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Abstract

Uncertainty estimation is crucial for ensuring the reliability of machine learning
models in safety-critical applications. Evidential Deep Learning (EDL) offers a
principled framework by modeling predictive uncertainty through Dirichlet distri-
butions over class probabilities. However, existing EDL methods predominantly
rely on level-0 hard labels, which supervise an uncertainty-aware model with
full certainty. We argue that hard labels not only fail to capture epistemic uncer-
tainty but also obscure the aleatoric uncertainty arising from inherent data noise
and label ambiguity. As a result, EDL models often produce degenerate Dirich-
let distributions that collapse to near-deterministic outputs. To overcome these
limitations, we propose a vicinal risk minimization paradigm for EDL by incor-
porating level-1 supervision in the form of vicinally smoothed conditional label
distributions. This richer supervision exposes the model to local label uncertainty,
enhancing aleatoric uncertainty quantification while mitigating the degeneration of
the Dirichlet distribution into a Dirac delta function, thereby improving epistemic
uncertainty modeling. Extensive experiments show that our approach consistently
outperforms standard EDL baselines across synthetic datasets, covariate-shifted
out-of-distribution generalization tasks, out-of-distribution detection, and selective
classification benchmarks, providing more reliable uncertainty estimates.

1 Introduction

Reliable uncertainty estimation is pivotal for deploying trustworthy machine learning systems, particu-
larly when models encounter distributional shifts or operate in safety-critical environments. Classical
approaches, such as MC Dropout [14], Deep Ensembles [26], and Bayesian Neural Networks [4]
estimate uncertainty via Bayesian model averaging. While effective, these methods often incur high
computational costs due to multiple forward passes or complex posterior approximations.

Evidential Deep Learning (EDL) [45, 36, 37, 6, 7, 53, 10] has recently emerged as a promising
alternative. EDL models predictive uncertainty by representing class probabilities with a Dirichlet
distribution, enabling uncertainty estimation in a single forward pass without relying on sampling
or model ensembles. This framework enables joint quantification of two complementary types of
uncertainty within a single forward pass: (i) Aleatoric uncertainty, which captures inherent data noise
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or label ambiguity, and (ii) Epistemic uncertainty, which reflects uncertainty stemming from limited
data or insufficient knowledge about the data-generating process. EDL has also achieved substantial
progress in several downstream tasks, such as trusted multi-view classification [15, 31, 32, 34, 49, 33,
29] and domain adaption [42, 8, 35, 54], where robust and reliable uncertainty estimation is essential.

However, since ground-truth Dirichlet distributions are unavailable, most EDL methods still rely on
one-hot labels (i.e., level-0 supervision), similar to conventional softmax classifiers. Recent studies [2,
3, 22, 46] have revealed fundamental limitations of this practice: training with hard labels drives the
predictive distribution to collapse into degenerate Dirac delta functions, resulting in overconfident
outputs and poor uncertainty estimation. To address this issue, follow-up work [20] introduced level-1
supervision using crowdsourced soft labels (e.g., CIFAR-10H [43]), but such approaches require
extensive human annotation (up to 500k judgments), making them costly and impractical. Moreover,
existing studies mainly focus on epistemic uncertainty under level-0 supervision, while its ability to
capture aleatoric uncertainty remains largely unexplored.

In this paper, we argue that the mismatch between fully certain level-0 supervision and uncertainty-
aware level-2 predictions fundamentally limits accurate estimation of epistemic and aleatoric uncer-
tainty. Hard labels fail to capture class ambiguity and data noise, leading Dirichlet distributions to
collapse into Dirac deltas and produce overconfident, unreliable estimates. To mitigate this issue,
we propose a new EDL training paradigm that narrows the supervision gap by replacing hard labels
with estimated level-1 conditional categorical distributions. Specifically, we adopt a vicinal risk
minimization (VRM)-based strategy that constructs level-1 supervision from local feature neighbor-
hoods, inducing continuous label distributions and improving both aleatoric and epistemic uncertainty
estimation without extra annotations.

Our main contributions are as follows:

• We introduce a novel EDL training paradigm leveraging level-1 supervision via VRM to
better capture aleatoric and epistemic uncertainty without additional annotation cost.

• We provide theoretical insights into how this supervision improves generalization, supported
by a risk-based analysis, and enhances aleatoric and epistemic uncertainty estimation by
mitigating the Dirichlet distribution’s collapse towards a Dirac delta measure.

• We empirically demonstrate the effectiveness of our method in uncertainty estimation and
robustness under covariate-shifted out-of-distribution generalization, selective classification,
and out-of-distribution detection.

2 Problem Formulation

In this section, we first discuss the key differences and connections between EDL and traditional
point-estimate classifiers, such as softmax-based ones. Then, we highlight the limitations of EDL,
particularly its challenges in estimating epistemic uncertainty and aleatoric uncertainty.

Basic Notations. In a standard supervised K classification setting with instance space X , label space
Y = {y1, . . . , yK}, and training dataset D = {(x(1), y(1)), . . . , (x(n), y(n))} ⊂ X × Y . Following
classical settings, we also assume that the data are generated i.i.d. according to an underlying joint
probability P over X × Y . Correspondingly, each instance x ∈ X is associated with a conditional
distribution p(·|x) on Y , such that p(y|x) is the probability to observe label y as an outcome given x.
Let P1(Y) denote the set of probability distributions over Y , and P2(Y) the set of distributions over
P1(Y). Elements of P1(Y) are called level-1 distributions, and those of P2(Y) level-2 distributions.
As in [2], different levels of distributions in classification tasks can be organized as follows:

• Level-0 (hard labels): A deterministic class label y ∈ {1, . . . ,K}, which implicitly
assumes that the sample belongs to a single class with absolute certainty.

• Level-1 (categorical distribution): A probability vector p ∈ ∆K−1 over classes, where
∆K−1 is the (K − 1)-simplex. This representation captures aleatoric uncertainty by
modeling ambiguity or inherent noise in class membership.

• Level-2 (Dirichlet distribution): A second-order distribution Dir(α) over categorical
distributions p. This signal encodes both aleatoric and epistemic uncertainty. The expected
value E[p] = α/S (where S =

∑
k αk) reflects class probabilities (aleatoric), while the
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concentration S controls the dispersion around the mean. Low S indicates high epistemic
uncertainty due to limited knowledge, and high S corresponds to high confidence.

In short, level-0 distribution provides no information about uncertainty, level-1 distribution can only
express aleatoric uncertainty, whereas level-2 distribution can jointly represent both aleatoric and
epistemic uncertainties in a principled manner.

2.1 Learning Predictive Level-1 Models

Given a K-class classification task with input space X and label space Y , the model outputs a
probability vector p = (p1, . . . , pK) ∈ P1(Y); here, P1(Y) denotes the probability simplex over
the label space and P1(Y) =

{
p ∈ [0, 1]K | ∑K

j=1 pj = 1
}

. The loss function for level-1 predictors
takes the form

L1 : ∆K−1 × Y → R. (1)
Commonly used loss functions for level-1 predictors include the cross-entropy (CE) loss and the
Brier score as

LCE
1 (p, y) = −

K∑
j=1

1(j=y) log(pj), LBrier
1 (p, y) =

K∑
j=1

(pj − 1(j=y))
2. (2)

Here, 1(j=y) is the indicator function that equals 1 if class index j corresponds to the true label y, and
0 otherwise. Let a hypothesis space H1 ⊂ P1(Y)X = {h : X → P1(Y)} to be given. In traditional
supervised learning, the goal is to find a hypothesis h ∈ H1 that minimizes the risk

R(h) :=

∫
X×Y

L1(h(x), y)dP (x, y), (3)

where R(h) is the risk of hypothesis h. The hypothesis is commonly learned via Empirical Risk
Minimisation (ERM), which involves minimizing the empirical risk defined as:

R̂emp(h;D) :=
1

N

N∑
n=1

L1(h(x
(n)), y(n)). (4)

Since R̂emp(h;D) is an estimate of the true risk R(h), the learned hypothesis ĥ is an approximation
of the true risk minimizer h∗. They are defined as follows:

ĥ := arg min
h∈H1

R̂emp(h;D), h∗ := arg min
h∈H1

R(h). (5)

Consequently, there remains an approximation gap between ĥ and h∗, as well as epistemic uncertainty
regarding h∗, as only a single point estimate of the predictive distribution is obtained [14, 45].

2.2 Learning Predictive Level-2 Models

Unlike level-1 models, EDL learns a hypothesis space H2 of the form H2 ⊂ P2(Y)X = {h : X →
P2(Y)}. To learn a level-2 predictor, the ideal scenario would involve access to a ground-truth
distribution Q∗ ∈ P2(Y), which could directly supervise the model to output the target level-
2 distribution. However, such ground-truth distributions Q∗ are typically unavailable in practice.
Consequently, existing methods adopt an alternative approach inspired by level-1 models. Specifically,
a level-2 loss function is defined as

L2 : P2(Y)× Y → R+, (6)
which compares the level-2 prediction h(x) against a level-0 observation y. The learning objective is
to minimize the empirical level-2 risk over the training data D as

R̂(2)
emp(h) =

1

N

N∑
n=1

L2(h(x
(n)), y(n)). (7)

This paradigm, known as evidential deep learning (EDL), aims to learn a reliable level-2 distribution
predictor for uncertainty estimation by minimizing the L2 loss on the available data [45, 36, 6].
Several previous works have proposed the minimization of an empirical loss of the form

L2(Q, y) = Ep∼QL1(p, y), (8)
where the level-2 prediction Q is penalized in terms of the expected level-1 loss.

3



2.3 Limitations of Aleatoric and Epistemic Uncertainty Estimation in EDL

However, recent studies have raised substantial criticisms regarding the uncertainty estimation
behavior of EDL. Specifically, it has been argued that minimizing empirical risk under standard EDL
frameworks with level-0 observations inevitably drives the learned evidential distribution to collapse
into a Dirac measure. Consequently, epistemic uncertainty is effectively suppressed or unreported in
practice [23, 22, 3, 2]. Building upon these insights, we conduct a systematic analysis of epistemic
uncertainty estimation in EDL and rigorously formalize how the distributional collapse phenomenon
undermines its ability to quantify uncertainty. Furthermore, we identify and theoretically characterize
an additional, underexplored limitation: EDL also fails to faithfully capture aleatoric uncertainty
under the same empirical risk minimization principle. Specifically, we establish the following result:
Theorem 1. For any level-1 loss function L1 : P1(Y)× Y → R that satisfies L1(Ep∼Dir(α)p, ·) ≤
Ep∼Dir(α)L1(p, ·), (i.e., is a convex function), such as Brier score and the log-loss in Eq. 2, the
empirical risk minimizer of a level-2 prediction is always a Dirac measure δp ∈ P2(Y) and the
expectation of level-2 prediction is δy ∈ P1(Y). This result holds if the learner possesses a universal
approximation property, allowing it to represent such a degenerate distribution.

Here, δy denotes the Dirac measure at y ∈ Y , which is an element of P1(Y) representing a prediction
with no aleatoric uncertainty. While prior work [2, 3, 22] has established that Empirical Risk
Minimization (ERM) with level-0 labels leads to a collapse of epistemic uncertainty for second-order
predictors like EDL, Theorem 1 highlights that aleatoric uncertainty also vanishes under the same
conditions. This observation is inspired by the analysis in Theorem 3.3 of [22], which shows that the
L1 loss is minimized when the prediction is a Dirac measure δy centered on the ground-truth label
y. The complete proof is provided in the Appendix B. An intuitive explanation is that under level-0
supervision, even if the predicted distribution p accurately reflects the learner’s aleatoric uncertainty,
it is not the minimizer of Eq. 8. As a result, a learner trained to minimize this loss with level-0 labels
will not output such a distribution p. Instead, the optimal prediction becomes the mode of p, leading
to a degenerate distribution δy that collapses the uncertainty representation into a single point mass.
Proposition 1. Under the assumptions of Theorem 1, empirical risk minimization of level-2 prediction
inevitably yields degenerate distributions δp ∈ P2(Y) and the expectation of the level-2 prediction is
δy ∈ P1(Y). As a result, the model fails to provide any meaningful or disentangled representation of
aleatoric or epistemic uncertainty.

This proposition follows directly from Theorem 1: since the optimal prediction always collapses to a
Dirac measure at the expected probability vector, the learner is incentivized to output deterministic
posteriors, irrespective of whether the uncertainty arises from stochastic labels (aleatoric) or from
limited evidence (epistemic). Consequently, any observed uncertainty in the model’s prediction
cannot be separated into aleatoric and epistemic components.

As level-0 labels provide fully certain supervision, learning aleatoric uncertainty over p remains
challenging. A natural solution is to leverage level-1 soft labels, as in [20]. However, most standard
datasets [24, 13] only offer hard labels, and collecting accurate level-1 annotations (e.g., CIFAR10-
H [43]) is impractical. To address this, we propose a VRM strategy that approximates soft labels by
interpolating between neighboring samples.

3 Method

Our proposed method enhances uncertainty estimation in Dirichlet-based models by leveraging
VRM-approximated soft labels. This strategy enables learning aleatoric uncertainty from datasets
restricted to hard labels. The method consists of two complementary components: one strengthens
the model’s capacity for aleatoric uncertainty capture, while the other preserves epistemic uncertainty
by preventing the Dirichlet distribution from degenerating into a Dirac delta function.

3.1 Vicinal Supervision to Enhance Aleatoric Uncertainty Estimation

The empirical risk minimization trains a model to minimize loss on the exact training samples
(x(n), y(n)) , but ignores the fact that the true data distribution P (x, y) is continuous and often
smooth in the instance-label space X × Y . VRM [5] addresses the continuity of the instance space
by introducing a vicinal distribution, which augments the training set with virtual examples drawn
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from local neighborhoods of the data while keeping the labels unchanged. The Mixup method [51]
extends the VRM principle by applying linear interpolations not only to the input features but also to
the labels. The empirical vicinal risk in this manner is defined as:

R̂v(h;D) :=
1

N

N∑
n=1

∫ ∫
L(h(x̃), ỹ) p(x̃, ỹ|x(n),y(n)) dx̃ dỹ, (9)

where the vector y denotes the label in one-hot format and p(x̃, ỹ|x(n),y(n)) represents the joint
probability density function of vicinal samples. In practice, the interpolated samples and labels are
generated by linearly interpolating between pairs of training examples:

x̃ = λx(n) + (1− λ)x(m), ỹ = λy(n) + (1− λ)y(m), (10)

where (x(m),y(m)) is another randomly selected training sample, and λ ∈ [0, 1] is drawn from a
Beta distribution Beta(β, β) with a hyperparameter β > 0. The hyperparameter β controls the shape
of the Beta distribution. When β < 1, the distribution is U-shaped, favoring extreme values of
λ ≈ 0 or λ ≈ 1, which leads to mixtures dominated by a single sample. In contrast, when β ≫ 1,
the distribution concentrates around λ ≈ 0.5, promoting strongly balanced mixtures between the
two samples. Inspired by the idea of Vicinal Risk Minimization (VRM), we incorporate vicinal
information by generating vicinal level-1 labels ỹ, which are subsequently used as the supervision
target of the L1 loss. The resulting objective is formulated as:

Lvicinal = E(x(n),y(n)),(x(m),y(m))∼DEλ∼Beta(β,β)Ep∼Dir(α̃|x̃) [L1(p, ỹ)] . (11)

In contrast to the original Mixup [51], which suggests setting β = 0.2 or 0.4, we set β ≫ 1 (e.g.,
10, 20) to enforce strong mixing. Such strong mixing creates soft labels that represent high aleatoric
uncertainty, encouraging the model to account for inherent label ambiguity and improve uncertainty
calibration.

3.2 Noise-Augmented Vicinal Risk Minimization for Epistemic Uncertainty Estimation

In addition to simulating samples with high aleatoric uncertainty, we introduce controlled noise into
the input space to generate samples that exhibit inherently high epistemic uncertainty—i.e., samples
that are difficult to model due to insufficient, ambiguous, or incomplete information [19]. Specifically,
we propose augmenting VRM with synthetic vague samples generated via Gaussian noise to account
for the simple fact that the observed features x may not contain sufficient information to fully explain
the target y. We formalize this with the following noise-augmented loss:

Lnoise = E(x(n),y(n))∼D,x(m)∼N (0,σ2I) Eλ∼Beta(β+
noise,β

−
noise)

Ep∼Dir(α̃|x̃) [L1(p, ỹ)] . (12)

Here, x(m) is sampled from Gaussian noise, label y(m) is set as a uniform distribution

x̃ = λx(n) + (1− λ)x(m), ỹ = λy(n) + (1− λ)

[
1

K
, ...,

1

K

]
. (13)

While the added noise can inadvertently increase aleatoric uncertainty, we primarily introduce it
to simulate obstacles to the model’s knowledge acquisition and encourages the model to produce
smoother uncertainty estimates in the vicinities of the training data. Furthermore, we observe
that adding label smoothing helps control the growth of the Dirichlet strength for samples near
the decision boundary, mitigating the degeneration of the Dirichlet distribution into a Dirac delta
function, as formalized in Theorem 3. The Beta distribution parameters β+

noise and β−
noise govern the

mixing proportion. A larger β−
noise increases the contribution of noisy samples (i.e., smaller λ on

average); A larger β+
noise emphasizes the clean (original) samples. We set β+

noise ≥ β−
noise to ensure that

original samples dominate the interpolation, thereby preventing excessive degradation of predictive
performance while still allowing the model to explore uncertain vicinities.

3.3 Model optimization

We follow EDL [45] to train a neural network that predicts the parameters of a Dirichlet distribution.
Specifically, we set the Dirichlet prior as a non-informative prior a = [1, . . . , 1] . The neural
network’s outputs Φ(x) are passed through a non-negative activation function σ(·) , e.g. ReLU
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or SoftPlus, to obtain the evidence vector e = {e1, . . . , eK} , i.e., e = σ (Φ(xxx)) . The Dirichlet
parameters are then computed as α = e+ a. For the loss function, we adopt the cross-entropy-based
EDL loss, defined as:

Ep∼Dir(α̃)[L1(p, ỹ)] =

∫  K∑
j=1

−ỹj log (pj)

 1

B (α)

K∏
j=1

p
αj−1
j dp

=

K∑
j=1

ỹj
(
ψ (S)− ψ (αj)

)
,

(14)

where S =
∑K

j=1 αj , ψ(·) is the digamma function. Finally, the total vicinal loss is defined as:

L = Lvicinal + Lnoise. (15)

By jointly optimizing the total loss, the model can not only fit the training data effectively but also
express predictive uncertainty more reliably and generalize better to unseen or ambiguous scenarios.

4 Theoretical Analysis

We provide a theoretical analysis to elucidate how level-1 labels with strong mixing improve gen-
eralization and robustness in the presence of input-dependent label noise. Then, we analyze how
the hyperparameter λ in Eq. 13 moderates the rapid increase of the Dirichlet concentration, thereby
slowing its degeneration towards a Dirac delta function. The complete proof is provided in the
Appendix B.

Theorem 2. Let the ground-truth level-1 label be denoted as p∗(x), and let the observed level-0
one-hot label δy(x) be a noisy realization of p∗(x) perturbed by input-dependent label noise µ(x)

δy(x) = p∗(x) + µ(x) where µ(x) ∼ N (0, σ2I). (16)

Then, the test risk admits the following lower bound under mild regularity conditions

R(ĥ;P ) ≥ Cσ2, (17)

where C depends on the trace of the Hessian matrix of the loss function with respect to p. Then, for
the level-1 label with strong mixing, the bound can be tightened as

R(ĥ;P ) ≥ C ′σ2, (18)

where C ′/C ≈ 1
2β+1 + 1

2 < 1 (∀β ≫ 1/2), indicating a reduced sensitivity of the test risk to
input-dependent noise.

Theorem 2 implies that leveraging level-1 labels with strong mixing can effectively reduce the lower
bound of the generalization error.

Theorem 3. Let λ be the mixing hyperparameter defined in Eq. 13. Consider the optimization of the
Dirichlet parameters α in Eq. 14. For samples where αk ≤ αj (∀j ̸= k) with lower belief assigned
to the ground-truth k class, the following properties hold

• The update to the Dirichlet concentration for the ground-truth class ∆αk, increases mono-
tonically with λ.

• The updates to the Dirichlet concentrations for the non-ground-truth classes ∆αj ̸=k, de-
crease monotonically with λ.

• The total increase in Dirichlet concentration, denoted ∆S, increases monotonically with λ.

Theorem 3 implies that a properly chosen λ < 1 can effectively suppress the excessive accumulation
of evidence, i.e., ∆S . This prevents Dirichlet-based models from collapsing into a degenerate Dirac
delta distribution δp, thereby enhancing their ability to represent epistemic uncertainty.
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5 Experiments

We begin by analyzing and comparing the estimated uncertainties estimated by our method and
baseline approaches on a toy dataset. Subsequently, we conduct extensive experiments on three main
tasks: OOD detection, selective classification, and OOD generalization. For the OOD detection
task, we evaluate the ability of different methods to distinguish between in-distribution (ID) and
out-of-distribution (OOD) samples based on their estimated epistemic uncertainty. For selective
classification, we assess the model’s capability to differentiate correctly classified samples from
misclassified ones using aleatoric uncertainty. For the OOD generalization task, we examine the
classification performance of models when exposed to covariate-shifted OOD samples.

5.1 Experimental Setup

Baselines. Baseline methods include KL-PN [36], RKL-PN [37], PostNet [6], NatPN [7], EDL [45],
RED [40], I-EDL [12], R-EDL [9], H-EDL [44], and DA-EDL [50]. For OOD detection tasks,
we further extend our experiments to include four OOD detection methods based on uncertainty
estimation: DUQ [47], DDU [38], DUE [48], and SNGP [30].

Evaluation Metrics. We evaluate OOD detection performance using the Area Under the Receiver
Operating Characteristic curve (AUROC), which measures the model’s ability to distinguish between
ID and OOD samples. For selective classification, we employ the Excess Area Under the Risk-
Coverage Curve (E-AURC × 1000; lower is better), where a lower E-AURC indicates more reliable
aleatoric uncertainty estimation and better selective prediction performance. OOD generalization is
assessed by measuring the classification accuracy on covariate-shifted OOD test sets. For comparison,
the classification accuracy on the ID test set is also reported. All results are reported as the mean ±
standard deviation over 10 independent runs with different random seeds.

Implementation Details. Following OpenOOD [52], we train a ResNet-18 model [16] implemented
in PyTorch [41] for 100 epochs on a single NVIDIA A100 GPU. We use the SGD optimizer with
a cosine annealing schedule, an initial learning rate of 0.1, and a batch size of 128. We set the
hyperparameters β = 10 (Eq. 11) and β+

noise = β−
noise = 1.0. Further implementation details for the

baselines are in Appendix D.

Uncertainty Measure. Existing methods adopt different strategies to quantify epistemic uncertainty.
KL-PN [36] and RKL-PN [37] use mutual information (Eq. 66); PostNet [6] and NatPN [7] rely on
the Dirichlet total strength S =

∑K
j=1 αj , where a smaller S indicates higher uncertainty. Methods

based on Dempster-Shafer Theory and Subjective Logic [45, 40, 12, 9, 44, 50] use vacuity (K/S) as
their measure of uncertainty. We propose using conditional entropy for aleatoric uncertainty (Eq. 64)
and the Dirichlet differential entropy for epistemic uncertainty (Eq. 67).

Datasets. Following prior EDL works, we conduct OOD detection using CIFAR-10 and CIFAR-
100 [24] (32 × 32 resolution). When using CIFAR-10 (or CIFAR-100) as the ID dataset, the
OOD datasets include CIFAR-100 (or CIFAR-10), Tiny ImageNet [27], MNIST [28], SVHN [39],
Textures [25], and Places365 [55]. For OOD generalization, we evaluate on CIFAR-10-C and
CIFAR-100-C [17], which contain 15 corruption types (e.g., snow, fog) at 5 severity levels.
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Figure 1: Comparison of estimated uncertainty of different methods on toy dataset.
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Table 1: OOD detection (AUROC) and classification accuracy on CIFAR-10 and CIFAR-100 dataset.

Method →CIFAR-100
OOD Detect

→Tiny
OOD Detect

→MNIST
OOD Detect

→SVHN
OOD Detect

→Textures
OOD Detect

→Places365
OOD Detect

CIFAR-10
Cls Acc

DUQ [ICML20] [47] 84.60±1.04 86.16±0.92 92.34±1.25 91.36±1.26 86.57±1.27 84.26±0.93 93.60±0.39
DDU [CVPR23] [38] 89.23±0.33 91.28±0.28 95.69±0.99 93.53±1.43 92.64±0.31 91.55±0.34 95.35±0.05
DUE [48] 86.00±0.78 88.40±0.76 92.34±1.48 91.70±1.63 89.25±1.16 88.89±0.77 94.98±0.15
SNGP [NIPS20] [30] 88.14±1.18 90.38±1.00 93.18±1.20 92.16±2.40 92.88±1.37 91.21±1.20 94.63±0.18
KL-PN [NIPS18] [36] 83.46±0.88 85.24±0.97 87.80±3.81 88.39±2.37 85.41±1.36 84.36±0.77 90.31±1.46
RKL-PN [NIPS19] [37] 60.43±2.54 63.04±2.43 85.76±3.03 43.97±9.92 59.17±3.17 66.05±2.62 53.22±4.25
PostNet [NIPS20] [6] 81.46±1.00 77.78±3.89 85.19±2.19 88.27±1.76 85.87±1.23 82.97±1.76 89.44±0.62
NatPN [NIPS21] [7] 78.44±0.83 80.24±0.41 81.09±4.39 82.23±1.20 82.23±5.12 80.76±0.49 86.25±0.40
EDL [NIPS18] [45] 86.64±0.25 90.59±0.21 93.24±0.62 93.56±1.01 90.66±0.62 90.25±0.34 94.15±0.24
RED [ICML23] [40] 85.81±0.34 88.07±0.27 91.60±1.50 92.12±0.92 88.08±1.47 88.05±0.38 94.83±0.18
I-EDL [ICML23] [12] 88.11±0.45 90.83±0.45 94.20±1.11 94.77±1.62 91.29±0.96 90.38±0.40 94.95±0.17
R-EDL [ICLR24] [9] 86.88±0.08 89.72±0.47 90.66±1.40 92.53±4.25 90.79±0.79 87.06±0.31 92.92±0.13
H-EDL [NIPS24] [44] 88.60±0.29 91.43±0.19 95.60±0.27 92.99±0.67 92.97±0.34 92.07±0.32 95.04±0.05
DA-EDL [ICML24] [50] 82.39±0.65 84.03±0.63 88.80±0.33 86.98±0.69 82.27±0.87 83.40±0.45 92.57±0.15
Ours 89.09±0.19 91.81±0.22 97.32±0.42 96.20±0.32 92.51±0.73 91.61±0.15 96.18±0.13

Method →CIFAR-10
OOD Detect

→Tiny
OOD Detect

→MNIST
OOD Detect

→SVHN
OOD Detect

→Textures
OOD Detect

→Places365
OOD Detect

CIFAR-100
Cls Acc

DUQ [ICML20] [47] 51.20±1.84 53.60±2.67 39.44±13.20 61.47±7.64 57.73±5.66 50.16±3.13 1.66±0.39
DDU[CVPR23] [38] 68.14±1.63 78.64±1.57 79.69±6.56 76.02±3.98 83.00±1.01 74.53±1.70 78.05±0.96
DUE [48] 50.30±1.54 49.97±1.39 49.91±1.43 49.91±1.02 50.02±1.65 50.12±1.01 1.06±0.17
SNGP [NIPS20] [30] 72.77±1.23 76.63±1.51 71.91±6.19 73.54±5.36 73.91±1.85 74.53±1.93 76.19±1.19
KL-PN [NIPS18] [36] 57.20±2.79 60.56±1.86 55.20±22.34 50.90±12.39 49.38±3.61 57.93±2.60 24.89±10.48
RKL-PN [NIPS19] [37] 53.13±2.15 51.30±1.38 48.27±25.03 55.46±10.83 44.35±4.15 54.24±3.88 17.64±2.80
PostNet [NIPS20] [6] 54.19±0.59 53.58±0.51 75.93±11.81 59.89±8.15 52.08±4.59 53.86±1.09 3.08±0.23
NatPN [NIPS21] [7] 67.77±0.87 70.69±0.69 65.20±4.90 75.34±2.37 66.53±1.60 69.25±0.83 59.01±0.40
EDL [NIPS18] [45] 56.49±2.47 57.40±1.92 28.84±6.81 53.78±14.68 49.68±3.88 56.74±2.68 30.23±2.72
RED [ICML23] [40] 78.17±0.35 81.79±0.18 78.45±2.53 80.98±2.42 77.79±0.31 78.71±0.40 77.60±0.26
I-EDL [ICML23] [12] 77.42±0.31 82.39±0.29 76.22±0.83 78.91±0.25 78.54±0.31 79.65±0.19 77.10±0.12
R-EDL [ICLR24] [9] 65.45±2.01 71.28±0.53 79.44±4.42 78.50±2.49 74.35±1.37 75.35±0.94 46.70±1.69
H-EDL [NIPS24] [44] 75.73±0.39 80.81±0.26 73.91±4.34 83.56±3.07 75.74±0.70 79.97±0.59 77.75±0.23
DA-EDL [ICML24] [50] 53.07±1.03 56.78±0.64 65.63±3.12 48.02±2.34 49.53±2.21 54.48±2.31 16.59±0.76
Ours 81.86±0.19 83.40±0.09 86.17±1.83 85.07±1.94 78.58±0.33 79.97±0.39 78.29±0.11

5.2 Experimental Results

Uncertainty estimation on toy dataset. We begin by conducting an experiment on a toy dataset
consisting of three Gaussian clusters, as shown in Fig. 1. To maintain consistency, the uncertainty
measure for all methods is defined as the vacuity of evidence, i.e., K/S. Obviously, with level-1
supervision, our method yields more precise uncertainty estimation; in particular, it assigns higher
uncertainty to regions that are far from the in-distribution data and near decision boundaries.

Evaluation of epistemic uncertainty via OOD detection. As shown in Table 1, our method achieves
competitive performance in detecting OOD samples. By leveraging vicinal label information, our
method learns a smoother uncertainty landscape, leading to more reliable uncertainty estimates
without imposing any regularization on the output Dirichlet distribution. Besides, as demonstrated in
Theorem 3, our method mitigates the tendency of the Dirichlet distribution for uncertain samples to
collapse towards a Dirac delta function, further enhancing the accuracy of uncertainty estimation.

Evaluation of aleatoric uncertainty via selective classification. As shown in Table 2, our method
consistently achieves the lowest E-AURC across all corruption severities. This result demonstrates
more reliable aleatoric uncertainty estimation and improved performance in selective classification
scenarios. This suggests that many existing methods do not adequately model aleatoric uncertainty,
particularly on corrupted data. In contrast, our method addresses this limitation by explicitly modeling
the aleatoric uncertainty inherent in level-1 labels, amplified through a strong mixup strategy, thereby
achieving a more robust uncertainty characterization.

OOD generalization performance. As shown in Table 3, our method demonstrates significantly
superior OOD generalization. This addresses a critical limitation of previous EDL methods, which
often suffer from a severe degradation in classification accuracy on OOD data, thereby limiting their
practical applicability. Our approach overcomes this issue, as theoretically supported by Theorem 2.
By employing a strong mixup strategy with β ≫ 1/2, our method substantially reduces the model’s
sensitivity to input-dependent noise while simultaneously enhancing its generalization capabilities,
leading to robust performance even on out-of-distribution inputs.
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Table 2: Selective classification results on CIFAR-10-C using E-AURC at different level of severity s.
Method s=1 s=2 s=3 s=4 s=5 Mean
EDL 18.12±0.31 30.16±0.96 44.54±1.95 63.61±1.90 101.61±4.46 51.60±1.91
RED 16.74±0.40 30.15±1.40 44.80±1.66 65.26±2.61 103.87±5.73 52.16±2.36
I-EDL 14.62±0.52 27.84±0.65 41.70±1.57 59.53±2.92 95.93±4.43 47.92±2.01
R-EDL 17.13±0.47 29.85±1.05 45.06±0.74 63.75±0.51 101.74±1.21 51.50±0.79
DA-EDL 20.61±2.75 35.56±5.31 51.09±8.38 72.29±11.23 112.83±14.53 58.47±8.44
Ours 8.70±0.35 14.80±0.45 21.90±0.81 35.06±1.81 66.52±7.37 29.40±2.16

Table 3: OOD generalization accuracy on CIFAR10-C and CIFAR100-C dataset.
Dataset Method s = 1 s = 2 s = 3 s = 4 s = 5 Mean

CIFAR10-C

EDL 87.44±0.28 80.90±0.55 75.25±0.70 68.08±0.93 56.24±1.10 73.58±0.71
RED 88.23±0.21 81.38±0.37 75.48±0.66 68.05±0.97 56.61±1.28 73.95±0.70
I-EDL 88.03±0.21 81.10±0.38 75.32±0.53 68.12±0.48 56.98±0.51 73.01±0.42
R-EDL 85.46±0.32 80.12±0.43 74.91±0.51 67.53±0.68 56.74±0.88 72.95±0.56
H-EDL 87.82±0.15 81.66±0.21 76.23±0.25 67.64±0.30 55.88±0.33 73.85±0.25
DA-EDL 85.26±0.34 80.06±0.58 74.88±0.69 67.82±0.88 57.87±1.06 73.18±0.71
Ours 93.88±0.09 92.04±0.09 90.19±0.12 87.02±0.18 80.53±0.15 88.73±0.13

CIFAR100-C

EDL 26.37±2.43 22.82±2.24 20.69±2.15 18.14±1.98 14.98±1.78 20.60±2.12
RED 64.69±0.20 55.65±0.23 50.02±0.27 43.36±0.30 33.06±0.24 49.36±0.25
I-EDL 64.43±0.26 55.52±0.33 49.82±0.34 43.16±0.30 32.72±0.41 49.13±0.33
R-EDL 40.42±1.98 35.34±1.74 32.13±1.59 28.20±1.35 22.71±0.97 31.76±1.53
H-EDL 64.87±0.21 55.85±0.15 50.22±0.16 43.68±0.15 33.35±0.18 49.59±0.17
DA-EDL 16.76±1.55 14.94±1.32 13.81±0.99 12.53±0.99 11.10±0.85 13.83±1.17
Ours 69.34±0.25 65.29±0.32 63.07±0.29 58.64±0.37 50.46±0.37 61.35±0.32

Visualization of estimated uncertainty. In Figs. 2a and 2b, we visualize the uncertainty distributions
produced by our model and a baseline method (MSP with vicinal training). These figures show that
point-estimate-based methods, despite supervision from level-1 labels, exhibit limited improvement
in OOD detection and remain overconfident on OOD samples. In contrast, our method achieves a
clear separation between ID and OOD samples. To evaluate the model’s ability to estimate aleatoric
uncertainty, we further visualize its predictions on CIFAR-10 and five CIFAR-10-C variants with
increasing corruption severity (Fig. 2c). As the corruption level increases, the estimated aleatoric
uncertainty rises accordingly, indicating that our model reliably captures data uncertainty.

Table 1: OOD detection (AUROC) and classification accuracy on CIFAR-10 and CIFAR-100 dataset.

Method →CIFAR-100 →Tiny →MNIST →SVHN →Textures →Places365 CIFAR-10
OOD Detect OOD Detect OOD Detect OOD Detect OOD Detect OOD Detec Cls Acc

KL-PN [NIPS18] [29] 83.46±0.88 85.24±0.97 87.80±3.81 88.39±2.37 85.41±1.36 84.36±0.77 90.31±1.46
RKL-PN [NIPS19][30] 60.43±2.54 63.04±2.43 85.76±3.03 43.97±9.92 59.17±3.17 66.05±2.62 53.22±4.25
PostNet [NIPS20][7] 81.46±1.00 77.78±3.89 85.19±2.19 88.27±1.76 85.87±1.23 82.97±1.76 89.44±0.62
NatPN [NIPS21] [8] 78.44±0.83 80.24±0.41 81.09±4.39 82.23±1.20 82.23±5.12 80.76±0.49 86.25±0.40
EDL [NIPS18][38] 86.64±0.25 90.59±0.21 93.24±0.62 93.56±1.01 90.66±0.62 90.25±0.34 94.15±0.24
RED [ICML23][32] 85.81±0.34 88.07±0.27 91.60±1.50 92.12±0.92 88.08±1.47 88.05±0.38 94.83±0.18
I-EDL[ICML23] [12] 88.11±0.45 90.83±0.45 94.20±1.11 94.77±1.62 91.29±0.96 90.38±0.40 94.95±0.17
R-EDL [ICLR24][9] 86.88±0.08 89.72±0.47 90.66±1.40 92.53±4.25 90.79±0.79 87.06±0.31 92.92±0.13
H-EDL [NIPS24][36] 88.60±0.29 91.43±0.19 95.60±0.27 92.99±0.67 92.97±0.34 92.07±0.32 95.04±0.05
DA-EDL [ICML24][41] 82.39±0.65 84.03±0.63 88.80±0.33 86.98±0.69 82.27±0.87 83.40±0.45 92.57±0.15
Ours 89.09±0.19 91.81±0.22 97.32±0.42 96.20±0.32 92.51±0.73 91.61±0.15 96.18±0.13

Method →CIFAR-10 →Tiny →MNIST →SVHN →Textures →Places365 CIFAR-100
OOD Detect OOD Detect OOD Detect OOD Detect OOD Detect OOD Detect Cls Acc

KL-PN [NIPS18] [29] 57.20±2.79 60.56±1.86 55.20±22.34 50.90±12.39 49.38±3.61 57.93±2.60 24.89±10.48
RKL-PN [NIPS19][30] 53.13±2.15 51.30±1.38 48.27±25.03 55.46±10.83 44.35±4.15 54.24±3.88 17.64±2.80
PostNet [NIPS20][7] 54.19±0.59 53.58±0.51 75.93±11.81 59.89±8.15 52.08±4.59 53.86±1.09 3.08±0.23
NatPN [NIPS21] [8] 67.77±0.87 70.69±0.69 65.20±4.90 75.34±2.37 66.53±1.60 69.25±0.83 59.01±0.40
EDL [NIPS18][38] 56.49±2.47 57.40±1.92 28.84±6.81 53.78±14.68 49.68±3.88 56.74±2.68 30.23±2.72
RED [ICML23][32] 78.17±0.35 81.79±0.18 78.45±2.53 80.98±2.42 77.79±0.31 78.71±0.40 77.60±0.26
I-EDL[ICML23] [12] 77.42±0.31 82.39±0.29 76.22±0.83 78.91±0.25 78.54±0.31 79.65±0.19 77.10±0.12
R-EDL [ICLR24][9] 65.45±2.01 71.28±0.53 79.44±4.42 78.50±2.49 74.35±1.37 75.35±0.94 46.70±1.69
H-EDL [NIPS24][36] 75.73±0.39 80.81±0.26 73.91±4.34 83.56±3.07 75.74±0.70 79.97±0.59 77.75±0.23
DA-EDL [ICML24][41] 53.07±1.03 56.78±0.64 65.63±3.12 48.02±2.34 49.53±2.21 54.48±2.31 16.59±0.76
Ours 81.86±0.19 83.40±0.09 86.17±1.83 85.07±1.94 78.58±0.33 79.97±0.39 78.29±0.11

Table 2: OOD generalization accuracy on CIFAR10-C and CIFAR100-C dataset. s denotes the degree
of corruption severity.

Dataset Method s = 1 s = 2 s = 3 s = 4 s = 5 Mean

CIFAR10-C

EDL [38] 87.44±0.28 80.90±0.55 75.25±0.70 68.08±0.93 56.24±1.10 73.58±0.71
RED [32] 88.23±0.21 81.38±0.37 75.48±0.66 68.05±0.97 56.61±1.28 73.95±0.70

I-EDL [12] 88.03±0.21 81.10±0.38 75.32±0.53 68.12±0.48 56.98±0.51 73.01±0.42
R-EDL [9] 85.46±0.32 80.12±0.43 74.91±0.51 67.53±0.68 56.74±0.88 72.95±0.56

H-EDL [36] 87.82±0.15 81.66±0.21 76.23±0.25 67.64±0.30 55.88±0.33 73.85±0.25
DA-EDL [41] 85.26±0.34 80.06±0.58 74.88±0.69 67.82±0.88 57.87±1.06 73.18±0.71

Ours 93.88±0.09 92.04±0.09 90.19±0.12 87.02±0.18 80.53±0.15 88.73±0.13

CIFAR100-C

EDL [38] 26.37±2.43 22.82±2.24 20.69±2.15 18.14±1.98 14.98±1.78 20.60±2.12
RED [32] 64.69±0.20 55.65±0.23 50.02±0.27 43.36±0.30 33.06±0.24 49.36±0.25

I-EDL [12] 64.43±0.26 55.52±0.33 49.82±0.34 43.16±0.30 32.72±0.41 49.13±0.33
R-EDL [9] 40.42±1.98 35.34±1.74 32.13±1.59 28.20±1.35 22.71±0.97 31.76±1.53

H-EDL [36] 64.87±0.21 55.85±0.15 50.22±0.16 43.68±0.15 33.35±0.18 49.59±0.17
DA-EDL [41] 16.76±1.55 14.94±1.32 13.81±0.99 12.53±0.99 11.10±0.85 13.83±1.17

Ours 69.34±0.25 65.29±0.32 63.07±0.29 58.64±0.37 50.46±0.37 61.35±0.32

ability. While previous EDL methods commonly suffer from severely degraded classification accuracy,282
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�1.0 �0.8 �0.6 �0.4 �0.2
Negative Softmax Probability

0

5

10

15

D
en

si
ty

CIFAR-10(ID)
MNIST(OOD)

(a) MSP

�35 �30 �25 �20 �15
Differential Entropy

0.0

0.1

0.2

0.3

D
en

si
ty

CIFAR-10(ID)
MNIST(OOD)

(b) Epistemic Uncertainty

0.5 1.0 1.5 2.0 2.5
Aleatoric Uncertainty

0

1

2

3

4

5

D
en

si
ty

CIFAR10
CIFAR10-C(s1)
CIFAR10-C(s2)
CIFAR10-C(s3)
CIFAR10-C(s4)
CIFAR10-C(s5)

(c) Aleatoric Uncertainty

Figure 2: Visualization of uncertainties.
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Table 1: OOD detection (AUROC) and classification accuracy on CIFAR-10 and CIFAR-100 dataset.

Method →CIFAR-100 →Tiny →MNIST →SVHN →Textures →Places365 CIFAR-10
OOD Detect OOD Detect OOD Detect OOD Detect OOD Detect OOD Detec Cls Acc

KL-PN [NIPS18] [29] 83.46±0.88 85.24±0.97 87.80±3.81 88.39±2.37 85.41±1.36 84.36±0.77 90.31±1.46
RKL-PN [NIPS19][30] 60.43±2.54 63.04±2.43 85.76±3.03 43.97±9.92 59.17±3.17 66.05±2.62 53.22±4.25
PostNet [NIPS20][7] 81.46±1.00 77.78±3.89 85.19±2.19 88.27±1.76 85.87±1.23 82.97±1.76 89.44±0.62
NatPN [NIPS21] [8] 78.44±0.83 80.24±0.41 81.09±4.39 82.23±1.20 82.23±5.12 80.76±0.49 86.25±0.40
EDL [NIPS18][38] 86.64±0.25 90.59±0.21 93.24±0.62 93.56±1.01 90.66±0.62 90.25±0.34 94.15±0.24
RED [ICML23][32] 85.81±0.34 88.07±0.27 91.60±1.50 92.12±0.92 88.08±1.47 88.05±0.38 94.83±0.18
I-EDL[ICML23] [12] 88.11±0.45 90.83±0.45 94.20±1.11 94.77±1.62 91.29±0.96 90.38±0.40 94.95±0.17
R-EDL [ICLR24][9] 86.88±0.08 89.72±0.47 90.66±1.40 92.53±4.25 90.79±0.79 87.06±0.31 92.92±0.13
H-EDL [NIPS24][36] 88.60±0.29 91.43±0.19 95.60±0.27 92.99±0.67 92.97±0.34 92.07±0.32 95.04±0.05
DA-EDL [ICML24][41] 82.39±0.65 84.03±0.63 88.80±0.33 86.98±0.69 82.27±0.87 83.40±0.45 92.57±0.15
Ours 89.09±0.19 91.81±0.22 97.32±0.42 96.20±0.32 92.51±0.73 91.61±0.15 96.18±0.13

Method →CIFAR-10 →Tiny →MNIST →SVHN →Textures →Places365 CIFAR-100
OOD Detect OOD Detect OOD Detect OOD Detect OOD Detect OOD Detect Cls Acc

KL-PN [NIPS18] [29] 57.20±2.79 60.56±1.86 55.20±22.34 50.90±12.39 49.38±3.61 57.93±2.60 24.89±10.48
RKL-PN [NIPS19][30] 53.13±2.15 51.30±1.38 48.27±25.03 55.46±10.83 44.35±4.15 54.24±3.88 17.64±2.80
PostNet [NIPS20][7] 54.19±0.59 53.58±0.51 75.93±11.81 59.89±8.15 52.08±4.59 53.86±1.09 3.08±0.23
NatPN [NIPS21] [8] 67.77±0.87 70.69±0.69 65.20±4.90 75.34±2.37 66.53±1.60 69.25±0.83 59.01±0.40
EDL [NIPS18][38] 56.49±2.47 57.40±1.92 28.84±6.81 53.78±14.68 49.68±3.88 56.74±2.68 30.23±2.72
RED [ICML23][32] 78.17±0.35 81.79±0.18 78.45±2.53 80.98±2.42 77.79±0.31 78.71±0.40 77.60±0.26
I-EDL[ICML23] [12] 77.42±0.31 82.39±0.29 76.22±0.83 78.91±0.25 78.54±0.31 79.65±0.19 77.10±0.12
R-EDL [ICLR24][9] 65.45±2.01 71.28±0.53 79.44±4.42 78.50±2.49 74.35±1.37 75.35±0.94 46.70±1.69
H-EDL [NIPS24][36] 75.73±0.39 80.81±0.26 73.91±4.34 83.56±3.07 75.74±0.70 79.97±0.59 77.75±0.23
DA-EDL [ICML24][41] 53.07±1.03 56.78±0.64 65.63±3.12 48.02±2.34 49.53±2.21 54.48±2.31 16.59±0.76
Ours 81.86±0.19 83.40±0.09 86.17±1.83 85.07±1.94 78.58±0.33 79.97±0.39 78.29±0.11

Table 2: OOD generalization accuracy on CIFAR10-C and CIFAR100-C dataset. s denotes the degree
of corruption severity.

Dataset Method s = 1 s = 2 s = 3 s = 4 s = 5 Mean

CIFAR10-C

EDL [38] 87.44±0.28 80.90±0.55 75.25±0.70 68.08±0.93 56.24±1.10 73.58±0.71
RED [32] 88.23±0.21 81.38±0.37 75.48±0.66 68.05±0.97 56.61±1.28 73.95±0.70

I-EDL [12] 88.03±0.21 81.10±0.38 75.32±0.53 68.12±0.48 56.98±0.51 73.01±0.42
R-EDL [9] 85.46±0.32 80.12±0.43 74.91±0.51 67.53±0.68 56.74±0.88 72.95±0.56

H-EDL [36] 87.82±0.15 81.66±0.21 76.23±0.25 67.64±0.30 55.88±0.33 73.85±0.25
DA-EDL [41] 85.26±0.34 80.06±0.58 74.88±0.69 67.82±0.88 57.87±1.06 73.18±0.71

Ours 93.88±0.09 92.04±0.09 90.19±0.12 87.02±0.18 80.53±0.15 88.73±0.13

CIFAR100-C

EDL [38] 26.37±2.43 22.82±2.24 20.69±2.15 18.14±1.98 14.98±1.78 20.60±2.12
RED [32] 64.69±0.20 55.65±0.23 50.02±0.27 43.36±0.30 33.06±0.24 49.36±0.25

I-EDL [12] 64.43±0.26 55.52±0.33 49.82±0.34 43.16±0.30 32.72±0.41 49.13±0.33
R-EDL [9] 40.42±1.98 35.34±1.74 32.13±1.59 28.20±1.35 22.71±0.97 31.76±1.53

H-EDL [36] 64.87±0.21 55.85±0.15 50.22±0.16 43.68±0.15 33.35±0.18 49.59±0.17
DA-EDL [41] 16.76±1.55 14.94±1.32 13.81±0.99 12.53±0.99 11.10±0.85 13.83±1.17

Ours 69.34±0.25 65.29±0.32 63.07±0.29 58.64±0.37 50.46±0.37 61.35±0.32

ability. While previous EDL methods commonly suffer from severely degraded classification accuracy,282

which severely restricts their applicability in real-world scenarios.283
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Figure 2: Visualization of uncertainties.

Visualization of estimated uncertainty. In Fig.2a-2b, we visualize the uncertainty distributions284
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Table 1: OOD detection (AUROC) and classification accuracy on CIFAR-10 and CIFAR-100 dataset.

Method →CIFAR-100 →Tiny →MNIST →SVHN →Textures →Places365 CIFAR-10
OOD Detect OOD Detect OOD Detect OOD Detect OOD Detect OOD Detec Cls Acc

KL-PN [NIPS18] [29] 83.46±0.88 85.24±0.97 87.80±3.81 88.39±2.37 85.41±1.36 84.36±0.77 90.31±1.46
RKL-PN [NIPS19][30] 60.43±2.54 63.04±2.43 85.76±3.03 43.97±9.92 59.17±3.17 66.05±2.62 53.22±4.25
PostNet [NIPS20][7] 81.46±1.00 77.78±3.89 85.19±2.19 88.27±1.76 85.87±1.23 82.97±1.76 89.44±0.62
NatPN [NIPS21] [8] 78.44±0.83 80.24±0.41 81.09±4.39 82.23±1.20 82.23±5.12 80.76±0.49 86.25±0.40
EDL [NIPS18][38] 86.64±0.25 90.59±0.21 93.24±0.62 93.56±1.01 90.66±0.62 90.25±0.34 94.15±0.24
RED [ICML23][32] 85.81±0.34 88.07±0.27 91.60±1.50 92.12±0.92 88.08±1.47 88.05±0.38 94.83±0.18
I-EDL[ICML23] [12] 88.11±0.45 90.83±0.45 94.20±1.11 94.77±1.62 91.29±0.96 90.38±0.40 94.95±0.17
R-EDL [ICLR24][9] 86.88±0.08 89.72±0.47 90.66±1.40 92.53±4.25 90.79±0.79 87.06±0.31 92.92±0.13
H-EDL [NIPS24][36] 88.60±0.29 91.43±0.19 95.60±0.27 92.99±0.67 92.97±0.34 92.07±0.32 95.04±0.05
DA-EDL [ICML24][41] 82.39±0.65 84.03±0.63 88.80±0.33 86.98±0.69 82.27±0.87 83.40±0.45 92.57±0.15
Ours 89.09±0.19 91.81±0.22 97.32±0.42 96.20±0.32 92.51±0.73 91.61±0.15 96.18±0.13

Method →CIFAR-10 →Tiny →MNIST →SVHN →Textures →Places365 CIFAR-100
OOD Detect OOD Detect OOD Detect OOD Detect OOD Detect OOD Detect Cls Acc

KL-PN [NIPS18] [29] 57.20±2.79 60.56±1.86 55.20±22.34 50.90±12.39 49.38±3.61 57.93±2.60 24.89±10.48
RKL-PN [NIPS19][30] 53.13±2.15 51.30±1.38 48.27±25.03 55.46±10.83 44.35±4.15 54.24±3.88 17.64±2.80
PostNet [NIPS20][7] 54.19±0.59 53.58±0.51 75.93±11.81 59.89±8.15 52.08±4.59 53.86±1.09 3.08±0.23
NatPN [NIPS21] [8] 67.77±0.87 70.69±0.69 65.20±4.90 75.34±2.37 66.53±1.60 69.25±0.83 59.01±0.40
EDL [NIPS18][38] 56.49±2.47 57.40±1.92 28.84±6.81 53.78±14.68 49.68±3.88 56.74±2.68 30.23±2.72
RED [ICML23][32] 78.17±0.35 81.79±0.18 78.45±2.53 80.98±2.42 77.79±0.31 78.71±0.40 77.60±0.26
I-EDL[ICML23] [12] 77.42±0.31 82.39±0.29 76.22±0.83 78.91±0.25 78.54±0.31 79.65±0.19 77.10±0.12
R-EDL [ICLR24][9] 65.45±2.01 71.28±0.53 79.44±4.42 78.50±2.49 74.35±1.37 75.35±0.94 46.70±1.69
H-EDL [NIPS24][36] 75.73±0.39 80.81±0.26 73.91±4.34 83.56±3.07 75.74±0.70 79.97±0.59 77.75±0.23
DA-EDL [ICML24][41] 53.07±1.03 56.78±0.64 65.63±3.12 48.02±2.34 49.53±2.21 54.48±2.31 16.59±0.76
Ours 81.86±0.19 83.40±0.09 86.17±1.83 85.07±1.94 78.58±0.33 79.97±0.39 78.29±0.11

Table 2: OOD generalization accuracy on CIFAR10-C and CIFAR100-C dataset. s denotes the degree
of corruption severity.

Dataset Method s = 1 s = 2 s = 3 s = 4 s = 5 Mean

CIFAR10-C

EDL [38] 87.44±0.28 80.90±0.55 75.25±0.70 68.08±0.93 56.24±1.10 73.58±0.71
RED [32] 88.23±0.21 81.38±0.37 75.48±0.66 68.05±0.97 56.61±1.28 73.95±0.70

I-EDL [12] 88.03±0.21 81.10±0.38 75.32±0.53 68.12±0.48 56.98±0.51 73.01±0.42
R-EDL [9] 85.46±0.32 80.12±0.43 74.91±0.51 67.53±0.68 56.74±0.88 72.95±0.56

H-EDL [36] 87.82±0.15 81.66±0.21 76.23±0.25 67.64±0.30 55.88±0.33 73.85±0.25
DA-EDL [41] 85.26±0.34 80.06±0.58 74.88±0.69 67.82±0.88 57.87±1.06 73.18±0.71

Ours 93.88±0.09 92.04±0.09 90.19±0.12 87.02±0.18 80.53±0.15 88.73±0.13

CIFAR100-C

EDL [38] 26.37±2.43 22.82±2.24 20.69±2.15 18.14±1.98 14.98±1.78 20.60±2.12
RED [32] 64.69±0.20 55.65±0.23 50.02±0.27 43.36±0.30 33.06±0.24 49.36±0.25

I-EDL [12] 64.43±0.26 55.52±0.33 49.82±0.34 43.16±0.30 32.72±0.41 49.13±0.33
R-EDL [9] 40.42±1.98 35.34±1.74 32.13±1.59 28.20±1.35 22.71±0.97 31.76±1.53

H-EDL [36] 64.87±0.21 55.85±0.15 50.22±0.16 43.68±0.15 33.35±0.18 49.59±0.17
DA-EDL [41] 16.76±1.55 14.94±1.32 13.81±0.99 12.53±0.99 11.10±0.85 13.83±1.17

Ours 69.34±0.25 65.29±0.32 63.07±0.29 58.64±0.37 50.46±0.37 61.35±0.32

ability. While previous EDL methods commonly suffer from severely degraded classification accuracy,282

which severely restricts their applicability in real-world scenarios.283
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Figure 2: Visualization of uncertainties.

Visualization of estimated uncertainty. In Fig.2a-2b, we visualize the uncertainty distributions284

produced by our model and a baseline method (MSP with vicinal training). Point-estimate-based285

methods, despite supervision from level-1 labels, show limited improvement in OOD detection286
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Figure 2: Visualization of uncertainties.

VRM with existing techniques. We can also integrate the proposed vicinal level-1 labeling method
into three representative models: the standard level-1 classifier (i.e., softmax classifier), a level-2
evidential model (EDL) [45], and the hyper-opinion-based H-EDL [44]. As shown in Table 4, our
method can be seamlessly incorporated into existing techniques to enhance both OOD generalization
and OOD detection. Several key observations are worth highlighting: First, vicinal level-1 labels are
more compatible with level-2 distributional models than with point-estimate-based softmax classifiers.
This is likely because softmax models lack the ability to express uncertainty over multiple plausible
classes, whereas distributional models can better leverage the probabilistic nature of vicinal labels.
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Table 4: Level-1 and level-2 models with VRM.

Method Model generalization OOD detection

ID-Acc OOD-Acc AUROC

MSP [18] 95.06 74.75 89.83
EDL [45] 95.17 74.51 90.67
H-EDL [44] 95.04 73.84 92.27

MSP w. Vic 96.33+1.27 87.92+13.17 89.59-0.24
EDL w. Vic 96.18+1.01 88.73+14.22 93.08+2.39
H-EDL w. Vic 96.43+1.39 88.63+14.79 93.89+1.72

Moreover, our approach is
particularly effective when
combined with H-EDL [44],
which explicitly captures the
possibility of an instance be-
longing to multiple classes
through feature-based hyper-
opinions. The synergy be-
tween vicinal labels and
hyper-opinion enables more
accurate and continuous mod-
eling of probability distribu-
tions.

Ablation study. As shown in

and remain overconfident on OOD samples. In contrast, our method achieves clear separation287

between ID and OOD samples. To evaluate the model’s ability to estimate aleatoric uncertainty,288

we further visualize its predictions on CIFAR-10 and five CIFAR-10-C variants with increasing289

corruption severity (Fig. 2c). As the noise level increases, the estimated aleatoric uncertainty (AU)290

rises accordingly, indicating that our model reliably captures data uncertainty.291

Table 3: Level-1 and level-2 models with L1 as cross-
entropy and VRM.

Method Model generalization OOD detection

ID-Acc OOD-Acc AUROC

MSP [18] 95.06 74.75 89.83
EDL [38] 95.17 74.51 90.67
H-EDL [37] 95.04 73.84 92.27

MSP w. Vic 96.33+1.27 87.92+13.17 89.59-0.24
EDL w. Vic 96.18+1.01 88.73+14.22 93.08+2.39
H-EDL w. Vic 96.43+1.39 88.63+14.79 93.89+1.72

VRM with existing techniques.292

We can also integrate the proposed293

vicinal level-1 labeling method into294

three representative models: the295

standard level-1 classifier (i.e., softmax296

classifier), a level-2 evidential model297

(EDL) [38], and the hyper-opinion-298

based H-EDL [37]. As shown in299

Table 3, our method can be seamlessly300

incorporated into existing techniques301

to enhance both OOD generalization302

and OOD detection. Several key303

observations are worth highlighting:304

First, vicinal level-1 labels are more305

compatible with level-2 distributional306

models than with point-estimate-based softmax classifiers. This is likely because softmax models lack307

the ability to express uncertainty over multiple plausible classes, whereas distributional models can308

better leverage the soft, probabilistic nature of vicinal labels. Moreover, our approach is particularly309

effective when combined with H-EDL [37], which explicitly captures the possibility of an instance310

belonging to multiple classes through feature-based hyper-opinions. The synergy between vicinal311

labels and hyper-opinion enables more accurate and continuous modeling of probability distributions.312
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Figure 3: Ablation study on the hyperparameters.

Ablation Study. As shown313

in Fig.3, we investigate the314

impact of two hyperparameters:315

ω and ω+
noise. We begin by316

analyzing ω. As ω increases, the317

corresponding Beta distribution318

becomes more peaked around319

0.5, with narrower tails on both320

sides. This sharper concentration321

near 0.5 facilitates improved322

OOD generalization, as supported by Theorem 2. However, an overly concentrated ε distribution323

around 0.5 can hinder smooth sample mixing, which in turn may degrade OOD detection performance.324

Empirically, we find that setting ω to around 10 provides the best trade-off. For ω+
noise (with325

ω+
noise = ω→

noise = 1.0), the resulting ε values follow a uniform distribution over the interval [0,326

1]. In this case, OOD detection performance reaches its peak, as smaller ε values—according to327

Theorem 3—help suppress the rapid growth of Dirichlet concentration, thereby enhancing epistemic328

uncertainty estimation. However, as ω+
noise increases, the sampled ε values become increasingly329

concentrated near 1, which accelerates the Dirichlet concentration growth and compromises the330

model’s ability to estimate epistemic uncertainty accurately.331

6 Conclusion332

This work addresses a key limitation in current EDL methods—their dependence on hard labels that333

ignore label uncertainty. We propose a VRM framework using level-1 supervision via smoothed334

conditional label distributions. This improves aleatoric uncertainty modeling and prevents Dirichlet335

degeneration, leading to better epistemic uncertainty estimation. Experiments confirm consistent336

gains across synthetic and OOD benchmarks. We argue that our method is designed to complement,337

not replace, existing EDL approaches. It can be seamlessly integrated into current frameworks to338

enhance level-2 uncertainty modeling. The limitation is most experiments are limited to datasets of339

the CIFAR scale; larger and more realistic datasets remain to be explored.340
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Figure 3: Ablation study on the hyperparameters.

Fig. 3, we investigate the im-
pact of two hyperparameters:
β and β+

noise. We begin by
analyzing β. As β increases,
the corresponding Beta distri-
bution becomes more peaked
around 0.5, with narrower
tails on both sides. This
sharper concentration near 0.5
facilitates improved OOD generalization, as supported by Theorem 2. However, an overly concen-
trated λ distribution around 0.5 can hinder smooth sample mixing, which in turn may degrade OOD
detection performance. Empirically, we find that setting β to around 10 provides the best trade-off.
For the analysis of β+

noise, we first consider the case where β+
noise = β−

noise = 1.0. In this scenario, the
resulting λ values follow a uniform distribution over the interval [0, 1]. In this case, OOD detection
performance reaches its peak, as smaller λ values (according to Theorem 3) help suppress the rapid
growth of Dirichlet concentration, thereby enhancing epistemic uncertainty estimation. However, as
β+
noise increases, the sampled λ values become increasingly concentrated near 1, which accelerates the

Dirichlet concentration growth and compromises the model’s ability to estimate epistemic uncertainty
accurately. While our primary analysis focuses on their joint effect, we further isolate and analyze
the contribution of each component through detailed ablation experiments in Appendix D.2.

6 Conclusion

This work addresses a key limitation of current EDL methods, namely their reliance on hard labels that
ignore inherent label uncertainty. We propose a vicinal risk minimization framework that employs
level-1 supervision through smoothed conditional label distributions. This approach enhances
aleatoric uncertainty modeling and mitigates Dirichlet degeneration, also resulting in improved
epistemic uncertainty estimation. Extensive experiments demonstrate consistent improvements across
both out-of-distribution and selective classification benchmarks.

Limitations. While our method effectively alleviates the degeneration problem in evidential uncer-
tainty estimation, it introduces two hyperparameters that control the distribution of the generated
level-1 vicinal labels. The choice of these hyperparameters can influence the balance between
aleatoric and epistemic uncertainty, similar to how the regularization strength in previous works based
on entropy or Fisher information affects standard EDL methods. Although we empirically found
our approach to be robust within a reasonable range of parameter values, developing adaptive or
data-driven strategies to automatically calibrate the vicinal smoothing strength remains an important
direction for future work.
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A List of Symbols

A list of symbols used in the main paper as well as in the following supplementary material, most of
symbols keep same as [2][3].

Table 5: Notation summary for the general, level-1, and level-2 learning settings.
General Symbols

K number of classes
X instance space
Y label space with hard labels {y1, . . . , yK}
D training data {(x(n), y(n))}Nn=1 ⊂ X × Y
P data generating probability
p(· | x) a conditional distribution on Y , i.e., p(y | x), represents the probability of observing y

given x
P(Y),P1(Y) the set of probability distributions on Y
∆K the K-simplex, i.e., ∆K := {θ = (θ1, . . . , θK) ∈ [0, 1]K | ∥θ∥1 = 1}
θ = (θ1, · · · , θK)⊤ probability vector with K singletons

Level-1 Learning Setting

H1 (level-1) hypothesis space consisting of hypothesis h : X → ∆K

L1 loss function for level-1 hypothesis, i.e., L1 : P1(Y)× Y → R
R(·) risk or expected loss of a level-1 hypothesis (Eq.3)
R̂emp(·) empirical loss of a level-1 hypothesis (Eq. 4)
ĥ empirical risk minimiser, i.e., ĥ = argminh∈H R̂emp(h)
h∗ true risk minimiser or Bayes predictor, i.e., h∗ = argminh∈H R(h)

Level-2 Learning Setting

∆
(2)
K the set of distributions on simplex ∆K

P2(Y) the set of distributions on P1(Y) (the set of level-2 distributions)
H2 (level-2) hypothesis, i.e., a mapping h : X → ∆

(2)
K

Q probability distribution on P1(Y), i.e., an element of P2(Y)
L2 loss function for level-2 hypothesis, e.g., L2 : P2(Y)× (·) → R+

R̂
(2)
emp(·) empirical (level-2) loss of a level-2 hypothesis

R(2)(·) (level-2) risk or expected loss of a level-2 hypothesis

Distributions

N (µ, σ2) Gaussian distribuiton with location parameter µ and scale parameter σ > 0
Dir(α) Dirichlet distribution with parameter α ∈ RK

+

δy Dirac measure at y ∈ Y (i.e. δy is an element of P1(Y))
δp Dirac measure at p ∈ P1(Y) (i.e., δp is an element of P2(Y))

Entropy and Divergence

H(·) Shannon Entropy of a categorical distribution
KL(·, ·) Kullback-Leibler divergence on P2(Y)× P2(Y)

B Proof of Theorem

Theorem 1. For any level-1 loss function L1 : P1(Y)× Y → R that satisfies L1(Ep∼Dir(α)p, ·) ≤
Ep∼Dir(α)L1(p, ·), (i.e., is a convex function), such as Brier score and the log-loss in Eq. 2, the
empirical risk minimizer of a level-2 prediction is always a Dirac measure δp ∈ P2(Y) and the
expectation of level-2 prediction is δy ∈ P1(Y). This result holds if the learner possesses a universal
approximation property, allowing it to represent such a degenerate distribution.
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Proof. Let the empirical risk of a level-2 prediction Q ∈ P2(Y) as

R̂(2)
emp(Q) =

1

N

N∑
n=1

L2

(
Q, y(n)

)
=

1

N

N∑
n=1

Ep∼QL1

(
p, y(n)

)
.

(19)

By assumption on the level-1 loss L1 (i.e. convexity), it holds that

R̂(2)
emp(Q) ≥ 1

N

N∑
n=1

L1

(
Ep∼Q[p], y

(n)
)
. (20)

Let Q̃(N) be the minimizer over all Q ∈ ∆
(2)
K of the right-hand side, then p̃(N) = Eppp∼Q̃(N) [ppp] is an

element in ∆K . Define Q̂(N) = δp̃(N) and note that Eppp∼Q̂(N) [ppp] = p̃(N) . Then,

R̂(2)
emp(Q̂

(N)) =
1

N

N∑
n=1

Ep∼Q̂(N)L1(p, y
(n))

=
1

N

N∑
n=1

L1

(
p̃(N), y(n)

)
=

1

N

N∑
n=1

L1

(
Ep∼Q̃(N) [p], y

(n)
)
.

(21)

This proves that the empirical level-2 risk is minimized by a Dirac distribution over a single level-1
prediction, i.e., Q̂(N) = δp̃(N) , implying vanishing epistemic uncertainty. We now show that the
corresponding level-1 prediction also collapses to a Dirac measure, indicating vanishing aleatoric
uncertainty. Consider the empirical level-1 risk:

R̂(1)
emp(p) =

1

N

N∑
n=1

L1(p, y
(n)). (22)

For any strictly proper loss function L1 (e.g., Brier score, log-loss), it is uniquely minimized when
p = δy(n) , i.e., the one-hot encoding of the ground-truth label. That is,

arg min
p∈∆K

L1(p, y
(n)) = δy(n) , with L1

(
δy(n) , y(n)

)
= 0. (23)

Hence, the optimal level-1 predictor p̃(N) that minimizes the empirical risk is

p̃(N) = δy(n) , for all n. (24)

It follows that the expected level-1 prediction under the optimal level-2 distribution is

Ep∼Q̂(N)p = δy(n) , (25)

i.e., a one-hot distribution that assigns all probability mass to the ground-truth class. This indicates
that aleatoric uncertainty also vanishes.

Therefore, the empirical level-2 risk is minimized by a Dirac measure over a level-1 Dirac prediction

Q̂(N) = δδ
y(n)

. (26)

This implies that:

• Epistemic uncertainty vanishes, since Q is a Dirac measure.
• Aleatoric uncertainty vanishes, since the expected level-1 prediction under Q is a one-hot

vector.
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This highlights a critical degeneracy of empirical risk minimization with strictly proper convex losses
in the level-2 setting: it collapses all predictive uncertainty, providing no representation of uncertainty
despite operating in a distribution-over-distributions framework.
Proposition 1. Under the assumptions of Theorem 1, empirical risk minimization of level-2 prediction
inevitably yields degenerate distributions δp ∈ P2(Y) and the expectation of the level-2 prediction is
δy ∈ P1(Y). As a result, the model fails to provide any meaningful or disentangled representation of
aleatoric or epistemic uncertainty.

Proof. Assume that the optimal strategy under ERM is to collapse the Dirichlet distribution to a delta
distribution centered on the one-hot vector δy , i.e., Dir(α) → δδy as in Theorem 1. This degeneracy
has consequences for uncertainty estimation. Consider the standard decomposition of predictive
uncertainty in Dirichlet-based models as in Theorem 1, we have

Total Uncertainty (TU) = H
[
Ep∼Dir(α) [ p(y | p) ]

]
, (27)

Aleatoric Uncertainty (AU) = Ep [H [ p(y | p) ] ] , (28)
Epistemic Uncertainty (EU) = TU − AU. (29)

When the Dirichlet degenerates to δδy , both the expected predictive distribution and the samples from
Dir(α) are deterministic, yielding

TU → 0, AU → 0, EU → 0. (30)

Thus, the model expresses neither AU nor EU, regardless of the true nature of the data distribution.
Consequently, the level-2 model fails to provide any meaningful or disentangled representation of
aleatoric or epistemic uncertainty.

Theorem 2. Let the ground-truth level-1 label be denoted as p∗(x), and let the observed level-0
one-hot label δy(x) be a noisy realization of p∗(x) perturbed by input-dependent label noise µ(x)

δy(x) = p∗(x) + µ(x) where µ(x) ∼ N (0, σ2I). (31)

Then, the test risk admits the following lower bound under mild regularity conditions

R(ĥ;P ) ≥ Cσ2, (32)

where C depends on the trace of the Hessian matrix of the loss function with respect to p. Then, for
the level-1 label with strong mixing, the bound can be tightened as

R(ĥ;P ) ≥ C ′σ2, (33)

where C ′/C ≈ 1
2β+1 + 1

2 < 1 (∀β ≫ 1/2), indicating a reduced sensitivity of the test risk to
input-dependent noise.

Proof. We suppose the label noise µ follows an isotropic Gaussian distribution as I-EDL [12]:

µ ∼ N (0, σ2I). (34)

Then, even if the optimization loss R(ĥ;D) is minimized (or approaches zero), the population loss
R(ĥ;P) will have an irreducible component that is at least on the order of σ2. As we assume that the
training labels y are generated from the true labels p∗ with added noise:

δy(x) = p∗(x) + µ(x), (35)

where µ(x) ∼ N (0, σ2I). The expected test loss can be expressed as

R(ĥ;P ) := E(x,y)∼P

[
L2

(
ĥ(x), y

)]
. (36)

Since the label itself is affected by noise, we can decompose the expectation as

E
[
L2

(
ĥ(x), δy

)]
= E

[
L2

(
ĥ(x),p∗ + µ

)]
. (37)

Using a second-order Taylor expansion to approximate the loss function:

ℓ
(
ĥ(x),p∗ + µ

)
≈ L2

(
ĥ(x),p∗)+ ⟨∇L2,µ⟩+

1

2
µ⊤Hµ. (38)
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where H represents the Hessian matrix of the loss function L2(ĥ(x),p
∗) w.r.t. p∗, defined as

H = ∇2L2(ĥ(x),p
∗), (39)

and ⟨∇L2,µ⟩ is the inner product between the gradient of the loss function and the noise vector µ:

⟨∇L2,µ⟩ =
K∑
k

∂L2

∂k
µk. (40)

Since the noise µ follows a zero-mean Gaussian distribution, the expectation of the first-order term
vanishes:

E[⟨∇L2,µ⟩] = 0, (41)

while the expectation of the second-order term is given by the noise covariance:

E[µ⊤Hµ] = σ2 Tr(H). (42)

Thus, the lower bound of the test loss can be approximated as

R(ĥ;P) ≥ Cσ2, (43)

where C depends on the trace of the Hessian matrix. We then show that incorporating VRM leads
to a lower test risk. Let the original label noise µ(n),µ(m) ∼ N (0, σ2I) be i.i.d. After vicinal
interpolation, the noise in vicinal labels becomes

µ̃ = λµ(n) + (1− λ)µ(m), (44)

with variance
E ∥µ̃∥2 = λ2σ2 + (1− λ)2σ2 = σ2

[
λ2 + (1− λ)2

]
. (45)

When λ ∼ Beta(β, β), the expected variance is

Eλ

[
λ2 + (1− λ)2

]
= 2E[λ2]− 2E[λ] + 1. (46)

Using properties of Beta distribution E[λ] = 1
2 and Var(λ) = 1

4(2β+1) , we obtain

E[λ2] = Var(λ) + (E[λ])2 =
1

4(2β + 1)
+

1

4
. (47)

Substituting yields

Eλ

[
λ2 + (1− λ)2

]
=

1

2β + 1
+

1

2
< 1 (∀β ≫ 1/2). (48)

Thus, the effective noise variance after Mixup is kσ2, where k = 1
2β+1 + 1

2 < 1, significantly lower
than the original σ2. Substituting into the theorem’s lower bound gives

R(ĥ;P ) ≥ C · kσ2 < Cσ2. (49)

Although distribution of the noise µ is unknown; and assumptions about it are modeling questions,
most statistical methods rely on certain mathematical conditions, known as regularity assumptions, to
ensure their validity. In our proof, i.e., we assume that µ follows an additive Gaussian noise.

Theorem 3. Let λ be the mixing hyperparameter defined in Eq. 13. Consider the optimization of the
Dirichlet parameters α in Eq. 14. For samples where αk ≤ αj (∀j ̸= k) with lower belief assigned
to the ground-truth k class, the following properties hold

• The update to the Dirichlet concentration for the ground-truth class ∆αk, increases mono-
tonically with λ.

• The updates to the Dirichlet concentrations for the non-ground-truth classes ∆αj ̸=k, de-
crease monotonically with λ.

• The total increase in Dirichlet concentration, denoted ∆S, increases monotonically with λ.
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Proof. Lets take the L1 loss as cross-entropy loss for example, which calculate loss between the
sampled p from Dir(α) with ỹ. Then, we derive the following analytical form of Ledl as

Ledl(α, ỹ) =

∫  K∑
j=1

−ỹj log (pj)

 1

B (α)

K∏
j=1

p
αj−1
j dp

=

K∑
j=1

ỹj
(
ψ (S)− ψ (αj)

) (50)

where S =
∑K

j=1 αj . Then, with gradient descent, the update of αj , we denote as −η ∂Ledl
αj

, where η
is the learning rate. Let j denote the index of class, we have

∂Ledl(α, ỹ)

αj
= ψ1(S) ·

K∑
i=1

ỹi − ỹjψ1(αj) = ψ1(S)− ỹjψ1(αj) as
K∑
i=1

ỹi = 1 (51)

where ψ1 is the trigamma function, which is a positive, monotonic decreasing function. Then, we
have the updates of αj as Eq. 52 with the negative gradient descent update

∆αj = −η [ψ1(S)− ỹjψ1(αj)] (52)

As the vicinal label is obtained by ỹ = λy(n) + (1 − λ) ·
[
1
K , . . . ,

1
K

]
, we can also express the

smoothed target labels explicitly as

ỹk = λ+
1− λ

K
, ỹj =

1− λ

K
, (53)

where k denotes the index of ground-truth class. By substituting Eq. 53 into Eq. 52, we have

∆αk = −η
[
ψ1(S)−

(
λ+

1− λ

K

)
ψ1(αk)

]
(54)

∆αj = −η
[
ψ1(S)−

1− λ

K
ψ1(αj)

]
, j ̸= k (55)

and

∆S =

K∑
j=1

∆αj = −η
[
K ψ1(S)−

(
λ+

1− λ

K

)
ψ1(αk)−

1− λ

K

∑
j ̸=k

ψ1(αj)

]
. (56)

To analyze how λ affects ∆αk , ∆αj , and ∆S , consider the derivatives as follows.

∂∆αk

∂λ
= η

(
1− 1

K

)
ψ1(αk) > 0 (57)

and
∂∆αj

∂λ
= −η 1

K
ψ1(αj) < 0, j ̸= k (58)

and
∂∆S

∂λ
=

K∑
j=1

∂∆αj

∂λ

= η

(1− 1

K

)
ψ1(αk)−

1

K

∑
j ̸=k

ψ1(αj)


= η

T∑
t=0

ψ1(αk)−
1

K

K∑
j=1

ψ1(αj)


=

η

K

K∑
j=1

(
ψ1(αk)− ψ1(αj)

)

(59)
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As the label smooth process takes the following

x̃ = λx(n) + (1− λ)x(m), ỹ = λy(n) + (1− λ)

[
1

K
, ...,

1

K

]
. (60)

This analysis reveals how label smoothing influences the accumulation of Dirichlet strength. When the
model is not yet confident in the true class k, its corresponding Dirichlet strength αk is relatively small.
Given that the trigamma function ψ1(x) is monotonically decreasing, a smaller αk results in ψ1(αk)

being larger than the average trigamma value across all classes (i.e., ψ1(αk) >
1
K

∑K
j=1 ψ1(αj)).

Consequently, the derivative ∂∆S
∂λ becomes positive. This positive derivative indicates that a decrease

in λ (which corresponds to an increased degree of label smoothing) will lead to a smaller increment
∆S, thus slowing the growth of the total Dirichlet strength S.

C Uncertainty Measures

C.1 Uncertainty Decomposition in Dirichlet-Based Models

A fundamental identity in information theory is that the Shannon entropy of a random variable X
can be additively decomposed into the mutual information between X and Y , and the conditional
entropy of X given Y [1]:

H(X) = I(X;Y ) +H(X | Y ) (61)
Follow this idea, Prior Networks [36] propose a method to explicitly model and decompose predictive
uncertainty into two components: aleatoric uncertainty and epistemic uncertainty. This is achieved
by treating the output of the classifier as the parameters of a Dirichlet distribution over categorical
class distributions. Given a Dirichlet distribution parameterized by α = (α1, . . . , αK) over the
probability simplex ∆K , the expected predictive distribution over class labels is:

p(y = j | x) = Ep∼Dir(α)[pj ] =
αj

S
, where S =

K∑
j=1

αj (62)

The total uncertainty in the prediction is measured by the Shannon entropy of the expected categorical
distribution conditioned :

Htotal [p(y|p)] = Ep∼Dir(α)[p(y | p)] = −
K∑
j=1

αj

S
log

αj

S
, (63)

C.2 Conditional Entropy

Aleatoric uncertainty corresponds to the expected entropy of the categorical distributions sampled
from the Dirichlet prior, commonly referred to as the conditional entropy

Ep∼Dir(α) [H[p(y | p)]] = Ep

− K∑
j=1

pj log pj


= −

K∑
j=1

αj

S
(ψ(αj + 1)− ψ(S + 1))

= ψ(S + 1)−
K∑
j=1

αj

S
ψ(αj + 1)

(64)

C.3 Mutual Information

Epistemic uncertainty can be measured by the mutual information between predictions and the
Dirichlet parameters, capturing uncertainty about the model itself:

MI(y,p) = Htotal [p(y|p)]− Ep∼Dir(α)[H[p(y | p)]]. (65)
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This mutual information quantifies how much of the total uncertainty arises from uncertainty in
the model parameters (i.e., distribution over categorical distributions), and thus reflects epistemic
uncertainty.

MI[y,p]︸ ︷︷ ︸
Epistemic Uncertainty

≈ H
[
Ep∼Dir(α)[p(y|p)

]︸ ︷︷ ︸
Total Uncertainty

−Ep∼Dir(α)[H[p(y|p)]]︸ ︷︷ ︸
Aleatoric Uncertainty

= −
K∑
j=1

αj

S
ln
αj

S
+

K∑
j=1

αj

S
(ψ(αj + 1)− ψ(S + 1))

= −
K∑
j=1

αj

S

(
ln
αj

S
− ψ(αj + 1) + ψ(S + 1)

)
.

(66)

C.4 Differential Entropy

The differential entropy is defined as

ENT(Dir(p | α)) = −
∫
∆K

Dir(p | α) logDir(p | α) dp, (67)

where ∆K denotes the probability simplex. The closed-form expression is given by

ENT(Dir(p | α)) = logB(α) + (S −K)ψ(S)−
K∑
j=1

(αj − 1)ψ(αj), (68)

Differential entropy is also a prevalent measure of epistemic uncertainty, where a lower value indicates
that the model yields a sharper distribution, and a higher value means a more uniform Dirichlet
distribution.

C.5 Vacuity of Evidence

For EDL [45], RED [40], I−EDL [12], R-EDL [9], H-EDL [44], which grounded in Subjective
Logic [21] and DS-Theory [11]. Subjective Logic provides a principled framework for modeling
predictive uncertainty by interpreting the output of a neural network as an opinion—a structured
representation of uncertainty over a discrete set of classes. Unlike conventional classifiers that output
categorical probabilities, EDL models produce non-negative evidence values e = [e1, e2, . . . , eK ]
for each of the K classes. These evidence values parameterize a Dirichlet distribution Dir(α),
where αj = ej + 1. In Subjective Logic, an opinion over a finite domain is characterized by three
components: the belief mass bj , the base rate aj , and the uncertainty mass u, satisfying:

bj + u · aj = E[pj ], and
K∑
j=1

bj + u = 1 (69)

where pj denotes the probability assigned to class j. These quantities relate to the Dirichlet parameters
as follows: The belief mass bk is proportional to the evidence for class k:

bk =
ek
S
, where S =

K∑
j=1

(ej + 1) =

K∑
j=1

αj (70)

The base rate ak is typically assumed to be uniform, i.e., ak = 1/K. The uncertainty mass u is
defined as:

u =
K∑K
j=1 αj

=
K

S
(71)

This uncertainty mass u is referred to as vacuity in EDL literature, and it quantifies the degree
of epistemic uncertainty due to a lack of evidence. When the total evidence is low (e.g., under
out-of-distribution or ambiguous inputs), S becomes small and vacuity u approaches 1, indicating
that the model abstains from committing belief to any specific class. Conversely, high total evidence
yields a low vacuity, reflecting confident predictions based on strong feature-based support. This
opinion-based interpretation highlights the epistemic nature of uncertainty in EDL and differentiates
it from aleatoric uncertainty captured by distributional spread in conventional probabilistic models.
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D Additional Experimental Details

D.1 Implementation Details

Since different baseline methods involve distinct activation functions and regularization terms, we
provide detailed implementation settings below.

EDLs based on Subjective Logic. For EDL [45], we adopt the mean squared error (MSE) loss,
also known as the barrier score. For I-EDL [12], we follow their original paper and use the Fisher-
MSE loss, setting the Fisher information regularization weight to 0.05. The activation function
is Softplus, as specified in their implementation. For R-EDL [9], we follow the settings in the
original paper and set the prior strength to 0.8 for the CIFAR datasets and using the MSE loss variant
without the variance minimization term. For all three methods (EDL, I-EDL, and R-EDL), the KL
divergence term which aims to remove misleading evidence with an annealing weight schedule of
λt = min(epoch_idx/10, 1) . The KL divergence term which is used to regularize the predicted
Dirichlet distribution by encouraging it to stay close to a non-informative prior for incorrect classes,
typically Dir(p | 1), where each class has a concentration parameter of 1. The KL divergence
between the predicted Dirichlet distribution Dir(p | ᾱ) and the uniform Dirichlet prior

LKL = KL[Dir(p | ᾱ)||Dir(p | 1)]

= log

Γ
(∑K

j=1 αj

)
∏K

j=1 Γ(αj)

+

K∑
j=1

(αj − 1)

ψ (αj)− ψ

 K∑
j=1

αj

 (72)

PriorNets. For KL-PN [36] and RKL-PN [37], we set the target class Dirichlet concentration
parameter αk to 200. Since both methods require out-of-distribution (OOD) samples during training
to constrain their predicted Dirichlet distributions, we follow the setup in [12, 9] and use random
noise as the OOD dataset to ensure a fair comparison.

Our method. For our method, the non-negative activation function σ is set to Softplus for CIFAR-10.
For CIFAR-100, due to the large zero-evidence regions observed in prior work [40], we warm up the
model using an Exponential activation for the first 10 epochs to help the model avoid these regions,
and then switch to a Softplus activation for the remainder of training.

D.2 Further Ablation Study on Vicinal Supervision and Noise Augmentation

To clarify the individual contributions of the two components in the total loss (Eq. 15), we conduct an
ablation study isolating the effects of vicinal supervision (Lvicinal) and noise augmentation (Lnoise).

Effect of Vicinal Supervision. We first isolate the influence of β by removing the noise augmenta-
tion term Lnoise. Table 6 summarizes the results as β varies.

Table 6: Ablation on vicinal supervision by varying β while removing Lnoise.

β β+
noise E-AURC ↓ OOD AUROC ↑ OOD Acc ↑ ID Acc ↑

– – 56.54±3.98 90.67±0.35 74.51±0.49 95.17±0.18
0.2 – 58.10±6.04 89.77±0.63 76.39±0.55 95.31±0.08
0.4 – 49.44±4.40 90.28±0.05 77.82±0.61 95.61±0.16
1.0 – 45.18±2.19 91.11±0.40 79.13±0.32 96.01±0.02
5.0 – 42.94±4.37 91.68±0.48 79.75±1.02 95.89±0.21

10.0 – 39.15±4.33 91.73±0.14 80.41±1.23 95.86±0.16

We observe three consistent trends: (1) Improved aleatoric uncertainty estimation. Increasing
β yields a monotonic decrease in E-AURC, from 56.54 to 39.15, indicating better calibration
for selective classification. (2) Enhanced OOD detection. Despite being designed for aleatoric
calibration, vicinal supervision also improves OOD AUROC, suggesting stronger discrimination
between ID and OOD samples due to its regularizing effect on the data manifold. (3) Improved
generalization. Both OOD and ID accuracies increase with β, supporting Theorem 2 that stronger
mixup enhances generalization across both seen and unseen distributions.
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Effect of Noise Augmentation. Next, we isolate Lnoise by setting L = Lnoise and varying β+
noise,

while fixing β−
noise = 1.0. The results are shown in Table 7.

Table 7: Ablation on noise augmentation by varying β+
noise while removing Lvicinal.

β β+
noise OOD AUROC ↑ E-AURC ↓ OOD Acc ↑ ID Acc ↑

– – 90.67±0.35 56.54±3.98 74.51±0.49 95.17±0.18
– 0.2 90.95±0.32 56.11±4.92 74.32±0.43 95.00±0.02
– 0.4 91.18±0.42 62.81±10.15 73.76±0.67 95.03±0.21
– 1.0 91.85±0.24 57.22±6.14 73.96±0.43 95.17±0.09
– 5.0 90.74±0.20 55.95±6.40 74.67±0.75 95.02±0.20
– 10.0 90.37±0.55 60.17±2.85 73.42±0.53 94.86±0.41

10.0 1.0 93.08±0.33 29.40±2.16 88.73±0.13 96.18±0.13

From Table 7, we draw three conclusions: (1) Limited effect of isolated β+
noise. Varying β+

noise alone
causes only minor fluctuations in E-AURC and accuracy, suggesting that noise augmentation without
vicinal supervision is insufficient for consistent gains. (2) Importance of balanced noise intensity.
Too small β+

noise leads to excessive perturbations that harm learning, while too large values make the
sampled λ concentrate near 1, effectively disabling noise augmentation. β+

noise = 1.0 yields the best
balance. (3) Synergistic effect. The best overall performance is achieved when both components
are combined (β = 10.0, β+

noise = 1.0), achieving the highest OOD AUROC (93.08%), lowest
E-AURC (29.40), and best ID/OOD accuracies, demonstrating the complementary benefits of vicinal
supervision and noise augmentation.

E Discussions

E.1 Why do some baseline methods perform poorly on CIFAR-100?

For models like EDLs [45, 9] and PriorNets [36, 37] that require Dirichlet concentrations of incorrect
classes to approach zero, we observe that they struggle to converge when the number of classes is
large (e.g., K = 100). Since the original papers do not provide CIFAR-100 experimental settings, we
adopt the same configurations as used for CIFAR-10, which may limit their performance.

E.2 Social Impact

Our work addresses the challenges of uncertainty estimation, out-of-distribution (OOD) detection,
and OOD generalization, which are critical for ensuring the safety, reliability, and fairness of
machine learning systems in real-world applications. By improving models’ ability to recognize
and appropriately respond to unfamiliar or ambiguous inputs, our methods help reduce the risk
of overconfident mispredictions in high-stakes domains such as healthcare, autonomous driving,
and finance. These advances have the potential to increase trust in AI systems and support more
responsible deployment practices. Moreover, enhanced OOD generalization may help mitigate
performance disparities when models are applied across diverse populations and settings.
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
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of the paper (regardless of whether the code and data are provided or not)?
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• The answer NA means that the paper does not include experiments.
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
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• While NeurIPS does not require releasing code, the conference does require all submis-
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to reproduce that algorithm.
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the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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that is necessary to appreciate the results and make sense of them.
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7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide experimental results with mean and standard deviation.
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• The answer NA means that the paper does not include experiments.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
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of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In Section 5.1.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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Answer: [Yes]
Justification: In Appendix.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In Appendix.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The license and terms of use explicitly mentioned and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]

Justification: The paper does not release new assets.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
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14. Crowdsourcing and research with human subjects
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well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
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approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
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• We recognize that the procedures for this may vary significantly between institutions
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Justification: The core method development in this research does not involve LLMs.
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