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ABSTRACT

Fisher’s criterion is arguably among the most widely used tools in machine learn-
ing for feature selection. The higher the value of Fisher’s criterion, the more
favorable a feature is. A rather different but nevertheless very important tool is
Shannon’s channel capacity. With Shannon’s capacity, one can determine the
maximum rate at which information can flow across a channel. Fisher’s criterion
and Shannon’s capacity appear to be unrelated, yet both capture in their unique
way the separation between probability distributions. In this study, we investigate
whether Fisher’s class separation criterion and Shannon’s capacity can be related
to each other. We formulate our research problem as a binary classification task
and derive analytic expressions to determine if there is a potential link between
Fisher’s criterion and Shannon’s capacity. It turns out that Fisher’s class separa-
tion criterion and Shannon’s channel capacity are intimately connected through
two principal assumptions. Using this result, we develop a divergence measure
for feature selection. Additionally, we show how our results can be used to solve
classification problems and conduct a proof-of-concept experiment to demonstrate
the viability of our approach.

1 INTRODUCTION

Feature selection is vital to the performance of a machine learning model. For a classification
system, it identifies key features needed to distinguish between classes and discards those that can
adversely impact performance. With fewer features, a model is simplified and its training speed is
likely to improve. Knowing which features to keep, however, is a challenging task. A dataset with n
features has 2n possible combinations of features. As n increases, the search space quickly becomes
prohibitively large. In this vast space of combinations, a feature selection scheme is required to find
a subset of suitable features.

Fisher’s criterion provides a scalable solution to select features. In many applications, Fisher’s cri-
terion is used to rank features by measuring their discriminative power. Once features are ranked,
the best performing among them are selected for a model. Throughout the years, Fisher’s crite-
rion (Fisher, 1936) has been adopted by a wide variety of disciplines; its use nowadays can be found
in diverse applications ranging from traffic-sign recognition (Zaklouta & Stanciulescu, 2012) to gene
selection (Peng et al., 2006).

The Shannon capacity of an additive white Gaussian noise channel is perhaps the most recognizable
result in information theory (Shannon, 1948). The Shannon capacity is a fundamental limit on the
maximum amount of information that can flow across a channel. Research on the channel capacity
has been mostly limited to the analysis of communication systems; very little is currently known
about its potential for feature selection.

Fisher’s criterion and Shannon’s capacity appear to be unrelated, yet they both capture the separation
between distributions in their unique way: Fisher’s criterion captures this separation by gauging the
ratio of the between-class variance to the within-class variance of probability distributions (Bishop,
2006), whereas the Shannon capacity captures the separation by measuring how far distributions are
from independence (Appendix B). Knowing the relation between Fisher’s and Shannon’s measures,
can provide insights for the design of feature selection schemes.
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Contributions. The main contributions of this work are threefold:

• We show that Fisher’s class separation criterion is related to the Shannon capacity of an
additive white Gaussian noise channel (Section 3.1).

• Using the above result, we develop a novel divergence measure of class separation, which
we used for feature selection (Section 3.2).

• We show how our theoretical results can be used to solve classification problems (Sec-
tion 4).

2 RELATED WORK

Feature selection is a process of selecting m features from a set n features (m < n) to enhance a
model’s performance. The source from which features are selected can be an original dataset. Alter-
natively, new features can be created from an original dataset via a mapping function; then, a feature
selection scheme is subsequently employed to select a subset of features from this newly-created
set. The process of creating new features from original ones is referred to as feature construction.
Feature construction followed by feature selection is termed feature extraction (Guyon et al., 2008).

Based on the method employed to select a feature, the literature on feature selection can be organized
into three categories: filters, wrappers, and embedded methods (Xue et al., 2015; Li et al., 2017).
Here we will focus on filter methods as our results complement studies in this area.

In filter methods, features are ranked according to a given criterion. This approach is called a filter
because it is used to “filters out” features that have low predictive power (Sebban & Nock, 2002). A
fairly large number of filter methods have been proposed (Guyon et al., 2008; Bolón-Canedo et al.,
2015); examples include:

Fisher’s criterion. This criterion is a ratio of the between-class (µ1 − µ0)
2 to the within-class

variance (σ2
1 + σ2

0), where µk and σ2
k denote the mean and variance of a distribution, respectively.

This ratio is used in Fisher’s discriminant analysis, in which high-dimensional data is projected onto
a line. The goal of this projection is to find a line on which Fisher’s ratio is maximized. After which,
a linear classifier is used to distinguish between classes (Fisher, 1936; Bishop, 2006). Fisher’s
ratio/criterion assesses the separation between class distributions with which features are ranked.
The higher the value, the better a feature is for classification.

Volume of overlap. For a given feature, i, this quantity measures the amount of overlap between
the tails of two class-conditional distributions and is defined as (Ho & Basu, 2002)

Ri =
min{U i

0, U
i
1} −max{Li

0, L
i
1}

max{U i
0, U

i
1} −min{Li

0, L
i
1}

, (1)

here U i
j and Li

j denote the maximum and minimum value of each feature in class Cj , respectively.
The lower the value of Ri, the higher a feature is ranked.

Pearson’s correlation coefficient. This approach is a linear correlation measure. In this method,
features and class labels are treated as random variables. The strength of the correlation between
these two random variables is used to rank features (Arai et al., 2018).

Information-theoretic distances. Similar to Pearson’s correlation coefficient approach, features
and class labels are treated as random variables in information-theoretic measures (Duch et al.,
2004). The key difference, however, between these two approaches is that information-theoretic
distances can capture nonlinear dependencies between random variables.

The Kolmogorov–Smirnov test is a hypothesis test to determine whether samples of two classes
are generated by the same distribution (Pratt & Gibbons, 1981). The lower the probability of the
null hypothesis, the more likely a feature is beneficial for classification.

Relief method. In this approach, a sample x is randomly selected, without replacement, from a
training set. Then, two distances, for a given feature, are measured: 1) d(x, xs): the distance of x
to its nearest neighbor xs of the same class 2) d(x, xd): the distance of x to its nearest neighbor
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xd of a different class. This process is repeated n times to obtain a relevance index Ji given by

Ji = Ji-1 +
1
n

(
d(x, xd) − d(x, xs)

)
, i = 1, 2, . . . , n. A large value of Ji indicates that a feature

has high relevance for classification (Kira & Rendell, 1992a;b).

Related work discussion. We position our work as a feature selection scheme. What sets our work
apart from prior research efforts is that we develop a filter method (Section 3.2) by relating Fisher’s
criterion to Shannon’s capacity. Research to date has not yet established this relationship.

3 THEORETICAL RESULTS

3.1 MAIN RESULT

This subsection details the connection between Fisher’s class separation criterion and Shannon’s
channel capacity. We begin by listing our assumptions:

Assumptions:

• Gaussian distributions.

P (x |Ck) = N (x ; µk, σ
2
k), k ∈ {0, 1}

• A plausible assumption for a reliable classification system is that

E
X∼P (x|Ci)

[
P (x|Ci)P (Ci)

]
> E

X∼P (x|Ci)

[
P (x|Cj)P (Cj)

]
, ∀ i ̸= j ∈ {0, 1} ; (2)

here P (x|Ck) is a class-conditional distribution, and P (Ck) is a class-prior probability.

Result: The mathematical expectation of P (x|Cj)P (Cj) w.r.t. P (x|Ci) is (see Appendix C for a
detailed discussion)

E
X∼P (x|Ci)

[
P (x|Cj)P (Cj)

]
=

P (Cj)√
2π(σ2

i + σ2
j )

e
− (µi−µj)

2

2(σ2
i
+σ2

j
) , where i ̸= j ∈ {0, 1} , (3)

while for P (x|Ci)P (Ci) the mathematical expectation is

E
X∼P (x|Ci)

[
P (x|Ci)P (Ci)

]
=

P (Ci)

2
√
πσi

, where i ∈ {0, 1} . (4)

Substituting Eqs. 3 and 4 into inequality 2; then taking the logarithm and rearranging, yields (see
Appendix D for more details)

F > 2max

{
log

(√
2P (C0)

P (C1)

)
− C̃0 , log

(√
2P (C1)

P (C0)

)
− C̃1

}
, (5)

here F := (µ1−µ0)
2

σ2
1+σ2

0
is Fisher’s criterion (Bishop, 2006) and C̃k := 1

2 log
(
1 +

σ2
k

σ2
1-k

)
is the Shannon

capacity of an additive white Gaussian noise channel1 (Shannon, 1948; Cover & Thomas, 2006).

1The unit of C̃k here is nats per real dimension (1 nat ≈ 1.44 bits).
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Figure 1: (a) Architecture of proposed scheme (b) Construction of activation functions.

3.2 PROPOSED DIVERGENCE MEASURE

Using inequality 5, we suggest the following divergence measure to capture the separation between
class distributions:

D̃ = F − T , (6)

where T is the RHS of inequality 5:

T = 2max

{
log

(√
2P (C0)

P (C1)

)
− C̃0 , log

(√
2P (C1)

P (C0)

)
− C̃1

}
. (7)

D̃ enables one to measure the discriminative power of a given feature. The higher the value of D̃,
the more discriminative power a feature holds. In Section 5, we will employ D̃ in our experiments
to help select a subset of features used for image classification.

4 MODEL

The goal of this section is to illustrate how our theoretical results in Section 3 can be used to solve
classification problems. To this end, we propose a neural network architecture followed by a de-
scription of its activation functions. In Section 5, we will test the performance of the proposed
network.

4.1 ARCHITECTURE AND PRINCIPLES OF OPERATION

Figure 1a shows the architecture of the proposed neural network. The network consists of three
layers: an input, hidden, and output layer. Let m denote the total number of nodes in the hidden
layer. For each node in the hidden layer, an input vector #»x ∈ Rn is multiplied by random weights
to form z, which is fed to an activation function fk

i (z). Here fk
i (z) is the ith activation function

for class k. Outputs of activation functions, represented by set A = {a1, a2, . . . , am}, are in turn
fed to φ(·). Function φ(·) selects a subset, ΩN (Section 5), of elements from A and sums them.
This summation is computed for all classes (k = 0, 1) and multiplied by a corresponding class
prior probability, P (Ck), to obtain a set of outputs values Y = {y0, y1}. The predicted class is
the argument of set Y that yields the maximum value: k∗ = argmax

k∈{0,1}
yk. Algorithm 1 summarizes

the proposed scheme, and an expanded illustration of the proposed scheme is provided in Fig. 7
(Appendix G).
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Algorithm 1: Proposed Scheme
▷ #»x ∈ Rn: input vector of unknown class. {P (Ck)}: set of

class-prior probabilities. {fk
i (z)}: set of activation

functions (computed via Algorithm 2). ΩN: set of

indices of divergence measurements (Section 5).

Input: #»x , {P (Ck)}, {fk
i (z)}, ΩN

Output: k∗ ▷ Here k∗ is the predicted class of #»x .

W ←


wT

1

wT
2
...

wT
m


m×n

▷ Generate random matrix W. In our experiment, the

entries of W are independent and drawn from a

standard normal distribution.

for k = 0, 1 do
for i = 1, . . . ,m do

▷ Here k is the index of a class, and m is the number

of nodes in the hidden layer.

zi ← wT
i

#»x

aki ← fk
i (zi)

end
yk ← P (Ck)

∑
j∈ΩN

akj

end

▷ Summation of outputs, ak
j , of N activation functions

that have the largest divergence values(φ in Fig. 1a),

followed by a multiplication by a class’s prior

probability.

k∗ ← argmax
k∈{0, 1}

yk

4.2 ACTIVATION FUNCTIONS

The key idea here is to employ class-conditional probability density functions, obtained from train-
ing samples, as activation functions

(
fk
i (x)

)
. In Section 3.1 we have P (x|Ck), and a way to realize

such density functions in practice is to represent them as activation functions—that is, we use fk
i (x)

to mimic P (x|Ck). Fig. 1b illustrates how an activation function is constructed. Each class, k, has
a dedicated network (Fig. 1a). For each node in this network, training data { #»x1,

#»x2, . . . ,
#»xv}, of

the same class, are multiplied by random weights to obtain a sample set {z1, z2, . . . , zv}. This set is
used by a kernel density estimator (KDE) to construct an activation function as follows:

fk
i (z) =

1√
2πβv

v∑
q=1

e−(z−zq)
2/2β2

, (8)

here subscript i indicates the ith node of a given class k, while v and β denote the number of training
samples and bandwidth of the KDE, respectively. A variety of methods can be used to find an apt
value of β (see, for instance, Silverman (1986); Sheather & Jones (1991); Scott (1992), as well as
Heidenreich et al. (2013) for a review). In our experiment, functions fk

i (z) are computed on-demand
rather than saved as lookup tables; this approach is computationally heavy but saves a great amount
of memory. The proposed neural network learns without weight tuning: learning is accomplished
by letting data of training samples shape activation functions (Fig. 1b). Algorithm 2 provides a
summary of how activation functions are constructed.
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Algorithm 2: Construction of Activation Functions

Input: {xk
q}1k=0 ▷ Training set; xk

q ∈ Rn, where k indicates a

given class, and q is a sample’s index.

Output: fk
i (z) ▷ Activation functions.

W ←


wT

1

wT
2
...

wT
m


m×n

▷ Generate random matrix W. This matrix

is identical to W of Algorithm 1.

for k = 0, 1 do
for i = 1, . . . ,m do

for q = 1, . . . , vk do

▷ Here m is the number of nodes in the hidden

layer and vk is the number of training

samples for a given class k.

zq ← wT
i x

k
q

end
▷ Here βi is the bandwidth of the kernel

density estimator, determined by F (·).
In our experiment, F (·) =

(
4

3vk

) 1
5 ×

( η
0.6745

)
,

where η is the median absolute deviation

of set {z1, . . . , zvk
}.

βi ← F (z1, . . . , zvk
)

fk
i (z)← 1√

2πβivk

vk∑
q=1

e−(z−zq)
2/2β2

i

end
end

5 EXPERIMENT

Task description: Binary classification.

Dataset: Pairs of image classes are obtained from the Fashion-MNIST dataset (Xiao et al., 2017);
this dataset was z-normalized.

Methods:

• Kernel density estimator (KDE). Gaussian functions
(
K(u) = 1√

2π
e−

1
2u

2
)

are used as

kernels for the KDE

(
f(z) = 1

βv

v∑
q=1

K
(

z−zq
β

))
. The bandwidth of kernels are cal-

culated as β =
(

4
3v

) 1
5 σ, where σ is a measure of dispersion (spread) and v is the

number of samples of a set (Silverman, 1986). The standard deviation can be used
to measure dispersion. In our experiment, however, we chose the median absolute de-
viation, η, as it provides a more robust dispersion measure when outliers are present(
σ = η

0.6745 , Viertl (2009); Förstner & Wrobel (2016)
)
.

• Divergence calculations. To deal with outliers when calculating the divergence in Eq. 6,
we use the interquartile mean to approximate µ (Sprent, 2012), and σ ≈ η

0.6745 to approxi-
mate the standard deviation. Priori probabilities, P (Ck), are estimated as the proportion of
each class in a training dataset.

• Subset ΩN . Consider Fig. 8 (Appendix G). ΩN is a subset of the nodes that have the
largest N divergence values. Let D⃗ = {D̃1, D̃2, . . . , D̃m} denote a set of divergence mea-
surements, where D̃i denotes the divergence measured at the ith node, and m is the total
number of nodes in the hidden layer. The value of a given D̃i is computed via Eq. 6.
Additionally, let Ω = {ω1, . . . , ωN , . . . , ωm} denote the set of indices of the sorted val-
ues of D⃗ in descending order. For example, if D⃗ = {D̃1, D̃2, D̃3} and D̃2 > D̃3 > D̃1,
then Ω = {2, 3, 1}. Using Algorithm 1 with the training dataset, the value of N is de-
termined by direct search: N = 1, 2, . . . m. The value of N that yields the highest ac-
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curacy is chosen (Fig. 2 provides an illustration). To keep the notation light, let subset
ΩN = {ω1, ω2, . . . , ωN} denote the first N values in set Ω. For each class, 30% of the
training set is kept for validation during the search for N .

• Weights. The traditional approach to train neural networks is weight tuning, whereby
weights of a network are computed either iteratively or by solving a set of equations so
as to minimize a discrepancy between a model’s prediction and a corresponding ground
truth (Broomhead & Lowe, 1988; Huang et al., 2006; Schmidhuber, 2015). In this study,
we provide an alternative approach. We illustrate how neural networks can be designed to
classify patterns without weight tuning: weights of networks herein are randomly gener-
ated and left afterward unchanged. The weights, wij , of the network (Fig. 1a) are drawn
independently from a standard normal distribution.

• Randomization. We run our network with 10 different randomization seeds to report a
95% confidence interval. The randomization is in the weights of the network.

Experimental results: Figures 3 (b)–(e) show responses of activation functions, aki , to unseen test
images. By and large, activation functions have a relatively high response when they are of the same
class as a test image; this is particularly noticeable in Fig. 3 (b), where activation functions of class
#0 predominantly produce responses larger than that of other classes. Moreover, Figs. 4 (a)–(d)
show the classification accuracy of the proposed network versus the number of nodes in the hidden
layer. What immediately stands out is that a high accuracy is achieved when the classification is
between objects that are perceptually dissimilar and vice versa. Consider Fig. 4 (a) as an example;
the classification between a T-shirt (class #0) and sneaker (class #7) has a higher accuracy than
between a T-shirt (class #0) and a formal shirt (class #6). Additionally, the classification accuracy
increases with the number of nodes in the network and then plateaus. This trend can be expected
because the possibility of obtaining a subset of nodes, ΩN , with high divergence values increases
with the number of nodes available, albeit in a nonlinear manner. The interested reader is referred
to Appendices E and F for a diverse range of comparisons.

100 101 102 103 104 105

0.75

0.76

0.77

0.78

0.79

0.8

0.81

Figure 2: Accuracy versus cardinality, N , of subset ΩN ; carried out on the training dataset using
Algorithm 1. The aim of this experiment is to determine the value of N , which is required by
Algorithm 1 during the testing phase. In this example, the binary classification task is between class
#2 (pullover) and #4 (coat). The highest accuracy is ∼ 80% and occurs at a cardinality of size
N = 120; this value of N is obtained by a brute-force search. The number of nodes in the hidden
layer of the network is m = 105.
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(a) Samples from dataset.

1 2 3 4 5 6 7 8 9 10

104

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(b)

1 2 3 4 5 6 7 8 9 10

104

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(c)

1 2 3 4 5 6 7 8 9 10

104

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(d)

1 2 3 4 5 6 7 8 9 10

104

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(e)

Figure 3: (b)–(e) Responses of activation functions, aki , to unseen test images. The y-axis displays
the sorted values of set {ak1 , ak2 , . . . , akm} in ascending order, while x-axis is the index of said sorted
values (see Fig. 1a for a schematic illustration depicting aki responses). The number of nodes in the
hidden layer of the network is m = 105.
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Figure 4: Classification accuracy versus number of nodes, m, in the hidden layer of the neural
network. Error bars are 95% confidence intervals and are computed by randomizing weights of the
network a total of 10 times.

6 CONCLUSION AND FUTURE WORK

Summary. This paper set out to establish a link between Fisher’s criterion and Shannon’s channel
capacity. It is shown that Fisher’s class separation criterion and the Shannon capacity of an additive
white Gaussian noise channel are related through two assumptions. Using this result, a divergence
measure is developed and used as a filter method for a proposed neural network. Experimental
results demonstrate that the techniques devised herein to solve classification problems hold potential.

Limitations and future work. The scope of this study was limited to a binary classification setting.
As such, a natural progression of this work is to generalize our results to multiple classes. Addition-
ally, the proposed divergence measure ranks features individually according to their discriminative
power. While this approach has a low computational requirement, it neglects possible synergistic
interactions among features. A promising research direction, therefore, is to explore the impact of
said interactions on classification performance.
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APPENDIX

A NOTATION

Numbers and Arrays

a A scalar (integer or real)
#»x A vector

W A matrix

wT
i Row i of matrix W

Sets

R The set of real numbers

{0, 1} The set containing 0 and 1

Probability

P (Ck) Class-prior probability

P (x|Ck) Class-conditional distribution

X ∼ P Random variable X has distribution P

E
X∼P (x)

[f(x)] Mathematical expectation of f(x) with respect to P (x)

Var[X] Variance of random variable X

N (x;µ, σ2) Gaussian distribution over x with mean µ and variance σ2

Functions

log x The natural logarithm of x

min{x, y} The minimum of the two numbers

max{x, y} The maximum of the two numbers

argmax
i

yi The argument of the maxima

DKL

(
P || Q

)
The Kullback-Leibler divergence of P from Q

B SEPARATION: DISTANCE FROM INDEPENDENCE

Consider the following example in which we have three random variables: Y , Xk and X1-k, related
by

Y = Xk︸︷︷︸
signal

+X1-k︸︷︷︸
noise

, here k ∈ {0, 1} is a label of a class. (9)

The Shannon capacity, C̃k, captures how far the joint probability density function of Xk and Y(
i.e., P (x, y)

)
is from independence

(
i.e., P (x)P (y)

)
through the maximization of the Kullback-

Leibler divergence:
C̃k = max

P (x): Var[Xk]≤σ2
k

DKL

(
P (x, y)

∥∥∥P (x)P (y)
)
. (10)

For Gaussian noise: X1-k ∼ P (x |C1-k) = N (x ; µ1-k, σ
2
1-k), Eq. 10 reduces to

C̃k =
1

2
log

(
1 +

σ2
k

σ2
1-k

)
nats per real dimension, k ∈ {0, 1}, (11)

which is attained when Xk ∼ P (x |Ck) = N (x ; µk, σ
2
k); (see Shannon (1948); Cover & Thomas

(2006) for a comprehensive discussion).

12



Under review as a conference paper at ICLR 2023

C MATHEMATICAL EXPECTATIONS

Here we expand on our discussion in Section 3.1 on Eqs. 3 and 4. The mathematical expectation of
P (x|Cj)P (Cj) w.r.t. P (x|Ci) is

E
X∼P (x|Ci)

[
P (x|Cj)P (Cj)

]
=P (Cj)

∫ ∞

−∞
P (x|Cj)P (x|Ci) dx ; where i ̸= j ∈ {0, 1} , (12)

here we have a product of two Gaussian functions, P (x|Cj)P (x|Ci); this product is a Gaussian
function with:

a mean: µ̃ =
µiσ

2
j + µjσ

2
i

σ2
i + σ2

j

, (13)

standard deviation: σ̃ =
σiσj√
σ2
i + σ2

j

, (14)

and scaling factor of: S̃ =
1√

2π(σ2
i + σ2

j )
e
− (µi−µj)

2

2(σ2
i
+σ2

j
) (15)

(see Bromiley (2003) for a detailed discussion). Using Eqs. 13–15 in 12, it follows that

E
X∼P (x|Ci)

[
P (x|Cj)P (Cj)

]
= P (Cj)S̃

∫ ∞

−∞
N
(
x ; µ̃ , σ̃2

)
dx

= P (Cj)S̃

=
P (Cj)√

2π(σ2
i + σ2

j )
e
− (µi−µj)

2

2(σ2
i
+σ2

j
) . (16)

Likewise,

E
X∼P (x|Ci)

[
P (x|Ci)P (Ci)

]
=P (Ci)

∫ ∞

−∞
P (x|Ci)P (x|Ci) dx

=
P (Ci)

2
√
πσi

. (17)

D SUPPORTING DETAILS FOR SECTION 3.1

Here we add some supporting details to our discussion in Section 3.1. Consider a binary clas-
sification problem in which we have C0 and C1. For this setting, we need two conditions to be
simultaneously satisfied, namely:

Condition 1: E
X∼P (x|C0)

[
P (x|C0)P (C0)

]
> E

X∼P (x|C0)

[
P (x|C1)P (C1)

]
(µ1 − µ0)

2

σ2
1 + σ2

0

> 2 log

(√
2P (C1)

P (C0)

)
− log

(
1 +

σ2
1

σ2
0

)
, (18)

and

Condition 2: E
X∼P (x|C1)

[
P (x|C1)P (C1)

]
> E

X∼P (x|C1)

[
P (x|C0)P (C0)

]
(µ1 − µ0)

2

σ2
1 + σ2

0

> 2 log

(√
2P (C0)

P (C1)

)
− log

(
1 +

σ2
0

σ2
1

)
. (19)

Combining inequalities 18 and 19, gives

(µ1−µ0)
2

σ2
1+σ2

0
> 2max

{
log
(√

2P (C0)
P (C1)

)
− 1

2 log
(
1 +

σ2
0

σ2
1

)
, log

(√
2P (C1)
P (C0)

)
− 1

2 log
(
1 +

σ2
1

σ2
0

)}
(20)
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E RESPONSES OF ACTIVATION FUNCTIONS
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Figure 5: (a)–(j) Responses of activation functions, aki , to unseen test images. The y-axis displays
the sorted values of set {ak1 , ak2 , . . . , akm} in ascending order, while x-axis is the index of said sorted
values (see Fig. 1a for a schematic illustration depicting aki responses). The number of nodes in the
hidden layer of the network is m = 105.
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F PERFORMANCE COMPARISONS

100 101 102 103 104 105
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(a)

100 101 102 103 104 105
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(b)

100 101 102 103 104 105
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(c)

100 101 102 103 104 105
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(d)

100 101 102 103 104 105
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(e)

100 101 102 103 104 105
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(f)

Figure 6: (a)–(f) Classification accuracy versus number of nodes, m, in the hidden layer of the neural
network. Error bars are 95% confidence intervals and are computed by randomizing weights of the
network a total of 10 times.
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G ADDITIONAL ILLUSTRATIONS FOR PROPOSED SCHEME
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Figure 7: Expanded illustration of proposed scheme. The top network is for the first class (k = 0),
while the bottom network is for the second class (k = 1). The weights of both networks are identical.
An input sample of an unknown class is presented to both networks, and each network outputs
a corresponding yk value. The class of the network that produces the maximum value of yk is
declared the class of the input sample.

+

+

+

Training samples of

the first class (k = 0)

Training samples of

the second class (k = 1) σ0 µ0 σ1 µ1

F1 = (µ1−µ0)
2

σ2
1+σ

2
0

T1 = 2max

{
log
(√

2P (C0)
P (C1)

)
− 1

2 log
(
1 +

σ2
0

σ2
1

)
, log

(√
2P (C1)
P (C0)

)
− 1

2 log
(
1 +

σ2
1

σ2
0

)}

D̃1 = F1 − T1
~D = {D̃1, D̃2, . . . , D̃m}
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Figure 8: Illustration for the construction of set D⃗. Consider the uppermost node in the network for
which we need to compute D̃1. Here samples of each class are multiplied by random weights wT

1 =
[w11, w21, . . . , wn1]. After which, the values of µk and σk are computed, k = 0, 1 (Section 5). Using
µk and σk with P (Ck), the value of the divergence at the node under consideration is D̃1 = F1−T1.
This process is repeated for all nodes in the network to obtain set D⃗ = {D̃1, D̃2, . . . , D̃m}.
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