paper, we propose a novel,
simple and intuitive method called
Aggregation Separation Loss
(ASLoss), as an adjunct for classifi-
cation loss. This loss can be adopted
on any linear feature extraction layers
as shown in Figure 2, constructing
distinguishable representations in
geometric spaces of deep features
to clarify the confusion in common
cases as shown in 1. It aggregates
the representations of the same
class samples as near as possible
and separates the representations
of different classes as far as possi-
ble to mine the commonalities of
the same class and the gaps among different classes. To interpret its effect, the distinguishable
representations can be visualized by condensing the representation layers into two dimensions.

We validate our method using two image classification tasks that simultaneously have three easily
confusion-caused common conditions: data insufficiency, class imbalance, and unclear evidence.
The experimental results show that the representations in deep geometric spaces are sufficiently
clearer, the performances of various deep networks are efficiently improved and the optimal network
achieves state-of-the-art. The code for this work is available on GitHub1.

2 RELATED WORK

Contrastive learning is a series of unsupervised methods that use an agent task to minimize the
distances among varieties of the same sample and maximize the distances among different sample
varieties Chen et al. (2020); Gao et al. (2021); Wang et al. (2021b); Bachman et al. (2019). These ex-
cellent methods using unsupervised pretrain improve downstream classification by finetuning. The
key is using the agent task which transforms a sample into many varieties. Our method is plug-and-
play without pretraining and transforming. And ASloss directly pulls and pushes the representations
of samples but not varieties.

Metric learning also optimizes sample distances Wang et al. (2018b) Wang et al. (2018a; 2017a);
Liu et al. (2017); Zhou et al. (2019); Wang et al. (2019a); Xu et al. (2019); Zheng et al. (2019); Wang
et al. (2019b). Some of them propose better activation methods and others use linear transformation.
Our method is similar to the linear transformation series but uses linear transformation on multiple
layers, leading to more separable representations. Furthermore, our method does not set the class
interval but sets a scope to make the distance between classes as large as possible, which is more
straightforward.

Triple loss sets a triple of (anchor, positive, negative) to pull the same class samples and push
other class samples Yuan et al. (2020); Schroff et al. (2015). ASLoss is more flexible, calculating all

1The link will be open if our work can be accepted.
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samples directly. Similarly, ASLoss does not set the interval but sets the optimization scope so that
classes are as far apart and evenly distributed as possible.

3 DEFINITION OF CONFUSION

For any sample x ∈ X where X is a category, if a person or a model considers x to belong to
another category Y, this misperception is confusion. Confusion often occurs when the samples are
very similar, the perceiver is inexperienced, and the class boundaries are not clear. For an example
of similar samples, people often misidentify twins. For an example of inexperience, children who
have never seen a tiger will consider a young tiger as a cat. The insufficient data and imbalanced
class in machine learning belong to this case. For an example of the unclear boundary, it is difficult
to determine whether a person is middle-aged or young based on only appearance.

4 AGGREGATION SEPARATION LOSS

The ASLoss is a simple and intuitive method including three parts: inner aggregation, outer separa-
tion and boundary constraint as shown in Figure 2.

4.1 INNER AGGREGATION

To mine the commonalities of the same class, the inner aggregation narrowing deep representations
of the same class as near as possible is computed as:

disinner =
1

Nci=cj

N∑
i=1

N∑
j=i

I(ci = cj)D(ri, rj) (1)

Nci=cj =

N∑
i=1

N∑
j=i

I(ci = cj) (2)

where N is the total number of samples, ci denotes the class of sample i, Nci=cj is the total number
of ci = cj and ri refers to the representation in a deep geometric space output from a certain linear
layer of sample i. I(ci = cj) is an indicator function whose value is 1 when ci = cj , otherwise
the value is 0. D(ri, rj) is a distance metric of ri and rj such as Euclidean distance etc. disinner
represents the average intra-class distance of all samples. Minimizing disinner will aggregate the
representations of the same class together during optimizing networks.

4.2 OUTER SEPARATION

To mine the gaps among different classes, the outer separation pushing the representations of differ-
ent classes away as far as possible is calculated as:

disouter =
1

Nci 6=cj

N∑
i=1

N∑
j=i

I(ci 6= cj)D(ri, rj) (3)

Nci 6=cj =

N∑
i=1

N∑
j=i

I(ci 6= cj) (4)

where N is the total number of samples, ci denotes the class of sample i, Nci 6=cj is the total number
of ci 6= cj and ri refers to the representation in a deep geometric space output from a certain linear
layer of sample i. I(ci 6= cj) is an indicator function whose value is 1 when ci 6= cj , otherwise the
value is 0. D(ri, rj) is a distance metric of ri and rj . disouter represents the average inter-class
distance of all samples. Maximizing disouter will separate the representations of different classes
farther during optimizing networks.
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Figure 3: The total, trainset and testset sample numbers for each category of the ACNE04 and CelebA subset.
(NO: mouth not open, NS: not smile, O: mouth open and S: smile)

4.3 BOUNDARY CONSTRAINT

Because the farthest distance in a space can be infinity, The optimization of equation 3 will not
converge. So we use the boundary constraint to limit the representation locations to ensure training
convergence as:

disboundary =
1

N

N∑
i=1

||D(ri,0)− constraint||2 (5)

where N is the total number of samples and ri refers to the representation in a deep geometric space
output from a certain linear layer of sample i. D(ri,0) is a distance metric of ri and origin of the
space. || · || is L2 norm. constraint is a parameter used to limit the distance of representations to
the origin. disboundary represents the average Euclidean distance of all samples to the boundary.
When the number of categories is large, disboundary can be set larger, so that different categories
can find suitable spatial positions. However, if disboundary is too large, the convergence will be
slow. Minimizing disboundary ensures that the representations will not infinitely far from the origin,
then the training process can converge.

4.4 OVERALL OPTIMIZATION

The optimization of ASLoss is calculated as follows:

ASLoss = λinnerdisinner − λouterdisouter + λboundarydisboundary (6)

where λinner, λouter and λboundary are three parameters. To ensure overall convergence, λboundary
should be slightly larger than λouter.

The final overall optimization of the whole network is computed as:

Lossoverall = λaslASLoss+ λclsLosscls (7)

where λasl and λcls are two parameters and Losscls refers to the classification loss such as cross
entropy loss.

5 EXPERIMENT SETTINGS

5.1 TASK DESIGN, DATASETS AND EVALUATION METRICS
Task Design and datasets: We conduct experiments on two classification tasks that are extremely
prone to confusion, i.e. acne severity grading and facial expression recognition to verify the effec-
tiveness of the proposed method. Both tasks simultaneously have three confounding characteristics:
data insufficiency, class imbalance, and vague evidence.

Acne Severity Grading: We use the ACNE04 dataset Wu et al. (2019) for acne severity grading. It is
an open image dataset for facial acne severity grading. This dataset was collected from outpatients,
so its number of class samples can reflect the true distribution of the severity of acne patients. The
dataset totally contains 1457 images. According to the annotations of the ACNE04 dataset, there
are four levels (four categories): mild, moderate, severe and very severe. For each category, 80% of
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the samples are randomly divided into the training set and the rest are the test set. The class sample
distribution is shown in Figure 3. First, the data is insufficient for deep learning where only 633
samples in the fattest class. Second, the class imbalance is also serious. The sample size of the
largest class is almost five times than that of the smallest class. Next, the evidence for distinguishing
among the four categories is unclear. The severity depends on the number of very fine-grained
lesions on the whole face where 1 to 5 is mild, 6 to 20 is moderate, 21 to 50 is severe, and more than
50 is very severe. For models, inputs are large faces but the classification evidence is the number
of extremely small objects which is very difficult to mine. This blurs the lines among the different
categories. Some examples can be seen in Figure 4.

Mild Moderate Severe Very Severe

ACNE04

CelebA Subset

No mouth open
No smile

No mouth open
Smile

Mouth open
No smile

Mouth open
Smile

Figure 4: Examples for each category of the ACNE04
and CelebA subset.

Facial Expression Recognition: We use a sub-
set of the CelebA dataset Liu et al. (2015) for
this task. CelebA is an open dataset containing
202,599 face images of 10,177 celebrity identi-
ties. Its annotations contain 40 attributes, such
as eyebrows, eyes, nose shape, and more. We
selected two attributes to form four categories:
NO&NS (no mouth open and no smile), NO&S
(no mouth open and smile), O&NS (mouth
open and no smile), and O&S (mouth open and
smile). Then, we randomly selected 1000 sam-
ples according to the class distribution of the
ACNE04 dataset and divided 80% as the train-
set and the rest as the test set as shown in Fig-
ure 3. Similarly, this subset is also insufficient,
imbalanced and the evidence for distinguishing
the four classes is also unclear because differ-
ences among categories are not significant. The
inputs are similar faces but the identification
should be focused only on the mouth.

Evaluation Metrics: We use the accuracy, precision, recall and f1-score commonly used in classi-
fication tasks as the evaluation metrics.

Implementation Details All models in the experiment use the same implementation settings. For
the parameters of the ASLoss, the λinner and λouter are both set as 0.001 and the λboundary is set
as 0.01. For the parameters of the overall optimization, the λasl and the λcls are both set as 0.5.
For training different networks, the learning rate is set as 1e-3, the batch size is set as 16 and the
maximum training epoch is 400. Adam is chosen as the optimizer employed for training all models.
All programs are coded using Python with PyTorch. All the experiments are conducted on a Linux
Ubuntu with 32G RAM and an NVIDIA Geforce RTX 3090 GPU of 24G VRAM.

6 EXPERIMENT RESULTS, ANALYSIS AND DISCUSSION

6.1 EFFECTIVE OF AGGREGATION SEPARATION LOSS

To verify the effectiveness of ASLoss, we use ASLoss with different distance metrics on several
mainstream deep vision networks. The mainstream vision networks include convolution-based VG-
GNet Simonyan & Zisserman (2015), ResNet He et al. (2016), EfficientNet Tan & Le (2019) and
transformer-based ViT Dosovitskiy et al. (2021), Swin-Transformer Liu et al. (2021), PVT Wang
et al. (2021a) and T2T-Vit Yuan et al. (2021). For each network, we add linear mapping layers to
the output backend of the original network to gradually reduce the number of features into two di-
mensions and then add a classification layer. The schematic diagram is shown in Figure 2. Next, we
use ASLoss of three distance measures, L1 distance, L2 distance and cosine similarity, respectively,
on the last two-dimensional feature layer. The comparison results on the two tasks of acne severity
grading and facial expression recognition are shown in Table 1.

The performances of all the networks have been improved after using ASLoss, no matter the
convolution-based or transformer-based network. For the severity grading task, the ASLoss with
L1 distance metric improves the VGG16 network the most. The ASLoss with L2 distance brings
the most improvement to the RES50, EFFICIENT B3, Swin-Transformer and PVT networks. The
ASLoss with cosine similarity improves the ViT and T2T-ViT the most significantly. Among all the
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Table 1: Comparison results of mainstream deep vision methods not using and using ASLoss of
different distance metrics on acne severity grading (left) and facial expression recognition (right).
ACC: Accuracy, PRE: Precision, REC: Recall and F1: F1-score. L1: L1 distance, L2: L2 distance
and COS: Cosine Similarity. ASL: ASLoss.

Tasks Acne Severity Grading Facial Expression Recognition
Methods ACC↑ PRE↑ REC↑ F1↑ ACC↑ PRE↑ REC↑ F1↑
VGG16 85.62 85.98 84.00 84.69 80.81 79.64 80.10 79.86
VGG16+ASL(L1) 85.96 86.73 85.27 85.59 82.83 82.59 82.97 82.46
VGG16+ASL(L2) 86.64 86.56 84.49 85.04 82.83 80.03 79.66 79.65
VGG16+ASL(COS) 85.96 84.54 82.71 83.30 82.83 81.82 79.29 80.05

RES50 83.22 82.88 81.26 81.76 82.32 78.80 78.44 78.55
RES50+ASL(L1) 84.25 84.98 81.19 82.86 83.84 82.85 85.38 83.93
RES50+ASL(L2) 86.64 86.56 84.49 85.04 85.35 85.00 82.40 83.59
RES50+ASL(COS) 83.90 83.56 82.64 82.27 83.84 81.33 81.16 81.05

EFFICIENT B3 82.53 83.60 80.74 81.80 79.80 78.81 78.74 78.77
EFFICIENT B3+ASL(L1) 86.30 86.19 83.90 84.88 83.84 83.50 84.13 83.73
EFFICIENT B3+ASL(L2) 87.33 89.17 88.46 88.78 83.33 82.78 83.78 83.10
EFFICIENT B3+ASL(COS) 85.62 86.40 85.08 85.44 83.33 80.88 81.81 81.30

ViT 65.75 66.93 64.94 65.44 66.67 57.30 47.30 47.57
ViT+ASL(L1) 82.88 83.04 81.19 81.09 82.32 81.59 80.32 80.90
ViT+ASL(L2) 82.53 82.63 79.42 80.12 83.84 81.37 79.51 80.31
ViT+ASL(COS) 82.53 83.75 82.99 83.29 81.82 81.17 82.74 81.01

Swin-Transformer 84.93 85.20 82.61 83.04 77.78 76.54 74.77 74.95
Swin-Transformer+ASL(L1) 85.96 85.92 82.84 83.83 80.30 75.95 79.43 77.20
Swin-Transformer+ASL(L2) 86.99 85.08 85.06 84.90 84.34 81.49 82.25 81.57
Swin-Transformer+ASL(COS) 83.22 82.81 78.11 80.14 81.31 80.62 76.10 78.08

PVT 80.48 80.71 78.83 79.71 75.25 72.20 68.80 70.10
PVT+ASL(L1) 83.90 82.04 81.34 81.46 76.26 78.67 70.57 73.65
PVT+ASL(L2) 83.90 82.35 81.34 81.66 77.78 79.06 73.73 75.99
PVT+ASL(COS) 83.56 82.38 79.84 80.80 79.29 79.39 71.63 74.48

T2T-ViT 82.53 82.14 79.64 79.75 79.80 78.97 76.10 76.83
T2T-ViT+ASL(L1) 83.22 81.67 82.26 81.83 78.79 81.10 76.74 78.68
T2T-ViT+ASL(L2) 83.90 84.74 83.19 83.67 81.82 85.25 76.62 79.86
T2T-ViT+ASL(COS) 84.25 83.42 84.79 84.08 80.30 79.13 76.32 77.25

networks, ASLoss brings the most obvious improvement to ViT with almost all evaluation metrics
improved by about 15%. Meanwhile, the best performing model is EFFICIENT B3 using ASLoss
of L2 distance, with all evaluation results over 87%, surpassing the performances of all the other
networks. For the facial expression recognition task, the ASLoss with L1 distance improves the
VGG16 and EFFICIENT B3 mostly. The ASLoss with L2 distance improves the Res50, Swin-
Transformer and T2T-ViT most significantly. The ASLoss with cosine similarity brings the most
obvious improvement to ViT and PVT. Among them, ASLoss brings the most obvious improvement
to ViT, some evaluation metrics are even improved by about 20%. The best performing model is
RES50 using ASLoss with L2 distance, with all evaluation results around 83%, surpassing most of
the other network performances. Overall, ASLoss with L2 distance brings significant improvements
on most networks.

First, the performance of these networks on the acne severity grading is slightly better than that on
the facial expression recognition. On the one hand, the data volume for the acne severity grading
is slightly larger than that of the facial expression recognition. On the other hand, mouth open-
ing and smiling are more easily confused, compared to the number of small lesions. So the net-
works are more easily to obtain effective generalization on the acne severity grading task. Next, the
transformer-based ViT-series networks do not perform significantly better than convolution-based
networks. We believe that it is difficult for the ViT series of methods to converge at a good enough
performance when the data is not sufficient for both tasks. In addition, the distance metrics that
improve significantly on most networks are the L1 and L2 distances, although the ASLoss of all
three distance metrics can improve the performance of different networks. In fact, when using L1
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Table 2: Comparison results of using ASLoss on multiple linear layers in front of the classification
layer on acne severity grading (left) and facial expression recognition (right). ACC: Accuracy, PRE:
Precision, REC: Recall and F1: F1-score. L2: L2 distance. ASL: ASLoss.

Tasks Acne Severity Grading Facial Expression Recognition
Base Models EFFICIENT B3 + ASL(L2) Res50 + ASL(L2)
Layers ACC↑ PRE↑ REC↑ F1↑ ACC↑ PRE↑ REC↑ F1↑
Base model 82.53 83.60 80.74 81.80 82.32 78.80 78.44 78.55
ASLoss on the last one layer 87.33 89.17 88.46 88.78 85.35 85.00 82.40 83.59
ASLoss on the last two layers 85.96 85.57 86.37 85.95 84.34 81.78 81.71 81.46
ASLoss on the last three layers 85.27 85.74 85.74 85.54 86.36 84.32 81.05 82.41
ASLoss on the last four layers 85.62 86.01 84.86 85.39 84.34 81.78 80.20 80.88

and L2 distances, ASLoss aggregates and diverges the representation locations of different classes
in a deep space. While using cosine similarity, it gathers and diverges the angles of representation
vectors. We believe that angular differences are still difficult to distinguish near the origin, com-
pared to their positional differences in space. Therefore, ASLoss using L1 and L2 distance metrics
performs slightly better than cosine similarity.

Such experimental results show that ASLoss can improve the performance of various mainstream
visual networks, including convolution-based networks and transformer-based series. And the two
best performing models, EFFICIENTNET B3 and Res50, using the ASLoss of the L2 distance
metric on the two tasks are selected to conduct the following experiments.

6.2 AGGREGATION SEPARATION LOSS ON MULTIPLE SPACES

we apply ASLoss to the last layer, the last two layers, the last three layers and the last four layers
before the output layer, respectively, and compare their performances for both the acne severity
grading task and facial expression recognition task. The schematic is shown in Figure 2. Since
the best performing models on acne severity grading and facial expression recognition tasks are
EFFICIENT B3 and Res50 optimized by ASLoss of L2 distance metric, we continue to use these
two networks as base models. The comparison results are displayed in Table 2. The first row in the
table shows the results of the base model without ASLoss. Rows two to five show the experimental
results of gradually increasing the number of representation spaces using ASLoss.

From the experimental results, the performance of the base model can be improved by using ASLoss
on representations of all four multi-spatial strategies. For the acne severity grading task, the em-
ployment of ASLoss on four multi-space representations improves the accuracy of the base model
by about 3%, the precision by about 2%, the recall by more than 4%, and the f1-score by more than
4%. Among them, the model optimized by ASLoss only on the one previous layer of the output
layer achieves the best performance. Compared with the base model, the accuracy is increased by
nearly 5%, the precision is increased by more than 5%, the recall rate is increased by nearly 8%,
and the f1-score is increased by nearly 7%. For the facial expression recognition task, the results are
similar to the acne severity grading. The employment of ASLoss on four multi-space representa-
tions improves the accuracy of the base model by over 3%, the precision by about 3%, the recall by
around 3%, and the f1-score by about 4%. Among them, the model optimized by ASLoss only on
the one previous layer of the output layer achieves the best performance. Compared with the base
model, the accuracy is increased by over 3%, the precision is increased by more than 6%, the recall
rate is increased by nearly 4%, and the f1-score is increased by over 5%.

For the performance on the two tasks, increasing the feature space employed by the ASLoss does
not gradually improve the model performance. We believe that excellent performance is based on
extracting enough representations. Premature aggregation and separation of feature representations
may lead to insufficient feature extraction. At the same time, too many layers to perform feature
aggregation and separation at the same time may lead to contradictions in gradient update, resulting
in inconsistent update directions of network weights. Weight changes in the previous layers will
cause the subsequent layers to change. Convergence will become difficult. Therefore, only the
aggregation and separation of representations in the one layer before the classification layer achieves
the best results.
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Acne Severity Grading Task Facial Expression Recognition Task

Representations of Train Data 

With ASLoss

Representations of Test Data 

Without ASLoss

Representations of Train Data 

Representations of Test Data 

Representations of Train Data 

Representations of Test Data 

With ASLossWithout ASLoss

Representations of Train Data 

Representations of Test Data 

Figure 5: Visualization of representations. The left and right halves are for the acne severity grading (EF-
FICIENT B3 with ASLoss of L2 distance) and the facial expression recognition (Res50 with ASLoss of L2
distance). For each task, the left and right two subfigures are the representations extracted without and with
ASLoss. The upper and lower subfigures are representations of train data and test data.

6.3 REPRESENTATION VISUALIZATION
We connect the representation extraction layer after the original network output and set the feature
extraction layer finally to be two-dimensional. The two-dimensional output representations are visu-
alized and compared as shown in Figure 5. The left and right halves are for the acne severity grading
and the facial expression recognition tasks. The EFFICIENT B3 and Res50 are selected for the two
tasks to conduct this experiment due to their excellent performances.

For the acne severity grading task, the training sample representations extracted by the model with-
out ASLoss have no obvious boundary and the distribution is scattered. For the training repre-
sentations using ASLoss, the representations of the same category are more concentrated, and the
samples of different categories can be clearly separated. For test data, the representation overlap
is serious when not using ASLoss. After using ASLoss, the overlap of representations in space is
alleviated. For the facial expression recognition task, three categories concentrated in the coordinate
origin and coordinate axes in the training samples without ASLoss, leading to heavy overlap. After
using ASLoss, the representations of different classes are spread out. For the test data representa-
tions, heavy overlap happens without ASLoss. After using ASLoss, the overlap is alleviated. All
representations using ASLoss are constrained to the ideal range without disorderly dilation.

This result shows that ASLoss can effectively aggregate in-class samples to separate out-of-class
samples. For the test samples of the two tasks, the effect of widening the distance of different
classes is significant. This increases the distinguishability of these samples that are located among
different class distributions. So the confusion among different classes can be clarified.

6.4 COMPARISON OF CONFUSION
The confusion matrixes for the two tasks are shown in Figure 6. The EFFICIENT B3 and Res50
are also selected as the comparison models for the two tasks respectively. For each task, the left and
right two confusion matrixes are from the models without and with ASLoss of L2 distance. The
upper and lower confusion matrixes are for train and test data.

For both tasks, the use of ASLoss can improve performance of the models on not only the training
data but also the test data. On the training data, both base models perform a little confusion on dif-
ferent categories. With the help of ASLoss, the confusion on the training dataset almost completely
disappeared. On the test data, the predictions of the models without ASLoss perform confusion
seriously. After using ASLoss on the models, the performance of the two classes 2 and 3 with in-
sufficient data is improved sufficiently, while the performance of the two classes 0 and 1 with more
samples decreases slightly. The overall accuracy is significantly improved.

This result demonstrates that the ASLoss effectively clarifies the confusion. Such results can be
explained from visualization. The representation distances of the categories are pulled apart. The
distribution of the same class is concentrated. So the confusion can be clarified.
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Acne Severity Grading Task Facial Expression Recognition Task
With ASLoss With ASLossWithout ASLossWithout ASLoss

Figure 6: Comparison of confusion matrixes. The left and right halves are for the acne severity grading
(EFFICIENT B3 with ASLoss of L2 distance) and the facial expression recognition (Res50 with ASLoss of
L2 distance). For each task, the left and right two confusion matrixes are from the models without and with
ASLoss. The upper and lower confusion matrixes are for train data and test data.

Table 3: Comparative experimental results with state-of-the-art methods on acne severity grading
(left) and facial expression recognition (right). ACC: Accuracy, PRE: Precision, REC: Recall and
F1: F1-score.

Tasks Acne Severity Grading Facial Expression Recognition
Methods ACC↑ PRE↑ REC↑ F1↑ ACC↑ PRE↑ REC↑ F1↑
BaseModel + Focal Loss 82.19 81.75 79.26 79.25 84.85 83.32 82.62 82.94
BaseModel + Weighted CE 83.90 83.87 81.70 82.38 83.84 81.38 82.31 81.69
BaseModel + CBLoss 82.88 81.94 79.32 80.46 82.83 80.57 79.77 80.13
BaseModel + TDE 85.27 85.32 83.22 83.78 84.85 82.91 81.74 82.15
BaseModel + ASLoss(ours) 87.33 89.17 88.46 88.78 85.35 85.00 82.40 83.59

6.5 COMPARISON WITH STATE-OF-THE-ARTS

We compare the proposed ASLoss with some state-of-the-art methods including Focal Loss Lin
et al. (2020), Weighted Cross Entropy Wang et al. (2017b), CBLoss Cui et al. (2019) and TDE Tang
et al. (2020) as shown in Table 3.

From the experiment results, the proposed ASLoss outperforms other methods on all metrics for the
acne severity grading task. For the facial expression recognition, the overall performance of ASLoss
outperforms all other methods, although the recall of Focal Loss is slightly higher than the ASLoss.
The experimental results show that the performance of ASLoss reaches the state-of-the-art level.

7 CONCLUSION

In this paper, we propose a novel, simple and intuitive ASLoss, as an adjunct for classification
loss to clarify the confusion in some common cases. The ASLoss aggregates the representations of
the same class samples as near as possible and separates the representations of different classes as
far as possible to mine the commonalities of the same class and the gaps among different classes.
We use two classification tasks with three simultaneous common confounding characteristics i.e.
data insufficiency, class imbalance, and unclear class evidence to demonstrate the performance of
ASLoss. We conduct representation visualization, confusion comparison, and detailed comparison
experiments. The experimental results show that the model using ASLoss can extract sufficiently
clear and distinguishable representations in deep spaces, the confusion among different classes is
significantly clarified and the best-performing network reaches the state-of-the-art level.
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