
Towards Stable and Robust AdderNets

Minjing Dong1,2, Yunhe Wang2∗, Xinghao Chen2, Chang Xu1

1School of Computer Science, University of Sydney
2Huawei Noah’s Ark Lab

mdon0736@uni.sydney.edu.au, yunhe.wang@huawei.com,
xinghao.chen@huawei.com, c.xu@sydney.edu.au

Abstract

Adder neural network (AdderNet) replaces the original convolutions with massive
multiplications by cheap additions while achieving comparable performance thus
yields a series of energy-efficient neural networks. Compared with convolutional
neural networks (CNNs), the training of AdderNets is much more sophisticated
including several techniques for adjusting gradient and batch normalization. In
addition, variances of both weights and activations in resulting adder networks
are very enormous which limits its performance and the potential for applying to
other tasks. To enhance the stability and robustness of AdderNets, we first thor-
oughly analyze the variance estimation of weight parameters and output features
of an arbitrary adder layer. Then, we develop a weight normalization scheme for
adaptively optimizing the weight distribution of AdderNets during the training
procedure, which can reduce the perturbation on running mean and variance in
batch normalization layers. Meanwhile, the proposed weight normalization can
also be utilized to enhance the adversarial robustness of resulting networks. Ex-
periments conducted on several benchmarks demonstrate the superiority of the
proposed approach for generating AdderNets with higher performance.

1 Introduction

By hint of the success of Deep Convolutional Neural Networks (DCNNs), a wide range of computer
vision tasks can be tackled with satisfactory performance, including image classification [13, 9, 10,
25], super-resolution [32, 4, 12, 22], object detection [16, 19, 7, 8], etc.. DCNNs are mainly trained
and inferred on graphics processing unit (GPU) devices which suffice to fulfill the high computational
complexity and enormous energy consumption. However, it is intractable for DCNNs to be deployed
on low-power devices due to the limited computational speed and power capacity, such as mobile and
embedded devices. As a result, substantial research efforts have been devoted to energy reduction
and speed acceleration of DCNNs [3, 29, 1, 26].

Recently, Chen et al.[1] advocate the use of ℓ1-distance for similarity measure instead of cross-
correlation in CNNs to replace multiplications with additions. Compared with multiplications,
addition operations are much cheap, which benefits the power-efficiency [28, 23, 30]. Adder neural
network (ANN) has demonstrated extraordinary performance on several computer vision tasks with
huge energy reduction, which can be seen as a good complement to the classical CNNs.

The performance achieved by ANNs on classification is impressive, but some observations raise
our concerns. e.g., the optimization of ANNs is not stable as CNNs where the test accuracy curve
has dramatic fluctuations during the optimization, as shown in Figure 1 (a). The test accuracy of
ANNs has a large variation until the end of training while that of convolution networks is much
more stable. Furthermore, weights of ANNs have demonstrated a significantly different statistical

∗Corresponding author.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Figure 1: Observations of AdderNet. Training and testing loss curves of ANN and CNN in (a).
Histograms over the AdderNet features after batch normalization layer follows Gaussian distribution
in (b). Histograms over the AdderNet weight follow Laplace distribution with large variance while
Conv weight follow Gaussian distribution with small variance in (c) and (d) respectively.

property from those of CNN weights. The histograms over ANN and CNN weights are shown in
Figure 1 (c) and (d) respectively. The red curve in (c) denotes a Laplace distribution with a mean
of 0.32 and a variance of 88.47 and the one in (d) denotes a normal distribution with a mean of
−0.002 and a variance of 0.001. Although the means of these two distributions are similar, there
exists a serious discrepancy between their variances. Given this statistical property difference, those
sophisticated training strategies previously developed for CNN might not fulfill their potential when
straightforwardly applied to ANNs.

In this paper, we provide an exhaustive analysis of the variance in ANNs. Taking a one-layer
adder forward as an example, we demonstrate the large variance of ANN weights can be the major
cause of the instability of running mean and variance in batch normalization layer which vibrates
the test accuracy. Weight normalization is therefore a natural idea to constrain the variance of
weights. To preserve the representation capability of the normalized weights, trainable scaling and
shift coefficients are further introduced to achieve an Adaptive Weight Normalization (AWN). By
doing so, the variance of ANN weights can be normalized to acceptable levels which significantly
stabilizes the batch normalization layers and makes pretrained ANN easily applied to other tasks.
Notably, we identify a natural advantage of ANNs to be robust to adversarial perturbations, stemming
from ℓ1-distance and the running mean of batch normalization layer in ANNs. The reduction
of weight variation across channels further boosts the defense ability against attacks. Without
adversarial training, AWN with ANN on ResNet-32 improves adversarial accuracy by 59.73%
compared with CNN under PGD attacks. AWN presents superior stability under a series of evaluations
and outperforms vanilla ANN in detection task on VOC benchmark with 2.7 mAP improvement.

2 Preliminary

Adder Neural Networks. To significantly reduce energy costs, Chen et al.[1] proposed an Adder
Neural Network to release the burden of multiplications in traditional convolution networks by
replacing them with additions. Consider an intermediate layer in deep convolution neural network
with weight W ∈ Rd×d×cin×cout where d denotes the kernel size and cin and cout are the number of
input and output channel respectively. Given the input feature map X ∈ RH×W×cin where H and
W are the height and width of input feature, the adder operation is defined as

Y (m,n, c) = −
d∑

i=1

d∑
j=1

cin∑
k=1

|X(m+ i, n+ j, k)−W (i, j, k, c)|. (1)

Although the adder operation enables ANNs to achieve similar performance in classification tasks
with energy efficiency, the observations in Figure 1 shadow ANNs. The unstable test accuracy curve
and large variance almost everywhere in ANNs arouse our interest in the analysis of ANN variance.

Adversarial Attack. Given the input x ∈ RD and the annotated label y ∈ RC where D is the
dimension of input and C is the number of classes, the network N maps perturbed input x̃ to
ỹ = N (x̃;W) where x̃ = x+ δ. The objective of adversarial attacks is to find the perturbed input
which maximizes the classification loss as

x̃ = argmax
x̃:∥x̃−x∥p⩽ϵ

ℓ(N (x̃,W), y), (2)

2

where the perturbation is constrained by its lp-norm. Through variance study of ANNs and ℓ1-distance
analysis, we demonstrate the potential adversarial robustness of ANNs can be activated through
proposed inference strategy with AWN.

3 Variance Study of AdderNet

To analyze the variance of ANNs, we first consider a one-layer adder forward with batch normalization
[11] and ReLU as activation function. Given output feature yl−1 from previous layer, the forwarding
of layer l is formulated as

xl = max(0, yl−1), y
′
l = −

n∑
|xl −Wl|, yl = γ

y′l − µl

σl
+ β, (3)

where µl and σl denote the mean and standard deviation, respectively, Wl is the weight, n represents
the size of weight of one output channel n = d× d× cin, and γ and β stand for the rescale and shift
parameters.

Before we proceed to the weight variance analysis, we first make several assumptions that are
empirically plausible. After the batch normalization, yl−1 is supposed to follow a normal distribution
N (0, σ2). From empirically observation of a ResNet-18 with ANN on ImageNet, as shown in Figure
1 (b) and (c), adder feature after BN layer follows a distribution with mean of 0.02 and variance of
0.38 while the corresponding weight with mean of 0.32 and variance of 88.47, the adder weights
follow Laplace distributions with a large variance but their mean is close to 0 after training. Thus, we
assume Wl follows L(µ, b) with the mean as µ and the variance as 2b2 where 2b2 ≫ σ2.

Now we compute the mean and variance of each variable. The activation xl follows the Rectified
Gaussian distribution. With the law of total expectation, the mean of xl forms the one-side truncation
of lower tail E[xl|xl > 0] which can be computed based on the property of Truncated normal
distribution as

E[xl] = E[xl|xl > 0] · P (xl > 0) + E[xl|xl ≤ 0] · P (xl ≤ 0)

= E[xl|xl > 0] · P (xl > 0) + 0 = [0 + σ
ϕ(0)

1− Φ(0)
] · 1

2
=

σ√
2π

,
(4)

where ϕ(·) denotes the probability of standard normal distribution and Φ(·) denotes the cumulative
distribution function. Similarly, with the law of total expectation, the variance of xl is broken down
into variants of expectation and the variance of one-side truncation of lower tail V ar(xl|xl > 0),
which can be computed through Truncated normal distribution as

V ar[xl] = E[x2
l]− (E[xl])

2 = −(E[xl])
2 + E[x2

l |xl > 0] · P (xl > 0)

= P (xl > 0)[V ar(xl|xl > 0) + (E[xl|xl > 0])2]− (E[xl])
2

= [σ2(1− (
ϕ(0)

1− Φ(0)
)2) +

4σ2

2π
] · 1

2
− σ2

2π
= σ2(

1

2
− 1

2π
).

(5)

Since we assume 2b2 ≫ σ2 and the variance is further reduced after activation, the distribution of

xl −Wl is overwhelmed by Wl to form a Laplace distribution as L(σ√
2π

− µ,
√

b2 + (π−1)σ2

4π). For

simplicity, let τµ = σ√
2π

− µ and b + τσ =
√
b2 + (π−1)σ2

4π . Note that the standard deviation of
output last layer σ and the mean of weight µ are both close to zero, which makes τµ and τσ small
values. Although it is difficult to directly derive the closed-form distribution expression of y′l, it can be
approximated based on variable xl−Wl−τµ. According to the properties of Laplace distribution, the
absolute function of L(0, b) follows an Exponential distribution, with which y′l can be approximated
as

y′l = −
n∑

|xl −Wl| ≥ −
n∑
[|xl −Wl − τµ|+ |τµ|],

where |xl −Wl − τµ| ∼ Exp([b+ τσ]
−1),

(6)

where Exp denotes Exponential distribution. Based on the property of Exponential distribution,
E[|xl −Wl|] = b+ τσ and V ar[|xl −Wl|] = (b+ τσ)

2. With Eq. 6, the lower boundary of E[y′l]

3

can be derived as
E|xl −Wl| ≤ E|xl −Wl − τµ|+ |τµ|,
E[y′l] ≥ −n(b+ τσ + |τµ|).

(7)

With inequality in Eq. 7, the lower boundary of V ar[y′l] can be derived by the law of the unconscious
statistician as

V ar[y′l] =

n∑
[E[|xl −Wl|2]− (E[|xl −Wl|])2]

=

n∑
[V ar(xl −Wl) + (E(xl −Wl))

2 − (E(|xl −Wl|))2]

≥ n[V ar(xl −Wl) + (E(xl −Wl))
2 − (E|xl −Wl − τµ|

+ |τµ|)2] = n[2(b+ τσ)
2 + τ2µ − (b+ τσ + |τµ|)2]

= n[(b+ τσ)
2 − 2|τµ|(b+ τσ)].

(8)

Taking the lower boundary of mean and variance of y′l in Eq. 7, 8, the batch normalization layer can
be computed as

yl = γ
y′l + n(b+ τσ + |τµ|)√

n[(b+ τσ)2 − 2|τµ|(b+ τσ)]
+ β. (9)

Note that the batch normalization layers use running mean and variance of current batch in training
phase while moving averages in testing phase. Although precise E[y′l] and V ar[y′l] can be computed
in training phase, the moving averages vary dramatically since b in Eq. 9 grows from a small value to
a large one during optimization, as shown in Figure 1 (c) where the distribution of Wl with initial
variance of 1.0 is optimized to the one with variance of 88.47. Thus, the large variation of batch
statistics results in the instability of testing loss curve while the training loss curve is similar to the
one of CNNs, as shown in Figure 1 (a).

3.1 Adaptive Weight Normalization for AdderNet

Based on these observations and analysis, we propose to make some efficient modifications to current
ANN optimization. From Eq. 9, the running mean and variance mainly depend on the standard
deviation of adder weights so that large magnitude of weights could destabilize the statistics in batch
normalization, which indicates that adder weights need normalization to prevent them from being
updated to a distribution with large variance. A naive approach is Weight Standardization proposed
by Qiao et al.[18] as

W ′
i,j =

Wi,j − µWi

σWi

, where µWi
=

1

n

n∑
j=1

Wi,j ,

σWi =

√√√√ 1

n

n∑
j=1

(Wi,j − µWi)
2 + ϵ,

(10)

where W ∈ Rcout×n denotes the permuted adder weight,
f

denotes concatenation operation and ϵ
is added for numerical stability. In Eq. 10, each output channel of adder weight is normalized to a
distribution with a mean of 0 and variance of 1, which stabilizes the running mean and variance of
batch normalization layer according to Eq. 9. However, with weight standardization directly applied
to ANNs, there exists a dramatic accuracy drop. For example, ANN with weight standardization
achieves 90.62% in ResNet-20 on CIFAR-10 while original ANN achieves 91.84%, which causes
1.22% accuracy drop. Although adder weights are normalized to guarantee a stable test phase,
rigorous mean and variance are strictly assigned to adder weights, which constrains the representation
power of ANNs. Since the similarity between filter and input feature is measured by ℓ1-distance
in ANNs, the magnitude of weight values can be rather sensitive for network expression capability.
Thus, directly applying weight standardization to ANNs can be easily stunk in the local optimum
without exploring wider space of adder weights. Instead, we propose to normalize adder weights with
trainable variables for each output channel, which preserves the representation power. Eq. 10 can be
rewritten as

4

W ′
i,j = νi

Wi,j − µWi

σWi

+ υi, (11)

where νi and υi are trainable variables similar to β and γ in batch normalization layer. Thus, the
magnitude of weight values can be automatically adjusted to fit the potential levels of freedom of
adder weights. Furthermore, previous analysis demonstrates that the magnitude of gradient w.r.t the
input X and the filter W in ANNs is much smaller than that in CNNs [1]. With the incorporation of
these two parameters, the gradient w.r.t the filter W can be automatically adjusted. The gradient of
loss ℓ w.r.t the weight Wi,j is computed as

∂ℓ

∂Wi,j
=

n∑
c=1

νi
n2σWi

{ ∂ℓ

∂W ′
i,j

− ∂ℓ

∂W ′
i,c

[1 +
(Wi,j −Wi,c)(Wi,c − µWi

)

σWi

]
}
. (12)

In Eq. 12, the gradient of W is amplified by νi, which relieve the gradient reduction in ANNs.

4 Activate Potential Adversarial Robustness

Consider the intermediate layer forwarding of ANNs and CNNs with perturbation δl, the disturbance
of an element on the output feature map before BN layer can be computed as

ỹ′lCNN
− y′lCNN =

n∑
i=1

[(xl,i − δl,i)×Wl,i − xl,i ×Wl,i] =

n∑
i=1

(−δl,i)×Wl,i,

ỹ′lANN
− y′lANN =

n∑
i=1

[|xl,i −Wl,i| − |xl,i − δl,i −Wl,i|] ≈
n∑

i=1

±|δl,i|,
(13)

where ± denotes the choices of two possible signs including addition and subtraction. Note that
|xl,i −Wl,i| follows a distribution with large mean and variance in ANNs. We assume that δl follows
a Gaussian distribution with zero mean and smaller variance N (0, σ2

δ) where σ2
δ < V ar[Wl], with

which the subtraction |xl,i − Wl,i| − |xl,i − δl,i − Wl,i| has a high probability to be either δl or
−δl. We show that it is difficult for ±|δl,i| to have large variance in ANNs under adversarial attacks.
In Eq. 13, if V ar[±|δl,i|] grows in ANNs, all the elements in ±|δl,i| tend to select different signs,
which automatically eliminate each other to make ỹ′lANN

− y′lANN ≈ 0. Thus, if attacks succeed,
V ar[±|δl,i|] needs reduction to guarantee larger perturbation on feature map. To ensure maximum
disturbance, all the elements in ±|δl,i| have the same signs, which forms a sum of n half-normal
distributions. On the contrary, each δl,i in CNNs is transformed by different Wl,i in Eq. 13. The
variance of disturbance before BN layer can be computed as

V ar[ỹ′l − y′l]CNN = V ar[
n∑

i=1

(−δl,i)×Wl,i] = nσ2
δ (V ar[Wl] + (E[Wl])

2),

V ar[ỹ′l − y′l]ANN ≈ V ar[

n∑
i=1

|δl,i|] = nσ2
δ (1−

2

π
).

(14)

Eq. 14 indicates the output disturbance variation in CNNs depends on both the statistics of W and δ,
and could vary for different output channels while the one in ANNs only depends on the statistics
of δ for all the output channels. The major difference lies in BN layer where both ANN and CNN
disturbances are rescaled and the variance of perturbation on next layer can be computed as

V ar[δl+1]CNN = nσ2
δ (V ar[Wl] + (E[Wl])

2)/[Std(ỹ′lCNN
)]2,

V ar[δl+1]ANN ≈ nσ2
δ (1−

2

π
)/[Std(ỹ′lANN

)]2.
(15)

Note that the variance of ỹ′lANN
is much larger than ỹ′lCNN

. Thus, ANNs have a much smaller
disturbance variance on l + 1 layer, which suggests that the perturbations of all the elements on ỹ′l
are similar and can be eliminated through subtraction of a scalar value while CNNs cannot copy that
success. To activate the adversarial robustness through utilizing this property of ANNs, a simple yet
effective method is utilizing the running mean in batch normalization layer for automatic disturbance

5

Table 1: Adversarial robustness on CIFAR-10 under white-box attacks without adversarial training.
-R denotes robust inference strategy which uses the running mean in batch normalization layer instead
of tracked ones. BIM7 denotes iterative attack with 7 steps. The best results in bold and the second
best with underline.

Model Method #Mul. #Add. Clean FGSM BIM7 PGD7 MIM5 RFGSM5

ResNet-20

CNN 41.17M 41.17M 92.68 16.33 0.00 0.00 0.01 0.00
ANN 0.45M 81.89M 91.72 18.42 0.00 0.00 0.04 0.00

CNN-R 41.17M 41.17M 90.62 17.23 3.46 3.67 4.23 0.06
ANN-R 0.45M 81.89M 90.95 29.93 29.30 29.72 32.25 3.38

ANN-R-AWN 0.45M 81.89M 90.55 45.93 42.62 43.39 46.52 18.36

ResNet-32

CNN 69.12M 69.12M 92.78 23.55 0.00 0.01 0.10 0.00
ANN 0.45M 137.79M 92.48 35.85 0.03 0.11 1.04 0.02

CNN-R 69.12M 69.12M 91.32 20.41 5.15 5.27 6.09 0.07
ANN-R 0.45M 137.79M 91.68 19.74 15.96 16.08 17.48 0.07

ANN-R-AWN 0.45M 137.79M 91.25 61.30 59.41 59.74 61.54 39.79

elimination. In Eq. 9, τµ becomes τµ − E[δ] while b + τσ nearly remains the same under attack
settings since the disturbance has small variance. The forwarding of BN layer can be computed as

ỹ = γ
ỹ′ + n(b+ τσ + |τµ − E[δ]|)√

n[(b+ τσ)2 − 2|τµ − E[δ]|(b+ τσ)]
+ β

≈ γ
y′ +

∑n
i ±|δi|+ n(b+ τσ + |τµ|)− n|E[δ]|√

n[(b+ τσ)2 − 2|τµ − E[δ]|(b+ τσ)]
+ β

≈ γ
y′ + n(b+ τσ + |τµ|)√

n[(b+ τσ)2 − 2|τµ − E[δ]|(b+ τσ)]
+ β.

(16)

The difference between Eq. 9 and Eq. 16 lies in the running variance, which demonstrates that the
disturbance can be significantly relieved through computing the running mean in BN layer while the
variance is expected to be constant to eliminate the difference brought by E[δ]. Thus, we propose
ANN robust inference strategy as

y∗ = γ
ỹ − running mean
tracked variance

+ β. (17)

However, considering the actual case where the signs of ±|δl,i| are not the same everywhere,
the proposed ANN robust inference strategy cannot work appropriately and results in residual
perturbations which will be rescaled by tracked variance after BN layer. In Eq. 13, the perturbations of
different output channels are similar in ANNs, which indicates that the noise of feature map can hardly
cross channels. However, this property will be broken if tracked variances have enormous differences
among channels. Thus, our proposed ANN-AWN can successfully relieve the variation across
channels to further improve adversarial robustness, which is verified in later empirical evaluations.

5 Experiments

In this section, we empirically evaluate the superiority of the proposed approach on different tasks
and datasets, including the adversarial robustness, object detection and optimization stability.

5.1 Adversarial Robustness Evaluation

White-box Attacks Setup. To demonstrate how the proposed adaptive weight normalization
activates the potential adversarial robustness of AdderNet, we conduct a series of experiments.
Following [1], we first train both CNNs and ANNs with ResNet20 and ResNet32 on CIFAR-10
under the same settings. CIFAR-10 dataset contains 50K training images and 10K validation
images with size of 32 × 32 over 10 classes. We use SGD optimizer with an initial learning rate
of 0.1, momentum of 0.9 and a weight decay of 5 × 10−4. The model is trained on single V100,
which takes 400 epochs with a batch size of 256 and a cosine learning rate schedule. The learning
rate of trainable parameter ν and υ in AWN is rescaled by a hyper-parameter which we set to be
1 × 10−5. For adversarial robustness evaluation, we conduct white-box attacks on these models

6

(a) (b) (c) (d)

Figure 2: The evaluation of adversarial robustness under different PGD attack size is shown in (a)
and different PGD attack steps in (b). The performance of intermediate weights sampled from ANN
and ANN-AWN through linear interpolation in (c). Test loss curves of CNN, ANN, ANN-WS and
ANN-AWN are shown in (d).

including Fast Gradient Sign Method (FGSM) [24], Basic Iterative Method (BIM) [14], Projected
Gradient Descent (PGD) [17], Momentum Iterative Method (MIM) [6], and RFGSM [27] to generate
adversarial examples. Following previous adversarial literature [17, 31], the adversarial perturbation
is considered under l∞ norm with the total perturbation size of 8/255. In iterative attack settings, the
step size is set to 2/255. The number of iterations is set to 7 for PGD and BIM attacks, and 5 for
MIM and RFGSM attacks. Note that different from traditional defense algorithms which generate
adversarial samples for adversarial training [21] or search robust architectures [5, 15], our proposed
algorithm utilizes the properties of ANNs to achieve adversarial robustness without any training
tricks or modifications of architecture. The experimental results are shown in Table 1. Note that all
the models are trained with clean images, which dismisses the expensive adversarial training.

Against White-box Attacks. As shown in the first two rows in Table 1, these adversarial attacks
successfully mislead both CNN and ANN to provide wrong predictions. Although ANN has slightly
better adversarial accuracy compared to CNN, such as 0.01% → 0.04% under MIM5 attack, the
potential adversarial robustness shown in Eq. 13 cannot be activated with normal settings. Thus, we
replace the tracked mean in batch normalization layer with the running mean of current batch based on
Eq. 17 and compare ANN with CNN in the third and fourth rows, which are denoted as -R. Comparing
CNN-R and ANN-R, there exists an enormous adversarial robustness improvement. For example,
ANN-R achieves 26.05% accuracy increment from 3.67% → 29.72% under PGD7 compared with
CNN-R, and improves the accuracy by 32.21% from 0.04% → 32.25% under MIM5 compared
with ANN. The comparison between ANN and ANN-R empirically demonstrates that appropriate
utilization of the running mean in batch normalization layer of ANNs can significantly activate the
adversarial robustness of ANNs. Furthermore, the comparison between CNN-R and ANN-R shows
strong evidence of the natural robustness difference between CNNs and ANNs and indicates that
the ℓ1 distance and the independence between perturbation and adder weight provides much better
defense than CNNs, which is consistent with the aforementioned variance analysis. The evaluation of
proposed AWN is shown in the fifth row. For all the attacks, ANN-R-AWN achieves the best results,
which demonstrates the effectiveness of proposed AWN. Comparing ANN-R and ANN-R-AWN,
AWN shows obvious superior adversarial robustness. For example, AWN improves adversarial
accuracy by 13.67% from 29.72% → 43.39% under PGD7 and 14.98% from 3.38% → 18.36%
under RFGSM5, which illustrates that adversarial robustness can be further boosted through narrowing
the difference among channels to relieve the perturbation transformation. On ResNet-32, ANN-R
achieves worse performance than the one with ResNet-18, which demonstrates that proposed robust
inference strategy is not sufficient for superior adversarial robustness. However, ANN-R-AWN
consistently achieves better performance, which outperforms other baselines in all the adversarial
scenarios, which indicates that the robustness of proposed AWN can generalize to deeper models.

Against Gradually Enhanced Attacks. We highlight the superiority of proposed ANN-R-AWN
through enhancing the attacks from different aspects to evaluate the adversarial robustness under more
powerful attacks. We use the naturally trained models with ResNet-20 on CIFAR-10 for evaluation.
In the first scenario, the total perturbation size ϵ of PGD attack increases from 0.01 to 0.1 with a
step size of ϵ/7. In the second scenario, the iterations of PGD attacks are enhanced from 1 to 50.
The evaluation results are shown in Figure 2 (a) and (b). ANN-R-AWN obtains much better defense
ability than ANN-R, CNN-R and ANN-R-WS baselines when the attack size grows. For example,
the adversarial accuracy of CNN-R quickly dive to 2.96%, ANN-R to 27.67% and ANN-R-WS
to 28.66 when the PGD attack size reaches 0.06 while ANN-R-AWN maintains 32.67% when the
PGD attack size reaches 0.1. Similarly, ANN-R-AWN also achieves superior robustness over other
baselines with increasing steps of PGD attack. For example, the adversarial accuracy of ANN-R

7

Figure 3: Distributions of features from different layers of ANN and ANN-AWN on different epochs.

under PGD50 becomes 26.48% while ANN-R-AWN maintains 36.52% with 10.04% increment,
which demonstrates the effectiveness of AWN. The enormous accuracy drop of ANN-R-WS along
with attack epoch and coherent robustness of our proposed AWN illustrate the necessity of introduced
adaptive rescale and shift parameters in weight normalization. Thus, the advantage of AWN becomes
more obvious under more powerful attacks, which highlights the superiority of proposed AWN.

5.2 Stability of AdderNets

Stability Evaluation through Linear Interpolation. To conduct a quantitative evaluation of
AdderNet stability, we propose to evaluate the smoothness of optimization landscape through tracking
the performance of AdderNet parameters which are sampled between different training epochs. To
highlight the stability of our proposed AWN, we select adjacent epochs for ANN and ANN-AWN
trained with ResNet-20 on CIFAR-10 and sample 9 intermediate weights between two epochs through
linear interpolation. The comparison is shown in Figure 2 (c). To evaluate the stability of early
training stage, we select epoch 160, 164 for ANN as the blue curve and select epoch 125, 135 for
ANN-AWN as the green curve. Although we set earlier epoch with larger intervals for ANN-AWN,
our proposed algorithm forms a much more smooth curve with a smaller variance 336.00 compared
to the one of ANN 587.28. In the later training stage, we select epoch 290, 294 for ANN as the
orange curve and select epoch 283− 294 for ANN-AWN as the red curve. Comparing with ANN, our
proposed algorithm achieves variance reduction of 585.97 from 627.54 to 41.67. The performance of
parameters sampled from linear interpolation reflects the stability of models and the smoothness of the
optimization landscape. With the proposed AWN, the optimization of AdderNet can be significantly
stabilized, which could benefit the situations where adder layers are difficult to optimize.

Trade-offs Between Stability and Accuracy. To further illustrate how AWN takes effect, we
keep track of the test loss during AdderNet optimization and the results of both CNN and ANN
with ResNet-20 on CIFAR-10 are shown in Figure 2 (d). The test loss curve of AdderNet is quite
unstable before 300 epochs while CNNs, ANN with weight standardization and ANN with adaptive
weight normalization all achieve relatively smoothed loss curve, which indicates that the instability of
AdderNet mainly comes from the large variance of adder weights and the proposed AWN eliminate it
successfully. The dotted area covers from 300 to 400 epochs. Although AdderNet cannot achieve
stability due to the large variance of weights, ANNs can still achieve similar performance as CNNs
since the variation of adder weights is reduced during the end of training. However, WS fails to
achieve a similar classification performance and is stuck at local optimum, which demonstrates that
the normalization on adder weights could hurt the expressive power. On the contrary, our proposed
AWN achieves relatively better performance through incorporating the adaptive trainable parameters
for adder weights, which enables them to shift and rescale back to restore the original performance.

Feature Distribution Analysis. We visualize and track the feature distributions of AdderNet with
or without AWN during the training, as shown in Figure 3. We randomly sample features before
batch normalization layer at different epochs and compute histograms over them. Both ANN and
ANN-AWN feature distributions in the 2nd and 19th layers are shown in Figure 3 (a),(b),(c) and (d)
respectively. ANN feature distributions vary dramatically during the optimization, which enormously
disturbs the tracking of mean and variance in batch normalization layer. For example, the sampled
feature on 21-th epoch in (c) has mean of −2738.58 and standard deviation of 1042.44 while the one
on 386-th epoch has mean of −1476.52 and standard deviation of 266.97 with 1262.06 increment
on mean and 775.47 reduction on standard deviation. However, those in ANN-AWN become much
milder, which stabilizes ANNs. For example, the sampled feature on 21-th epoch in (d) has mean
of −940.89 and standard deviation of 269.39 and the one on 385-th epoch has mean of −564.59
and standard deviation of 60.65 with 376.3 increment on mean and 208.74 reduction on standard

8

Table 2: ANN stability evaluation on object de-
tection task. Comparison of proposed approach
on ANNs with other settings on PASCAL VOC
2012 benchmark. The [·] in backbone denotes
the classification accuracy of pretrained network
on ImageNet.

Model Backbone Neck mAP
CNN-FPN Res18-CNN [69.8] CNN 69.3
ANN-FPN Res18-ANN [67.0] ANN 68.6

ANN-WS-FPN Res18-ANN-WS [64.1] ANN-WS 67.0
ANN-AWN-FPN Res18-ANN-AWN [67.1] ANN-AWN 69.4

Table 3: Adversarial robustness comparison of
WS and AWN under different inference strategy
with ResNet-20 on CIFAR-10 with natural train-
ing. -R denotes using running mean of current
batch in BN layer. -r denotes using both running
mean and variance.

Model Clean FGSM BIM7 PGD7 MIM5 RFGSM5

ANN-r-WS 88.10 49.24 21.46 22.96 32.26 7.31
ANN-r-AWN 89.81 49.85 22.54 24.27 32.54 8.26
ANN-R-WS 89.38 40.65 31.35 36.08 42.3 7.78

ANN-R-AWN 90.55 45.93 42.62 43.39 46.52 18.36

deviation. Furthermore, the difference among channels are effectively reduced by AWN to constrain
the perturbation space of adversarial examples, e.g., the standard deviation of ANN features on the
second layer after training becomes 87.41 while that of ANN-AWN becomes 31.13 with a massive
reduction, which potentially provides better defense ability against more powerful adversarial attacks.

5.3 Experiments on Object Detection

To further illustrate the advantage of imposing stability on AdderNets, we conduct experiments on
object detection with ANNs on PASCAL VOC (VOC) dataset. VOC contains 20 object classes, the
training set includes 10K images which are the union of VOC 2007 and VOC 2012, and the VOC
2007 test set with 4.9K images is used for evaluation. The mAP scores using Iou at 0.5 are reported.
All the models are trained with the same setting. Based on the variance study of ANNs, we unfreeze
BatchNorm during the training. Following [2], we insert more shortcuts in the neck part. We use
an initial learning rate of 0.008 with a linear warmup for 500 iterations, momentum of 0.9, weight
decay of 1× 10−4 and a cosine learning rate strategy. All the models are trained on 4 V100 GPUs
with SGD optimizer for 12 epochs with a batch size of 4. For the detector baseline, we include
both CNN and vanilla ANN for comparison. ANN-FPN replaces the convolution layers with adder
layers in the pretrained ResNet-18 backbone and neck of Faster R-CNN [20]. Through applying
different types of ANNs to detection, we conduct comparison among the CNN, vanilla ANN [1],
ANN-WS and ANN-AWN. The detailed evaluation is shown in Table 2. In Backbone column, the
number in brackets denotes the classification accuracy pretrained on ImageNet. Comparing ANN
with our proposed AWN, although they achieve similar classification performance, AWN improves
the mAP score by 0.8 from 68.6 → 69.4. Even comparing with CNN-FPN which has superior
classification performance, our proposed AWN still outperforms it, which demonstrates the necessity
of stability. With a much more smooth loss landscape, the optimization of AdderNet on other tasks
can be easier and more stable. However, ANN-WS is not competitive with other baselines, with
2.4 mAP reduction compared with AWN, which empirically verifies that directly normalizing adder
weights could limit the ability of feature extraction and performance for other tasks. Note that there
exists an enormous accuracy drop of pretrained ANN-WS, which significantly constrains its detection
performance. Thus, besides stability, the representation power of ANNs can be rather important in
terms of applying ANNs to other tasks. On the contrary, our proposed AWN achieves better trade-offs
between classification performance and stability through an adaptive scheme, which together achieves
the superior mAP score in detection task.

5.4 Ablation Studies

We conduct ablation studies on proposed ANN-R-AWN to illustrate the effectiveness of adaptive
training parameters and proposed robust inference strategy. We have already shown that weight
standardization can easily be stuck at a local optimum in Figure 2 (d). Although the analysis in Sec 4
works for both WS and AWN, we empirically verifies that the gaps of clean accuracy between WS
and AWN still exist in adversarial accuracy. The results are shown in Table 3 where WS and AWN
are further attacked and evaluated to demonstrate the influence of performance drop on clean and
adversarial accuracy. Comparing WS and AWN, our proposed AWN consistently outperforms WS in
both adversarial and clean accuracy, which indicates that directly normalizing adder weights could
hurt the representation power of ANNs and restrict the adversarial accuracy of ANNs. With proposed
parameters ν and υ in Eq. 11, AWN successfully relieves this problem through exploring the balance
between expressive power and weight magnitude reduction, which achieves better classification

9

performance and adversarial robustness. We further evaluate the effectiveness of proposed ANN
robust inference strategy as in Eq. 17. We denote the strategy which replaces both tracked mean and
variance with running ones as -r and our proposed one as -R. Comparing two inference methods, our
proposed strategy consistently outperforms -r, which verifies that the activated robustness mainly
comes from the running mean which automatically eliminates the perturbations.

6 Conclusion

In this paper, we investigate the major concerns of AdderNets through approximating the mean and
variance of output features of an arbitrary adder layer. With a derived lower boundary, we show that
the instability of AdderNets mainly comes from drastic fluctuations of running mean and variance in
batch normalization layer whose computation is dominated by the variance of weights. Our proposed
adaptive weight normalization (AWN) works with AdderNets to optimize adder weight distributions
adaptively, which significantly improves the stability and leads to smooth landscape. Our analysis
of the adder layer forwarding reveals the potential superior defense ability of AdderNets against
perturbations and proposed robust inference strategy together with AWN successfully activate the
adversarial robustness. Experiments conducted on stability and robustness demonstrate the superior
performance of the proposed ANN-AWN.

Acknowledgment

The authors would like to thank the Area Chair and the reviewers for their constructive comments.
This work was supported in part by the Australian Research Council under Projects DE180101438
and DP210101859.

References
[1] H. Chen, Y. Wang, C. Xu, B. Shi, C. Xu, Q. Tian, and C. Xu. AdderNet: Do we really need multiplications

in deep learning? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

[2] X. Chen, C. Xu, M. Dong, C. Xu, and Y. Wang. An empirical study of adder neural networks for object
detection. In NeurIPS, 2021.

[3] M. Courbariaux and Y. Bengio. Binarynet: Training deep neural networks with weights and activations
constrained to +1 or -1. CoRR, abs/1602.02830, 2016. URL http://arxiv.org/abs/1602.
02830.

[4] C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep convolutional network for image super-resolution.
In European conference on computer vision, pages 184–199. Springer, 2014.

[5] M. Dong, Y. Li, Y. Wang, and C. Xu. Adversarially robust neural architectures. CoRR, abs/2009.00902,
2020. URL https://arxiv.org/abs/2009.00902.

[6] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li. Boosting adversarial attacks with momentum. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 9185–9193, 2018.

[7] G. Ghiasi, T.-Y. Lin, and Q. V. Le. Nas-fpn: Learning scalable feature pyramid architecture for object
detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
7036–7045, 2019.

[8] J. Guo, K. Han, Y. Wang, C. Zhang, Z. Yang, H. Wu, X. Chen, and C. Xu. Hit-detector: Hierarchical trinity
architecture search for object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11405–11414, 2020.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR, abs/1512.03385,
2015. URL http://arxiv.org/abs/1512.03385.

[10] G. Huang, Z. Liu, and K. Q. Weinberger. Densely connected convolutional networks. CoRR,
abs/1608.06993, 2016. URL http://arxiv.org/abs/1608.06993.

[11] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. CoRR, abs/1502.03167, 2015. URL http://arxiv.org/abs/1502.03167.

10

http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1602.02830
https://arxiv.org/abs/2009.00902
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1502.03167

[12] J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image super-resolution using very deep convolutional
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1646–1654, 2016.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[14] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial examples in the physical world. arXiv preprint
arXiv:1607.02533, 2016.

[15] Y. Li, Z. Yang, Y. Wang, and C. Xu. Neural architecture dilation for adversarial robustness. In Advances in
Neural Information Processing Systems, 2021.

[16] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. Ssd: Single shot multibox
detector. In European conference on computer vision, pages 21–37. Springer, 2016.

[17] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

[18] S. Qiao, H. Wang, C. Liu, W. Shen, and A. L. Yuille. Weight standardization. CoRR, abs/1903.10520,
2019. URL http://arxiv.org/abs/1903.10520.

[19] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 779–788, 2016.

[20] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN: towards real-time object detection with region
proposal networks. CoRR, abs/1506.01497, 2015. URL http://arxiv.org/abs/1506.01497.

[21] A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. P. Dickerson, C. Studer, L. S. Davis, G. Taylor, and T. Goldstein.
Adversarial training for free! CoRR, abs/1904.12843, 2019. URL http://arxiv.org/abs/1904.
12843.

[22] D. Song, Y. Wang, H. Chen, C. Xu, C. Xu, and D. Tao. Addersr: Towards energy efficient image
super-resolution. arXiv preprint arXiv:2009.08891, 2020.

[23] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer. Efficient processing of deep neural networks: A tutorial
and survey. Proceedings of the IEEE, 105(12):2295–2329, 2017.

[24] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing
properties of neural networks. arXiv e-prints, art. arXiv:1312.6199, Dec 2013.

[25] M. Tan and Q. V. Le. Efficientnet: Rethinking model scaling for convolutional neural networks. CoRR,
abs/1905.11946, 2019. URL http://arxiv.org/abs/1905.11946.

[26] Y. Tang, Y. Wang, Y. Xu, Y. Deng, C. Xu, D. Tao, and C. Xu. Manifold regularized dynamic network
pruning. CoRR, abs/2103.05861, 2021. URL https://arxiv.org/abs/2103.05861.

[27] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel. Ensemble adversarial
training: Attacks and defenses. arXiv preprint arXiv:1705.07204, 2017.

[28] M. Wang, W. Fu, X. He, S. Hao, and X. Wu. A survey on large-scale machine learning. IEEE Transactions
on Knowledge and Data Engineering, 2020.

[29] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia, and K. Keutzer. Fbnet: Hardware-
aware efficient convnet design via differentiable neural architecture search. CoRR, abs/1812.03443, 2018.
URL http://arxiv.org/abs/1812.03443.

[30] H. You, X. Chen, Y. Zhang, C. Li, S. Li, Z. Liu, Z. Wang, and Y. Lin. Shiftaddnet: A hardware-inspired
deep network. arXiv preprint arXiv:2010.12785, 2020.

[31] H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui, and M. I. Jordan. Theoretically principled trade-off
between robustness and accuracy. arXiv preprint arXiv:1901.08573, 2019.

[32] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu. Image super-resolution using very deep residual
channel attention networks. CoRR, abs/1807.02758, 2018. URL http://arxiv.org/abs/1807.
02758.

11

http://arxiv.org/abs/1903.10520
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1904.12843
http://arxiv.org/abs/1904.12843
http://arxiv.org/abs/1905.11946
https://arxiv.org/abs/2103.05861
http://arxiv.org/abs/1812.03443
http://arxiv.org/abs/1807.02758
http://arxiv.org/abs/1807.02758

	Introduction
	Preliminary
	Variance Study of AdderNet
	Adaptive Weight Normalization for AdderNet

	Activate Potential Adversarial Robustness
	Experiments
	Adversarial Robustness Evaluation
	Stability of AdderNets
	Experiments on Object Detection
	Ablation Studies

	Conclusion

